##### About Equation AI.2.1.1.1
top up back next into bottom

Absolute reference: AI:asympt:0:RDLBLRDTERMSRDEQ
###### LaTeX encoding
top up back next into bottom
\operatorname{Ai} (x) = \frac{\sqrt[3]{3}}{3 \Gamma \Bigl(\frac{2}{3}\Bigr)} - \frac{\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{2 \pi} x + \frac{\sqrt[3]{3}}{18 \Gamma \Bigl(\frac{2}{3}\Bigr)} x^{3} - \frac{\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{24 \pi} x^{4} + \\ \quad{}\quad{}\frac{\sqrt[3]{3}}{540 \Gamma \Bigl(\frac{2}{3}\Bigr)} x^{6} - \frac{\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{1008 \pi} x^{7} + \frac{\sqrt[3]{3}}{38880 \Gamma \Bigl(\frac{2}{3}\Bigr)} x^{9} - \frac{\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{90720 \pi} \\ \quad{}\quad{}x^{10} + \frac{\sqrt[3]{3}}{5132160 \Gamma \Bigl(\frac{2}{3}\Bigr)} x^{12} - \frac{\sqrt[6]{3} \Gamma \Bigl(\frac{2}{3}\Bigr)}{14152320 \pi} x^{13} + \frac{\sqrt[3]{3}}{1077753600 \Gamma \Bigl(\frac{2}{3}\Bigr)} \\ \quad{}\quad{}x^{15} + \operatorname{O} \bigl(x^{16}\bigr)
###### Maple encoding
top up back next into bottom
&operatorname(Ai)(x) = series(1/3*3^(1/3)/GAMMA(2/3)+(-1/2*3^(1/6)/Pi*GAMMA(2/3))*x+1/18*3^(1/3)/GAMMA(2/3)*x^3+(-1/24*3^(1/6)/Pi*GAMMA(2/3))*x^4+1/540*3^(1/3)/GAMMA(2/3)*x^6+(-1/1008*3^(1/6)/Pi*GAMMA(2/3))*x^7+1/38880*3^(1/3)/GAMMA(2/3)*x^9+(-1/90720*3^(1/6)/Pi*GAMMA(2/3))*x^10+1/5132160*3^(1/3)/GAMMA(2/3)*x^12+(-1/14152320*3^(1/6)/Pi*GAMMA(2/3))*x^13+1/1077753600*3^(1/3)/GAMMA(2/3)*x^15+O(x^16),x,16)

 This web site is compliant with HTML 4.01 and CSS 1. Copyright © 2001-2003 by the Algorithms Project and INRIA. All rights reserved. Created: Aug 1 2003 15:08:11.