LaTeX DVI PostScript PDF
 
 
 
 
 

ACS Inverse Cosine

ACS.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{\infty\}$ .The function Inverse Cosine (noted $\operatorname{arccos}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
x \frac{\partial y (x)}{\partial x} + \bigl(x^{2} - 1\bigr) \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
ACS.1.1

The initial conditions of ACS.1.1 are given at $0$ by


\begin{equation*} 
\begin{split} 
\operatorname{arccos} (0)& =\frac{\pi}{2}, \\ 
\frac{\partial \operatorname{arccos} (x)}{\partial x} (0)& =-1. 
\end{split} 
\end{equation*} 
 ACS.1.2

Related functions: Inverse Sine,Inverse Hyperbolic Cosine

ACS.2 Series and asymptotic expansions

top up back next into bottom

ACS.2.1 Asymptotic expansion at $-1$

top up back next into bottom

ACS.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccos} (x)\approx (\pi\ldots) + \sqrt{x + 1} \Biggl(-\sqrt{2} - \frac{(x + 1) \sqrt{2}}{12} - \frac{3 (x + 1)^{2} \sqrt{2}}{160} -  \\ 
& \quad{}\quad{}\frac{5 (x + 1)^{3} \sqrt{2}}{896} - \frac{35 (x + 1)^{4} \sqrt{2}}{18432} - \frac{63 (x + 1)^{5} \sqrt{2}}{90112} -  \\ 
& \quad{}\quad{}\frac{231 (x + 1)^{6} \sqrt{2}}{851968} - \frac{143 (x + 1)^{7} \sqrt{2}}{1310720} - \frac{6435 (x + 1)^{8} \sqrt{2}}{142606336}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 ACS.2.1.1.1

ACS.2.1.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

ACS.2.2 Asymptotic expansion at $1$

top up back next into bottom

ACS.2.2.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccos} (x)\approx \sqrt{x - 1} \sum_{n = 0}^{\infty} u (n) (x - 1)^{n}. 
\end{split} 
\end{equation*}
ACS.2.2.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
2 u (n) \biggl(n + \frac{1}{2}\biggr) n + u (n - 1) \biggl(-\frac{1}{2} + n\biggr)^{2}& =0. 
\end{split} 
\end{equation*}
ACS.2.2.2.2
Initial conditions of ACS.2.2.2.2 are given by

\begin{equation*} 
\begin{split} 
u (0)& =i \sqrt{2}. 
\end{split} 
\end{equation*}
ACS.2.2.2.3
The recurrence ACS.2.2.2.2 has the closed form solution

\begin{equation*} 
\begin{split} 
u (n)& =\frac{i 2^{\bigl(n + \frac{1}{2}\bigr)} \Gamma \Bigl(n + \frac{1}{2}\Bigr) (-1)^{n}}{4^{n} \Gamma (n + 1) \sqrt{\pi} (2 n + 1)}. 
\end{split} 
\end{equation*}
ACS.2.2.2.4

ACS.2.3 Asymptotic expansion at $\infty$

top up back next into bottom

ACS.2.3.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arccos} (x)\approx  \\ 
& \quad{}\quad{}\Biggl(i \operatorname{ln} (2) + \frac{i}{4 x^{2}} + \frac{3 i}{32 x^{4}} + \frac{5 i}{96 x^{6}} + \frac{35 i}{1024 x^{8}} + i \operatorname{ln} \biggl(\frac{1}{x}\biggr)\ldots\Biggr). 
\end{split} 
\end{equation*} 
 ACS.2.3.1.1

ACS.2.3.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

ACS.2.4 Taylor expansion at $0$

top up back next into bottom

ACS.2.4.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
\operatorname{arccos} (x)& =\sum_{n = 0}^{\infty} u (n) x^{n}. 
\end{split} 
\end{equation*} 
 ACS.2.4.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
n^{2} u (n) - -\bigl(-n^{2} - 3 n - 2\bigr) u (n + 2)& =0. 
\end{split} 
\end{equation*}
ACS.2.4.2.2
Initial conditions of ACS.2.4.2.2 are given by

\begin{equation*} 
\begin{split} 
u (0)& =\frac{\pi}{2}, \\ 
u (1)& =-1. 
\end{split} 
\end{equation*}
ACS.2.4.2.3
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:08:03.