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ANALYTIC COMBINATORICS

Analytic combinatorics aims to enable precise quantitative predictions of the proper-
ties of large combinatorial structures. The theory has emerged over recent decades
as essential both for the analysis of algorithms and for the study of scientific models
in many disciplines, including probability theory, statistical physics, computational
biology and information theory. With a careful combinationof symbolic enumera-
tion methods and complex analysis, drawing heavily on generating functions, results
of sweeping generality emerge that can be applied in particular to fundamental struc-
tures such as permutations, sequences, strings, walks, paths, trees, graphs and maps.

This account is the definitive treatment of the topic. In order to make it self-
contained, the authors give full coverage of the underlyingmathematics and give a
thorough treatment of both classical and modern applications of the theory. The text is
complemented with exercises, examples, appendices and notes throughout the book to
aid understanding. The book can be used as a reference for researchers, as a textbook
for an advanced undergraduate or a graduate course on the subject, or for self-study.

PHILIPPE FLAJOLET is Research Director of the Algorithms Project at INRIA Roc-
quencourt.

ROBERT SEDGEWICK is William O. Baker Professor of Computer Science at Prince-
ton University.

(from print version, front)
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Preface

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an approach based extensively on
analytic methods. Generating functions are the central objects of study of the theory.

Analytic combinatorics starts from an exact enumerative description of combina-
torial structures by means of generating functions: these make their first appearance as
purely formal algebraic objects. Next, generating functions are interpreted as analytic
objects, that is, as mappings of the complex plane into itself. Singularities determine
a function’s coefficients in asymptotic form and lead to precise estimates for counting
sequences. This chain of reasoning applies to a large numberof problems of discrete
mathematics relative to words, compositions, partitions,trees, permutations, graphs,
mappings, planar configurations, and so on. A suitable adaptation of the methods also
opens the way to the quantitative analysis of characteristic parameters of large random
structures, via a perturbational approach.

THE APPROACH to quantitative problems of discrete mathematics providedby
analytic combinatorics can be viewed as anoperational calculusfor combinatorics
organized around three components.

Symbolic methodsdevelops systematic relations between some of the major
constructions of discrete mathematics and operations on generating func-
tions that exactly encode counting sequences.
Complex asymptoticselaborates a collection of methods by which one can
extract asymptotic counting information from generating functions, once
these are viewed as analytic transformations of the complexdomain. Singu-
larities then appear to be a key determinant of asymptotic behaviour.
Random structuresconcerns itself with probabilistic properties of large ran-
dom structures. Which properties hold with high probability? Which laws
govern randomness in large objects? In the context of analytic combina-
torics, these questions are treated by a deformation (adding auxiliary vari-
ables) and a perturbation (examining the effect of small variations of such
auxiliary variables) of the standard enumerative theory.

The present book expounds this view by means of a very large number of examples
concerning classical objects of discrete mathematics and combinatorics. The eventual
goal is an effective way of quantifying metric properties oflarge random structures.

vii



viii PREFACE

Given its capacity of quantifying properties of large discrete structures,Analytic
Combinatoricsis susceptible to many applications, not only within combinatorics it-
self, but, perhaps more importantly, within other areas of science where discrete prob-
abilistic models recurrently surface, like statistical physics, computational biology,
electrical engineering, and information theory. Last but not least, the analysis of al-
gorithms and data structures in computer science has servedand still serves as an
important incentive for the development of the theory.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Part A: Symbolic methods.This part specifically developsSymbolic methods, which
constitute a unified algebraic theory dedicated to setting up functional relations be-
tween counting generating functions. As it turns out, a collection of general (and
simple) theorems provide a systematic translation mechanism between combinatorial
constructions and operations on generating functions. This translation process is a
purely formal one. In fact, with regard to basic counting, two parallel frameworks
coexist—one for unlabelled structures and ordinary generating functions, the other
for labelled structures and exponential generating functions. Furthermore, within the
theory, parameters of combinatorial configurations can be easily taken into account
by adding supplementary variables. Three chapters then form Part A: Chapter I deals
with unlabelled objects; Chapter II develops labelled objects in a parallel way; Chap-
ter III treats multivariate aspects of the theory suitable for the analysis of parameters
of combinatorial structures.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Part B: Complex asymptotics.This part specifically expoundsComplex asymptotics,
which is a unified analytic theory dedicated to the process ofextracting asymptotic in-
formation from counting generating functions. A collection of general (and simple)
theorems now provide a systematic translation mechanism between generating func-
tions and asymptotic forms of coefficients. Five chapters form this part. Chapter IV
serves as anintroduction to complex-analytic methodsand proceeds with the treatment
of meromorphic functions, that is, functions whose singularities are poles,rational
functionsbeing the simplest case. Chapter V developsapplications of rational and
meromorphic asymptotics of generating functions, with numerous applications related
to words and languages, walks and graphs, as well as permutations. Chapter VI devel-
ops a general theory ofsingularity analysisthat applies to a wide variety of singular-
ity types, such as square-root or logarithmic, and has consequences regarding trees as
well as other recursively-defined combinatorial classes. Chapter VII presentsappli-
cations of singularity analysisto 2–regular graphs and polynomials, trees of various
sorts, mappings, context-free languages, walks, and maps.It contains in particular a
discussion of the analysis of coefficients of algebraic functions. Chapter VIII explores
saddle-point methods, which are instrumental in analysing functions with a violent
growth at a singularity, as well as many functions with a singularity only at infinity
(i.e., entire functions).

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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Part C: Random structures. This part is comprised of Chapter IX, which is dedi-
cated to the analysis of multivariate generating functionsviewed as deformation and
perturbation of simple (univariate) functions. Many knownlaws of probability theory,
either discrete or continuous, from Poisson to Gaussian andstable distributions, are
found to arise in combinatorics, by a process combining symbolic methods, complex
asymptotics, and perturbation methods. As a consequence, many important character-
istics of classical combinatorial structures can be precisely quantified in distribution.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Part D: Appendices. Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative to asymptotic expansions, lan-
guages, and trees, among others. Appendix B recapitulates the necessary background
in complex analysis. It may be viewed as a self-contained minicourse on the subject,
with entries relative to analytic functions, the Gamma function, the implicit function
theorem, and Mellin transforms. Appendix C recalls some of the basic notions of
probability theory that are useful in analytic combinatorics.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

THIS BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of concreteExamples1 treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offering acomplete treatment of
a specific problem. These are borrowed not only from combinatorics itself but also
from neighbouring areas of science. With a view to addressing not only mathemati-
cians of varied profiles but also scientists of other disciplines,Analytic Combinatorics
is self-contained, including ample appendices that recapitulate the necessary back-
ground in combinatorics, complex function theory, and probability. A rich set of short
Notes—there are more than 450 of them—are inserted in the text2 and can provide
exercises meant for self-study or for student practice, as well as introductions to the
vast body of literature that is available. We have also made every effort to focus on
core ideasrather than technical details, supposing a certain amount of mathematical
maturity but only basic prerequisites on the part of our gentle readers. The book is
also meant to be strongly problem-oriented, and indeed it can be regarded as a man-
ual, or even a huge algorithm, guiding the reader to the solution of a very large variety
of problems regarding discrete mathematical models of varied origins. In this spirit,
many of our developments connect nicely with computer algebra and symbolic ma-
nipulation systems.

COURSEScan be (and indeed have been) based on the book in various ways.
Chapters I–III onSymbolic methodsserve as a systematic yet accessible introduc-
tion to the formal side of combinatorial enumeration. As such it organizes trans-
parently some of the rich material found in treatises3 such as those of Bergeron–
Labelle–Leroux, Comtet, Goulden–Jackson, and Stanley. Chapters IV–VIII relative to
Complex asymptoticsprovide a large set of concrete examples illustrating the power

1Examples are marked by “Example· · · �”.
2Notes are indicated by� · · · �.
3References are to be found in the bibliography section at theend of the book.
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of classical complex analysis and of asymptotic analysis outside of their traditional
range of applications. This material can thus be used in courses of either pure or
applied mathematics, providing a wealth of non-classical examples. In addition, the
quiet but ubiquitous presence of symbolic manipulation systems provides a number of
illustrations of the power of these systems while making it possible to test and con-
cretely experiment with a great many combinatorial models.Symbolic systems allow
for instance for fast random generation, close examinationof non-asymptotic regimes,
efficient experimentation with analytic expansions and singularities, and so on.

Our initial motivation when starting this project was to build a coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofri, Mahmoud, and Szpankowski, in
the survey by Vitter–Flajolet, as well as in our earlierIntroduction to the Analysis of
Algorithmspublished in 1996. This book,Analytic Combinatorics, can then be used
as a systematic presentation of methods that have proved immensely useful in this
area; see in particular theArt of Computer Programmingby Knuth for background.
Studies in statistical physics (van Rensburg, and others),statistics (e.g., David and
Barton) and probability theory (e.g., Billingsley, Feller), mathematical logic (Burris’
book), analytic number theory (e.g., Tenenbaum), computational biology (Waterman’s
textbook), as well as information theory (e.g., the books byCover–Thomas, MacKay,
and Szpankowski) point to many startling connections with yet other areas of science.
The book may thus be useful as a supplementary reference on methods and applica-
tions in courses on statistics, probability theory, statistical physics, finite model the-
ory, analytic number theory, information theory, computeralgebra, complex analysis,
or analysis of algorithms.

Acknowledgements. This book would be substantially different and much less informative
without Neil Sloane’sEncyclopedia of Integer Sequences, Steve Finch’sMathematical Con-
stants, Eric Weisstein’sMathWorld, and theMacTutor History of Mathematicssite hosted at
St Andrews. We have also greatly benefited of the existence of open on-line archives such
asNumdam, Gallica, GDZ (digitalized mathematical documents),ArXiv, as well as theEuler
Archive. All the corresponding sites are (or at least have been at some stage)freely available on
the Internet. Bruno Salvy and Paul Zimmermann have developed algorithms and libraries for
combinatorial structures and generating functions that are based on theMAPLE system for sym-
bolic computations and that have proven to be extremely useful. We are deeply grateful to the
authors of the free software Unix, Linux, Emacs, X11, TEX and LATEX as well as to the design-
ers of the symbolic manipulation system MAPLE for creating an environment that has proved
invaluable to us. We also thank students in courses at Barcelona, Berkeley (MSRI), Bordeaux,
Caen, Graz, Paris (École Polytechnique,́Ecole Normale Suṕerieure, University), Princeton,
Santiago de Chile, Udine, and Vienna whose reactions have greatly helpedus prepare a better
book. Thanks finally to numerous colleagues for their contributions to this book project. In
particular, we wish to acknowledge the support, help, and interaction provided at a high level
by members of theAnalysis of Algorithms (AofA)community, with a special mention for Nico-
las Broutin, Michael Drmota,́Eric Fusy, Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy
Louchard, Andrew Odlyzko, Daniel Panario, Carine Pivoteau, Helmut Prodinger, Bruno Salvy,
Michèle Soria, Wojtek Szpankowski, Brigitte Vallée, Mark Daniel Ward, and Mark Wilson. In
addition, Ed Bender, Stan Burris, Philippe Dumas, Svante Janson, Philippe Robert, Löıc Tur-
ban, and Brigitte Valĺee have provided insightful suggestions and generous feedback thathave
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led us to revise the presentation of several sections of this book and correct many errors. We
were also extremely lucky to work with David Tranah, the mathematics editor of Cambridge
University Press, who has been an exceptionally supportive (and patient) companion of this
book project, throughout all these years. Finally, support of our home institutions (INRIA and
Princeton University) as well as various grants (French government,European Union, and NSF)
have contributed to making our collaboration possible.
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— PLATO, The Timaeus1

ANALYTIC COMBINATORICS is primarily a book aboutcombinatorics, that is, the
study of finite structures built according to a finite set of rules. Analytic in the title
means that we concern ourselves with methods from mathematical analysis, in par-
ticular complex and asymptotic analysis. The two fields, combinatorial enumeration
and complex analysis, are organized into a coherent set of methods for the first time
in this book. Our broad objective is to discover how the continuous may help us to
understand the discrete and toquantifyits properties.

COMBINATORICS is, as told by its name, the science of combinations. Given
basic rules for assembling simple components, what are the properties of the resulting
objects? Here, our goal is to develop methods dedicated toquantitativeproperties
of combinatorial structures. In other words, we want to measure things. Say that
we haven different items like cards or balls of different colours. Inhow many ways
can we lay them on a table, all in one row? You certainly recognize this counting
problem—finding the number ofpermutationsof n elements. The answer is of course
the factorial number

n ! = 1 · 2 · . . . · n.
This is a good start, and, equipped with patience or a calculator, we soon determine
that if n = 31, say, then the number of permutations is the rather large quantity

31 != 8222838654177922817725562880000000, .

an integer with 34 decimal digits. The factorials solve an enumeration problem, one
that took mankind some time to sort out, because the sense of the “· · · ” in the formula
for n! is not that easily grasped. In his bookThe Art of Computer Programming

1“So their combinations with themselves and with each other give rise to endless complexities, which
anyone who is to give a likely account of reality must survey.” Plato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

1



2 AN INVITATION TO ANALYTIC COMBINATORICS

4 5
ր ց ր ց

3 1 2

5

4 2

3 1

Figure 0.1. An example of the correspondence between an alternating permutation
(top) and a decreasing binary tree (bottom): each binary node has two descendants,
which bear smaller labels. Suchconstructions, which give access togenerating func-
tionsand eventually provide solutions to counting problems, are the main subjectof
Part A.

(vol III, p. 23), Donald Knuth traces the discovery to the Hebrew Book of Creation
(c. AD 400) and the Indian classicAnuyogadv̄ara-sutra(c. AD 500).

Here is another more subtle problem. Assume that you are interested in permuta-
tions such that the first element is smaller than the second, the second is larger than the
third, itself smaller than the fourth, and so on. The permutations go up and down and
they are diversely known as up-and-down or zigzag permutations, the more dignified
name beingalternatingpermutations. Say thatn = 2m+ 1 is odd. An example is for
n = 9:

8 7 9 3
ր ց ր ց ր ց ր ց

4 6 5 1 2
The number of alternating permutations forn = 1,3,5, . . . ,15 turns out to be

1,2,16,272,7936,353792,22368256,1903757312.

What are these numbers and how do they relate to the total number of permutations of
corresponding size? A glance at the corresponding figures, that is, 1!,3!,5!, . . . ,15!,
or

1,6,120,5040,362880,39916800,6227020800,1307674368000,

suggests that the factorials grow somewhat faster—just compare the lengths of the last
two displayed lines. But how and by how much? This is the prototypical question we
are addressing in this book.

Let us now examine the counting of alternating permutations. In 1881, the French
mathematician D́esiŕe Andŕe made a startling discovery. Look at the first terms of the
Taylor expansion of the trigonometric function tanz:

tanz= 1
z

1!
+ 2

z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ 7936

z9

9!
+ 353792

z11

11!
+ · · · .

The counting sequence for alternating permutations, 1,2,16, . . ., curiously surfaces.
We say that the function on the left is agenerating functionfor the numerical se-
quence (precisely, a generating function of theexponentialtype, due to the presence
of factorials in the denominators).



AN INVITATION TO ANALYTIC COMBINATORICS 3

André’s derivation may nowadays be viewed very simply as reflecting the con-
struction of permutations by means of certain labelled binary trees (Figure 0.1 and
p. 143): given a permutationσ a tree can be obtained onceσ has been decomposed as
a triple〈σL ,max, σR〉, by taking the maximum element as the root, and appending, as
left and right subtrees, the trees recursively constructedfrom σL andσR. Part A of this
book develops at lengthsymbolic methodsby which the construction of the classT of
all such trees,

T = 1 ∪ (T ,max, T ) ,

translates into an equation relating generating functions,

T(z) = z +
∫ z

0
T(w)2 dw.

In this equation,T(z) := ∑
n Tnzn/n! is the exponential generating function of the

sequence(Tn), whereTn is the number of alternating permutations of (odd) lengthn.
There is a compelling formal analogy between the combinatorial specificationand
its generating function: Unions (∪) give rise to sums (+), max-placement gives an
integral (

∫
), forming a pair of trees corresponds to taking a square ([·]2).

At this stage, we know thatT(z) must solve the differential equation

d

dz
T(z) = 1+ T(z)2, T(0) = 0,

which, by classical manipulations2, yields the explicit form

T(z) = tanz.

The generating function then provides a simplealgorithm to compute the coefficients
recurrently. Indeed, the formula,

tanz= sinz

cosz
= z− z3

3! + z5

5! − · · ·
1− z2

2! + z4

4! − · · ·
,

implies, forn odd, the relation (extract the coefficient ofzn in T(z) cosz= sinz)

Tn −
(

n

2

)
Tn−2+

(
n

4

)
Tn−4− · · · = (−1)(n−1)/2, where

(
a

b

)
= a!

b!(a− b)!

is the conventional notation for binomial coefficients. Now, the exact enumeration
problem may be regarded as solved since a very simple algorithm is available for
determining the counting sequence, while the generating function admits an explicit
expression in terms of well-known mathematical objects.

