LaTeX DVI PostScript PDF
 
 
 
 
 

DAI Derivative of Airy Ai

DAI.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{\infty\}$ .The function Derivative of Airy Ai (noted $\operatorname{Ai} \prime$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
-x^{2} y (x) - \frac{\partial y (x)}{\partial x} + x \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
DAI.1.1

Although $0$ is a singularity of DAI.1.1, the initial conditions can be given by


\begin{equation*} 
\begin{split} 
[1] \operatorname{Ai} \prime (x)& =\frac{-\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{2 \pi}, \\ 
\bigl[x^{2}\bigr] \operatorname{Ai} \prime (x)& =\frac{\sqrt[3]{3}}{6 \Gamma \Bigl(\frac{2}{3}\Bigr)}. 
\end{split} 
\end{equation*} 
 DAI.1.2

Related function: Derivative of Airy Bi

DAI.2 Series and asymptotic expansions

top up back next into bottom

DAI.2.1 Asymptotic expansion at $\infty$

top up back next into bottom

DAI.2.1.1 First terms

top up back next into bottom

\begin{equation*} 
\begin{split} 
& \operatorname{Ai} \prime (x)\approx \frac{\operatorname{e} ^{\Bigl(\frac{-2}{3 \xi^{3}}\Bigr)} \biggl(\frac{-1}{2 \sqrt{\pi}} - \frac{7 \xi^{3}}{96 \sqrt{\pi}} + \ldots\biggr)}{\sqrt{\xi}} 
\end{split} 
\end{equation*}
where $\xi = \sqrt{\frac{1}{x}}$

DAI.2.1.2 General form

top up back next into bottom

\begin{equation*} 
\begin{split} 
& \operatorname{Ai} \prime (x)\approx \frac{\operatorname{e} ^{\Bigl(\frac{-2}{3 \xi^{3}}\Bigr)} \sum_{n = 0}^{\infty} u (n) \xi^{n}}{\sqrt{\xi}} 
\end{split} 
\end{equation*}
where $\xi = \sqrt{\frac{1}{x}}$ The coefficients $u (n)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
16 u (n) n + u (n - 3) \bigl(-43 + 12 n + 4 (n - 3)^{2}\bigr)& =0. 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (0)& =\frac{-1}{2 \sqrt{\pi}}, \\ 
u (1)& =0, \\ 
u (2)& =0. 
\end{split} 
\end{equation*}
This recurrence has the closed form solution

\begin{equation*} 
\begin{split} 
u (3 n + 1)& =0, \\ 
u (3 n + 2)& =0, \\ 
u (3 n)& =\frac{(-1)^{n} 6^{(2 n)} \Gamma \Bigl(n + \frac{7}{6}\Bigr) \Gamma \Bigl(n - \frac{1}{6}\Bigr)}{4 \pi^{\frac{3}{2}} 48^{n} \Gamma (n + 1)}. 
\end{split} 
\end{equation*}

DAI.2.2 Asymptotic expansion at $0$

top up back next into bottom

DAI.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{Ai} \prime (x)\approx \Biggl(\frac{\sqrt[3]{3} x^{8}}{4320 \Gamma \Bigl(\frac{2}{3}\Bigr)} - \frac{x^{6} \sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{144 \pi} + \frac{\sqrt[3]{3} x^{5}}{90 \Gamma \Bigl(\frac{2}{3}\Bigr)} - \frac{x^{3} \sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{6 \pi} +  \\ 
& \quad{}\quad{}\frac{\sqrt[3]{3} x^{2}}{6 \Gamma \Bigl(\frac{2}{3}\Bigr)} - \frac{\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{2 \pi}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 DAI.2.2.1.1

DAI.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:09:17.