LaTeX DVI PostScript PDF
 
 
 
 
 

ATN Inverse Tangent

ATN.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{i,-i\}$ .The function Inverse Tangent (noted $\operatorname{arctan}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
-2x \frac{\partial y (x)}{\partial x} - -\bigl(-1 - x^{2}\bigr) \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
ATN.1.1

The initial conditions of ATN.1.1 are given at $0$ by


\begin{equation*} 
\begin{split} 
\operatorname{arctan} (0)& =0, \\ 
\frac{\partial \operatorname{arctan} (x)}{\partial x} (0)& =1. 
\end{split} 
\end{equation*} 
 ATN.1.2

ATN.2 Series and asymptotic expansions

top up back next into bottom

ATN.2.1 Asymptotic expansion at $i$

top up back next into bottom

ATN.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arctan} (x)\approx \Biggl(\frac{i}{2} \operatorname{ln} (2) + \frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr) \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)}{4}  \\ 
& \quad{}\quad{}- \frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{2}}{16} + \frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{3}}{48 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)} -  \\ 
& \quad{}\quad{}\frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{4}}{128 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{2}} + \frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{5}}{320 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{3}} -  \\ 
& \quad{}\quad{}\frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{6}}{768 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{4}} + \frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{7}}{1792 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{5}} -  \\ 
& \quad{}\quad{}\frac{\bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)^{8}}{4096 \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)^{6}} + \frac{\operatorname{ln} \bigl(x - \operatorname{RootOf} _{\xi,1} \bigl(1 + \xi^{2}\bigr)\bigr)}{2}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 ATN.2.1.1.1

ATN.2.1.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

ATN.2.2 Asymptotic expansion at $-i$

top up back next into bottom

ATN.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{arctan} (x)\approx \Biggl(-\frac{i}{2}\operatorname{ln} (2) + \frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr) \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)}{4}  \\ 
& \quad{}\quad{}- \frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{2}}{16} + \frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{3}}{48 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)} -  \\ 
& \quad{}\quad{}\frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{4}}{128 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{2}} + \frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{5}}{320 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{3}} -  \\ 
& \quad{}\quad{}\frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{6}}{768 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{4}} + \frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{7}}{1792 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{5}} -  \\ 
& \quad{}\quad{}\frac{\bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)^{8}}{4096 \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)^{6}} + \frac{\operatorname{ln} \bigl(x - \operatorname{RootOf} _{\xi,2} \bigl(1 + \xi^{2}\bigr)\bigr)}{2}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 ATN.2.2.1.1

ATN.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

ATN.2.3 Taylor expansion at $0$

top up back next into bottom

ATN.2.3.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
\operatorname{arctan} (x)& =\sum_{n = 0}^{\infty} u (n) x^{n}. 
\end{split} 
\end{equation*} 
 ATN.2.3.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
-n u (n) - -(-n - 2) u (n + 2)& =0. 
\end{split} 
\end{equation*}
ATN.2.3.2.2
Initial conditions of ATN.2.3.2.2 are given by

\begin{equation*} 
\begin{split} 
u (0)& =0, \\ 
u (1)& =1. 
\end{split} 
\end{equation*}
ATN.2.3.2.3
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:08:38.