ANALYSIS, by which we mean mathematical analysis, is often describedas the
art and science ofapproximation. How fast do the factorial and the tangent number
sequences grow? What aboutcomparingtheir growths? These are typical problems
of analysis.

2We haveT ′/(1+ T2) = 1, hence arctan(T) = z andT = tanz.
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z
K6 K4 K2 0 2 4 6

K4

K2

2

4

Figure 0.2. Two views of the functionz 7→ tanz. Left: a plot for real values ofz ∈
[−6, 6]. Right: the modulus| tanz| whenz = x + iy (with i =

√
−1) is assigned

complex values in the square±6 ± 6i . As developed at length in Part B, it is the
nature ofsingularitiesin thecomplex domainthat matters.

First, consider the number of permutations,n!. Quantifying its growth, asn gets
large, takes us to the realm ofasymptotic analysis. The way to express factorial num-
bers in terms of elementary functions is known as Stirling’sformula3

n! ∼ nne−n
√

2πn,

where the∼ sign means “approximately equal” (in the precise sense thatthe ratio of
both terms tends to 1 asn gets large). This beautiful formula, associated with the
name of the Scottish mathematician James Stirling (1692–1770), curiously involves
both the basise of natural logarithms and the perimeter 2π of the circle. Certainly,
you cannot get such a thing without analysis. As a first step, there is an estimate

logn! =
n∑

j=1

log j ∼
∫ n

1
logx dx∼ n log

(n

e

)
,

explaining at least thenne−n term, but already requiring a certain amount of elemen-
tary calculus. (Stirling’s formula precisely came a few decades after the fundamental
bases of calculus had been laid by Newton and Leibniz.) Note the utility of Stirling’s
formula: it tells us almost instantly that 100! has 158 digits, while 1000! borders the
astronomical 102568.

We are now left with estimating the growth of the sequence of tangent numbers,
Tn. The analysis leading to the derivation of the generating function tan(z) has been
so far essentially algebraic or “formal”. Well, we can plot the graph of the tangent
function, for real values of its argument and see that the function becomes infinite at
the points±π2 ,±3π2 , and so on (Figure 0.2). Such points where a function ceases to be

3In this book, we shall encounter five different proofs of Stirling’s formula, each of interest for its
own sake:(i ) by singularity analysis of the Cayley tree function (p. 407); (i i ) by singularity analysis of
polylogarithms (p. 410);(i i i ) by the saddle-point method (p. 555);(i v) by Laplace’s method (p. 760);
(v) by the Mellin transform method applied to the logarithm of theGamma function (p. 766).
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“smooth” (differentiable) are calledsingularities. By methods amply developed in this
book, it is the local nature of a generating function at its “dominant” singularities (i.e.,
the ones closest to the origin) that determines the asymptotic growth of the sequence of
coefficients. From this perspective, the basic fact that tanz has dominant singularities
at±π2 enables us to reason as follows: first approximate the generating function tanz
near its two dominant singularities, namely,

tan(z) ∼
z→±π/2

8z

π2− 4z2
;

then extract coefficients of this approximation; finally, get in this way a valid approx-
imation of coefficients:

Tn

n!
∼

n→∞2 ·
(

2

π

)n+1

(n odd).

With present day technology, we also have availablesymbolic manipulationsys-
tems (also called “computer algebra” systems) and it is not difficult to verify the ac-
curacy of our estimates. Here is a small pyramid forn = 3,5, . . . ,21,

2 1
16 15

272 271
7936 7935

353792 353791
22368256 22368251

1903757312 1903757267
209865342976 209865342434

29088885112832 29088885104489
4951498053124096 4951498052966307

(Tn) (T⋆n )

comparing the exact values ofTn against the approximationsT⋆n , where (n odd)

T⋆n :=
⌊

2 · n!

(
2

π

)n+1
⌋
,

and discrepant digits of the approximation are displayed inbold. Forn = 21, the error
is only of the order of one in a billion. Asymptotic analysis (p. 269) is in this case
wonderfully accurate.

In the foregoing discussion, we have played down a fact—one that is important.
When investigating generating functions from an analytic standpoint, one should gen-
erally assigncomplexvalues to arguments not just real ones. It is singularities in the
complex plane that matter and complex analysis is needed in drawing conclusions re-
garding the asymptotic form of coefficients of a generating function. Thus, a large
portion of this book relies on acomplex analysistechnology, which starts to be de-
veloped in Part B dedicated toComplex asymptotics. This approach to combinatorial
enumeration parallels what happened in the nineteenth century, when Riemann first
recognized the deep relation between complex analytic properties of thezetafunction,
ζ(s) :=∑1/ns, and the distribution of primes, eventually leading to the long-sought
proof of the Prime Number Theorem by Hadamard and de la Vallée-Poussin in 1896.
Fortunately, relatively elementary complex analysis suffices for our purposes, and we
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Figure 0.3. The collection of binary trees withn = 0, 1, 2, 3 binary nodes, with
respective cardinalities 1, 1, 2, 5.

can include in this book a complete treatment of the fragmentof the theory needed to
develop the fundamentals of analytic combinatorics.

Here is yet another example illustrating the close interplay between combina-
torics and analysis. When discussing alternating permutations, we have enumerated
binary trees bearing distinct integer labels that satisfy aconstraint—to decrease along
branches. What about the simpler problem of determining the number of possible
shapesof binary trees? LetCn be the number of binary trees that haven binary
branching nodes, hencen + 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values ofn (Figure 0.3), from which we determine that

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42.

These numbers are probably the most famous ones of combinatorics. They have come
to be known as theCatalan numbersas a tribute to the Franco-Belgian mathemati-
cian Eug̀ene Charles Catalan (1814–1894), but they already appear inthe works of
Euler and Segner in the second half of the eighteenth century(see p. 20). In his refer-
ence treatiseEnumerative Combinatorics, Stanley, over 20 pages, lists a collection of
some 66 different types of combinatorial structures that are enumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very much in the style of what has
been done earlier, but without labels:

C = 2 ∪ (C, • , C) .

(Here, the2–symbol represents an external node.) With symbolic methods, it is easy
to see that theordinary generating functionof the Catalan numbers, defined as

C(z) :=
∑

n≥0

Cnzn,

satisfies an equation that is a direct reflection of the combinatorial definition, namely,

C(z) = 1 + z C(z)2.

This is a quadratic equation whose solution is

C(z) = 1−
√

1− 4z

2z
.
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Figure 0.4. Left: the real values of the Catalan generating function, which has a
square-root singularity atz = 1

4 . Right: the ratioCn/(4nn−3/2) plotted together
with its asymptote at 1/

√
π
.= 0.56418. The correspondence betweensingularities

andasymptoticforms ofcoefficientsis the central theme of Part B.

Then, by means of Newton’s theorem relative to the expansionof (1+ x)α, one finds
easily (x = −4z, α = 1

2) theclosed formexpression

Cn =
1

n+ 1

(
2n

n

)
.

Stirling’s asymptotic formula now comes to the rescue: it implies

Cn ∼ C⋆
n where C⋆

n := 4n

√
πn3

.

This last approximation is quite usable4: it givesC⋆
1
.= 2.25 (whereasC1 = 1), which

is off by a factor of 2, but the error drops to 10% already forn = 10, and it appears to
be less than 1% for anyn ≥ 100.

A plot of the generating functionC(z) in Figure 0.4 illustrates the fact thatC(z)
has asingularityat z= 1

4 as it ceases to be differentiable (its derivative becomes infi-
nite). That singularity is quite different from a pole and for natural reasons it is known
as a square-root singularity. As we shall see repeatedly, under suitable conditions
in the complex plane, a square root singularity for a function at a pointρ invariably
entails an asymptotic formρ−nn−3/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in order to deduce an asymptotic
approximation of its coefficients. This correspondence is amajor theme of the book,
one that motivates the five central chapters (Chapters IV to VIII).

A consequence of the complex analytic vision of combinatorics is the detection of
universality phenomenain large random structures. (The term is originally borrowed
from statistical physics and is nowadays finding increasinguse in areas of mathema-
tics such as probability theory.) By universality is meant here that many quantitative

4We useα
.= d to represent a numerical approximation of the realα by the decimald, with the last

digit of d being at most±1 from its actual value.
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properties of combinatorial structures only depend on a fewglobal features of their
definitions, not on details. For instance a growth in the counting sequence of the form

K · Ann−3/2,

arising from a square-root singularity, will be shown to be universal acrossall varieties
of trees determined by a finite set of allowed node degrees—this includes unary–
binary trees, ternary trees, 0–11–13 trees, as well as many variations such as non-plane
trees and labelled trees. Even though generating functionsmay become arbitrarily
complicated—as in an algebraic function of a very high degreeor even the solution to
an infinite functional equation—it is still possible to extract with relative easeglobal
asymptotic lawsgoverningcounting sequences.

RANDOMNESS is another ingredient in our story. How useful is it to determine,
exactly or approximately, counts that may be so large as to require hundreds if not
thousands of digits in order to be written down? Take again the example of alter-
nating permutations. When estimating their number, we have indeed quantified the
proportion of these among all permutations. In other words,we have been predicting
the probability that a random permutation of some sizen is alternating. Results of
this sort are of interest in all branches of science. For instance, biologists routinely
deal with genomic sequences of length 105, and the interpretation of data requires de-
veloping enumerative or probabilistic models where the number of possibilities is of
the order of 4105

. The language of probability theory then proves of great convenience
when discussing characteristic parameters of discrete structures, since we can interpret
exact or asymptotic enumeration results as saying something concrete about the like-
lihood of values that such parameters assume. Equally important of course are results
from several areas of probability theory: as demonstrated in the last chapter of this
book, such results merge extremely well with the analytic–combinatorial framework.

Say we are now interested in runs in permutations. These are the longest frag-
ments of a permutation that already appear in (increasing) sorted order. Here is a
permutation with 4 runs, separated by vertical bars:

2 5 8| 3 9 | 1 4 7| 6 .
Runs naturally present in a permutation are for instance exploited by a sorting algo-
rithm called “natural list mergesort”, which builds longerand longer runs, starting
from the original ones and merging them until the permutation is eventually sorted.
For our understanding of this algorithm, it is then of obvious interest to quantify how
many runs a permutation is likely to have.

Let Pn,k be the number of permutations of sizen havingk runs. Then, the problem
is once more best approached by generating functions and onefinds that the coefficient
of ukzn inside thebivariategenerating function,

P(z,u) ≡ 1− u

1− uez(1−u)
= 1+ zu+ z2

2!
u(u+ 1)+ z3

3!
u(u2+ 4u+ 1)+ · · · ,

gives the desired numbersPn,k/n!. (A simple way of establishing the last formula
bases itself on the tree decomposition of permutations and on the symbolic method;
the numbersPn,k, whose importance seems to have been first recognized by Euler,
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Figure 0.5. Left: A partial plot of the real values of the Eulerian generating function
z 7→ P(z, u) for z ∈ [0, 5

4 ], illustrates the presence of a movable pole forA asu

varies between 0 and54 . Right: A suitable superposition of the histograms of the
distribution of the number of runs, forn = 2, . . . , 60, reveals the convergence to a
Gaussian distribution (p. 695). Part C relates systematically the analysis ofsuch a
collection of singular behaviours tolimit distributions.

are related to theEulerian numbers, p. 210.) From here, we can easily determine
effectively the mean, variance, and even the higher momentsof the number of runs
that a random permutation has: it suffices to expand blindly,or even better with the
help of a computer, the bivariate generating function aboveasu→ 1:

1

1− z
+ 1

2

z(2− z)

(1− z)2
(u− 1)+ 1

2

z2
(
6− 4z+ z2

)

(1− z)3
(u− 1)2+ · · · .

Whenu = 1, we just enumerate all permutations: this is the constant term 1/(1− z)
equal to the exponential generating function of all permutations. The coefficient of
the termu− 1 gives the generating function of themeannumber of runs, the next one
provides the second moment, and so on. In this way, we discover the expectation and
standard deviation of the number of runs in a permutation of sizen:

µn =
n+ 1

2
, σn =

√
n+ 1

12
.

Then, by easy analytic–probabilistic inequalities (Chebyshev inequalities) that other-
wise form the basis of what is known as the second moment method, we learn that the
distribution of the number of runs is concentrated around its mean: in all likelihood,
if one takes a random permutation, the number of its runs is going to be very close to
its mean. The effects of such quantitative laws are quite tangible. It suffices to draw a
sample of one elementfor n = 30 to get, for instance:

13, 22, 29|12, 15, 23|8, 28|18|6, 26|4, 10, 16|1, 5, 27|3, 14, 17, 20|2, 21, 30|25|11, 19|9|7, 24.

For n = 30, the mean is 1512, and this sample comes rather close as it has 13 runs.
We shall furthermore see in Chapter IX that even for moderately large permutations
of size 10 000 and beyond, the probability for the number of observed runs to deviate
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Figure 0.6. Left: The bivariate generating functionz 7→ C(z, u) enumerating binary
trees by size and number of leaves exhibits consistently a square-root singularity, for
several values ofu. Right: a binary tree of size 300 drawn uniformly at random has
69 leaves. As shown in Part C,singularity perturbationproperties are at the origin of
many randomness properties of combinatorial structures.

by more than 10% from the mean is less than 10−65. As witnessed by this example,
much regularity accompanies properties of large combinatorial structures.

More refined methods combine the observation of singularities with analytic re-
sults from probability theory (e.g., continuity theorems for characteristic functions). In
the case of runs in permutations, the quantityP(z,u) viewed as a function ofz whenu
is fixed appears to have a pole: this fact is suggested by Figure 0.5 [left]. Then we are
confronted with a fairly regulardeformationof the generating function of all permu-
tations. A parameterized version (with parameteru) of singularity analysis then gives
access to a description of the asymptotic behaviour of the Eulerian numbersPn,k. This
enables us to describe very precisely what goes on: in a random permutation of large
sizen, once it has been centred by its mean and scaled by its standard deviation,the
distribution of the number of runs is asymptotically Gaussian; see Figure 0.5 [right].

A somewhat similar type of situation prevails for binary trees. Say we are inter-
ested in leaves (also sometimes figuratively known as “cherries”) in trees: these are bi-
nary nodes that are attached to two external nodes (2). LetCn,k be the number of trees
of sizen havingk leaves. The bivariate generating functionC(z,u) :=∑n,k Cn,kznuk

encodes all the information relative to leaf statistics in random binary trees. A mod-
ification of previously seen symbolic arguments shows thatC(z,u) still satisfies a
quadratic equation resulting in the explicit form,

C(z,u) = 1−
√

1− 4z+ 4z2(1− u)

2z
.

This reduces toC(z) for u = 1, as it should, and the bivariate generating func-
tion C(z,u) is a deformation ofC(z) asu varies. In fact, the network of curves of
Figure 0.6 for several fixed values ofu illustrates the presence of a smoothly varying
square-root singularity (the aspect of each curve is similar to that of Figure 0.4). It is
possible to analyse theperturbationinduced by varying values ofu, to the effect that
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Figure 0.7. The logical structure ofAnalytic Combinatorics.

C(z,u) is of the global analytic type
√

1− z

ρ(u)
,

for some analyticρ(u). The already evoked process of singularity analysis then shows
that the probability generating function of the number of leaves in a tree of sizen is of
the rough form (

ρ(1)

ρ(u)

)n

(1+ o(1)) .

This is known as a “quasi-powers” approximation. It resembles very much the
probability generating function of a sum ofn independent random variables, a sit-
uation that gives rise to the classical Central Limit Theorem of probability theory.
Accordingly, one gets thatthe limit distribution of the number of leaves in a large
random binary tree is Gaussian. In abstract terms, the deformation induced by the
secondary parameter (here, the number of leaves, previously, the number of runs) is
susceptible to aperturbation analysis, to the effect that a singularity gets smoothly
displaced without changing its nature (here, a square root singularity, earlier a pole)
and a limit law systematically results. Again some of the conclusions can be verified
even by very small samples: the single tree of size 300 drawn at random and dis-
played in Figure 0.6 (right) has 69 leaves, whereas the expected value of this number
is
.= 75.375 and the standard deviation is a little over 4. In a large number of cases of

which this one is typical, we findmetric lawsof combinatorial structures that govern
large structures with high probability and eventually makethem highly predictable.

