LaTeX DVI PostScript PDF
 
 
 
 
 
top up back next into bottom

WW Whittaker W

WW.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0,\infty\}$ and let $\mu,\nu$ denote a set of parameters (independent of $x$ ).The function Whittaker W (noted $\operatorname{WW} _{\mu , \nu}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
-x^{2} - 4 \mu x - 1 + 4 \nu^{2}y (x) + 4 x^{2} \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
WW.1.1

Although $0$ is a singularity of WW.1.1, the initial conditions can be given by


\begin{equation*} 
\begin{split} 
\Biggl[x^{\Bigl(\nu + \frac{1}{2}\Bigr)}\Biggr] \operatorname{WW} _{\mu , \nu} (x)& =\frac{\pi}{\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \Bigl(\frac{1}{2} - \nu - \mu\Bigr)}, \\ 
\Biggl[x^{\Bigl(-\nu + \frac{1}{2}\Bigr)}\Biggr] \operatorname{WW} _{\mu , \nu} (x)& =\frac{\pi}{\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \Bigl(\frac{1}{2} + \nu - \mu\Bigr)}. 
\end{split} 
\end{equation*} 
 WW.1.2

The formulae of this document are valid for $2 \nu \not\in \mathbb{Z} .$

Related function: Whittaker M

WW.2 Series and asymptotic expansions

top up back next into bottom

WW.2.1 Asymptotic expansion at $\infty$

top up back next into bottom

WW.2.1.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{WW} _{\mu , \nu} (x)\approx \frac{\operatorname{e} ^{\bigl(\frac{-1}{2 x}\bigr)} y _{0} (x)}{x^{\mu}}, 
\end{split} 
\end{equation*}
where

\begin{equation*} 
\begin{split} 
y _{0} (x)& =1 + \biggl(\nu^{2} + \mu - \mu^{2} - \frac{1}{4}\biggr) x -  \\ 
& \quad{}\quad{}\frac{-\bigl(4 \nu^{2} + 12 \mu - 4 \mu^{2} - 9\bigr) \bigl(4 \nu^{2} + 4 \mu - 4 \mu^{2} - 1\bigr) x^{2}}{32} +  \\ 
& \quad{}\quad{}\bigl(4 \nu^{2} + 20 \mu - 4 \mu^{2} - 25\bigr) \bigl(4 \nu^{2} + 12 \mu - 4 \mu^{2} - 9\bigr)  \\ 
& \quad{}\quad{}\bigl(4 \nu^{2} + 4 \mu - 4 \mu^{2} - 1\bigr) x^{3}\Big/384 + 2 \ldots 
\end{split} 
\end{equation*}

WW.2.1.2 General form

top up back next into bottom

WW.2.1.2.1 Auxiliary function $y _{0} (x)$

The coefficients $u (n)$ of $y _{0} (x)$ satisfy the following recurrence

\begin{equation*} 
\begin{split} 
& 4 u (n) n +  \\ 
& u (n - 1) \bigl(-4\nu^{2} - 4 \mu + 4 \mu^{2} - 3 + 4 n - 8 (n - 1) \mu + 4 (n - 1)^{2}\bigr)=0 
\end{split} 
\end{equation*}
whose initial conditions are given by

\begin{equation*} 
\begin{split} 
u (0)& =1 
\end{split} 
\end{equation*}
This recurrence has the closed form solution

\begin{equation*} 
\begin{split} 
u (n)& =\frac{(-2)^{n} \Gamma \Bigl(n + \frac{1}{2} - \nu - \mu\Bigr) 2^{n} \Gamma \Bigl(n + \frac{1}{2} + \nu - \mu\Bigr)}{4^{n} \Gamma (n + 1) \Gamma \Bigl(\frac{1}{2} - \nu - \mu\Bigr) \Gamma \Bigl(\frac{1}{2} + \nu - \mu\Bigr)}. 
\end{split} 
\end{equation*}

