Some Properties of the Cantor Distribution

Helmut Prodinger
Technische Universität Wien, Austria

December 9, 1996

[summary by Julien Clément]

Abstract
The Cantor distribution is defined as a random series

\[\frac{1 - \vartheta}{\vartheta} \sum_{i \geq 1} X_i \vartheta^i, \]

where \(\vartheta \) is a parameter and the \(X_i \) are random variables that take the values 0 and 1 with probability 1/2. The moments and order statistics are discussed, as well as a “Fibonacci” variation. Connections to certain trees and splitting processes are also mentioned.

1. Cantor distribution

1.1. Random series. The Cantor distribution with parameter \(\vartheta \) (\(0 < \vartheta \leq 1/2 \)) was introduced in [5] by the random series

\[X = \frac{\vartheta}{\vartheta} \sum_{i \geq 1} X_i \vartheta^i, \]

where the \(X_i \) are independent with the distribution \(\Pr[X_i = 0] = \Pr[X_i = 1] = \frac{1}{2} \), and \(\vartheta = 1 - \vartheta \).

The name stems from the special case \(\vartheta = \frac{1}{3} \), since then this process gives exactly those numbers from the interval \([0, 1]\) that have a ternary expansion solely consisting of the digits 0 and 2. We might alternatively consider an infinite (random) word \(w_1 w_2 \cdots \) over the alphabet \(\{0, 1\} \) and a map \textit{value}, defined by

\[\text{value}(w_1 w_2 \cdots) = \frac{\vartheta}{\vartheta} \sum_{i \geq 1} w_i \vartheta^i. \]

1.2. Moments of the distribution. We abbreviate \(a_n = \mathbb{E}[X^n] \). The aim is to solve the recursion formula (from [5])

\[a_n = \frac{1}{2(1 - \vartheta^n)} \sum_{k=0}^{n-1} \binom{n}{k} \vartheta^{n-k} \vartheta^k a_k, \quad a_0 = 1. \]

Let us introduce the exponential generating function \(A(z) = \sum_{n \geq 0} a_n \frac{z^n}{n!} \). The functional equation involving \(A(z) \), once solved by iteration, gives

\[A(z) = \prod_{k \geq 0} \frac{1 + e^{\vartheta^k z}}{2}. \]
In order to derive an asymptotic equivalent of a_n, the Poisson generating function $B(z) = e^{-z}A(z)$ has to be considered. Using “Mellin” techniques to derive an asymptotic expansion of $\log B(z)$ when z tends to infinity and a “de-poisonization” argument which suggests the approximation $a_n \sim B(n)$, one gets

$$E[X^n] = a_n = F \left(\log_{1/\vartheta} n \right) n^{-1} \left(1 + O \left(\frac{1}{n} \right) \right).$$

The function $F(x)$ is periodic of period 1 and has known Fourier coefficients. The mean of $F(x)$ is for instance

$$-\frac{1}{2\log \vartheta} \int_0^{\infty} \prod_{k \geq 1} \frac{1 + e^{-\vartheta^k x}}{2} e^{-\vartheta^k x \log_{1/\vartheta} 2 - 1} dx.$$

1.3. **Order statistics.** Let us consider n random independent variables Y_1, \ldots, Y_n from a Cantor distribution. The average value $E[\min(Y_1, \ldots, Y_n)]$ of the smallest value among them is denoted by a_n. The coefficients a_n obey the following recursion

$$(2^n - 2\vartheta) a_n = \vartheta + \vartheta \sum_{k=0}^{n-1} \binom{n}{k} \vartheta a_k.$$

Considering now not exactly the Poisson generating function $A(z) = \sum_{k \geq 0} a_n \frac{z^n}{n!}$ but rather

$$\hat{A}(z) = \frac{1}{e^z - 1} A(z) = \sum_{n \geq 0} \hat{a}_n \frac{z^n}{n!},$$

a simpler equation can be obtained. Indeed, one has

$$\hat{A}(2z) = \vartheta \hat{A}(z) + \frac{\vartheta}{e^z + 1}.$$

The coefficients \hat{a}_n can be extracted directly from this equation (equating coefficients of $\frac{z^n}{n!}$ on both sides). Going back to the original coefficients a_n, we have the explicit solution

$$a_n = -\vartheta \sum_{k=0}^{n-1} \binom{n}{k} \frac{B_{k+1}}{k+1} \frac{2^{k+1} - 1}{2^k - \vartheta},$$

where B_n denotes a Bernoulli number. An approach based on Rice’s method finally gives an asymptotic equivalent of a_n

$$a_n \sim n^{\log_2 \vartheta} \frac{2\vartheta - 1}{\vartheta \log 2} \left(\Gamma(-\log_2 \vartheta) \zeta(-\log_2 \vartheta) + \delta(\log_2 n) \right),$$

where $\zeta(s)$, $\Gamma(s)$ and $\delta(s)$ denote respectively the Riemann’s zeta function, the gamma function and a periodic function with period 1 and a very small amplitude (provided ϑ is not too close to 0).