Such randomness properties form the subject of Part C of thisbook dedicated to
random structures. As our earlier description implies, there is an extreme degree of
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generality in this analytic approach to combinatorial parameters, and after reading this
book, the reader will be able to recognize by herself dozens of such cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEWof combinatorics emerges from the previous discus-
sion; see Figure 0.7. A combinatorial class, as regards its enumerative properties, can
be viewed as asurface in four-dimensional real space: this is the graph of its gener-
ating function, considered as a function from the setC ∼= R2 of complex numbers to
itself, and is otherwise known as a Riemann surface. This surface has “cracks”, that is,
singularities, which determine the asymptotic behaviour of the counting sequence. A
combinatorial construction (such as those freely forming sequences, sets, and so on)
can then be examined through the effect it has on singularities. In this way, seemingly
different types of combinatorial structures appear to be subject tocommon lawsgov-
erning not only counting but also finer characteristics of combinatorial structures. For
the already discussed case of universality in tree enumerations, additional universal
laws valid across many tree varieties constrain for instance height (which, with high
probability, is proportional to the square root of size) andthe number of leaves (which
is invariably normal in the asymptotic limit).

What happens regarding probabilistic properties of combinatorial parameters is
this. A parameter of a combinatorial class is fully determined by a bivariate generating
function, which is a deformation of the basic counting generating function of the class
(in the sense that setting the secondary variableu to 1 erases the information relative
to the parameter and leads back to the univariate counting generating function). Then,
theasymptotic distributionof a parameter of interest is characterized by a collection
of surfaces, each having its own singularities. The way the singularities’ locations
move or their nature changes under deformation encodes all the necessary informa-
tion regarding the distribution of the parameter under consideration. Limit laws for
combinatorial parameters can then be obtained and the corresponding phenomena can
be organized into broad categories, calledschemas. It would be inconceivable to attain
such a far-reaching classification of metric properties of combinatorial structures by
elementary real analysis alone.

Objects on which we are going to inflict the treatments just described include
many of the most important ones of discrete mathematics, as well as the ones that sur-
face recurrently in several branches of the applied sciences. We shall thus encounter
words and sequences, trees and lattice paths, graphs of various sorts, mappings, al-
locations, permutations, integer partitions and compositions, polyominoes and pla-
nar maps, to name but a few. In most cases, their principal characteristics will be
finely quantified by the methods of analytic combinatorics. This book indeed devel-
ops a coherent theory of random combinatorial structures based on a powerful analytic
methodology. Literally dozens of quite diverse combinatorial types can then be treated
by a logically transparent chain. You will not find ready-made answers to all questions
in this book, but, hopefully,methodsthat can be successfully used to address a great
many of them.

Bienvenue! Welcome!
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Combinatorial Structures and
Ordinary Generating Functions

Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal power series

and put it to great use to solve a variety of combinatorial problems.

— GIAN –CARLO ROTA [518]
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I. 7. Perspective 92

This chapter and the next are devoted to enumeration, where the problem is to deter-
mine the number of combinatorial configurations described by finite rules, and do so
for all possible sizes. For instance, how many different words are there of length 17?
Of lengthn, for generaln? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? The solutions are exactly
encoded bygenerating functions, and, as we shall see,generating functions are the
central mathematical objectof combinatorial analysis. We examine here a framework
that, contrary to traditional treatments based on recurrences, explains the surprising
efficiency of generating functions in the solution of combinatorial enumeration prob-
lems.

This chapter serves to introduce thesymbolicapproach to combinatorial enumer-
ations. The principle is that many general set-theoreticconstructionsadmit a direct
translation as operations over generating functions. Thisprinciple is made concrete by
means of a dictionary that includes a collection of core constructions, namely the op-
erations of union, cartesian product, sequence, set, multiset, and cycle. Supplementary
operations such as pointing and substitution can also be similarly translated. In this
way, alanguagedescribing elementary combinatorial classes is defined. The problem
of enumerating a class of combinatorial structures then simply reduces to finding a
properspecification, a sort of computer program for the class expressed in terms of
the basic constructions. The translation into generating functions becomes, after this,
a purely mechanical symbolic process.

We show here how to describe in such a context integer partitions and compo-
sitions, as well as many word and tree enumeration problems,by means ofordinary

15
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generating functions. A parallel approach, developed in Chapter II, applies to labelled
objects—in contrast the plain structures considered in thischapter are calledunla-
belled. The methodology is susceptible to multivariate extensions with which many
characteristic parameters of combinatorial objects can also be analysed in a unified
manner: this is to be examined in Chapter III. The symbolic method also has the great
merit of connecting nicely with complex asymptotic methodsthat exploit analyticity
properties and singularities, to the effect that precise asymptotic estimates are usually
available whenever the symbolic method applies—a systematic treatment of these as-
pects forms the basis of Part B of this bookComplex asymptotics(Chapters IV–VIII).

I. 1. Symbolic enumeration methods

First and foremost, combinatorics deals withdiscrete objects, that is, objects that
can be finitely described by construction rules. Examples are words, trees, graphs,
permutations, allocations, functions from a finite set intoitself, topological configu-
rations, and so on. A major question is toenumeratesuch objects according to some
characteristic parameter(s).

Definition I.1. A combinatorial class, or simply aclass, is a finite or denumerable set
on which asizefunction is defined, satisfying the following conditions:

(i ) the size of an element is a non-negative integer;
(i i ) the number of elements of any given size is finite.

If A is a class, the size of an elementα ∈ A is denoted by|α|, or |α|A in the few cases
where the underlying class needs to be made explicit. Given aclassA, we consistently
denote byAn the set of objects inA that have sizen and use the same group of letters
for the countsAn = card(An) (alternatively, alsoan = card(An)). An axiomatic
presentation is then as follows: a combinatorial class is a pair (A, | · |) whereA is at
most denumerable and the mapping| · | ∈ (A 7→ Z≥0) is such that the inverse image
of any integer is finite.

Definition I.2. The counting sequenceof a combinatorial class is the sequence of
integers(An)n≥0 where An = card(An) is the number of objects in classA that have
size n.

ExampleI.1. Binary words.Consider first the setW of binary words, which are sequences of
elements taken from the binary alphabetA = {0,1},

W := {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . , 1001101, . . . },
with ε the empty word. Define size to be the number of letters that a word comprises. There are
two possibilities for each letter and possibilities multiply, so that the counting sequence(Wn)

satisfies

Wn = 2n.

(This sequence has a well-known legend associated with the invention of thegame of chess: the
inventor was promised by his king one grain of rice for the first square of the chessboard, two
for the second, four for the third, and so on. The king naturally could not deliver the promised
264− 1 grains!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�



I. 1. SYMBOLIC ENUMERATION METHODS 17

Figure I.1. The collectionT of all triangulations of regular polygons (with size de-
fined as the number of triangles) is a combinatorial class, whose countingsequence
starts asT0 = 1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

ExampleI.2. Permutations.A permutation of sizen is by definition a bijective mapping of the
integer interval1 In := [1 . .n]. It is thus representable by an array,

(
1 2 n
σ1 σ2 · · · σn

)
,

or equivalently by the sequenceσ1σ2 · · · σn of its distinct elements. The setP of permutations
is

P = {. . . , 12, 21, 123, 132, 213, 231, 312, 321, 1234,. . . , 532614, . . . },
For a permutation written as a sequence ofn distinct numbers, there aren places where one can
accommodaten, thenn− 1 remaining places forn− 1, and so on. Therefore, the numberPn
of permutations of sizen satisfies

Pn = n! = 1 · 2 · . . . · n .
As indicated in ourInvitation chapter (p. 2), this formula has been known for at least fifteen
centuries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleI.3. Triangulations.The classT of triangulations comprises triangulations of con-
vex polygonal domains which are decompositions into non-overlapping triangles (taken up to
smooth deformations of the plane). We define the size of a triangulation to bethe number of tri-
angles it is composed of. For instance, a convex quadrilateralABC D can be decomposed into
two triangles in two ways (by means of either the diagonalAC or the diagonalBD); similarly,
there are five different ways to dissect a convex pentagon into three triangles: see Figure I.1.
Agreeing thatT0 = 1, we then find

T0 = 1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

It is a non-trivial combinatorial result due to Euler and Segner [146, 196, 197] around 1750 that
the numberTn of triangulations is

(1) Tn =
1

n+ 1

(
2n

n

)
= (2n)!

(n+ 1)! n!
,

a central quantity of combinatorial analysis known as aCatalan number: see ourInvitation,
p. 7, the historical synopsis on p. 20, the discussion on p. 35, and Subsection I. 5.3, p. 73.

1We borrow from computer science the convenient practice of denoting an integer interval by 1. . n or
[1 . .n], whereas [0,n] represents a real interval.
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Following Euler [196], the counting of triangulations is best approached by generating
functions: see again Figure I.2, p. 20 for historical context. . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

Although the previous three examples are simple enough, it is generally a good
idea, when confronted with a combinatorial enumeration problem, to determine the
initial values of counting sequences, either by hand or better with the help of a com-
puter, somehow. Here, we find:

(2)

n 0 1 2 3 4 5 6 7 8 9 10

Wn 1 2 4 8 16 32 64 128 256 512 1024

Pn 1 1 2 6 24 120 720 5040 40320 362880 3628800

Tn 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identify sequences. For instance,
had we not known the formula (1) for triangulations, observing unusual factorizations
such as

T40 = 22 · 5 · 72 · 11 · 23 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79,

which contains all prime numbers from 43 to 79 and no prime larger than 80, would
quickly put us on the track of the right formula. There even exists nowadays a huge
On-line Encyclopedia of Integer Sequences (EIS)due to Sloane that is available in
electronic form [543] (see also an earlier book by Sloane andPlouffe [544]) and con-
tains more than 100 000 sequences. Indeed, the three sequences(Wn), (Pn), and(Tn)

are respectively identified2 asEISA000079, EISA000142, andEISA000108.
� I.1. Necklaces. How many different types of necklace designs can you form withn beads,
each having one of two colours,◦ and•, where it is postulated that orientation matters? Here
are the possibilities forn = 1, 2, 3,

.

This is equivalent to enumerating circular arrangements of two letters andan exhaustive listing
program can be based on the smallest lexicographical representation of each word, as suggested
by (20), p. 26. The counting sequence starts as 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352 and
constitutesEIS A000031. [An explicit formula appears later in this chapter (p. 64).] What if
two necklace designs that are mirror images of one another are identified? �

� I.2. Unimodal permutations.Such a permutation has exactly one local maximum. In other
words it is of the formσ1 · · · σn with σ1 < σ2 < · · · < σk = n andσk = n > σk+1 > · · · > σn,
for somek ≥ 1. How many such permutations are there of sizen? Forn = 5, the number is 16:
the permutations are 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their
reversals. [Due to Jon Perry, seeEISA000079.] �

It is also of interest to note that words and permutations maybe enumerated using
the most elementary counting principles, namely, for finitesetsB andC

(3)





card(B ∪ C) = card(B)+ card(C) (providedB ∩ C = ∅)
card(B × C) = card(B) · card(C).

2Throughout this book, a reference such asEIS Axxx points to Sloane’sEncyclopedia of Integer
Sequences[543]. The database contains more than 100 000 entries.
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We shall see soon that these principles, which lie at the basis of our very concept of
number, admit a powerful generalization (Equation (19), p.23, below).

Next, for combinatorial enumeration purposes, it proves convenient to identify
combinatorial classes that are merely variants of one another.

Definition I.3. Two combinatorial classesA andB are said to be (combinatorially)
isomorphic, which is writtenA ∼= B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection fromA to B that preserves size,
and one also says thatA andB arebijectively equivalent.

We normally identify isomorphic classes and accordingly employ a plain equality
sign (A = B). We then confine the notationA ∼= B to stress cases where combinato-
rial isomorphism results from some non-trivial transformation.

Definition I.4. The ordinary generating function(OGF) of a sequence(An) is the
formal power series

(7) A(z) =
∞∑

n=0

Anzn.

Theordinary generating function(OGF) of a combinatorial classA is the generating
function of the numbers An = card(An). Equivalently, the OGF of classA admits the
combinatorial form

(8) A(z) =
∑

α∈A
z|α|.

It is also said that the variable zmarkssize in the generating function.

The combinatorial form of an OGF in (8) results straightforwardly from observing
that the termzn occurs as many times as there are objects inA having sizen. We stress
the fact that, at this stage and throughout Part A, generating functions are manipulated
algebraically as formal sums; that is, they are considered as formal power series(see
the framework of Appendix A.5:Formal power series, p. 730)

Naming convention.We adhere to a systematicnaming convention: classes, their
counting sequences, and their generating functions are systematically denoted by the
same groups of letters: for instance,A for a class,{An} (or {an}) for the counting
sequence, andA(z) (or a(z)) for its OGF.

Coefficient extraction.We let generally [zn] f (z) denote the operation of extract-
ing the coefficient ofzn in the formal power seriesf (z) =∑ fnzn, so that

(9) [zn]


∑

n≥0

fnzn


 = fn.

(The coefficient extractor [zn] f (z) reads as “coefficient ofzn in f (z)”.)
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1. On September 4, 1751, Euler writes to his friend Goldbach [196]:
Ich bin neulich auf eine Betrachtung gefallen,
welche mir nicht wenig merkẅurdig vorkam.
Dieselbe betrifft, auf wie vielerley Arten ein
gegebenes polygonum durch Diagonallinien in
triangula zerchnitten werden könne.

I have recently encountered a question, which
appears to me rather noteworthy. It concerns
the number of ways in which a given [convex]
polygon can be decomposed into triangles by
diagonal lines.

Euler then describes the problem (for ann–gon, i.e.,(n− 2) triangles) and concludes:
Setze ich nun die Anzahl dieser verschiedenen
Arten = x [. . . ]. Hieraus habe ich nun den
Schluss gemacht, dass generaliter sey

x = 2.6.10.14....(4n− 10)

2.3.4.5....(n− 1)

[. . . ] Ueber die Progression der Zahlen
1,2, 5,14,42, 132, etc. habe ich auch diese
Eigenschaft angemerket, dass1+ 2a+ 5a2 +
14a3+ 42a4+ 132a5+ etc. = 1−2a−

√
1−4a

2aa .

Let me now denote byx this number of ways
[. . . ]. I have then reached the conclusion that
in all generality

x = 2.6.10.14....(4n− 10)

2.3.4.5....(n− 1)

[. . . ] Regarding the progression of the numbers
1,2, 5,14,42, 132, and so on, I have also ob-
served the following property: 1+ 2a+ 5a2+
14a3 + 42a4 + 132a5 + etc. = 1−2a−

√
1−4a

2aa .

Thus, as early as 1751, Euler knew the solution as well as the associatedgenerating function.
From his writing, it is however unclear whether he had found complete proofs.

2. In the course of the 1750s, Euler communicated the problem, together withinitial elements
of the counting sequence, to Segner, who writes in his publication [146] dated 1758: “The
great Euler has benevolently communicated these numbers to me; the wayin which he found
them, and the law of their progression having remained hidden to me” [“quos numeros mecum
beneuolus communicauit summus Eulerus; modo, quo eos reperit, atque progressionis ordine,
celatis”]. Segner develops a recurrence approach to Catalan numbers. By aroot decomposition
analogous to ours, on p. 35, he proves (in our notation, for decompositions inton triangles)

(4) Tn =
n−1∑

k=0

TkTn−1−k, T0 = 1,

a recurrence by which the Catalan numbers can be computed to any desired order. (Segner’s
work was to be reviewed in [197], anonymously, but most probably, by Euler.)

3. During the 1830s, Liouville circulated the problem and wrote to Lamé, who answered the
next day(!) with a proof [399] based on recurrences similar to (4) ofthe explicit expression:

(5) Tn =
1

n+ 1

(
2n

n

)
.

Interestingly enough, Laḿe’s three-page note [399] appeared in the 1838 issue of theJour-
nal de math́ematiques pures et appliquées(“Journal de Liouville”), immediately followed by
a longer study by Catalan [106], who also observed that theTn intervene in the number of
ways of multiplyingn numbers (this book, §I. 5.3, p. 73). Catalan would then return to these
problems [107, 108], and the numbers 1, 1, 2, 5, 14, 42, . . . eventually became known as the
Catalan numbers. In [107], Catalan finallyprovesthe validity of Euler’s generating function:

(6) T(z) :=
∑

n
Tnzn = 1−

√
1− 4z

2z
.

4. Nowadays,symbolic methodsdirectly yield the generating function (6), from which both the
recurrence (4) and the explicit form (5) follow easily; see pp. 6 and 35.

Figure I.2. The prehistory of Catalan numbers.
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H⇒ C10H14N2 ; z26

Figure I.3. A molecule, methylpyrrolidinyl-pyridine (nicotine), is a complex as-
sembly whose description can be reduced to a single formula corresponding here to a
total of 26 atoms.

The OGFs corresponding to our three examplesW,P, T are then

(10)





W(z) =
∞∑

n=0

2nzn = 1

1− 2z

P(z) =
∞∑

n=0

n! zn

T(z) =
∞∑

n=0

1

n+ 1

(
2n

n

)
zn = 1−

√
1− 4z

2z
.