WW.2.2 Asymptotic expansion at $0$

top up back next into bottom

WW.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{WW} _{\mu , \nu} (x)\approx x^{\Bigl(\nu + \frac{1}{2}\Bigr)} \Biggl(\frac{\pi}{\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \Bigl(\frac{1}{2} - \nu - \mu\Bigr)} -  \\ 
& \quad{}\quad{}\frac{\mu x \pi}{(2 \nu + 1) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \Bigl(\frac{1}{2} - \nu - \mu\Bigr)} +  \\ 
& \quad{}\quad{}\frac{\bigl(2 \nu + 1 + 4 \mu^{2}\bigr) x^{2} \pi}{16 (2 \nu + 1) (\nu + 1) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \Bigl(\frac{1}{2} - \nu - \mu\Bigr)} -  \\ 
& \quad{}\quad{}\Bigl(\mu \bigl(6 \nu + 5 + 4 \mu^{2}\bigr) x^{3} \pi\Bigr)\Bigg/\Biggl(48 (2 \nu + 1) (\nu + 1) (2 \nu + 3)  \\ 
& \quad{}\quad{}\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \biggl(\frac{1}{2} - \nu - \mu\biggr)\Biggr) +  \\ 
& \quad{}\quad{}\Bigl(\bigl(12 \nu^{2} + 24 \nu + 9 + 48 \mu^{2} \nu + 56 \mu^{2} + 16 \mu^{4}\bigr) x^{4} \pi\Bigr)\Bigg/\Biggl(1536  \\ 
& \quad{}\quad{}(2 \nu + 1) (\nu + 1) (2 \nu + 3) (\nu + 2) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1)  \\ 
& \quad{}\quad{}\Gamma \biggl(\frac{1}{2} - \nu - \mu\biggr)\Biggr) -  \\ 
& \quad{}\quad{}\Bigl(\mu \bigl(60 \nu^{2} + 160 \nu + 89 + 80 \mu^{2} \nu + 120 \mu^{2} + 16 \mu^{4}\bigr) x^{5} \pi\Bigr)\Bigg/\Biggl(7680  \\ 
& \quad{}\quad{}(2 \nu + 1) (\nu + 1) (2 \nu + 3) (\nu + 2) (2 \nu + 5) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr)  \\ 
& \quad{}\quad{}\Gamma (2 \nu + 1) \Gamma \biggl(\frac{1}{2} - \nu - \mu\biggr)\Biggr) + \Bigl(\bigl(120 \nu^{3} + 540 \nu^{2} + 690 \nu + 225 +  \\ 
& \quad{}\quad{}720 \mu^{2} \nu^{2} + 2400 \mu^{2} \nu + 1756 \mu^{2} + 480 \mu^{4} \nu + 880 \mu^{4} + 64 \mu^{6}\bigr)  \\ 
& \quad{}\quad{}x^{6} \pi\Bigr)\Bigg/\Biggl(368640 (2 \nu + 1) (\nu + 1) (2 \nu + 3) (\nu + 2) (2 \nu + 5) (\nu + 3)  \\ 
& \quad{}\quad{}\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \biggl(\frac{1}{2} - \nu - \mu\biggr)\Biggr) - \Bigl(\mu \bigl(840 \nu^{3} + 4620 \nu^{2} +  \\ 
& \quad{}\quad{}7518 \nu + 3429 + 1680 \mu^{2} \nu^{2} + 6720 \mu^{2} \nu + 6076 \mu^{2} + 672 \mu^{4} \nu +  \\ 
& \quad{}\quad{}1456 \mu^{4} + 64 \mu^{6}\bigr) x^{7} \pi\Bigr)\Bigg/\Biggl(2580480 (2 \nu + 1) (\nu + 1) (2 \nu + 3) (\nu + 2) \\ 
& \quad{}\quad{} (2 \nu + 5) (\nu + 3) (2 \nu + 7) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \biggl(\frac{1}{2} - \nu - \mu\biggr)\Biggr) + \Bigl(\bigl( \\ 
& \quad{}\quad{}1680 \nu^{4} + 13440 \nu^{3} + 36120 \nu^{2} + 36960 \nu + 11025 + 13440 \mu^{2} \nu^{3} +  \\ 
& \quad{}\quad{}87360 \mu^{2} \nu^{2} + 172256 \mu^{2} \nu + 99760 \mu^{2} + 13440 \mu^{4} \nu^{2} +  \\ 
& \quad{}\quad{}62720 \mu^{4} \nu + 67424 \mu^{4} + 3584 \mu^{6} \nu + 8960 \mu^{6} + 256 \mu^{8}\bigr) x^{8} \pi\Bigr)\Bigg/\Biggl( \\ 
& \quad{}\quad{}165150720 (2 \nu + 1) (\nu + 1) (2 \nu + 3) (\nu + 2) (2 \nu + 5) (\nu + 3)  \\ 
& \quad{}\quad{}(2 \nu + 7) (\nu + 4) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (2 \nu + 1) \Gamma \biggl(\frac{1}{2} - \nu - \mu\biggr)\Biggr)\ldots\Biggr) + \Biggl( \\ 
