LaTeX DVI PostScript PDF
 
 
 
 
 
top up back next into bottom

ACCS Inverse Cosecant

ACCS.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0\}$ .The function Inverse Cosecant (noted $\operatorname{arccsc}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
\bigl(2 x^{2} - 1\bigr) \frac{\partial y (x)}{\partial x} + \bigl(x^{3} - x\bigr) \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
ACCS.1.1

The initial conditions of ACCS.1.1 at $0$ are not simple to state, since $0$ is a (regular) singular point.

Related functions: Inverse Hyperbolic Secant,Inverse Secant

ACCS.2 Series and asymptotic expansions

top up back next into bottom

ACCS.2.1 Asymptotic expansion at $-1$

top up back next into bottom

ACCS.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccsc} (x)\approx \biggl(\frac{-\pi}{2}\ldots\biggr) + \sqrt{x + 1} \biggl(i \sqrt{2} + \frac{5 i}{12} (x + 1) \sqrt{2} +  \\ 
& \quad{}\quad{}\frac{43 i}{160} (x + 1)^{2} \sqrt{2} + \frac{177 i}{896} (x + 1)^{3} \sqrt{2} + \frac{2867 i}{18432} (x + 1)^{4} \sqrt{2} +  \\ 
& \quad{}\quad{}\frac{11531 i}{90112} (x + 1)^{5} \sqrt{2} + \frac{92479 i}{851968} (x + 1)^{6} \sqrt{2} +  \\ 
& \quad{}\quad{}\frac{74069 i}{786432} (x + 1)^{7} \sqrt{2} + \frac{11857475 i}{142606336} (x + 1)^{8} \sqrt{2}\ldots\biggr). 
\end{split} 
\end{equation*} 
 ACCS.2.1.1.1

ACCS.2.1.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

ACCS.2.2 Asymptotic expansion at $0$

top up back next into bottom

ACCS.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccsc} (x)\approx \biggl( \\ 
& \quad{}\quad{}-i\operatorname{ln} (2) + \frac{\pi}{2} - \frac{i}{4} x^{2} - \frac{3 i}{32} x^{4} - \frac{5 i}{96} x^{6} - \frac{35 i}{1024} x^{8} - i \operatorname{ln} (x)\ldots\biggr). 
\end{split} 
\end{equation*} 
 ACCS.2.2.1.1

ACCS.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

ACCS.2.3 Asymptotic expansion at $1$

top up back next into bottom

ACCS.2.3.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccsc} (x)\approx \biggl(\frac{\pi}{2}\ldots\biggr) + \sqrt{x - 1} \Biggl(-\sqrt{2} + \frac{5 (x - 1) \sqrt{2}}{12} - \frac{43 (x - 1)^{2} \sqrt{2}}{160} +  \\ 
& \quad{}\quad{}\frac{177 (x - 1)^{3} \sqrt{2}}{896} - \frac{2867 (x - 1)^{4} \sqrt{2}}{18432} + \frac{11531 (x - 1)^{5} \sqrt{2}}{90112} -  \\ 
& \quad{}\quad{}\frac{92479 (x - 1)^{6} \sqrt{2}}{851968} + \frac{74069 (x - 1)^{7} \sqrt{2}}{786432} -  \\ 
& \quad{}\quad{}\frac{11857475 (x - 1)^{8} \sqrt{2}}{142606336}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 ACCS.2.3.1.1

ACCS.2.3.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:07:56.