The first expression relative toW(z) is immediate as it is the sum of a geometric
progression. The second generating functionP(z) is not clearly related to simple
functions of analysis. (Note that the expression still makes sense within the strict
framework of formal power series.) The third expression relative toT(z) is equivalent
to the explicit form ofTn via Newton’s expansion of(1+ x)1/2 (pp. 7 and 35 as well
as Figure I.2). The OGFsW(z) andT(z) can then be interpreted as standard analytic
objects, upon assigning values in the complex domainC to the formal variablez.
In effect, the seriesW(z) andT(z) converge in a neighbourhood of 0 and represent
complex functions that are well defined near the origin, namely when|z| < 1

2 for W(z)

and |z| < 1
4 for T(z). The OGFP(z) is a purely formal power series (its radius of

convergence is 0) that can nonetheless be subjected to the usual algebraic operations
of power series. (Permutation enumeration is most conveniently approached by the
exponential generating functions developed in Chapter II.)

Combinatorial form of generating functions (GFs).The combinatorial form (8)
shows that generating functions are nothing but a reduced representation of the com-
binatorial class, where internal structures are destroyedand elements contributing to
size (atoms) are replaced by the variablez. In a sense, this is analogous to what
chemists do by writing linear reduced (“molecular”) formulae for complex molecules
(Figure I.3). Great use of this observation was made by Schützenberger as early as the
1950s and 1960s. It explains the many formal similarities that are observed between
combinatorial structures and generating functions.
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H =

zzzz zz zzz zzzz z zzzz zzz

+ z4 + z2 + z3 + z4 + z + z4 + z3

H(z) = z+ z2+ 2z3+ 3z4

Figure I.4. A finite family of graphs and its eventual reduction to a generating function.

Figure I.4 provides a combinatorial illustration: start with a (finite) family of
graphsH, with size taken as the number of vertices. Each vertex in each graph is
replaced by the variablez and the graph structure is “forgotten”; then the monomials
corresponding to each graph are formed and the generating function is finally obtained
by gathering all the monomials.

For instance, there are 3 graphs of size 4 inH, in agreement with the fact that
[z4]H(z) = 3. If size had been instead defined by number of edges, anothergenerating
function would have resulted, namely, withy marking the new size: 1+y+y2+2y3+
y4+y6. If both number of vertices and number of edges are of interest, then a bivariate
generating function is obtained:H(z, y) = z+z2y+z3y2+z3y3+z4y3+z4y4+z4y6;
such multivariate generating functions are developed systematically in Chapter III.

A path often taken in the literature is to decompose the structures to be enumer-
ated into smaller structures either of the same type or of simpler types, and then extract
from such a decompositionrecurrence relationsthat are satisfied by the{An}. In this
context, the recurrence relations are either solved directly—whenever they are simple
enough—or by means ofad hocgenerating functions, introduced as mere technical
artifices.

By contrast, in the framework of this book, classes of combinatorial structures
are builtdirectly in terms of simpler classes by means of a collection of elementary
combinatorialconstructions. This closely resembles the description of formal lan-
guages by means of grammars, as well as the construction of structured data types in
programming languages. The approach developed here has been termedsymbolic, as
it relies on a formal specification language for combinatorial structures. Specifically,
it is based on so–calledadmissible constructionsthat permit direct translations into
generating functions.

Definition I.5. Let8 be an m–ary construction that associates to any collection of
classesB(1), . . .B(m) a new class

A = 8[B(1), . . . ,B(m)].

The construction8 is admissibleiff the counting sequence(An) ofA only depends on
the counting sequences(B(1)n ), . . . , (B(m)n ) of B(1), . . . ,B(m).
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For such an admissible construction, there then exists a well-defined operator9
acting on the corresponding ordinary generating functions:

A(z) = 9[B(1)(z), . . . , B(m)],

and it is this basic fact about admissibility that will be used throughout the book.

As an introductory example, take the construction of cartesian product, which is
the usual one enriched with a natural notion of size.

Definition I.6. The cartesian product constructionapplied to two classesB and C

forms ordered pairs,

(11) A = B × C iff A = {α = (β, γ ) | β ∈ B, γ ∈ C },
with the size of a pairα = (β, γ ) being defined by

(12) |α|A = |β|B + |γ |C .
By considering all possibilities, it is immediately seen that the counting sequences

corresponding toA,B, C are related by the convolution relation

(13) An =
n∑

k=0

BkCn−k,

which means admissibility. Furthermore, we recognize herethe formula for a product
of two power series:

(14) A(z) = B(z) · C(z).
In summary: the cartesian product is admissible and it translates as a product of
OGFs.

Similarly, letA,B, C be combinatorial classes satisfying

(15) A = B ∪ C, with B ∩ C = ∅,
with size defined in a consistent manner: forω ∈ A,

(16) |ω|A =




|ω|B if ω ∈ B

|ω|C if ω ∈ C.

One has

(17) An = Bn + Cn,

which, at generating function level, means

(18) A(z) = B(z)+ C(z).

Thus,the union of disjoint sets is admissible and it translates asa sum of generating
functions.(A more formal version of this statement is given in the next section.)

The correspondences provided by (11)–(14) and (15)–(18) are summarized by the
strikingly simple dictionary

(19)





A = B ∪ C H⇒ A(z) = B(z)+ C(z) (providedB ∩ C = ∅)
A = B × C H⇒ A(z) = B(z) · C(z),
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to be compared with the plain arithmetic case of (3), p. 18. The merit of such rela-
tions is that they can be stated as general purpose translation rules that only need to
be established once and for all. As soon as the problem of counting elements of a
union of disjoint sets or a cartesian product is recognized,it becomes possible to dis-
pense altogether with the intermediate stages of writing explicitly coefficient relations
or recurrences as in (13) or (17). This is the spirit of thesymbolic methodfor com-
binatorial enumerations. Its interest lies in the fact thatseveral powerful set-theoretic
constructions are amenable to such a treatment, as we see in the next section.
� I.3. Continuity, Lipschitz and Ḧolder conditions.An admissible construction is said to be
continuousif it is a continuous function on the space of formal power series equipped with its
standard ultrametric distance (Appendix A.5:Formal power series, p. 730). Continuity captures
the desirable property that constructions depend on their arguments in a finitary way. For all
the constructions of this book, there furthermore exists a functionϑ(n), such that(An) only

depends on the firstϑ(n) elements of the(B(1)k ), . . . , (B(m)k ), with ϑ(n) ≤ Kn + L (Hölder

condition) orϑ(n) ≤ n+ L (Lipschitz condition). For instance, the functionalf (z) 7→ f (z2)
is Hölder; the functionalf (z) 7→ ∂z f (z) is Lipschitz. �

I. 2. Admissible constructions and specifications

The main goal of this section is to introduce formally the basic constructionsthat
constitute the core of a specification language for combinatorial structures. This core
is based on disjoint unions, also known as combinatorial sums, and on cartesian prod-
ucts that we have just discussed. We shall augment it by the constructions of sequence,
cycle, multiset, and powerset. A class isconstructibleor specifiableif it can be de-
fined from primal elements by means of these constructions. The generating function
of any such class satisfies functional equations that can be transcribed systematically
from a specification; see Theorems I.1 (p. 27) and I.2 (p. 33),as well as Figure I.18
(p. 93) at the end of this chapter for a summary.

I. 2.1. Basic constructions.First, we assume we are given a classE called the
neutral classthat consists of a single object of size 0; any such object of size 0 is
called aneutral objectand is usually denoted by symbols such asǫ or 1. The reason
for this terminology becomes clear if one considers the combinatorial isomorphism

A ∼= E ×A ∼= A× E .

We also assume as given anatomic classZ comprising a single element of size 1;
any such element is called an atom; an atom may be used to describe a generic node
in a tree or graph, in which case it may be represented by a circle (• or ◦), but also a
generic letter in a word, in which case it may be instantiatedasa,b, c, . . . . Distinct
copies of the neutral or atomic class may also be subscriptedby indices in various
ways. Thus, for instance, we may use the classesZa = {a}, Zb = {b} (with a,b
of size 1) to build up binary words over the alphabet{a,b}, or Z• = {•}, Z◦ = {◦}
(with •, ◦ taken to be of size 1) to build trees with nodes of two colours.Similarly,
we may introduceE2, E1, E2 to denote a class comprising the neutral objects2, ǫ1, ǫ2
respectively.

Clearly, the generating functions of a neutral classE and an atomic classZ are

E(z) = 1, Z(z) = z,
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corresponding to the unit 1, and the variablez, of generating functions.

Combinatorial sum (disjoint union).The intent ofcombinatorial sumalso known
asdisjoint unionis to capture the idea of a union of disjoint sets, but withoutany ex-
traneous condition (disjointness) being imposed on the arguments of the construction.
To do so, we formalize the (combinatorial) sum of two classesB andC as the union
(in the standard set-theoretic sense) of twodisjoint copies, sayB2 andC3, of B and
C. A picturesque way to view the construction is as follows: first choose two distinct
colours and repaint the elements ofB with the first colour and the elements ofC with
the second colour. This is made precise by introducing two distinct “markers”, say2
and3, each a neutral object (i.e., of size zero); the disjoint unionB+C of B, C is then
defined as a standard set-theoretic union:

B + C := ({2} × B) ∪ ({3} × C) .

The size of an object in a disjoint unionA = B + C is by definition inherited from its
size in its class of origin, as in Equation (16). One good reason behind the definition
adopted here is that the combinatorial sum of two classes isalwayswell defined, no
matter whether or not the classes intersect. Furthermore, disjoint union is equivalent
to a standard union whenever it is applied to disjoint sets.

Because of disjointness of the copies, one has the implication

A = B + C H⇒ An = Bn + Cn and A(z) = B(z)+ C(z),

so that disjoint union is admissible. Note that, in contrast, standard set-theoretic union
is not an admissible construction since

card(Bn ∪ Cn) = card(Bn)+ card(Cn)− card(Bn ∩ Cn),

and information on the internal structure ofB andC (i.e., the nature of their intersec-
tion) is needed in order to be able to enumerate the elements of their union.

Cartesian product.This constructionA = B×C forms all possible ordered pairs
in accordance with Definition I.6. The size of a pair is obtained additively from the
size of components in accordance with (12).

Next, we introduce a few fundamental constructions that build upon set-theoretic
union and product, and form sequences, sets, and cycles. These powerful construc-
tions suffice to define a broad variety of combinatorial structures.

Sequence construction.If B is a class then thesequenceclass SEQ(B) is defined
as the infinite sum

SEQ(B) = {ǫ} + B + (B × B)+ (B × B × B)+ · · ·
with ǫ being a neutral structure (of size 0). In other words, we have

A =
{
(β1, . . . , βℓ)

∣∣ ℓ ≥ 0, β j ∈ B
}
,

which matches our intuition as to what sequences should be. (The neutral structure in
this context corresponds toℓ = 0; it plays a r̂ole similar to that of the “empty” word in
formal language theory.) It is then readily checked that theconstructionA = SEQ(B)

defines a proper class satisfying the finiteness condition for sizes if and only ifB
contains no object of size0. From the definition of size for sums and products, it
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follows that the size of an objectα ∈ A is to be taken as the sum of the sizes of its
components:

α = (β1, . . . , βℓ) H⇒ |α| = |β1| + · · · + |βℓ|.
Cycle construction.Sequences taken up to a circular shift of their components

define cycles, the notation being CYC(B). In precise terms, one has3

CYC(B) := (SEQ(B) \ {ǫ}) /S,
whereS is the equivalence relation between sequences defined by

(β1, . . . , βr )S(β ′1, . . . , β
′
r )

iff there exists somecircular shift τ of [1 . . r ] such that for allj , β ′j = βτ( j ); in other
words, for somed, one hasβ ′j = β1+( j−1+d) modr . Here is, for instance, a depiction
of the cycles formed from the 8 and 16 sequences of lengths 3 and 4 over two types of
objects (a,b): the number of cycles is 4 (forn = 3) and 6 (forn = 4). Sequences are
grouped into equivalence classes according to the relationS:

(20) 3–cycles :

{ aaa
aab aba baa
abb bba bab

bbb
, 4–cycles :





aaaa
aaab aaba abaa baaa
aabb abba bbaa baab

abab baba
abbb bbba bbab babb

bbbb

.

According to the definition, this construction correspondsto the formation of directed
cycles (see also the necklaces of Note I.1, p. 18). We make only a limited use of it
for unlabelled objects; however, its counterpart plays a rather important r̂ole in the
context of labelled structures and exponential generatingfunctions of Chapter II.

Multiset construction. Following common mathematical terminology,multisets
are like finite sets (that is the order between elements does not count), but arbitrary
repetitions of elements are allowed. The notation isA = MSET(B) whenA is ob-
tained by forming allfinitemultisets of elements fromB. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation of sequences being defined by(α1, . . . , αr )R (β1, . . . , βr ) iff
there exists somearbitrary permutationσ of [1 . . r ] such that for allj , β j = ασ( j ).

Powerset construction.The powersetclass (or set class)A = PSET(B) is de-
fined as the class consisting of allfinitesubsets of classB, or equivalently, as the class
PSET(B) ⊂ MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function is defined when such
constructions are performed: as for products and sequences, the size of a composite
object—set, multiset, or cycle—is defined to be the sum of the sizes of its components.
� I.4. The semi-ring of combinatorial classes.Under the convention of identifying isomor-
phic classes, sum and product acquire pleasant algebraic properties: combinatorial sums and
cartesian products become commutative and associative operations, e.g.,

(A+ B)+ C = A+ (B + C), A× (B × C) = (A× B)× C,

while distributivity holds,(A+ B)× C = (A× C)+ (B × C). �

3By convention, there are no “empty” cycles.
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� I.5. Natural numbers.Let Z := {•} with • an atom (of size 1). ThenI = SEQ(Z) \
{ǫ} is a way of describing positive integers in unary notation:I = {•, • •, •••, . . .}. The
corresponding OGF isI (z) = z/(1− z) = z+ z2+ z3+ · · · . �

� I.6. Interval coverings.Let Z := {•} be as before. ThenA = Z + (Z × Z) is a set of two
elements,• and(•, •), which we choose to draw as{•, •–•}. ThenC = SEQ(A) contains

•, • •, •–•, • •–•, •–• •, •–• •–•, • • • •, . . .
With the notion of size adopted, the objects of sizen in C = SEQ(Z+(Z×Z)) are (isomorphic
to) thecoveringsof [0,n] by intervals (matches) of length either 1 or 2. The OGF

C(z) = 1+ z+ 2z2+ 3z3+ 5z4+ 8z5+ 13z6+ 21z7+ 34z8+ 55z9+ · · · ,
is, as we shall see shortly (p. 42), the OGF of Fibonacci numbers. �

I. 2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for the constructions that we have
introduced. The final implication is that any specification of a constructible class
translates directly into generating function equations. The translation of the cycle
construction involves the Euler totient functionϕ(k) defined as the number of integers
in [1, k] that are relatively prime tok (Appendix A.1:Arithmetical functions, p. 721).

Theorem I.1 (Basic admissibility, unlabelled universe). The constructions of union,
cartesian product, sequence, powerset, multiset, and cycle are all admissible. The
associated operators are as follows.

Sum: A = B + C H⇒ A(z) = B(z)+ C(z)

Cartesian product: A = B × C H⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) H⇒ A(z) = 1

1− B(z)

Powerset: A = PSET(B) H⇒ A(z) =





∏

n≥1

(1+ zn)Bn

exp

( ∞∑

k=1

(−1)k−1

k
B(zk)

)

Multiset: A = MSET(B) H⇒ A(z) =





∏

n≥1

(1− zn)−Bn

exp

( ∞∑

k=1

1

k
B(zk)

)

Cycle: A = CYC(B) H⇒ A(z) =
∞∑

k=1

ϕ(k)

k
log

1

1− B(zk)
.

For the sequence, powerset, multiset, and cycle translations, it is assumed thatB0 = ∅.
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The classE = {ǫ} consisting of the neutral object only, and the classZ consisting of
a single “atomic” object (node, letter) of size 1 have OGFs

E(z) = 1 and Z(z) = z.

Proof. The proof proceeds case by case, building upon what we have just seen regard-
ing unions and products.

Combinatorial sum (disjoint union).LetA = B+C. Since the union isdisjoint,
and the size of anA–element coincides with its size inB or C, one hasAn = Bn+Cn

andA(z) = B(z)+C(z), as discussed earlier. The rule also follows directly from the
combinatorial form of generating functions as expressed by(8), p. 19:

A(z) =
∑

α∈A
z|α| =

∑

α∈B
z|α| +

∑

α∈C
z|α| = B(z)+ C(z).

Cartesian product.The admissibility result forA = B × C was considered as
an example for Definition I.6, the convolution equation (13)leading to the relation
A(z) = B(z) · C(z). We can also offer a direct derivation based on the combinatorial
form of generating functions (8), p. 19,

A(z) =
∑

α∈A
z|α| =

∑

(β,γ )∈(B×C)
z|β|+|γ | =


∑

β∈B
z|β|


×


∑

γ∈C
z|γ |


 = B(z) · C(z),

as follows from distributing products over sums. This derivation readily extends to an
arbitrary number of factors.

