The Cantor distribution is defined as a random serieswhere J is a parameter and the Xi are random variables that take the values 0 and 1 with probability 1/2. The moments and order statistics are discussed, as well as a ``Fibonacci'' variation. Connections to certain trees and splitting processes are also mentioned.
1-J
J
å i³1 XiJi,
X= |
|
|
Xi Ji, |
value(w1 w2 ···)= |
|
|
wi Ji. |
an= |
|
|
|
|
n-k Jk ak, a0=1. |
A(z)= |
|
|
. |
E[Xn]=an= F(log |
|
n)n |
|
æ ç ç è |
1+ O |
æ ç ç è |
|
ö ÷ ÷ ø |
ö ÷ ÷ ø |
. |
- |
|
ó õ |
|
|
|
e |
|
x |
|
dx. |
(2n-2J)an= |
|
+ J |
|
|
J ak. |
|
(z)= |
|
A(z)= |
|
|
n |
|
, |
|
(2z)= J |
|
(z)+ |
|
. |
an=- |
|
|
|
|
|
, |
an ~ n |
|
|
( | G(-log2 J) z(-log2 J) + d(log2 n) | ) | , |
value(000)=0, value(001)= |
|
, value(010)= |
|
, value(100)= |
|
, value(101)= |
|
F(z)= |
|
= |
|
Fm+2zm. |
Fn= |
|
( | an-bn | ) | with a= |
|
and b= |
|
. |
Gn(z):= |
|
( | value (w) | ) |
|
z|w|, |
[zm]Gn(z) | |
[zm]F(z) |
value(0w) | =J · value(w) | ||||||
value(10w) |
|
Gn(z)= |
|
é ê ê ë |
|
n z+ z2 |
|
|
|
n-i J2iGi(z) |
ù ú ú û |
. |
Mn= |
|
|
= |
|
|
. |
Mn= |
|
|
|
|
n-i J2iMi. |
|
(z)= |
|
|
(J z)+ |
|
|
(J2z). |
Mn= |
æ è |
1+ |
|
ö ø |
|
F(-log |
|
n) n |
|
æ ç ç è |
1+O |
æ ç ç è |
|
ö ÷ ÷ ø |
ö ÷ ÷ ø |
, |
- |
|
ó õ |
|
|
|
(J z) z |
|
dz. |
This document was translated from LATEX by HEVEA.