LaTeX DVI PostScript PDF
 
 
 
 
 

CI Cosine Integral

CI.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0,\infty\}$ .The function Cosine Integral (noted $\operatorname{Ci}$ ) is defined by the following third order differential equation


\begin{equation*} 
\begin{split} 
x \frac{\partial y (x)}{\partial x} + 2 \frac{\partial^{2} y (x)}{\partial x^{2}} + x \frac{\partial^{3} y (x)}{\partial x^{3}}& =0. 
\end{split} 
\end{equation*}
CI.1.1

The initial conditions of CI.1.1 at $0$ are not simple to state, since $0$ is a (regular) singular point.

Related function: Sine Integral

CI.2 Series and asymptotic expansions

top up back next into bottom

CI.2.1 Asymptotic expansion at $0$

top up back next into bottom

CI.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{Ci} (x)\approx \Biggl(\frac{x^{2}}{4} - \frac{x^{4}}{96} + \frac{x^{6}}{4320} - \frac{x^{8}}{322560} - \operatorname{ln} (x) + \gamma\ldots\Biggr). 
\end{split} 
\end{equation*} 
 CI.2.1.1.1

CI.2.1.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

CI.2.2 Asymptotic expansion at $\infty$

top up back next into bottom

CI.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{Ci} (x)\approx \operatorname{e} ^{\biggl(-\frac{\operatorname{RootOf} _{\xi,1} (1 + \xi^{2})}{x}\biggr)} x y _{0} (x) +  \\ 
& \quad{}\quad{}\operatorname{e} ^{\biggl(-\frac{\operatorname{RootOf} _{\xi,2} (1 + \xi^{2})}{x}\biggr)} x y _{1} (x), 
\end{split} 
\end{equation*}
where

\begin{equation*} 
\begin{split} 
y _{0} (x)& =\frac{i}{2} + \frac{i}{2} \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr) x +  \\ 
& \quad{}\quad{}\biggl(\frac{i}{4} + \frac{5 i}{4} \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{2}\biggr) x^{2} + \Biggl(i \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr) +  \\ 
& \quad{}\quad{}4 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr) \biggl(\frac{i}{4} + \frac{5 i}{4} \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{2}\biggr)\Biggr) x^{3} + 2 \ldots \\ 
y _{1} (x)& =\frac{-i}{2} - \frac{i}{2} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) x -  \\ 
& \quad{}\quad{}-\biggl(\frac{-i}{4} - \frac{5 i}{4} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{2}\biggr) x^{2} - -\Biggl(-i\operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) +  \\ 
& \quad{}\quad{}4 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) \biggl(\frac{-i}{4} - \frac{5 i}{4} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{2}\biggr)\Biggr) x^{3} +  \\ 
& \quad{}\quad{}2 \ldots 
\end{split} 
\end{equation*}

CI.2.2.2 General form

top up back next into bottom

CI.2.2.2.1 Auxiliary function $y _{0} (x)$

The coefficients $u (n)$ of $y _{0} (x)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
& 2 u (n) n + u (n - 1) \Bigl(-2\operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr) -  \\ 
& 5 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr) (n - 1) - 3 (n - 1)^{2} \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\Bigr) +  \\ 
& u (n - 2) \bigl(8 - 5 n - 4 (n - 2)^{2} - (n - 2)^{3}\bigr)=0 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (1)& =\frac{i}{2} \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr) \\ 
u (0)& =\frac{i}{2} 
\end{split} 
\end{equation*}

CI.2.2.2.2 Auxiliary function $y _{1} (x)$

The coefficients $u (n)$ of $y _{1} (x)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
& 2 u (n) n + u (n - 1) \Bigl(-2\operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) -  \\ 
& 5 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) (n - 1) - 3 (n - 1)^{2} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\Bigr) +  \\ 
& u (n - 2) \bigl(8 - 5 n - 4 (n - 2)^{2} - (n - 2)^{3}\bigr)=0 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (1)& =-\frac{i}{2}\operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) \\ 
u (0)& =\frac{-i}{2} 
\end{split} 
\end{equation*}
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:09:07.