Sequence construction.Admissibility for A = SEQ(B) (with B0 = ∅) follows
from the union and product relations. One has

A = {ǫ} + B + (B × B)+ (B × B × B)+ · · · ,
so that

A(z) = 1+ B(z)+ B(z)2+ B(z)3+ · · · = 1

1− B(z)
,

where the geometric sum converges in the sense of formal power series since [z0]B(z) =
0, by assumption.

Powerset construction.LetA = PSET(B) and first takeB to be finite. Then, the
classA of all the finite subsets ofB is isomorphic to a product,

(21) PSET(B) ∼=
∏

β∈B
({ǫ} + {β}),

with ǫ a neutral structure of size 0. Indeed, distributing the products in all possible
ways forms all the possible combinations (sets with no repetition allowed) of elements
of B; the reasoning is the same as what leads to an identity such as

(1+ a)(1+ b)(1+ c) = 1+ [a+ b+ c] + [ab+ bc+ ac] + abc,

where all combinations of variables appear in monomials. Then, directly from the
combinatorial form of generating functions and the sum and product rules, we find

(22) A(z) =
∏

β∈B
(1+ z|β|) =

∏

n

(1+ zn)Bn .
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Theexp–log transformation A(z) = exp(log A(z)) then yields

(23)

A(z) = exp

( ∞∑

n=1

Bn log(1+ zn)

)

= exp

( ∞∑

n=1

Bn ·
∞∑

k=1

(−1)k−1 znk

k

)

= exp

(
B(z)

1
− B(z2)

2
+ B(z3)

3
− · · ·

)
,

where the second line results from expanding the logarithm,

log(1+ u) = u

1
− u2

2
+ u3

3
− · · · ,

and the third line results from exchanging the order of summations.
The proof finally extends to the case ofB being infinite by noting that eachAn

depends only on thoseB j for which j ≤ n, to which the relations given above for the
finite case apply. Precisely, letB(≤m) =∑m

k=1B j andA(≤m) = PSET(B(≤m)). Then,
with O(zm+1) denoting any series that has no term of degree≤ m, one has

A(z) = A(≤m)(z)+ O(zm+1) and B(z) = B(≤m)(z)+ O(zm+1).

On the other hand,A(≤m)(z) and B(≤m)(z) are connected by the fundamental expo-
nential relation (23) , sinceB(≤m) is finite. Lettingm tend to infinity, there follows in
the limit

A(z) = exp

(
B(z)

1
− B(z2)

2
+ B(z3)

3
− · · ·

)
.

(See Appendix A.5:Formal power series, p. 730 for the notion of formal conver-
gence.)

Multiset construction. First for finiteB (with B0 = ∅), the multiset classA =
MSET(B) is definable by

(24) MSET(B) ∼=
∏

β∈B
SEQ({β}).

In words, any multiset can be sorted, in which case it can be viewed as formed of a
sequence of repeated elementsβ1, followed by a sequence of repeated elementsβ2,
whereβ1, β2, . . . is a canonical listing of the elements ofB. The relation translates
into generating functions by the product and sequence rules,

(25)

A(z) =
∏

β∈B
(1− z|β|)−1 =

∞∏

n=1

(1− zn)−Bn

= exp

( ∞∑

n=1

Bn log(1− zn)−1
)

= exp

(
B(z)

1
+ B(z2)

2
+ B(z3)

3
+ · · ·

)
,
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where the exponential form results from the exp–log transformation. The case of an
infinite classB follows by a limit argument analogous the one used for powersets.

Cycle construction.The translation of the cycle relationA = CYC(B) turns out
to be

A(z) =
∞∑

k=1

ϕ(k)

k
log

1

1− B(zk)
,

whereϕ(k) is the Euler totient function. The first terms, withLk(z) := log(1 −
B(zk))−1 are

A(z) = 1

1
L1(z)+

1

2
L2(z)+

2

3
L3(z)+

2

4
L4(z)+

4

5
L5(z)+

2

6
L6(z)+ · · · .

We reserve the proof to Appendix A.4:Cycle construction, p. 729, since it relies in
part on multivariate generating functions to be officially introduced in Chapter III.�

The results for sets, multisets, and cycles are particular cases of the well-known
Pólya theorythat deals more generally with the enumeration of objects under group
symmetry actions; for Ṕolya’s original and its edited version, see [488, 491]. This
theory is described in many textbooks, for instance, those of Comtet [129] and Harary
and Palmer [129, 319]; Notes I.58–I.60, pp. 85–86, distil its most basic aspects. The
approach adopted here amounts to considering simultaneously all possible values of
the number of components by means of bivariate generating functions. Powerful gen-
eralizations within Joyal’s elegant theory of species [359] are presented in the book
by Bergeron, Labelle, and Leroux [50].
� I.7. Vallée’s identity.LetM = MSET(C), P = PSET(C). One has combinatorially:

M(z) = P(z)M(z2).

(Hint: a multiset contains elements of either odd or even multiplicity.) Accordingly, one can
deduce the translation of powersets from the formula for multisets. Iterating the relation above
yields M(z) = P(z)P(z2)P(z4)P(z8) · · · : this is closely related to the binary representation
of numbers and to Euler’s identity (p. 49). It is used for instance in Note I.66 p. 91. �

Restricted constructions.In order to increase the descriptive power of the frame-
work of constructions, we ought to be able to allow restrictions on the number of
components in sequences, sets, multisets, and cycles. LetK be a metasymbol rep-
resenting any of SEQ,CYC,MSET,PSET and let� be a predicate over the integers;
thenK�(A) will represent the class of objects constructed byK, with a number of
components constrained to satisfy�. For instance, the notation

(26) SEQ=k (or simply SEQk), SEQ>k, SEQ1 . . k

refers to sequences whose number of components are exactlyk, larger thank, or in
the interval 1. . k respectively. In particular,

SEQk(B) :=
k times︷ ︸︸ ︷

B × · · · × B ≡ Bk, SEQ≥k(B) =
∑

j≥k

B j ∼= Bk × SEQ(B),

MSETk(B) := SEQk(B)/R.

Similarly, SEQodd,SEQevenwill denote sequences with an odd or even number of com-
ponents, and so on.
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Translations for such restricted constructions are available, as shown generally
in Subsection I. 6.1, p. 83. Suffice it to note for the moment that the construction
A = SEQk(B) is really an abbreviation for ak-fold product, hence it admits the
translation into OGFs

(27) A = SEQk(B) H⇒ A(z) = B(z)k.

I. 2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (specifications) of a broad variety of
combinatorial classes. Since we restrict attention toadmissibleconstructions, we can
immediately derive OGFs for these classes. Put differently, the task of enumerating a
combinatorial class is reduced toprogramminga specification for it in the language of
admissible constructions. In this subsection, we first discuss the expressive power of
the language of constructions, then summarize the symbolicmethod (for unlabelled
classes and OGFs) by Theorem I.2.

First, in the framework just introduced, the class of all binary words is described
by

W = SEQ(A), where A = {a,b} ∼= Z + Z,

the ground alphabet, comprises two elements (letters) of size 1. The size of a binary
word then coincides with its length (the number of letters itcontains). In other terms,
we start from basic atomic elements and build up words by forming freely all the ob-
jects determined by the sequence construction. Such a combinatorial description of a
class that only involves a composition of basic constructions applied to initial classes
E,Z is said to be aniterative (or non-recursive) specification. Other examples al-
ready encountered include binary necklaces (Note I.1, p. 18) and the positive integers
(Note I.5, p. 27) respectively defined by

N = CYC(Z + Z) and I = SEQ≥1(Z).

From this, one can construct ever more complicated objects.For instance,

P = MSET(I) ≡ MSET(SEQ≥1(Z))

means the class of multisets of positive integers, which is isomorphic to the class of
integer partitions (see Section I. 3 below for a detailed discussion). As such examples
demonstrate, a specification that is iterative can be represented as a single term built on
E,Z and the constructions+,×,SEQ,CYC,MSET,PSET. An iterative specification
can be equivalently listed by naming some of the subterms (for instance, partitions in
terms of natural integersI, themselves defined as sequences of atomsZ).

Semantics of recursion.We next turn our attention to recursive specifications,
starting with trees (cf also Appendix A.9:Tree concepts, p. 737, for basic definitions).
In graph theory, a tree is classically defined as an undirected graph that is connected
and acyclic. Additionally, a tree isrootedif a particular vertex is specified (this vertex
is then kown as the root). Computer scientists commonly makeuse of trees called
plane4 that are rooted but also embedded in the plane, so that the ordering of subtrees

4The alternative terminology “planar tree” is also often used, but it is frowned upon by some as
incorrect (all trees are planar graphs). We have thus opted for the expression “plane tree”, which parallels
the phrase “plane curve”.
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attached to any node matters. Here, we will give the name ofgeneral plane treesto
such rooted plane trees and callG their class, where size is the number of vertices;
see, e.g., reference [538]. (The term “general” refers to the fact that all nodes degrees
are allowed.) For instance, a general tree of size 16, drawn with the root on top, is:

τ =
.

As a consequence of the definition, if one interchanges, say,the second and third root
subtrees, then a different tree results—the original tree and its variant are not equiva-
lent under a smooth deformation of the plane. (General treesare thus comparable to
graphical renderings of genealogies where children are ordered by age.). Although we
have introduced plane trees as two-dimensional diagrams, it is obvious that any tree
also admits a linear representation: a treeτ with root ζ and root subtreesτ1, . . . , τr
(in that order) can be seen as the objectζ τ1, . . . , τr , where the box encloses similar
representations of subtrees. Typographically, a box· may be reduced to a matching
pair of parentheses, “(·)”, and one gets in this way a linear description that illustrates
the correspondence between trees viewed as plane diagrams and functional terms of
mathematical logic and computer science.

Trees are best described recursively. A plane tree is a root to which is attached
a (possibly empty) sequence of trees. In other words, the classG of general trees is
definable by the recursive equation

(28) G = Z × SEQ(G),

whereZ comprises a single atom written “•” that represents a generic node.
Although such recursive definitions are familiar to computer scientists, the speci-

fication (28) may look dangerously circular to some. One way of making good sense
of it is via an adaptation of the numerical technique of iteration. Start withG[0] = ∅,
the empty set, and define successively the classes

G[ j+1] = Z × SEQ(G[ j ]).

For instance,G[1] = Z × SEQ(∅) = {(•, ǫ)} ∼= {•} describes the tree of size 1, and

G[2] =
{
• , • • , • • • , • • • • , . . .

}

G[3] =
{
• , • • , • • • , • • • • , . . . ,

• • • , • • • • , • • • • , • • • • • • , . . .

}
.

First, eachG[ j ] is well defined since it corresponds to a purely iterative specification.
Next, we have the inclusionG[ j ] ⊂ G[ j+1] (a simple interpretation ofG[ j ] is the class
of all trees of height< j ). We can therefore regard the complete classG as defined by
the limit of theG[ j ] ; that is,G :=⋃ j G

[ j ] .

� I.8. Lim-sup of classes.Let {A[ j ]} be any increasing sequence of combinatorial classes, in
the sense thatA[ j ] ⊂ A[ j+1], and the notions of size are compatible. IfA[∞] = ⋃ j A

[ j ] is a
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combinatorial class (there are finitely many elements of sizen, for eachn), then the correspond-
ing OGFs satisfyA[∞](z) = lim j→∞ A[ j ](z) in the formal topology (Appendix A.5:Formal
power series, p. 730). �

Definition I.7. A specificationfor an r–tuple EA = (A(1), . . . ,A(r )) of classes is a
collection of r equations,

(29)





A(1) = 81(A
(1), . . . ,A(r ))

A(2) = 82(A
(1), . . . ,A(r ))

· · ·
A(r ) = 8r (A

(1), . . . ,A(r ))

where each8i denotes a term built from theA using the constructions of disjoint
union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial
classesE (neutral) andZ (atomic).

We also say that the system is a specification ofA(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is aniterativeor non-recursivespecification if it is strictly upper-triangular,
that is,A(r ) is defined solely in terms of initial classesZ, E ; the definition ofA(r−1)

only involvesA(r ), and so on; in that case, by back substitutions, it is apparent thatfor
an iterative specification,A(1) can be equivalently described by a single term involv-
ing only the initial classes and the basic constructors. Otherwise, the system is said to
berecursive. In the latter case, the semantics of recursion is identicalto the one intro-
duced in the case of trees: start with the “empty” vector of classes,EA[0] := (∅, . . . ,∅),
iterate EA[ j+1] = E8

[ EA[ j ]
]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a
specification of the form (29), we can associate itsdependency (di)graphŴ to it as
follows. The set of vertices ofŴ is the set of indices{1, . . . , r }; for each equation
A(i ) = 4i (A

(1), . . . ,A(r )) and for eachj such thatA( j ) appears explicitly on the
right-hand side of the equation, place a directed edge(i → j ) in Ŵ. It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will
serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to beconstructibleor speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each
constructible class has by virtue of Theorem I.1 an ordinarygenerating function for
which functional equations can be produced systematically. (In fact, it is even possible
to use computer algebra systems in order to compute itautomatically! See the article
by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system offunctional equationswhose terms
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are built from

1, z, + , × , Q , Exp , Exp ,Log,

where




Q[ f ] = 1

1− f
, Log[ f ] =

∞∑

k=1

ϕ(k)

k
log

1

1− f (zk)
,

Exp[ f ] = exp

( ∞∑

k=1

f (zk)

k

)
, Exp[ f ] = exp

( ∞∑

k=1

(−1)k−1 f (zk)

k

)
.

Pólya operators.The operatorQ translating sequences (SEQ) is classically known
as thequasi-inverse. The operator Exp (multisets, MSET) is called thePólya exponen-
tial5 andExp (powersets, PSET) is themodified Ṕolya exponential. The operator Log
is thePólya logarithm. They are named after Pólya who first developed the general
enumerative theory of objects under permutation groups (pp. 85–86).

The statement of Theorem I.2 signifies that iterative classes have explicit gen-
erating functions involving compositions of the basic operators only, while recursive
structures have OGFs that are accessible indirectly via systems of functional equa-
tions. As we shall see at various places in this chapter, the following classes are con-
structible: binary words, binary trees, general trees, integer partitions, integer com-
positions, non-plane trees, polynomials over finite fields,necklaces, and wheels. We
conclude this section with a few simple illustrations of thesymbolic method expressed
by Theorem I.2.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W = SEQ(Z + Z) H⇒ W(z) = 1

1− 2z
,

whence the expected result,Wn = 2n. (Note: in our framework, ifa,b are letters,
thenZ + Z ∼= {a,b}.)

General trees.The recursive specification of general trees leads to an implicit
definition of their OGF,

G = Z × SEQ(G) H⇒ G(z) = z

1− G(z)
.

From this point on, basic algebra6does the rest. First the original equation is equivalent
(in the ring of formal power series) toG − G2 − z= 0. Next, the quadratic equation

5It is a notable fact that, although the Pólya operators look algebraically “difficult” to compute with,
their treatment by complex asymptotic methods, as regards coefficient asymptotics, is comparatively “easy”.
We shall see many examples in Chapters IV–VII (e.g., pp. 252, 475).

6Methodological note: for simplicity, our computation is developed using the usual language of math-
ematics. However,analysisis not needed in this derivation, and operations such as solving quadratic equa-
tions and expanding fractional powers can all be cast withinthe purely algebraic framework offormal power
series(p. 730).
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is solvable by radicals, and one finds

G(z) = 1
2

(
1−
√

1− 4z
)

= z+ z2+ 2z3+ 5z4+ 14z5+ 42z6+ 132z7+ 429z8+ · · ·

=
∑

n≥1

1

n

(
2n− 2

n− 1

)
zn.

(The conjugate root is to be discarded since it involves a term z−1 as well as negative
coefficients.) The expansion then results from Newton’s binomial expansion,

(1+ x)α = 1+ α
1

x + α(α − 1)

2!
x2+ · · · ,

applied withα = 1
2 andx = −4z.

The numbers

(30) Cn =
1

n+ 1

(
2n

n

)
= (2n)!

(n+ 1)! n!
with OGF C(z) = 1−

√
1− 4z

2z

are known as the Catalan numbers (EISA000108) in the honour of Eug̀ene Catalan,
the mathematician who first studied their properties in geatdepth (pp. 6 and 20). In
summary,general trees are enumerated by Catalan numbers:

Gn = Cn−1 ≡
1

n

(
2n− 2

n− 1

)
.

