LaTeX DVI PostScript PDF
 
 
 
 
 

HASC Inverse Hyperbolic Secant

HASC.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0\}$ .The function Inverse Hyperbolic Secant (noted $\operatorname{arcsech}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
\bigl(2 x^{2} - 1\bigr) \frac{\partial y (x)}{\partial x} + \bigl(x^{3} - x\bigr) \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
HASC.1.1

The initial conditions of HASC.1.1 at $0$ are not simple to state, since $0$ is a (regular) singular point.

Related functions: Inverse Secant,Inverse Cosecant

HASC.2 Series and asymptotic expansions

top up back next into bottom

HASC.2.2 Asymptotic expansion at $-1$

top up back next into bottom

HASC.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arcsech} (x)\approx (i \pi\ldots) + \sqrt{x + 1} \Biggl(-\sqrt{2} - \frac{5 (x + 1) \sqrt{2}}{12} - \frac{43 (x + 1)^{2} \sqrt{2}}{160} -  \\ 
& \quad{}\quad{}\frac{177 (x + 1)^{3} \sqrt{2}}{896} - \frac{2867 (x + 1)^{4} \sqrt{2}}{18432} - \frac{11531 (x + 1)^{5} \sqrt{2}}{90112} -  \\ 
& \quad{}\quad{}\frac{92479 (x + 1)^{6} \sqrt{2}}{851968} - \frac{74069 (x + 1)^{7} \sqrt{2}}{786432} -  \\ 
& \quad{}\quad{}\frac{11857475 (x + 1)^{8} \sqrt{2}}{142606336}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 HASC.2.2.1.1

HASC.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

HASC.2.3 Asymptotic expansion at $0$

top up back next into bottom

HASC.2.3.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arcsech} (x)\approx \Biggl(\frac{x^{2}}{4} + \frac{3 x^{4}}{32} + \frac{5 x^{6}}{96} + \frac{35 x^{8}}{1024} + \operatorname{ln} (x) + \operatorname{ln} (2)\ldots\Biggr). 
\end{split} 
\end{equation*} 
 HASC.2.3.1.1

HASC.2.3.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:13:15.