& \quad{}\quad{}\frac{\pi}{\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \Bigl(\frac{1}{2} + \nu - \mu\Bigr)} +  \\ 
& \quad{}\quad{}\frac{\mu x \pi}{(2 \nu - 1) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \Bigl(\frac{1}{2} + \nu - \mu\Bigr)} -  \\ 
& \quad{}\quad{}\frac{\bigl(2 \nu - 1 - 4 \mu^{2}\bigr) x^{2} \pi}{16 (2 \nu - 1) (\nu - 1) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \Bigl(\frac{1}{2} + \nu - \mu\Bigr)} -  \\ 
& \quad{}\quad{}\Bigl(\mu \bigl(6 \nu - 5 - 4 \mu^{2}\bigr) x^{3} \pi\Bigr)\Bigg/\Biggl(48 (2 \nu - 1) (\nu - 1) (2 \nu - 3)  \\ 
& \quad{}\quad{}\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \biggl(\frac{1}{2} + \nu - \mu\biggr)\Biggr) +  \\ 
& \quad{}\quad{}\Bigl(\bigl(12 \nu^{2} - 24 \nu + 9 - 48 \mu^{2} \nu + 56 \mu^{2} + 16 \mu^{4}\bigr) x^{4} \pi\Bigr)\Bigg/\Biggl(1536  \\ 
& \quad{}\quad{}(2 \nu - 1) (\nu - 1) (2 \nu - 3) (\nu - 2) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu)  \\ 
& \quad{}\quad{}\Gamma \biggl(\frac{1}{2} + \nu - \mu\biggr)\Biggr) +  \\ 
& \quad{}\quad{}\Bigl(\mu \bigl(60 \nu^{2} - 160 \nu + 89 - 80 \mu^{2} \nu + 120 \mu^{2} + 16 \mu^{4}\bigr) x^{5} \pi\Bigr)\Bigg/\Biggl(7680  \\ 
& \quad{}\quad{}(2 \nu - 1) (\nu - 1) (2 \nu - 3) (\nu - 2) (2 \nu - 5) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr)  \\ 
& \quad{}\quad{}\Gamma (1 - 2 \nu) \Gamma \biggl(\frac{1}{2} + \nu - \mu\biggr)\Biggr) - \Bigl(\bigl(120 \nu^{3} - 540 \nu^{2} + 690 \nu - 225 -  \\ 
& \quad{}\quad{}720 \mu^{2} \nu^{2} + 2400 \mu^{2} \nu - 1756 \mu^{2} + 480 \mu^{4} \nu - 880 \mu^{4} - 64 \mu^{6}\bigr)  \\ 
& \quad{}\quad{}x^{6} \pi\Bigr)\Bigg/\Biggl(368640 (2 \nu - 1) (\nu - 1) (2 \nu - 3) (\nu - 2) (2 \nu - 5) (\nu - 3)  \\ 
& \quad{}\quad{}\operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \biggl(\frac{1}{2} + \nu - \mu\biggr)\Biggr) - \Bigl(\mu \bigl(840 \nu^{3} - 4620 \nu^{2} +  \\ 
& \quad{}\quad{}7518 \nu - 3429 - 1680 \mu^{2} \nu^{2} + 6720 \mu^{2} \nu - 6076 \mu^{2} + 672 \mu^{4} \nu -  \\ 
& \quad{}\quad{}1456 \mu^{4} - 64 \mu^{6}\bigr) x^{7} \pi\Bigr)\Bigg/\Biggl(2580480 (2 \nu - 1) (\nu - 1) (2 \nu - 3) (\nu - 2) \\ 
& \quad{}\quad{} (2 \nu - 5) (\nu - 3) (2 \nu - 7) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \biggl(\frac{1}{2} + \nu - \mu\biggr)\Biggr) + \Bigl(\bigl( \\ 
& \quad{}\quad{}1680 \nu^{4} - 13440 \nu^{3} + 36120 \nu^{2} - 36960 \nu + 11025 - 13440 \mu^{2} \nu^{3} +  \\ 
& \quad{}\quad{}87360 \mu^{2} \nu^{2} - 172256 \mu^{2} \nu + 99760 \mu^{2} + 13440 \mu^{4} \nu^{2} -  \\ 
& \quad{}\quad{}62720 \mu^{4} \nu + 67424 \mu^{4} - 3584 \mu^{6} \nu + 8960 \mu^{6} + 256 \mu^{8}\bigr) x^{8} \pi\Bigr)\Bigg/\Biggl( \\ 
& \quad{}\quad{}165150720 (2 \nu - 1) (\nu - 1) (2 \nu - 3) (\nu - 2) (2 \nu - 5) (\nu - 3)  \\ 
& \quad{}\quad{}(2 \nu - 7) (\nu - 4) \operatorname{sin} \bigl(\pi (2 \nu + 1)\bigr) \Gamma (1 - 2 \nu) \Gamma \biggl(\frac{1}{2} + \nu - \mu\biggr)\Biggr)\ldots\Biggr)\Bigg/x^{\Bigl(\nu - \frac{1}{2}\Bigr)}. 
\end{split} 
\end{equation*} 
 WW.2.2.1.1

WW.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:14:23.