For this reason the termCatalan treeis often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n+ 2 points arranged in anticlockwise order on a circle and
conventionally numbered from 0 ton + 1 (for instance the(n + 2)th roots of unity).
A triangulation is defined as a (maximal) decomposition of the convex(n + 2)-gon
defined by the points inton triangles (Figure I.1, p. 17). Triangulations are taken here
as abstract topological configurations defined up to continuous deformations of the
plane. The size of the triangulation is the number of triangles; that is,n. Given a
triangulation, we define its “root” as a triangle chosen in some conventional and un-
ambiguous manner (e.g., at the start, the triangle that contains the two smallest labels).
Then, a triangulation decomposes into its root triangle andtwo subtriangulations (that
may well be “empty”) appearing on the left and right sides of the root triangle; the
decomposition is illustrated by the following diagram:

= +

The classT of all triangulations can be specified recursively as

T = {ǫ} + (T ×∇ × T ) ,
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provided that we agree to consider a 2-gon (a segment) as giving rise to an “empty”
triangulation of size 0. (The subtriangulations are topologically and combinatorially
equivalent to standard ones, with vertices regularly spaced on a circle.) Consequently,
the OGFT(z) satisfies the equation

(31) T(z) = 1+ zT(z)2, so that T(z) = 1

2z

(
1−
√

1− 4z
)
.

As a result of (30) and (31),triangulations are enumerated by Catalan numbers:

Tn = Cn ≡
1

n+ 1

(
2n

n

)
.

This particular result goes back to Euler and Segner, a century before Catalan; see
Figure I.1 on p. 17 for first values and p. 73 below for related bijections.
� I.9. A bijection. Since both general trees and triangulations are enumerated by Catalan
numbers, there must exist a size-preserving bijection between the two classes. Find one such
bijection. [Hint: the construction of triangulations is evocative of binary trees, while binary
trees are themselves in bijective correspondence with general trees (p. 73).] �

� I.10. A variant specification of triangulations.Consider the classU of “non-empty” triangu-
lations of then-gon, that is, we exclude the 2-gon and the corresponding “empty” triangulation
of size 0. ThenU = T \ {ǫ} admits the specification

U = ∇ + (∇ × U)+ (U ×∇)+ (U ×∇ × U)

which also leads to the Catalan numbers viaU = z(1 + U )2, so thatU (z) = (1 − 2z −√
1− 4z)/(2z) ≡ T(z)− 1. �

I. 2.4. Exploiting generating functions and counting sequences. In this book
we are going to see altogether more than a hundred applications of the symbolic
method. Before engaging in technical developments, it is worth inserting a few com-
ments on the way generating functions and counting sequences can be put to good use
in order to solve combinatorial problems.

Explicit enumeration formulae. In a number of situations, generating functions
are explicit and can be expanded in such a way that explicit formulae result for their
coefficients. A prime example is the counting of general trees and of triangulations
above, where the quadratic equation satisfied by an OGF is amenable to an explicit
solution—the resulting OGF could then be expanded by means ofNewton’s binomial
theorem. Similarly, we derive later in this chapter an explicit form for the number
of integer compositions by means of the symbolic method (theanswer turns out to
be simply 2n−1) and obtain in this way, through OGFs, many related enumeration
results. In this book, we assume as known the elementary techniques from basic
calculus by which the Taylor expansion of an explicitly given function can be obtained.
(Elementary references on such aspects are Wilf’sGeneratingfunctionology[608],
Graham, Knuth, and Patashnik’sConcrete Mathematics[307], and our book [538].)

Implicit enumeration formulae. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense explicit, but their form is such that
their coefficients are not clearly reducible to a closed form. It is then still possible to
obtain initial values of the corresponding counting sequence by means of a symbolic
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manipulation system. Furthermore, from generating functions, it is possible systemat-
ically to derive recurrences that lead to a procedure for computing an arbitrary number
of terms of the counting sequence in a reasonably efficient manner. A typical example
of this situation is the OGF of integer partitions,

∞∏

m=1

1

1− zm
,

for which recurrences obtained from the OGF and associated to fast algorithms are
given in Note I.13 (p. 42) and Note I.19 (p. 49). An even more spectacular example
is the OGF of non-plane trees, which is proved below (p. 71) tosatisfy the infinite
functional equation

H(z) = zexp

(
H(z)+ 1

2
H(z2)+ 1

3
H(z3)+ · · ·

)
,

and for which coefficients are computable in low complexity:see Note I.43, p. 72.
(The references [255, 264, 456] develop a systematic approach to such problems.)
The corresponding asymptotic analysis constitutes the main theme of Section VII. 5,
p. 475.

Asymptotic formulae.Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. Froma quick glance at the
table of initial values ofWn (words),Pn (permutations),Tn (triangulations), as given
in (2), p. 18, it is apparent thatWn grows more slowly thanTn, which itself grows more
slowly thanPn. The classification of growth rates of counting sequences belongs prop-
erly to the asymptotic theory of combinatorial structures which neatly relates to the
symbolic method via complex analysis. A thorough treatmentof this part of the the-
ory is presented in Chapters IV–VIII. Given the methods expounded there, it becomes
possible to estimate asymptotically the coefficients of virtually any generating func-
tion, however complicated, that is provided by the symbolicmethod; that is, implicit
enumerations in the sense above are well covered by complex asymptotic methods.

Here, we content ourselves with a few remarks based on elementary real analysis.
(The basic notations are described in Appendix A.2:Asymptotic notation, p. 722.)
The sequenceWn = 2n grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequencePn = n! must grow
faster. But how fast? The answer is provided by Stirling’s formula, an important
approximation originally due to James Stirling (Invitation, p. 4):

(32) n! =
(n

e

)n√
2πn

(
1+ O

(
1

n

))
(n→+∞).

(Several proofs are given in this book, based on the method ofLaplace, p. 760, Mellin
transforms, p. 766, singularity analysis, p. 407, and the saddle-point method, p 555.)
The ratios of the exact values to Stirling’s approximations

n 1 2 5 10 100 1 000
n!

nne−n
√

2πn
1.084437 1.042207 1.016783 1.008365 1.000833 1.000083
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Figure I.5. The growth
regimes of three sequences
f (n) = 2n, Tn, n! (from
bottom to top) rendered by a
plot of log10 f (n) versusn.

show anexcellent qualityof the asymptotic estimate: the error is only 8% forn = 1,
less than 1% forn = 10, and less than 1 per thousand for anyn greater than 100.

Stirling’s formula provides in turn the asymptotic form of the Catalan numbers,
by means of a simple calculation:

Cn =
1

n+ 1

(2n)!

(n!)2
∼ 1

n

(2n)2ne−2n
√

4πn

n2ne−2n2πn
,

which simplifies to

(33) Cn ∼
4n

√
πn3

.

Thus, the growth of Catalan numbers is roughly comparable toan exponential, 4n,
modulated by a subexponential factor, here 1/

√
πn3. A surprising consequence of

this asymptotic estimate in the area of boolean function complexity appears in Exam-
ple I.17 below (p. 77).

Altogether, the asymptotic number of general trees and triangulations is well sum-
marized by a simple formula. Approximations become more andmore accurate asn
becomes large. Figure I.5 illustrates the different growthregimes of our three ref-
erence sequences while Figure I.6 exemplifies the quality ofthe approximation with
subtler phenomena also apparent on the figures and well explained by asymptotic the-
ory. Such asymptotic formulae then make comparison betweenthe growth rates of
sequences easy.

The interplay between combinatorial structure and asymptotic structure is indeed
the principal theme of this book. We shall see in Part B that the generating func-
tions provided by the symbolic method typically admit similarly simple asymptotic
coefficient estimates.
� I.11. The complexity of coding.A company specializing in computer-aided design has sold
to you a scheme that (they claim) can encode any triangulation of sizen ≥ 100 using at most
1.5n bits of storage. After reading these pages, what do you do? [Hint: sue them!] See also
Note I.24 (p. 53) for related coding arguments. �
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n Cn C⋆n C⋆n/Cn

1 1 2.25 2.25675 83341 91025 14779 23178

10 16796 18707.89 1.11383 05127 524458̇9437 89064

100 0.89651· 1057 0.90661· 1057 1.01126 32841 24540 52257 13957

1 000 0.20461· 10598 0.20484· 10598 1.00112 51328 15424 16470 12827

10 000 0.22453· 106015 0.22456· 106015 1.00011 25013 28127 92913 51406

100 000 0.17805· 1060199 0.17805· 1060199 1.00001 12500 13281 25292 96322

1 000 000 0.55303· 10602051 0.55303· 10602051 1.00000 11250 00132 81250 29296

Figure I.6. The Catalan numbersCn, their Stirling approximationC⋆n = 4n/
√
πn3,

and the ratioC⋆n/Cn.

� I.12. Experimental asymptotics.From the data of Figure I.6, guess the values7 of C⋆
107/C107

and of C⋆
5·106/C5·106 to 25D. (See, Figure VI.3, p. 384, as well as, e.g., [385] for related

asymptotic expansions and [80] for similar properties.) �

I. 3. Integer compositions and partitions

This section and the next few provide examples of counting via specifications in
classical areas of combinatorial theory. They illustrate the benefits of the symbolic
method: generating functions are obtained with hardly any computation, and at the
same time, many counting refinements follow from a basic combinatorial construc-
tion. The most direct applications described here relate tothe additive decomposition
of integers into summands with the classical combinatorial–arithmetic structures of
partitions and compositions. The specifications are iterative and simply combine two
levels of constructions of type SEQ,MSET,CYC,PSET.

I. 3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.

Definition I.9. Acompositionof an integer n is a sequence(x1, x2, . . . , xk) of integers
(for some k) such that

n = x1+ x2+ · · · + xk, x j ≥ 1.

A partitionof an integer n is a sequence(x1, x2, . . . , xk) of integers (for some k) such
that

n = x1+ x2+ · · · + xk and x1 ≥ x2 ≥ · · · ≥ xk ≥ 1.

In both cases, the xi are called thesummandsor thepartsand the quantity n is called
thesize.

By representing summands in unary using small discs (“•”), we can render graph-
ically a composition by drawing bars between some of the balls; if we arrange sum-
mands vertically, compositions appear as ragged landscapes. In contrast, partitions
appear as staircases, also known as Ferrers diagrams [129, p. 100]; see Figure I.7. We

7In this book, we abbreviate a phrase such as “25 decimal places” by “25D”.



40 I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

Figure I.7. Graphical representations of compositions and partitions: (left) the com-
position 1+3+1+4+2+3= 14 with its “ragged landscape” and “balls-and-bars”
models; (right) the partition 8+ 8+ 6+ 5+ 4+ 4+ 4+ 2+ 1+ 1 = 43 with its
staircase (Ferrers diagram) model.

let C andP denote the class of all compositions and all partitions, respectively. Since
a set can always be presented in sorted order, the differencebetween compositions and
partitions lies in the fact that the order of summandsdoesor does notmatter. This is
reflected by the use of a sequence construction (forC) against a multiset construction
(for P). From this perspective, it proves convenient to regard 0 asobtained by the
empty sequence of summands (k = 0), and we shall do so from now on.

Integers, as a combinatorial class.Let I = {1,2, . . .} denote the combinatorial
class of all integers at least 1 (the summands), and let the size of each integer be its
value. Then, the OGF ofI is

(34) I (z) =
∑

n≥1

zn = z

1− z
,

sinceIn = 1 for n ≥ 1, corresponding to the fact that there is exactly one objectin I

for each sizen ≥ 1. If integers are represented in unary, say by small balls, one has

(35) I = {1, 2, 3, . . .} ∼= {•, • •, • • •, . . .} = SEQ≥1{•},
which constitutes a direct way to visualize the equalityI (z) = z/(1− z).

Compositions.First, the specification of compositions as sequences admits, by
Theorem I.1, a direct translation into OGF:

(36) C = SEQ(I) H⇒ C(z) = 1

1− I (z)
.

The collection of equations (34), (36) thus fully determinesC(z):

C(z) = 1

1− z
1−z

= 1− z

1− 2z

= 1+ z+ 2z2+ 4z3+ 8z4+ 16z5+ 32z6+ · · · .
From here, the counting problem for compositions is solved by a straightforward ex-
pansion of the OGF: one has

C(z) =


∑

n≥0

2nzn


−


∑

n≥0

2nzn+1


 ,
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0 1 1
10 1024 42
20 1048576 627
30 1073741824 5604
40 1099511627776 37338
50 1125899906842624 204226
60 1152921504606846976 966467
70 1180591620717411303424 4087968
80 1208925819614629174706176 15796476
90 1237940039285380274899124224 56634173

100 1267650600228229401496703205376 190569292
110 1298074214633706907132624082305024 607163746
120 1329227995784915872903807060280344576 1844349560
130 1361129467683753853853498429727072845824 5371315400
140 1393796574908163946345982392040522594123776 15065878135
150 1427247692705959881058285969449495136382746624 40853235313
160 1461501637330902918203684832716283019655932542976 107438159466
170 1496577676626844588240573268701473812127674924007424 274768617130
180 1532495540865888858358347027150309183618739122183602176 684957390936
190 1569275433846670190958947355801916604025588861116008628224 1667727404093
200 1606938044258990275541962092341162602522202993782792835301376 3972999029388
210 1645504557321206042154969182557350504982735865633579863348609024 9275102575355
220 1684996666696914987166688442938726917102321526408785780068975640576 21248279009367
230 1725436586697640946858688965569256363112777243042596638790631055949824 47826239745920
240 1766847064778384329583297500742918515827483896875618958121606201292619776 105882246722733
250 1809251394333065553493296640760748560207343510400633813116524750123642650624 230793554364681

Figure I.8. For n = 0, 10, 20, . . . , 250 (left), the number of compositionsCn (mid-
dle) and the number of partitionsPn (right). The figure illustrates the difference in
growth betweenCn = 2n−1 andPn = eO(

√
n).

implying C0 = 1 andCn = 2n − 2n−1 for n ≥ 1; that is,

(37) Cn = 2n−1, n ≥ 1.

This agrees with basic combinatorics since a composition ofn can be viewed as the
placement of separation bars at a subset of then − 1 existing places in betweenn
aligned balls (the “balls-and-bars” model of Figure I.7), of which there are clearly
2n−1 possibilities.

Partitions. For partitions specified as multisets, the general translation mechan-
ism of Theorem I.1, p. 27, provides

(38) P = MSET(I) H⇒ P(z) = exp

(
I (z)+ 1

2
I (z2)+ 1

3
I (z3)+ · · ·

)
,

together with the product form corresponding to (25), p. 29,

(39)

P(z) =
∞∏

m=1

1

1− zm

=
(
1+ z+ z2+ · · ·

) (
1+ z2+ z4+ · · ·

) (
1+ z3+ z6+ · · ·

)
· · ·

= 1+ z+ 2z2+ 3z3+ 5z4+ 7z5+ 11z6+ 15z7+ 22z8+ · · ·
(the counting sequence isEISA000041). Contrary to compositions that are counted
by the explicit formula 2n−1, no simple form exists forPn. Asymptotic analysis of
the OGF (38) based on the saddle-point method (Chapter VIII,p. 574) shows that
Pn = eO(

√
n). In fact an extremely famous theorem of Hardy and Ramanujan later

improved by Rademacher (see Andrews’ book [14] and Chapter VIII) provides a full
expansion of which the asymptotically dominant term is

(40) Pn ∼
1

4n
√

3
exp

(
π

√
2n

3

)
.
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There are consequently appreciably fewer partitions than compositions (Figure I.8).
� I.13. A recurrence for the partition numbers.Logarithmic differentiation gives

z
P′(z)
P(z)

=
∞∑

n=1

nzn

1− zn implying nPn =
n∑

j=1

σ( j )Pn− j ,

whereσ(n) is the sum of the divisors ofn (e.g., σ(6) = 1 + 2 + 3 + 6 = 12). Conse-
quently,P1, . . . , PN can be computed inO(N2) integer-arithmetic operations. (The technique
is generally applicable to powersets and multisets; see Note I.43 (p. 72) for another application.
Note I.19 (p. 49) further lowers the bound toO(N

√
N), in the case of partitions.) �

By varying (36) and (38), we can use the symbolic method to derive a number of
counting results in a straightforward manner. First, we state the following proposition.

Proposition I.1. Let T ⊆ I be a subset of the positive integers. The OGFs of the
classesCT := SEQ(SEQT (Z)) andPT := MSET(SEQT (Z)) of compositions and
partitions having summands restricted toT ⊂ Z≥1 are given by

CT (z) = 1

1−∑n∈T zn
= 1

1− T(z)
, PT (z) =

∏

n∈T

1

1− zn
.

Proof. A direct consequence of the specifications and Theorem I.1,p. 27. �

This proposition permits us to enumerate compositions and partitions with re-
stricted summands, as well as with a fixed number of parts.

ExampleI.4. Compositions with restricted summands.In order to enumerate the classC{1,2}
of compositions ofn whose parts are only allowed to be taken from the set{1, 2}, simply write

C{1,2} = SEQ(I{1,2}) with I{1,2} = {1, 2}.
Thus, in terms of generating functions, one has

C{1,2}(z) = 1

1− I {1,2}(z)
with I {1,2}(z) = z+ z2.

