LaTeX DVI PostScript PDF
 
 
 
 
 

BSI Bessel I

BSI.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0,\infty\}$ and let $\nu$ denote a parameter (independent of $x$ ).The function Bessel I (noted $\operatorname{I} _{\nu}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
-x^{2} + \nu^{2}y (x) + x \frac{\partial y (x)}{\partial x} + x^{2} \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
BSI.1.1

Although $0$ is a singularity of BSI.1.1, the initial conditions can be given by


\begin{equation*} 
\begin{split} 
\frac{\partial \frac{\operatorname{I} _{\nu} (x)}{x^{\nu}}}{\partial x}& =\frac{1}{\Gamma (\nu + 1) 2^{\nu}}. 
\end{split} 
\end{equation*} 
 BSI.1.2

The formulae of this document are valid for $-2\nu \not\in \mathbb{Z} .$

Related function: Bessel K

BSI.2 Series and asymptotic expansions

top up back next into bottom

BSI.2.1 Asymptotic expansion at $\infty$

top up back next into bottom

BSI.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{I} _{\nu} (x)\approx \operatorname{e} ^{\Bigl(-\frac{1}{x}\Bigr)} \sqrt{x} y _{0} (x), 
\end{split} 
\end{equation*}
where

\begin{equation*} 
\begin{split} 
y _{0} (x)& =\frac{\sqrt{2}}{2 \sqrt{\pi}} - \frac{-\bigl(4 \nu^{2} - 1\bigr) \sqrt{2} x}{16 \sqrt{\pi}} + \frac{\bigl(4 \nu^{2} - 9\bigr) \bigl(4 \nu^{2} - 1\bigr) \sqrt{2} x^{2}}{256 \sqrt{\pi}} -  \\ 
& \quad{}\quad{}\frac{-\bigl(4 \nu^{2} - 25\bigr) \bigl(4 \nu^{2} - 9\bigr) \bigl(4 \nu^{2} - 1\bigr) \sqrt{2} x^{3}}{6144 \sqrt{\pi}} + 2 \ldots 
\end{split} 
\end{equation*}

BSI.2.1.2 General form

top up back next into bottom

BSI.2.1.2.1 Auxiliary function $y _{0} (x)$

The coefficients $u (n)$ of $y _{0} (x)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
8 u (n) n + u (n - 1) \bigl(-4\nu^{2} - 3 + 4 n + 4 (n - 1)^{2}\bigr)& =0 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (0)& =\frac{\sqrt{2}}{2 \sqrt{\pi}} 
\end{split} 
\end{equation*}
This recurrence has the closed form solution

\begin{equation*} 
\begin{split} 
u (n)& =\frac{2^{\bigl(n + \frac{1}{2}\bigr)} \Gamma \Bigl(n + \nu + \frac{1}{2}\Bigr) \Gamma \Bigl(n - \nu + \frac{1}{2}\Bigr) \operatorname{sin} \biggl(\frac{\pi (2 \nu + 1)}{2}\biggr) (-2)^{n}}{2 8^{n} \pi^{\frac{3}{2}} \Gamma (n + 1)}. 
\end{split} 
\end{equation*}

BSI.2.2 Asymptotic expansion at $0$

top up back next into bottom

BSI.2.2.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{I} _{\nu} (x)\approx x^{\nu} \sum_{n = 0}^{\infty} u (n) x^{n}. 
\end{split} 
\end{equation*}
BSI.2.2.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
u (n) \bigl(-\nu^{2} + (\nu + n)^{2}\bigr) - u (n - 2)& =0. 
\end{split} 
\end{equation*}
BSI.2.2.2.2
Initial conditions of BSI.2.2.2.2 are given by

\begin{equation*} 
\begin{split} 
u (0)& =\frac{1}{\Gamma (\nu + 1) 2^{\nu}}, \\ 
u (1)& =0. 
\end{split} 
\end{equation*}
BSI.2.2.2.3
The recurrence BSI.2.2.2.2 has the closed form solution

\begin{equation*} 
\begin{split} 
u (2 n)& =\frac{1}{2^{\nu} 4^{n} \Gamma (n + 1) \Gamma (n + \nu + 1)}, \\ 
u (2 n + 1)& =0. 
\end{split} 
\end{equation*}
BSI.2.2.2.4
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:08:54.