LaTeX DVI PostScript PDF
 
 
 
 
 

HACT Inverse Hyperbolic Cotangent

HACT.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{-1,1\}$ .The function Inverse Hyperbolic Cotangent (noted $\operatorname{arccoth}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
2 x \frac{\partial y (x)}{\partial x} + \bigl(x^{2} - 1\bigr) \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
HACT.1.1

The initial conditions of HACT.1.1 are given at $0$ by


\begin{equation*} 
\begin{split} 
\operatorname{arccoth} (0)& =-\frac{i}{2}\pi, \\ 
\frac{\partial \operatorname{arccoth} (x)}{\partial x} (0)& =1. 
\end{split} 
\end{equation*} 
 HACT.1.2

Related function: Inverse Hyperbolic Tangent

HACT.2 Series and asymptotic expansions

top up back next into bottom

HACT.2.1 Taylor expansion at $0$

top up back next into bottom

HACT.2.1.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
\operatorname{arccoth} (x)& =\sum_{n = 0}^{\infty} u (n) x^{n}. 
\end{split} 
\end{equation*} 
 HACT.2.1.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
n u (n) - -(-n - 2) u (n + 2)& =0. 
\end{split} 
\end{equation*}
HACT.2.1.2.2
Initial conditions of HACT.2.1.2.2 are given by

\begin{equation*} 
\begin{split} 
u (0)& =-\frac{i}{2}\pi, \\ 
u (1)& =1. 
\end{split} 
\end{equation*}
HACT.2.1.2.3

HACT.2.2 Asymptotic expansion at $1$

top up back next into bottom

HACT.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccoth} (x)\approx \Biggl(\frac{\operatorname{ln} (2)}{2} - \frac{x}{4} + \frac{1}{4} + \frac{(x - 1)^{2}}{16} - \frac{(x - 1)^{3}}{48} + \frac{(x - 1)^{4}}{128} - \frac{(x - 1)^{5}}{320} +  \\ 
& \quad{}\quad{}\frac{(x - 1)^{6}}{768} - \frac{(x - 1)^{7}}{1792} + \frac{(x - 1)^{8}}{4096} + \frac{\operatorname{ln} (x - 1)}{2}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 HACT.2.2.1.1

HACT.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

HACT.2.3 Asymptotic expansion at $-1$

top up back next into bottom

HACT.2.3.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccoth} (x)\approx \Biggl(\frac{-\operatorname{ln} (2)}{2} - \frac{x}{4} - \frac{1}{4} - \frac{(x + 1)^{2}}{16} - \frac{(x + 1)^{3}}{48} - \frac{(x + 1)^{4}}{128} - \frac{(x + 1)^{5}}{320}  \\ 
& \quad{}\quad{}- \frac{(x + 1)^{6}}{768} - \frac{(x + 1)^{7}}{1792} - \frac{(x + 1)^{8}}{4096} - \frac{\operatorname{ln} (x + 1)}{2}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 HACT.2.3.1.1

HACT.2.3.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:13:13.