2. **Cantor-Fibonacci distribution**

2.1. **Fibonacci restriction.** The Cantor distribution might be viewed as a mapping value over a set of random words over a binary alphabet. We might also think about restricted words, according to the Fibonacci restriction, that two adjacent letters ‘1’ are not allowed. The set of (finite) Fibonacci words \mathcal{F} is given by

$$\mathcal{F} = \{0, 01\}^* \{\epsilon + 1\}.$$

In the original setting (Cantor distribution) probabilities are simply introduced by saying that each letter of $\{0, 1\}$ can appear with probability $\frac{1}{2}$. Here the situation is more complicated. We say
that each word of Fibonacci of length \(m \) is equally likely. There are \(F_{m+2} \) such words, with \(F_{m+2} \) denoting the \((m + 2) \)th Fibonacci number. As an example, consider the classical Cantor case with \(\vartheta = \frac{1}{3} \) and \(m = 3 \). Then the values

\[
\text{value}(000) = 0, \quad \text{value}(001) = \frac{2}{27}, \quad \text{value}(010) = \frac{2}{9}, \quad \text{value}(100) = \frac{2}{3}, \quad \text{value}(101) = \frac{20}{27}
\]

appear, each with probability \(\frac{1}{3} \). The generating function \(F(z) \) of Fibonacci words, according to their lengths is easily derived from the definition of \(F \) above,

\[
F(z) = \frac{1 + z}{1 - \vartheta - \vartheta z} = \sum_{m \geq 0} F_{m+2} z^m.
\]

Note that

\[
F_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n) \quad \text{with} \quad \alpha = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad \beta = \frac{1 - \sqrt{5}}{2}.
\]

2.2. Moments of the Cantor-Fibonacci distribution. Let us consider the generating functions

\[
G_n(z) := \sum_{w \in \mathcal{F}} (\text{value}(w))^n z^{|w|},
\]

where \(|w|\) denotes the length of the Fibonacci word \(w \). The quantity

\[
[z^m]G_n(z) \quad \text{and} \quad [z^m]F(z)
\]

is the \(n \)th moment, when considering words of length \(m \). Then we let \(m \) tend to infinity to get a limit called \(M_n \) (note that taking limits wasn’t necessary for the independent original case). The recursion for value, when restricted to Fibonacci words, is

\[
\text{value}(0w) = \vartheta \cdot \text{value}(w) \\
\text{value}(10w) = \vartheta^2 \cdot \text{value}(w).
\]

These formulae translate almost directly to generating functions according to the recursive definition \(\mathcal{F} = \epsilon + 1 + \{0,10\} \mathcal{F} \). Thus it gives an explicit recursion formula for the functions \(G_n(z) \)

\[
G_n(z) = \frac{1}{1 - \vartheta^3 z - \vartheta^2 n z^2} \left[\vartheta z + z^2 \sum_{i=0}^{n-1} \binom{n}{i} \vartheta^{n-i} \vartheta^2 z^i G_i(z) \right].
\]

Since we only consider the limit for \(m \to \infty \), we can get the asymptotic behaviour noting that both \(F(z) \) and \(G_n(z) \) have the same dominant singularity at \(z = 1/\alpha \) and also that it is a simple pole. Consequently, we have (due to a “pole cancellation”)

\[
M_n = \lim_{m \to \infty} \frac{[z^m]G_n(z)}{[z^m]F(z)} = \lim_{z \to 1/\alpha} \frac{G_n(z)}{F(z)}.
\]

Therefore we have the following theorem

Theorem 1. The moments of the Cantor-Fibonacci distribution fulfill the following recursion:

\[
M_0 = 0 \quad \text{and for} \quad n \geq 1
\]

\[
M_n = \frac{1}{\alpha^2 - \alpha \vartheta^n - \vartheta^2 n} \sum_{i=1}^{n} \binom{n}{i} \vartheta^{n-i} \vartheta^2 i M_i.
\]
2.3. The asymptotic behaviour of the moments. A rough estimate shows that $M_n \approx \lambda^n$. We might infer that $\lambda = \sqrt{1 + \lambda^2}$, so that $\lambda = \frac{\sqrt{1 + \lambda^2}}{1 + \lambda^2}$. It is not rigorous but we can set

$$m_n := M_n \cdot (1 + \vartheta)^n$$

anyway and show that this sequence has nicer properties. As before the recurrence on the coefficients m_n and then the exponential generating function $m(z) = \sum_n m_n z^n$ need to be considered. Finally the Poisson transformed function $\hat{m}(z) = e^{-z} m(z)$ obeys the functional equation

$$\hat{m}(z) = \frac{e^{-\vartheta z}}{\alpha} \hat{m}(\vartheta z) + \frac{1}{\alpha^2} \hat{m}(\vartheta^2 z).$$

Because $m_n \sim \hat{m}(n)$, the next step considers the behaviour of $\hat{m}(z)$ for $z \to \infty$. Using the Mellin transform (and the Mellin inversion formula), we have the following theorem

Theorem 2. The nth moment M_n of the Cantor-Fibonacci distribution has for $n \to \infty$ the following asymptotic behaviour

$$M_n = (1 + \vartheta)^{-n} \Phi(-\log \vartheta n) n^{\log \alpha} \left(1 + O \left(\frac{1}{n} \right) \right),$$

where $\Phi(x)$ is a periodic function with period 1 and known Fourier coefficients. The mean (zeroth Fourier coefficient) is given by

$$-\frac{1}{\log \vartheta} \int_0^\infty \frac{e^{-\vartheta z}}{\alpha} \hat{m}(\vartheta z) z^{-\log \alpha} \; dz.$$

Note that here, $\frac{e^{-\vartheta z}}{\alpha} \hat{m}(\vartheta z)$ is merely considered as an auxiliary function. This integral can be computed numerically by replacing $\hat{m}(\vartheta z)$ by the first few values of its Taylor expansion, which can be obtained through the recursion formula on the coefficient m_n. As an example, the classical case $\vartheta = \frac{1}{3}$ gives (apart from small fluctuations),

$$M_n \sim 0.6160498n^{-0.4380178}0.75^n.$$

The fact that in an asymptotic formula the generating function itself, evaluated at a certain point, appears is not at all uncommon in combinatorial analysis.

References

