This presentation is in two parts. First, we recall the definition of two types of asymptotic expansions known as nested form and nested expansions. This theory makes it possible to adapt the asymptotic scale to the function under expansion and is based on the theory of Hardy fields [1]. Next, we suggest a reformulation of nested forms in terms of generalized products called star products, and a prospective theory of multivariate Hardy fields called partial Hardy fields.
|
|||||||||||||||||||
|
|||||||||||||||||||
|
g |
|
(ln | x)<g |
|
(x)=g |
|
( | xd | ) | =g |
|
( | ek | ( | lkd(x) | ) | ) | <g |
|
(exp x). |
g0 | ( | x-1 | ) | <g0(ln x)<g0(x) but g1(ln x)<g1(x)=g1 | ( | x-1 | ) | . |
|
~ |
|
|
, and hence | Lp(x)f |
|
(x) ~ |
|
|
. |
f=es | ( | lmd(x)f | ) | where s,m³0, dÎR+ and g1(f)<g1(lm(x)). |
e1 | ( | l22(x)e2 | ( | l51/3(x)(2+o(1)) | ) | ) | , and -e1-1 |
æ ç ç è |
x |
|
l1(x)e2 |
æ ç ç è |
l |
|
(x)(13+o(1)) |
ö ÷ ÷ ø |
ö ÷ ÷ ø |
. |
|
||||||||||||||||||||||||||
|
f(x,y)x® +¥ | ~ e |
|
æ ç ç è |
l |
|
(x)e |
|
æ ç ç è |
··· e |
|
æ ç ç è |
l |
|
(x)(f(y)+o(1)) |
ö ÷ ÷ ø |
··· |
ö ÷ ÷ ø |
ö ÷ ÷ ø |
, |
This document was translated from LATEX by HEVEA.