LaTeX DVI PostScript PDF
 
 
 
 
 

H1 Hankel H1

H1.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0,\infty\}$ and let $\nu$ denote a parameter (independent of $x$ ).The function Hankel H1 (noted $\operatorname{H} _{\nu} ^{(1)}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
\bigl(x^{2} - \nu^{2}\bigr) y (x) + x \frac{\partial y (x)}{\partial x} + x^{2} \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
H1.1.1

Although $0$ is a singularity of H1.1.1, the initial conditions can be given by


\begin{equation*} 
\begin{split} 
\Bigl[x^{(-\nu)}\Bigr] \operatorname{H} _{\nu} ^{(1)} (x)& =\frac{-i\Gamma (\nu)}{\frac{\pi}{2^{\nu}}}, \\ 
\bigl[x^{\nu}\bigr] \operatorname{H} _{\nu} ^{(1)} (x)& =\frac{-i\operatorname{e} ^{(-i\pi \nu)} \Gamma (-\nu)}{\pi 2^{\nu}}. 
\end{split} 
\end{equation*} 
 H1.1.2

The formulae of this document are valid for $2 \nu \not\in \mathbb{Z} .$

Related functions: Hankel H2,Bessel Y,Bessel J

H1.2 Series and asymptotic expansions

top up back next into bottom

H1.2.1 Asymptotic expansion at $\infty$

top up back next into bottom

H1.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{H} _{\nu} ^{(1)} (x)\approx \operatorname{e} ^{\biggl(-\frac{\operatorname{RootOf} _{\xi,2} (1 + \xi^{2})}{x}\biggr)} \sqrt{x} y _{0} (x), 
\end{split} 
\end{equation*}
where

\begin{equation*} 
\begin{split} 
y _{0} (x)& =\frac{\sqrt{2} \operatorname{e} ^{\bigl(-\frac{i}{4}\pi (2 \nu + 1)\bigr)}}{\sqrt{\pi}} - \frac{-\bigl(4 \nu^{2} - 1\bigr) \sqrt{2} \operatorname{e} ^{\bigl(-\frac{i}{4}\pi (2 \nu + 1)\bigr)} x}{8 \sqrt{\pi} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)} +  \\ 
& \quad{}\quad{}\frac{\bigl(4 \nu^{2} - 9\bigr) \bigl(4 \nu^{2} - 1\bigr) \sqrt{2} \operatorname{e} ^{\bigl(-\frac{i}{4}\pi (2 \nu + 1)\bigr)} x^{2}}{128 \sqrt{\pi} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{2}} -  \\ 
& \quad{}\quad{}\frac{-\bigl(4 \nu^{2} - 25\bigr) \bigl(4 \nu^{2} - 9\bigr) \bigl(4 \nu^{2} - 1\bigr) \sqrt{2} \operatorname{e} ^{\bigl(-\frac{i}{4}\pi (2 \nu + 1)\bigr)} x^{3}}{3072 \sqrt{\pi} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{3}} +  \\ 
& \quad{}\quad{}2 \ldots 
\end{split} 
\end{equation*}

H1.2.1.2 General form

top up back next into bottom

H1.2.1.2.1 Auxiliary function $y _{0} (x)$

The coefficients $u (n)$ of $y _{0} (x)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
& 8 u (n) n \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr) + u (n - 1) \bigl(-4\nu^{2} - 3 + 4 n + 4 (n - 1)^{2}\bigr)=0 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (0)& =\frac{\sqrt{2} \operatorname{e} ^{\bigl(-\frac{i}{4}\pi (2 \nu + 1)\bigr)}}{\sqrt{\pi}} 
\end{split} 
\end{equation*}
This recurrence has the closed form solution

\begin{equation*} 
\begin{split} 
u (n)& =\Biggl(\Gamma \biggl(\nu + \frac{1}{2} + n\biggr) 2^{\Bigl(n + \frac{1}{2}\Bigr)} \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{n} \Gamma \biggl(n - \nu + \frac{1}{2}\biggr)  \\ 
& \quad{}\quad{}\operatorname{sin} \Biggl(\frac{\pi (2 \nu + 1)}{2}\Biggr) (-2)^{n} (-1)^{n} \operatorname{e} ^{\Bigl(-\frac{i}{4}\pi (2 \nu + 1)\Bigr)}\Biggr)\Bigg/ \\ 
& \quad{}\quad{}\Biggl(\Gamma (n + 1) 8^{n} \pi^{\frac{3}{2}}\Biggr). 
\end{split} 
\end{equation*}

H1.2.2 Asymptotic expansion at $0$

top up back next into bottom

H1.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{H} _{\nu} ^{(1)} (x)\approx \Biggl(\frac{-i\Gamma (\nu)}{\frac{\pi}{2^{\nu}}} - \frac{i x^{2} \Gamma (\nu)}{\frac{4 (\nu - 1) \pi}{2^{\nu}}} - \frac{i x^{4} \Gamma (\nu)}{\frac{32 (\nu - 1) (\nu - 2) \pi}{2^{\nu}}} -  \\ 
& \quad{}\quad{}\frac{i x^{6} \Gamma (\nu)}{\frac{384 (\nu - 1) (\nu - 2) (\nu - 3) \pi}{2^{\nu}}} - \frac{i x^{8} \Gamma (\nu)}{\frac{6144 (\nu - 1) (\nu - 2) (\nu - 3) (\nu - 4) \pi}{2^{\nu}}} \\ 
& \quad{}\quad{}\ldots\Biggr)\Bigg/x^{\nu} + x^{\nu} \Biggl(\frac{-i\operatorname{e} ^{(-i\pi \nu)} \Gamma (-\nu)}{\pi 2^{\nu}} + \frac{i x^{2} \operatorname{e} ^{(-i\pi \nu)} \Gamma (-\nu)}{4 (\nu + 1) \pi 2^{\nu}} -  \\ 
& \quad{}\quad{}\frac{i x^{4} \operatorname{e} ^{(-i\pi \nu)} \Gamma (-\nu)}{32 (\nu + 1) (\nu + 2) \pi 2^{\nu}} + \frac{i x^{6} \operatorname{e} ^{(-i\pi \nu)} \Gamma (-\nu)}{384 (\nu + 1) (\nu + 2) (\nu + 3) \pi 2^{\nu}} -  \\ 
& \quad{}\quad{}\frac{i x^{8} \operatorname{e} ^{(-i\pi \nu)} \Gamma (-\nu)}{6144 (\nu + 1) (\nu + 2) (\nu + 3) (\nu + 4) \pi 2^{\nu}}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 H1.2.2.1.1

H1.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:12:51.