This formula implies

C{1,2}(z) = 1

1− z− z2
= 1+ z+ 2z2+ 3z3+ 5z4+ 8z5+ 13z6+ · · · ,

and the number of compositions ofn in this class is expressed by a Fibonacci number,

C{1,2}n = Fn+1 where Fn =
1√
5

[(
1+
√

5

2

)n

−
(

1−
√

5

2

)n]
,

of daisy–artichoke–rabbit fame In particular, the rate of growth is of theexponential typeϕn,

whereϕ := 1+
√

5

2
is the golden ratio.

Similarly, compositions all of whose summands lie in the set{1, 2, . . . , r } have generating
function

(41) C{1,...,r }(z) = 1

1− z− z2− · · · zr
= 1

1− z1−zr

1−z

= 1− z

1− 2z+ zr+1
,
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and the corresponding counts are generalized Fibonacci numbers. Adouble combinatorial sum
expresses these counts

(42) C{1,...,r }n = [zn]
∑

j

(
z(1− zr )

(1− z)

) j
=
∑

j,k

(−1)k
(

j

k

)(
n− rk − 1

j − 1

)
.

This result is perhaps not too useful for grasping the rate of growth ofthe sequence whenn gets
large, so that asymptotic analysis is called for. Asymptotically, for any fixed r ≥ 2, there is a
unique rootρr of the denominator 1− 2z+ zr+1 in (1

2, 1), this root dominates all the other
roots and is simple. Methods amply developed in Chapter IV and Example V.4 (p. 308) imply
that, for some constantcr > 0,

(43) C{1,...,r }n ∼ cr ρ
−n
r for fixed r asn→∞.

The quantityρr plays a r̂ole similar to that of the golden ratio whenr = 2. . . . . . . . . . . . . . . .�

� I.14. Compositions into primes.The additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whether every even number is the sum
of two primes (Goldbach’s conjecture). However, the number of compositions ofn into prime
summands (anynumber of summands is permitted) isBn = [zn]B(z) where

B(z) =


1−

∑

p prime

zp



−1

=
(
1− z2− z3− z5− z7− z11− · · ·

)−1

= 1+ z2+ z3+ z4+ 3z5+ 2z6+ 6z7+ 6z8+ 10z9+ 16z10+ · · ·
(EIS A023360), and complex asymptotic methods make iteasyto determine the asymptotic
form Bn ∼ 0.30365· 1.47622n; see Example V.2, p. 297. �

ExampleI.5. Partitions with restricted summands (denumerants).Whenever summands are
restricted to a finite set, the special partitions that result are called denumerants. A denumerant
problem popularized by Ṕolya [493, §3] consists in finding the number of ways of giving change
of 99 cents using coins that are pennies (1 cent), nickels (5 cents), dimes (10 cents) and quarters
(25 cents). (The order in which the coins are taken does not matter and repetitions are allowed.)
For the case of a finiteT , we predict from Proposition I.1 thatPT (z) is always arational
function with poles that are at roots of unity; also thePT

n satisfy a linear recurrence related to
the structure ofT . The solution to the original coin change problem is found to be

[z99]
1

(1− z)(1− z5)(1− z10)(1− z25)
= 213.

In the same vein, one proves that

P{1,2}n =
⌈

2n+ 3

4

⌋
P{1,2,3}n =

⌈
(n+ 3)2

12

⌋
;

here⌈x⌋ ≡ ⌊x + 1
2⌋ denotes the integer closest to the real numberx. Such results are typically

obtained by the two-step process:(i ) decompose the rational generating function into simple
fractions;(i i ) compute the coefficients of each simple fraction and combine them to get the
final result [129, p. 108].

The general argument also gives the generating function of partitions whose summands lie
in the set{1, 2, . . . , r } as

(44) P{1,...,r }(z) =
r∏

m=1

1

1− zm .
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In other words, we are enumerating partitions according to the value of thelargest summand.
One then finds by looking at the poles (Theorem IV.9, p. 256):

(45) P{1,...,r }n ∼ cr nr−1 with cr =
1

r !(r − 1)!
.

A similar argument provides the asymptotic form ofPT
n whenT is an arbitrary finite set:

PT
n ∼

1

τ

nr−1

(r − 1)!
with τ :=

∏

n∈T
n, r := card(T ).

This last estimate, originally due to Schur, is proved in Proposition IV.2, p.258. . . . . . . . . . .�

We next examine compositions and partitions with a fixed number of summands.

Example I.6. Compositions with a fixed number of parts.Let C(k) denote the class of
compositions made ofk summands,k a fixed integer≥ 1. One has

C(k) = SEQk(I) ≡ I × I × · · · × I,

where the number of terms in the cartesian product isk. From here, the corresponding generat-
ing function is found to be

C(k)(z) =
(
I (z)

)k with I (z) = z

1− z
.

The number of compositions ofn havingk parts is thus

C(k)n = [zn]
zk

(1− z)k
=
(

n− 1

k− 1

)
,

a result which constitutes a combinatorial refinement ofCn = 2n−1. (Note that the formula
C(k)n =

(n−1
k−1

)
also results easily from the balls-and-bars model of compositions (Figure I.7)).

In such a case, the asymptotic estimateC(k)n ∼ nk−1/(k − 1)! results immediately from the
polynomial form of the binomial coefficient

(n−1
k−1

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

Example I.7. Partitions with a fixed number of parts. Let P(≤k) be the class of integer
partitions with at mostk summands. With our notation for restricted constructions (p. 30), this
class is specified as

P(≤k) = MSET≤k(I).

It would be possible to appeal to the admissibility of such restricted compositions as developed
in Subsection I. 6.1 below, but the following direct argument suffices inthe case at hand. Geo-
metrically, partitions, are represented as collections of points: this is the staircase model of
Figure I.7, p. 40. A symmetry around the main diagonal (also known in the specialized literature
as conjugation) exchanges number of summands and value of largestsummand; one then has
(with earlier notations)

P(≤k) ∼= P{1, . . k} H⇒ P(≤k)(z) = P{1, . . k}(z),

so that, by (44),

(46) P(≤k)(z) ≡ P{1,...,k} =
k∏

m=1

1

1− zm .
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As a consequence, the OGF of partitions withexactly ksummands,P(k)(z) = P(≤k)(z) −
P(≤k−1)(z), evaluates to

P(k)(z) = zk

(1− z)(1− z2) · · · (1− zk)
.

Given the equivalence between number of parts and largest part in partitions, the asymptotic
estimate (45) applies verbatim here. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

� I.15. Compositions with summands bounded in number and size.The number of composi-
tions of sizen with k summands each at mostr is expressible as

[zn]

(
z

1− zr

1− z

)k
,

which reduces to a simple binomial convolution (the calculation is similar to (42), p. 43). �

� I.16. Partitions with summands bounded in number and size.The number of partitions of
sizen with at mostk summands each at mostℓ is

[zn]
(1− z)(1− z2) · · · (1− zk+ℓ)(

(1− z)(1− z2) · · · (1− zk)
)
·
(
(1− z)(1− z2) · · · (1− zℓ)

) .

(Verifying this by recurrence is easy.) The GF reduces to the binomial coefficient
(k+ℓ

k
)

as

z→ 1; it is known as a Gaussian binomial coefficient, denoted
(k+ℓ

k
)
z, or a “q–analogue” of

the binomial coefficient [14, 129]. �

The last example of this section illustrates the close interplay between combi-
natorial decompositions and special function identities,which constitutes a recurrent
theme of classical combinatorial analysis.

Example I.8. The Durfee square of partitions and stack polyominoes.The diagram of any
partition contains a uniquely determined square (known as the Durfee square) that is maximal,
as exemplified by the following diagram:

=

This decomposition is expressed in terms of partition GFs as

P ∼=
⋃

h≥0

(
Zh2 × P(≤h) × P{1,...,h}

)
,

It gives automatically, via (44) and (46), a non-trivial identity, which is nothing but a formal
rewriting of the geometric decomposition:

∞∏

n=1

1

1− zn =
∑

h≥0

zh2

(
(1− z) · · · (1− zh)

)2

(h is the size of the Durfee square, known to manic bibliometricians as the “H-index”).
Stack polyominoes. Here is a similar case illustrating the direct correspondence between

geometric diagrams and generating functions, as afforded by the symbolic method. Astack
polyominois the diagram of a composition such that for somej, ℓ, one has 1≤ x1 ≤ x2 ≤
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· · · ≤ x j ≥ x j+1 ≥ · · · ≥ xℓ ≥ 1 (see [552, §2.5] for further properties). The diagram
representation of stack polyominoes

k ←→ P{1,...,k−1} ×Zk × P{1,...,k}

translates immediately into the OGF

S(z) =
∑

k≥1

zk

1− zk

1
(
(1− z)(1− z2) · · · (1− zk−1)

)2 ,

once use is made of the partition GFsP{1,...,k}(z) of (44). This last relation provides abona fide
algorithm for computing the initial values of the number of stack polyominoes(EISA001523):

S(z) = z+ 2z2+ 4z3+ 8z4+ 15z5+ 27z6+ 47z7+ 79z8+ · · · .

The book of van Rensburg [592] describes many such constructionsand their relation to models
of statistical physics, especially polyominoes. For instance, related “q–Bessel” functions appear
in the enumeration of parallelogram polyominoes (Example IX.14, p. 660). . . . . . . . . . . . . . .�

� I.17. Systems of linear diophantine inequalities.Consider the classF of compositions of
integers into four summands(x1, x2, x3, x4) such that

x1 ≥ 0, x2 ≥ 2x1, x3 ≥ 2x2, x4 ≥ 2x3,

where thex j are inZ≥0. The OGF is

F(z) = 1

(1− z)(1− z3)(1− z7)(1− z15)
.

Generalize tor ≥ 4 summands (inZ≥0) and a similar system of inequalities. (Related GFs
appear on p. 200.) Work out elementarily the OGFs corresponding to thefollowing systems of
inequalities:

{x1+ x2 ≤ x3}, {x1+ x2 ≥ x3}, {x1+ x2 ≤ x3+ x4}, {x1 ≤ x2, x2 ≥ x3, x3 ≤ x4}.
More generally, the OGF of compositions into afixed number of summands (inZ≥0), con-
strained to satisfy a linear system of equations and inequalities with coefficients inZ, is ration-
al; its denominator is a product of factors of the form(1− z j ). (Caution: this generalization is
non-trivial: see Stanley’s treatment in [552, §4.6].) �

Figure I.9 summarizes what has been learned regarding compositions and parti-
tions. The way several combinatorial problems are solved effortlessly by the symbolic
method is worth noting.

I. 3.2. Related constructions.It is also natural to consider the two constructions
of cycle and powerset when these are applied to the set of integersI.
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Specification OGF coefficients

Compositions:

all SEQ(SEQ≥1(Z))
1− z

1− 2z
2n−1 (p. 40)

parts≤ r SEQ(SEQ1 . . r (Z))
1− z

1− 2z+ zr+2
∼ cr ρ

−n
r (pp. 42, 308)

k parts SEQk(SEQ≥1(Z))
zk

(1− z)k
∼ nk−1

(k− 1)!
(p. 44)

cyclic CYC(SEQ≥1(Z)) Eq. (48) ∼ 2n

n
(p. 48)

Partitions:

all MSET(SEQ≥1(Z))

∞∏

m=1

(1− zm)−1 ∼ 1

4n
√

3
e
π

√
2n
3 (pp. 41, 574)

parts≤ r MSET(SEQ1 . . r (Z))

r∏

m=1

(1− zm)−1 ∼ nr−1

r !(r − 1)!
(pp. 43, 258)

≤ k parts ∼= MSET(SEQ1 . . k(Z))

k∏

m=1

(1− zm)−1 ∼ nk−1

k!(k− 1)!
(pp. 44, 258)

distinct parts PSET(SEQ≥1(Z))

∞∏

m=1

(1+ zm) ∼ 33/4

12n3/4
eπ
√

n/3 (pp. 48, 579)

Figure I.9. Partitions and compositions: specifications, generating functions, and
coefficients (in exact or asymptotic form).

Cyclic compositions (wheels).The classD = CYC(I) comprises compositions
defined up to circular shift of the summands; so, for instance2 + 3 + 1 + 2 + 5,
3+ 1+ 2+ 5+ 2, etc, are identified. Alternatively, we may view elements of D as
“wheels” composed of circular arrangements of rows of balls(taken up to rotation):

a “wheel” (cyclic composition)

By the translation of the cycle construction, the OGF is

(47)
D(z) =

∞∑

k=1

ϕ(k)

k
log

(
1− zk

1− zk

)−1

= z+ 2z2+ 3z3+ 5z4+ 7z5+ 13z6+ 19z7+ 35z8+ · · · .
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The coefficients are thus (EISA008965)

(48) Dn =
1

n

∑

k | n
ϕ(k)(2n/k − 1) ≡ −1+ 1

n

∑

k | n
ϕ(k)2n/k ∼ 2n

n
,

where the condition “k | n” indicates a sum over the integersk dividing n. Notice that
Dn is of the same asymptotic order as1

nCn, which is suggested by circular symmetry
of wheels, but there is a factor:Dn ∼ 2Cn/n.

Partitions into distinct summands.The classQ = PSET(I) is the subclass
of P = MSET(I) corresponding to partitions determined as in Definition I.9, but
with the strict inequalitiesxk > · · · > x1, so that the OGF is

(49) Q(z) =
∏

n≥1

(1+ zn) = 1+ z+ z2+ 2z3+ 2z4+ 3z5+ 4z6+ 5z7+ · · · .

The coefficients (EIS A000009) are not expressible in closed form. However, the
saddle-point method (Section VIII. 6, p. 574) yields the approximation:

(50) Qn ∼
33/4

12n3/4
exp

(
π

√
n

3

)
,

which has a shape similar to that ofPn in (40), p. 41.
� I.18. Odd versus distinct summands.The partitions ofn into odd summands(On) and the
ones into distinct summands(Qn) are equinumerous. Indeed, one has

Q(z) =
∞∏

m=1

(1+ zm), O(z) =
∞∏

j=0

(1− z2 j+1)−1.

Equality results from substituting(1+ a) = (1− a2)/(1− a) with a = zm,

Q(z) = 1− z2

1− z

1− z4

1− z2
1− z6

1− z3

1− z8

1− z4
1− z10

1− z5
· · · = 1

1− z

1

1− z3

1

1− z5
· · · ,

and simplification of the numerators with half of the denominators (in boldface). �

Partitions into powers.LetIpow = {1,2,4,8, . . .} be the set of powers of 2. The
correspondingP andQ partitions have OGFs

Ppow(z) =
∞∏

j=0

1

1− z2 j

= 1+ z+ 2z2+ 2z3+ 4z4+ 4z5+ 6z6+ 6z7+ 10z8+ · · ·

Qpow(z) =
∞∏

j=0

(1+ z2 j
)

= 1+ z+ z2+ z3+ z4+ z5+ · · · .

The first sequence 1,1,2,2, . . . is the “binary partition sequence” (EISA018819); the
difficult asymptotic analysis was performed by de Bruijn [141] who obtained an esti-
mate that involves subtle fluctuations and is of the global form eO(log2 n). The function
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Qpow(z) reduces to(1−z)−1 since every number has a unique additive decomposition
into powers of 2. Accordingly, the identity

1

1− z
=
∞∏

j=0

(1+ z2 j
),

first observed by Euler is sometimes nicknamed the “computerscientist’s identity” as
it reflects the property that every number admits a unique binary representation.

There exists a rich set of identities satisfied by partition generating functions—
this fact is down to deep connections with elliptic functions, modular forms, and
q–analogues of special functions on the one hand, basic combinatorics and number
theory on the other hand. See [14, 129] for introductions to this fascinating subject.
� I.19. Euler’s pentagonal number theorem.This famous identity expresses 1/P(z) as

∏

n≥1

(1− zn) =
∑

k∈Z
(−1)kzk(3k+1)/2.

It is proved formally and combinatorially in Comtet’s reference [129, p.105] and it serves to
illustrate “proofs from THE BOOK” in the splendid exposition of Aigner and Ziegler [7, §29].
Consequently, the numbers{Pj }Nj=0 can be determined inO(N

√
N) integer operations. �

� I.20. A digital surprise. Define the constant

ϕ := 9

10

99

100

999

1000

9999

10000
· · · .

Is it a surprise that it evaluates numerically to

ϕ
.= 0.8900100999989990000001000099999999899999000000000010 · · · ,

that is, its decimal representation involves only the digits 0, 1, 8, 9? [This is suggested by a note
of S. Ramanujan, “Some definite integrals”,Messenger of Math.XLIV, 1915, pp. 10–18.] �

� I.21. Lattice points.The number of lattice points with integer coordinates that belong to the
closed ball of radiusn in d-dimensional Euclidean space is

[zn2
]

1

1− z
(2(z))d where 2(z) = 1+ 2

∞∑

n=1

zn2
.

