LaTeX DVI PostScript PDF
 
 
 
 
 

LI2 Dilogarithm

LI2.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{0,\infty\}$ .The function Dilogarithm (noted $\operatorname{dilog}$ ) is defined by the following third order differential equation


\begin{equation*} 
\begin{split} 
\frac{\partial y (x)}{\partial x} - -(-1 + 3 x) \frac{\partial^{2} y (x)}{\partial x^{2}} - -\bigl(-x + x^{2}\bigr) \frac{\partial^{3} y (x)}{\partial x^{3}}& =0. 
\end{split} 
\end{equation*}
LI2.1.1

The initial conditions of LI2.1.1 at $0$ are not simple to state, since $0$ is a (regular) singular point.

LI2.2 Series and asymptotic expansions

top up back next into bottom

LI2.2.1 Asymptotic expansion at $1$

top up back next into bottom

LI2.2.1.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{dilog} (x)\approx (x - 1) \sum_{n = 0}^{\infty} u (n) (x - 1)^{n}. 
\end{split} 
\end{equation*}
LI2.2.1.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
u (n) (n + 1)^{2} n + u (n - 1) n^{3}& =0. 
\end{split} 
\end{equation*}
LI2.2.1.2.2
Initial conditions of LI2.2.1.2.2 are given by

\begin{equation*} 
\begin{split} 
u (0)& =-1, \\ 
u (1)& =\frac{1}{4}. 
\end{split} 
\end{equation*}
LI2.2.1.2.3
The recurrence LI2.2.1.2.2 has the closed form solution

\begin{equation*} 
\begin{split} 
u (n)& =-\frac{(-1)^{n}}{(n + 1)^{2}}. 
\end{split} 
\end{equation*}
LI2.2.1.2.4

LI2.2.2 Asymptotic expansion at $\infty$

top up back next into bottom

LI2.2.2.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{dilog} (x)\approx \Biggl(\frac{1 - 8 \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{64 x^{8}} + \frac{1 - 7 \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{49 x^{7}} + \frac{1 - 6 \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{36 x^{6}} + \frac{1 - 5 \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{25 x^{5}} -  \\ 
& \quad{}\quad{}-\frac{-4\operatorname{ln} \Bigl(\frac{1}{x}\Bigr) + 1}{16 x^{4}} + \frac{1 - 3 \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{9 x^{3}} + \frac{1 - 2 \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{4 x^{2}} + \frac{1 - \operatorname{ln} \Bigl(\frac{1}{x}\Bigr)}{x} - \frac{\pi^{2}}{6} -  \\ 
& \quad{}\quad{}\frac{\operatorname{ln} \Bigl(\frac{1}{x}\Bigr)^{2}}{2}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 LI2.2.2.1.1

LI2.2.2.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

LI2.2.3 Asymptotic expansion at $0$

top up back next into bottom

LI2.2.3.1 First terms

top up back next into bottom


\begin{equation*} 
\begin{split} 
& \operatorname{dilog} (x)\approx \Biggl(-\frac{15}{64} + \frac{\operatorname{ln} (x)}{8}x^{8} - -\Biggl(-\frac{13}{49} - \frac{\operatorname{ln} (x)}{7}\Biggr) x^{7} -  \\ 
& \quad{}\quad{}-\Biggl(-\frac{11}{36} - \frac{\operatorname{ln} (x)}{6}\Biggr) x^{6} - -\Biggl(-\frac{9}{25} - \frac{\operatorname{ln} (x)}{5}\Biggr) x^{5} - -\Biggl(-\frac{7}{16} - \frac{\operatorname{ln} (x)}{4}\Biggr) x^{4} -  \\ 
& \quad{}\quad{}-\Biggl(-\frac{5}{9} - \frac{\operatorname{ln} (x)}{3}\Biggr) x^{3} - -\Biggl(-\frac{3}{4} - \frac{\operatorname{ln} (x)}{2}\Biggr) x^{2} - -\bigl(-1 - \operatorname{ln} (x)\bigr) x + \frac{\pi^{2}}{6}\ldots\Biggr). 
\end{split} 
\end{equation*} 
 LI2.2.3.1.1

LI2.2.3.2 General form

top up back next into bottom
The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:13:58.