LaTeX DVI PostScript PDF
 
 
 
 
 

DBI Derivative of Airy Bi

DBI.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{\infty\}$ .The function Derivative of Airy Bi (noted $\operatorname{Bi} \prime$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
-x^{2} y (x) - \frac{\partial y (x)}{\partial x} + x \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
DBI.1.1

Although $0$ is a singularity of DBI.1.1, the initial conditions can be given by


\begin{equation*} 
\begin{split} 
[1] \operatorname{Bi} \prime (x)& =\frac{3^{\frac{2}{3}} \Gamma \Bigl(\frac{2}{3}\Bigr)}{2 \pi}, \\ 
\bigl[x^{2}\bigr] \operatorname{Bi} \prime (x)& =\frac{3^{\frac{5}{6}}}{6 \Gamma \Bigl(\frac{2}{3}\Bigr)}. 
\end{split} 
\end{equation*} 
 DBI.1.2

Related function: Derivative of Airy Ai

DBI.2 Series and asymptotic expansions

top up back next into bottom

DBI.2.1 Asymptotic expansion at $\infty$

top up back next into bottom

DBI.2.1.1 First terms

top up back next into bottom

\begin{equation*} 
\begin{split} 
& \operatorname{Bi} \prime (x)\approx \frac{\operatorname{e} ^{\Bigl(\frac{-2}{3 \xi^{3}}\Bigr)} \biggl(\frac{i}{\sqrt{\pi}} + \frac{7 i \xi^{3}}{48 \sqrt{\pi}} + \ldots\biggr)}{\sqrt{\xi}} 
\end{split} 
\end{equation*}
where $\xi = -\sqrt{\frac{1}{x}}$

DBI.2.1.2 General form

top up back next into bottom

\begin{equation*} 
\begin{split} 
& \operatorname{Bi} \prime (x)\approx \frac{\operatorname{e} ^{\Bigl(\frac{-2}{3 \xi^{3}}\Bigr)} \sum_{n = 0}^{\infty} u (n) \xi^{n}}{\sqrt{\xi}} 
\end{split} 
\end{equation*}
where $\xi = -\sqrt{\frac{1}{x}}$ The coefficients $u (n)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
16 u (n) n + u (n - 3) \bigl(-43 + 12 n + 4 (n - 3)^{2}\bigr)& =0. 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (0)& =\frac{i}{\sqrt{\pi}}, \\ 
u (2)& =0, \\ 
u (1)& =0. 
\end{split} 
\end{equation*}
This recurrence has the closed form solution

\begin{equation*} 
\begin{split} 
u (3 n + 1)& =0, \\ 
u (3 n + 2)& =0, \\ 
u (3 n)& =\frac{-i(-1)^{n} 6^{(2 n)} \Gamma \Bigl(n + \frac{7}{6}\Bigr) \Gamma \Bigl(n - \frac{1}{6}\Bigr)}{2 \pi^{\frac{3}{2}} 48^{n} \Gamma (n + 1)}. 
\end{split} 
\end{equation*}

DBI.2.2 Asymptotic expansion at $0$

top up back next into bottom

DBI.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{Bi} \prime (x)\approx \Biggl(\frac{3^{\frac{5}{6}} x^{8}}{4320 \Gamma \Bigl(\frac{2}{3}\Bigr)} + \frac{x^{6} 3^{\frac{2}{3}} \Gamma \Bigl(\frac{2}{3}\Bigr)}{144 \pi} + \frac{3^{\frac{5}{6}} x^{5}}{90 \Gamma \Bigl(\frac{2}{3}\Bigr)} + \frac{x^{3} 3^{\frac{2}{3}} \Gamma \Bigl(\frac{2}{3}\Bigr)}{6 \pi} +  \\ 
& \quad{}\quad{}\frac{3^{\frac{5}{6}} x^{2}}{6 \Gamma \Bigl(\frac{2}{3}\Bigr)} + \frac{3^{\frac{2}{3}} \Gamma \Bigl(\frac{2}{3}\Bigr)}{2 \pi}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 DBI.2.2.1.1

DBI.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:09:17.