LaTeX DVI PostScript PDF
 
 
 
 
 

EI Exponential Integral

EI.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0,\infty\}$ .The function Exponential Integral (noted $\operatorname{Ei}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
(1 - x) \frac{\partial y (x)}{\partial x} + x \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
EI.1.1

The initial conditions of EI.1.1 at $0$ are not simple to state, since $0$ is a (regular) singular point.

EI.2 Series and asymptotic expansions

top up back next into bottom

EI.2.1 Asymptotic expansion at $0$

top up back next into bottom

EI.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{Ei} (x)\approx \Biggl(-x - \frac{x^{2}}{4} - \frac{x^{3}}{18} - \frac{x^{4}}{96} - \frac{x^{5}}{600} - \frac{x^{6}}{4320} - \frac{x^{7}}{35280} - \frac{x^{8}}{322560} - \operatorname{ln} (x) + \gamma\ldots\Biggr). 
\end{split} 
\end{equation*} 
 EI.2.1.1.1

EI.2.1.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

EI.2.2 Asymptotic expansion at $\infty$

top up back next into bottom

EI.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{Ei} (x)\approx \operatorname{e} ^{\frac{1}{x}} x y _{0} (x), 
\end{split} 
\end{equation*}
where

\begin{equation*} 
\begin{split} 
y _{0} (x)& =1 + x + 2 x^{2} + 6 x^{3} + 2 \ldots 
\end{split} 
\end{equation*}

EI.2.2.2 General form

top up back next into bottom

EI.2.2.2.1 Auxiliary function $y _{0} (x)$

The coefficients $u (n)$ of $y _{0} (x)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
-u (n) n + u (n - 1) \bigl(-1 + 2 n + (n - 1)^{2}\bigr)& =0 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (0)& =1 
\end{split} 
\end{equation*}
This recurrence has the closed form solution

\begin{equation*} 
\begin{split} 
u (n)& =\Gamma (n + 1). 
\end{split} 
\end{equation*}
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:09:19.