LaTeX DVI PostScript PDF
 
 
 
 
 

HCS Hyperbolic Cosine

HCS.1 Introduction

top up back next into bottom

Let $x$ be a complex variable of $\mathbb{C} \setminus \{\infty\}$ .The function Hyperbolic Cosine (noted $\operatorname{cosh}$ ) is defined by the following second order differential equation


\begin{equation*} 
\begin{split} 
-y (x) + \frac{\partial^{2} y (x)}{\partial x^{2}}& =0. 
\end{split} 
\end{equation*}
HCS.1.1

The initial conditions of HCS.1.1 are given at $0$ by


\begin{equation*} 
\begin{split} 
\operatorname{cosh} (0)& =1, \\ 
\frac{\partial \operatorname{cosh} (x)}{\partial x} (0)& =0. 
\end{split} 
\end{equation*} 
 HCS.1.2

Related function: Hyperbolic Sine

HCS.2 Series and asymptotic expansions

top up back next into bottom

HCS.2.2 Taylor expansion at $0$

top up back next into bottom

HCS.2.2.2 General form

top up back next into bottom


\begin{equation*} 
\begin{split} 
\operatorname{cosh} (x)& =\sum_{n = 0}^{\infty} u (n) x^{n}. 
\end{split} 
\end{equation*} 
 HCS.2.2.2.1
The coefficients $u (n)$ satisfy the recurrence

\begin{equation*} 
\begin{split} 
-u (n) + \bigl(n^{2} + 3 n + 2\bigr) u (n + 2)& =0. 
\end{split} 
\end{equation*}
HCS.2.2.2.2
Initial conditions of HCS.2.2.2.2 are given by

\begin{equation*} 
\begin{split} 
u (1)& =0, \\ 
u (0)& =1. 
\end{split} 
\end{equation*}
HCS.2.2.2.3
The recurrence HCS.2.2.2.2 has the closed form solution

\begin{equation*} 
\begin{split} 
u (2 n)& =\frac{1}{\Gamma (2 n + 1)}, \\ 
u (2 n + 1)& =0. 
\end{split} 
\end{equation*}
HCS.2.2.2.4
 
 
 
This web site is compliant with HTML 4.01 and CSS 1.
Copyright © 2001-2003 by the Algorithms Project and INRIA.
All rights reserved. Created: Aug 1 2003 15:13:41.