Here are presented results of joint work by J.-M. Deshouillers, F. Hennecart and B. Landreau on sums of powers (and especially of three and four cubes): do they have a positive density? is their behaviour that of the probabilistic model? Moreover, they exhibit a candidate for being the largest integer which is not sum of four cubes, namely 7 373 170 279 850.
S | s(N)= |
|
|
q-s S(a,q)s eq(-aN), |
S(a,q)= |
|
eq(amk). |
E(N)= | { n £ N, such that n is not | C4 }| « |
|
N |
|
, |
|
G (4/3)3N=0.1186... N. |
M(x) = |
|
R3(N)2. |
M(x) ³ 36 |
|
R'3(n) ~ 6 G (4/3)3x, |
F (q)= |
|
R3(n) e(n q), |
M(x) ³ | ó õ |
|
| F(q)|2 d q ³ G (4/3)6 Sx +o(x), |
Pr (xn=1)= an= |
|
. |
R3(N)= |
|
x |
|
x |
|
x |
|
. |
Pr | (R3(N)=r) ¾® |
|
|
e |
|
, |
R'3(n,K)= | { n=µ |
|
+µ |
|
+µ |
|
, µ |
|
< µ |
|
< µ |
|
, n= k13+k23+k33 mod K } |. |
Pr | { R'3(n,K)=r } ¾® |
|
|
l (k,K)r e |
|
, |
l (k,K) = g |
|
. |
d0(K) = |
|
|
e |
|
. |
|
|
R'3(n,K)2 ~ G (4/3)3 + G (4/3)6 S'2(K)/6 |
KB= |
|
p |
|
. |
d0(KB)= |
|
(-1)i |
|
Si'(KB) +R(KB), |
Si'(KB)= |
|
|
æ ç ç è |
|
ö ÷ ÷ ø |
|
|R(KB)| £ |
|
SI+1'(KB). |
0 £ d0 - d0 (KB) £ |
|
( S - S2'(KB)), |
|
p |
|
|
p. |
e-x= |
|
ó õ |
|
G (s) |
|
ds |
S-s'(K)= |
|
|
æ ç ç è |
|
ö ÷ ÷ ø |
|
. |
This document was translated from LATEX by HEVEA.