top up back next into bottom

Absolute reference: BI:asympt:0:RDLBLRDGENFORMRDCLOSED
###### LaTeX encoding
top up back next into bottom
u (3 n + 2) = 0
u (3 n) = \frac{3^{\bigl(\frac{5}{6} - 2 n\bigr)}}{3 \Gamma (n + 1) \Gamma \Bigl(n + \frac{2}{3}\Bigr)}
u (3 n + 1) = \frac{3^{\bigl(\frac{1}{6} - 2 n\bigr)}}{3 \Gamma \Bigl(n + \frac{4}{3}\Bigr) \Gamma (n + 1)}
###### Maple encoding
u(3*n+2) = 0
u(3*n) = 1/3*3^(5/6-2*n)/GAMMA(n+1)/GAMMA(n+2/3)
u(3*n+1) = 1/3*3^(1/6-2*n)/GAMMA(n+4/3)/GAMMA(n+1)
###### MathML encoding
top up back next into bottom
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id9'><mrow xref='id7'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id6'><mrow xref='id4'><mn xref='id2'>3</mn><mo>&InvisibleTimes;</mo><mi xref='id3'>n</mi></mrow><mo>+</mo><mn xref='id5'>2</mn></mrow></mfenced></mrow><mo>=</mo><mn xref='id8'>0</mn></mrow><annotation-xml encoding='MathML-Content'><apply id='id9'><eq/><apply id='id7'><ci id='id1'>u</ci><apply id='id6'><plus/><apply id='id4'><times/><cn id='id2' type='integer'>3</cn><ci id='id3'>n</ci></apply><cn id='id5' type='integer'>2</cn></apply></apply><cn id='id8' type='integer'>0</cn></apply></annotation-xml><annotation encoding='Maple'>u(3*n+2) = 0</annotation></semantics></math>
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id27'><mrow xref='id5'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id4'><mn xref='id2'>3</mn><mo>&InvisibleTimes;</mo><mi xref='id3'>n</mi></mrow></mfenced></mrow><mo>=</mo><mrow xref='id26'><mfrac xref='id6'><mn>1</mn><mn>3</mn></mfrac><mo>&InvisibleTimes;</mo><mrow xref='id25'><mfrac><mrow xref='id13'><msup><mn xref='id7'>3</mn><mfenced><mrow xref='id12'><mfrac xref='id8'><mn>5</mn><mn>6</mn></mfrac><mo>-</mo><mrow xref='id11'><mn xref='id9'>2</mn><mo>&InvisibleTimes;</mo><mi xref='id10'>n</mi></mrow></mrow></mfenced></msup></mrow><mrow xref='id24'><mrow xref='id18'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id17'><mi xref='id15'>n</mi><mo>+</mo><mn xref='id16'>1</mn></mrow></mfenced></mrow><mo>&InvisibleTimes;</mo><mrow xref='id23'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id22'><mi xref='id20'>n</mi><mo>+</mo><mfrac xref='id21'><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced></mrow></mrow></mfrac></mrow></mrow></mrow><annotation-xml encoding='MathML-Content'><apply id='id27'><eq/><apply id='id5'><ci id='id1'>u</ci><apply id='id4'><times/><cn id='id2' type='integer'>3</cn><ci id='id3'>n</ci></apply></apply><apply id='id26'><times/><cn id='id6' type='rational'>1<sep/>3</cn><apply id='id25'><divide/><apply id='id13'><power/><cn id='id7' type='integer'>3</cn><apply id='id12'><minus/><cn id='id8' type='rational'>5<sep/>6</cn><apply id='id11'><times/><cn id='id9' type='integer'>2</cn><ci id='id10'>n</ci></apply></apply></apply><apply id='id24'><times/><apply id='id18'><csymbol id='id14' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><apply id='id17'><plus/><ci id='id15'>n</ci><cn id='id16' type='integer'>1</cn></apply></apply><apply id='id23'><csymbol id='id19' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><apply id='id22'><plus/><ci id='id20'>n</ci><cn id='id21' type='rational'>2<sep/>3</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding='Maple'>u(3*n) = 1/3*3^(5/6-2*n)/GAMMA(n+1)/GAMMA(n+2/3)</annotation></semantics></math>
<math xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow xref='id29'><mrow xref='id7'><mi xref='id1'>u</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id6'><mrow xref='id4'><mn xref='id2'>3</mn><mo>&InvisibleTimes;</mo><mi xref='id3'>n</mi></mrow><mo>+</mo><mn xref='id5'>1</mn></mrow></mfenced></mrow><mo>=</mo><mrow xref='id28'><mfrac xref='id8'><mn>1</mn><mn>3</mn></mfrac><mo>&InvisibleTimes;</mo><mrow xref='id27'><mfrac><mrow xref='id15'><msup><mn xref='id9'>3</mn><mfenced><mrow xref='id14'><mfrac xref='id10'><mn>1</mn><mn>6</mn></mfrac><mo>-</mo><mrow xref='id13'><mn xref='id11'>2</mn><mo>&InvisibleTimes;</mo><mi xref='id12'>n</mi></mrow></mrow></mfenced></msup></mrow><mrow xref='id26'><mrow xref='id20'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id19'><mi xref='id17'>n</mi><mo>+</mo><mfrac xref='id18'><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></mrow><mo>&InvisibleTimes;</mo><mrow xref='id25'><mi>&Gamma;</mi><mo>&ApplyFunction;</mo><mfenced><mrow xref='id24'><mi xref='id22'>n</mi><mo>+</mo><mn xref='id23'>1</mn></mrow></mfenced></mrow></mrow></mfrac></mrow></mrow></mrow><annotation-xml encoding='MathML-Content'><apply id='id29'><eq/><apply id='id7'><ci id='id1'>u</ci><apply id='id6'><plus/><apply id='id4'><times/><cn id='id2' type='integer'>3</cn><ci id='id3'>n</ci></apply><cn id='id5' type='integer'>1</cn></apply></apply><apply id='id28'><times/><cn id='id8' type='rational'>1<sep/>3</cn><apply id='id27'><divide/><apply id='id15'><power/><cn id='id9' type='integer'>3</cn><apply id='id14'><minus/><cn id='id10' type='rational'>1<sep/>6</cn><apply id='id13'><times/><cn id='id11' type='integer'>2</cn><ci id='id12'>n</ci></apply></apply></apply><apply id='id26'><times/><apply id='id20'><csymbol id='id16' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><apply id='id19'><plus/><ci id='id17'>n</ci><cn id='id18' type='rational'>4<sep/>3</cn></apply></apply><apply id='id25'><csymbol id='id21' definitionURL='http://www.maplesoft.com/MathML/GAMMA'>GAMMA</csymbol><apply id='id24'><plus/><ci id='id22'>n</ci><cn id='id23' type='integer'>1</cn></apply></apply></apply></apply></apply></apply></annotation-xml><annotation encoding='Maple'>u(3*n+1) = 1/3*3^(1/6-2*n)/GAMMA(n+4/3)/GAMMA(n+1)</annotation></semantics></math>

 This web site is compliant with HTML 4.01 and CSS 1. Copyright © 2001-2003 by the Algorithms Project and INRIA. All rights reserved. Created: Aug 1 2003 15:08:39.