Estimates may be obtained via the saddle-point method (Note VIII.35, p. 589). �

I. 4. Words and regular languages

Fix a finitealphabetA whose elements are calledletters. Each letter is taken to
have size 1; i.e., it is an atom. Aword8 is any finite sequence of letters, usually written
without separators. So, for us, with the choice of the Latin alphabet (A = {a,. . . ,z}),
sequences such asygololihp , philology , zgrmblglps are words. We denote
the set of all words (often written asA⋆ in formal linguistics) byW. Following a
well-established tradition in theoretical computer science and formal linguistics, any
subset ofW is called alanguage(or formal language, when the distinction with natural
languages has to be made).

8An alternative to the term “word” sometimes preferred by computer scientists is“string” ; biologists
often refer to words as“sequences”.
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OGF coefficients

Words:
1

1−mz
mn (p. 50)

a–runs< k
1− zk

1−mz+ (m− 1)zk+1
∼ ckρ

−n
k (pp. 51, 308)

exclude subseq.p Eq. (55) ≈ (m− 1)nn|p|−1 (p. 54)

exclude factorp
cp(z)

z|p| + (1−mz)cp(z)
∼ cpρ

−n
p (pp. 61, 271)

circular Eq. (64) ∼ mn/n (p. 64)

regular language [rational] ≈ C · Annk (pp. 56, 302, 342)

context-free lang. [algebraic] ≈ C · Annp/q (pp. 80, 501)

Figure I.10. Words over anm–ary alphabet: generating functions and coefficients.

From the definition of the set of wordsW, one has

(51) W ∼= SEQ(A) H⇒ W(z) = 1

1−mz
,

wherem is the cardinality of the alphabet, i.e., the number of letters. The generating
function gives us the counting result

Wn = mn.

This result is elementary, but, as is usual with symbolic methods, many enumerative
consequences result from a given construction. It is precisely the purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each havegreat expressive
power for describing languages. The first one is iterative (i.e., non-recursive) and
it bases itself on “regular specifications” that only involve the constructions of sum,
product, and sequence; the other one, which is recursive (but of a very simple form),
is best conceived of in terms of finite automata and is equivalent to linear systems of
equations. Both frameworks turn out to be logically equivalent in the sense that they
determine the same family of languages, theregular languages, though the equiva-
lence is non-trivial (Appendix A.7:Regular languages, p. 733), and each particular
problem usually admits a preferred representation. The resulting OGFs are invariably
rational functions, a fact to be systematically exploited from an asymptotic standpoint
in Chapter V. Figure I.10 recapitulates some of the major word problems studied in
this chapter, together with corresponding approximations9.

9In this book, we reserve “∼” for the technical sense of “asymptotically equivalent” defined in Ap-
pendix A.2: Asymptotic notations, p. 722; we reserve the symbol “≈” to mean “approximately equal” in
a vaguer sense, where formulae have been simplified by omitting constant factors or terms of secondary
importance (in context).
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I. 4.1. Regular specifications.Consider words (or strings) over the binary al-
phabetA = {a,b}. There is an alternative way to construct binary strings. Itis based
on the observation that, with a minor adjustment at the beginning, a string decomposes
into a succession of “blocks” each formed with a singleb followed by an arbitrary
(possibly empty) sequence ofas. For instanceaaabaababaabbabbaaadecomposes
as

[aaa] baa | ba | baa | b | ba | b | baaa.

Omitting redundant10 symbols, we have the alternative decomposition:

(52) W ∼= SEQ(a)× SEQ(b SEQ(a)) H⇒ W(z) = 1

1− z

1

1− z 1
1−z

.

This last expression reduces to(1− 2z)−1 as it should.
Longest runs.The interest of the construction just seen is to take into account

various meaningful properties, for example longest runs. Abbreviate bya<k :=
SEQ<k(a) the collection of all words formed with the lettera only and whose length is
between 0 andk−1; the corresponding OGF is 1+ z+· · ·+ zk−1 = (1− zk)/(1− z).
The collectionW〈k〉 of words which do not havek consecutiveas is described by an
amended form of (52):

W〈k〉 = a<k SEQ(ba<k) H⇒ W〈k〉(z) = 1− zk

1− z
· 1

1− z1−zk

1−z

= 1− zk

1− 2z+ zk+1
.

The OGF is in principle amenable to expansion, but the resulting coefficients expres-
sions are complicated and, in such a case, asymptotic estimates tend to be more usable.
From the analysis developed in Example V.4 (p. 308), it can indeed be deduced that
the longest run ofa’s in a random binary string of lengthn is on average asymptotic
to log2 n.
� I.22. Runs in arbitrary alphabets.For an alphabet of cardinalitym, the quantity

1− zk

1−mz+ (m− 1)zk+1

is the OGF of words withoutk consecutive occurrences of a designated letter. �

The case of longest runs exemplifies the utility of nested constructions involving
sequences. We set:

Definition I.10. An iterative specification that only involves atoms (e.g., letters of a
finite alphabetA) together with combinatorial sums, cartesian products, and sequence
constructions is said to be aregular specification.

A languageL is said to be S–regular(“specification–regular”) if there exists a
classM described by a regular specification such thatL andM are combinatorially
isomorphic:L ∼=M.

An equivalent way of expressing the definition is as follows:a language isS–
regular if it can be describedunambiguouslyby a regular expression (Appendix A.7:

10When dealing with words, especially, we freely omit redundantbraces “{, }” and cartesian products
“×”, for readability. For instance, SEQ(a+ b) anda b are shorthand for SEQ({a} + {b}) and{a} × {b}.
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Regular languages, p. 733). The definition of a regular specification and the basic
admissibility theorem (p. 27) imply immediately:

Proposition I.2. Any S–regular language has an OGF that is arational function.
This OGF is obtained from a regular specification of the language by translating each
letter into the variable z, disjoint unions into sums, cartesian products into products,
and sequences into quasi-inverses,(1− ·)−1.

This result is technically shallow but its importance derives from the fact that
regular languages have great expressive power devolving from their rich closure prop-
erties (Appendix A.7:Regular languages, p. 733) as well as their relation to finite
automata discussed in the next subsection. Examples I.9 andI.10 below make use of
Proposition I.2 and treat two problems closely related to longest runs.

ExampleI.9. Combinations and spacings.A regular specification describes the setL of words
that contain exactlyk occurrences of the letterb, from which the OGF automatically follows:

(53) L = SEQ(a) (b SEQ(a))k H⇒ L(z) = zk/(1− z)k+1.

Hence the number of words in the language satisfiesLn =
(n
k
)
. This is otherwise combinat-

orially evident, since each word of lengthn is characterized by the positions of its lettersb; that
is, the choice ofk positions amongn possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let
(n
k
)
<d be the number of combinations ofk elements among [1, n] with constrained

spacings: no element can be at distanced or more from its successor. The refinement of (53)

L[d] = SEQ(a) (b SEQ<d(a))
k−1 (b SEQ(a)) H⇒

∑

n≥0

(
n

k

)

<d
zn = zk(1− zd)k−1

(1− z)k+1
,

leads to a binomial convolution expression,
(

n

k

)

<d
=
∑

j

(−1) j
(

k− 1

j

)(
n− d j

k

)
.

(This problem is analogous to compositions with bounded summands in (42), p. 43.) What we
have just analysed is thelargestspacing (constrained to be at mostd) in subsets. A parallel
analysis yields information regarding thesmallestspacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleI.10. Double run statistics.By forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W ∼= SEQ(b) SEQ(a SEQ(a)b SEQ(b)) SEQ(a).

Let W〈α,β〉 be the class of all words that have at mostα consecutiveas andβ consecutivebs.
The specification ofW induces a specification ofW〈α,β〉, upon replacing SEQ(a),SEQ(b) by
SEQ<α(a),SEQ<β (b) internally, and by SEQ≤α(a),SEQ≤β (b) externally. In particular, the
OGF of binary words that never have more thanr consecutive identical letters is found to be
(setα = β = r )

(54) W〈r,r 〉 = 1− zr+1

1− 2z+ zr+1
= 1+ z+ · · · + zr

1− z− · · · − zr ,

after simplification. (This result can be extended to an arbitrary alphabetby means of “Smirnov
words”, Example III.24, p. 204.)

Révész in [508] tells the following amusing story attributed to T. Varga: “A class of high
school children is divided into two sections. In one of the sections, each child is given a coin
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which he throws two hundred times, recording the resulting head and tail sequence on a piece
of paper. In the other section, the children do not receive coins, but are told instead that they
should try to write down a ‘random’ head and tail sequence of length two hundred. Collecting
these slips of paper, [a statistician] then tries to subdivide them into their original groups. Most
of the time, he succeeds quite well.”

The statistician’s secret is to determine the probability distribution of the maximum length
of runs of consecutive letters in a random binary word of lengthn (heren = 200). The prob-
ability that this parameter equalsk is

1

2n

(
W〈k,k〉n −W〈k−1,k−1〉

n

)

and is fully determined by (54). The probabilities are then easily computed using any symbolic
package: forn = 200, the values found are

k 3 4 5 6 7 8 9 10 11 12

P(k) 6.54 10−8 7.07 10−4 0.0339 0.1660 0.2574 0.2235 0.1459 0.0829 0.0440 0.0226

Thus, in a randomly produced sequence of length 200, there are usually runs of length 6 or
more: the probability of the event turns out to be close to 97% (and there is still a probability of
about 8% to have a run of length 11 or more). On the other hand most children (and adults) are
usually afraid of writing down runs longer than 4 or 5 as this is felt as strongly “non-random”.
The statistician simply selects the slips that contain runs of length 6 or more as the true random
ones.Voilà! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

� I.23. Alice, Bob, and coding bounds.Alice wants to communicaten bits of information to
Bob over a channel (a wire, an optic fibre) that transmits0,1-bits but is such that any occurrence
of 11 terminates the transmission. Thus, she can only send on the channel an encoded version
of her message (where the code is of some lengthℓ ≥ n) that does not contain the pattern11.

Here is a first coding scheme: given the messagem = m1m2 · · ·mn, wherem j ∈ {0,1},
apply the substitution:0 7→ 00 and1 7→ 10; terminate the transmission by sending11. This
scheme hasℓ = 2n + O(1), and we say that itsrate is 2. Can one design codes with better
rates? with rates arbitrarily close to 1, asymptotically?

Let C be the class of allowed code words. For words of lengthn, a code of lengthL ≡
L(n) is achievable only if there exists a one-to-one mapping from{0, 1}n into

⋃L
j=0 C j , i.e.,

2n ≤∑L
j=0 C j . Working out the OGF ofC, one finds that necessarily

L(n) ≥ λn+ O(1), λ = 1

log2 ϕ

.= 1.440420, ϕ = 1+
√

5

2
.

Thus no code can achieve a rate better than 1.44; i.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKay [427, Ch. 17].) �

� I.24. Coding without long runs.Because of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more than four consecutive0s or more than
four consecutive1s. We seek a coding scheme that transforms an arbitrary binary string into a
string obeying this constraint.

From the OGF, one finds [z11]W〈4,4〉(z) = 1546> 210 = 1024. Consequently, a substi-
tution can be built that translates an original 10-bit word into an 11-bit blockthat does not have
five consecutive equal letters. When 11-bit blocks are concatenated,this may however give rise
to forbidden sequences of identical consecutive letters at the junction oftwo blocks. It then
suffices to use “separators” and replace a substituted block of the formα · X · β by the longer
blockαα · X · ββ, where0 = 1 and1 = 0. The resulting code has rate13

10.
Extensions of this method show that the rate 1.057 is achievable (theoretically). On the

other hand, by the principles of the previous note, any acceptable code must use asymptotically
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at least 1.056n bits to encode strings ofn bits. (Hint: letα be the root near12 of 1−2α+α5 = 0,

which is a pole ofW〈4,4〉. One has 1/ log2(1/α)
.= 1.05621.) �

Patterns. There are many situations in the sciences where it is of interest to de-
termine whether the appearance of a certainpatternin long sequences of observations
is significant. In a genomic sequence of length 100 000 (the alphabet isA,G,C,T ), is
it or is it not meaningful to detect three occurrences of the patternTAGATAA, where
the letters appear consecutively and in the prescribed order? In computer network
security, certain attacks can be detected by some well-defined alarming sequences of
events, although these events may be separated by perfectlylegitimate actions. On
another register, data mining aims at broadly categorizingelectronic documents in an
automatic way, and in this context the observation of well-chosen patterns can provide
highly discriminating criteria. These various applications require determining which
patterns are, with high probability, bound to occur (these arenotsignificant) and which
are very unlikely to arise, so that actually observing them carries useful information.
Quantifying the corresponding probabilistic phenomena reduces to an enumerative
problem—the case of double runs in Example I.10 (p. 52) is in this respect typical.

The notion of pattern can be formalized in several ways. In this book, we shall
principally consider two of them.

(a) Subsequence pattern: such a pattern is defined by the fact that its letters
must appear in the right order, but not necessarily contiguously [263]. Sub-
sequence patterns are also known as “hidden patterns”.

(b) Factor pattern: such a pattern is defined by the fact that its letter must appear
in the right orderandcontiguously [312, 564]. Factor patterns are also called
“block patterns” or simply “patterns” when the context is clear.

For a given notion of pattern, there are then two related categories of problems. First,
one may aim at determining the probability that a random wordcontains (or dually,
excludes) a pattern; this problem is equivalently formulated as an existence problem—
enumerate all words in which the pattern exists (i.e., occurs) independently of the
number of occurrences. Second, one may aim at determining the expectation (or even
the distribution) of the number of occurrences of a pattern in a random text; this prob-
lem involves enumerating enriched words, each with one occurrence of the pattern
distinguished.

Such questions are amenable to methods of analytic combinatorics and in partic-
ular to the theory of regular specifications and automata: see Example I.11 below for
a first attempt at analysing hidden patterns (to be continuedin Chapter V, p. 315) and
Example I.12 for an analysis of factor patterns (to be further extended in Chapters III,
p. 211, IV, p. 271, and IX, p. 659).

Example I.11. Subsequence (hidden) patterns in a text.A sequence of letters that occurs
in the right order, but not necessarily contiguously in a text is said to be a “hidden pattern”.
For instance the pattern “combinatorics” is to be found hidden in Shakespeare’s Hamlet (Act I,
Scene 1)

Dared to the comb at; in which our v a lian t Hamlet–

F or so th i s side of our known world esteem’d him–

Did slay this Fortinbras; who by a seal’dc ompact,
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Well ratified by law and heraldry,
Did forfeit, with hi s life, all those his lands [. . . ]

Take a fixed finite alphabetA comprisingm letters (m = 26 for English). First, let
us examine the languageL of all words, also called “texts”, that contain a given wordp =
p1p2 · · · pk of lengthk as a subsequence. These words can be described unambiguously as
starting with a sequence of letters not containingp1 followed by the letterp1 followed by a
sequence not containingp2, and so on:

L = SEQ(A \ p1)p1 SEQ(A \ p2)p2 · · ·SEQ(A \ pk)pk SEQ(A).

This is in a sense equivalent to parsing words unambiguously accordingto the left-most occur-
rence ofp as a subsequence. The OGF is accordingly

(55) L(z) = zk

(1− (m− 1)z)k
1

1−mz
.

An easy analysis of the dominant simple pole atz= 1/m shows that

L(z) ∼
z→1/m

1

1−mz
, so that Ln ∼n→∞mn.

Thus, a proportion tending to 1 of all the words of lengthn do contain a fixed patternp as a
subsequence. (Note I.25 below refines this estimate.)

Mean number of occurrences.A census (Note I.26, p. 56) shows that there are in fact
1.63 · 1039 occurrences of “combinatorics ” as a subsequence hidden somewhere in the
text of Hamlet, whose length is 120 057 (this is the number of letters that constitute the text). Is
this the sign of a secret encouragement passed to us by the author of Hamlet?

To answer this somewhat frivolous question, here is an analysis of the expected number
of occurrences of a hidden pattern. It is based on enumerating enriched words, where an en-
riched word is a word together with a distinguished occurrence of the pattern as a subsequence.
Consider the regular specification

O = SEQ(A) p1 SEQ(A) p2 SEQ(A) · · ·SEQ(A) pk−1 SEQ(A) pk SEQ(A).

An element ofO is a(2k+ 1)–tuple whose first component is an arbitrary word, whose second
component is the letterp1, and so on, with letters of the pattern and free blocks alternating. In
other terms, anyω ∈ O represents precisely one possible occurrence of the hidden patternp in
a text built over the alphabetA. The associated OGF is simply

O(z) = zk

(1−mz)k+1
.

The ratio between the number of occurrences and the number of wordsof lengthn then equals

(56) �n =
[zn]O(z)

mn = m−k
(

n

k

)
,

and this quantity represents the expectation of the number of occurrences ofp in a random word
of lengthn, assuming all such words to be equally likely. For the parameters corresponding to
the text of Hamlet (n = 120 057) and the pattern “combinatorics” (k = 13), the quantity
�n evaluates to 6.96 · 1037. The number of hidden occurrences observed is thus 23 times
higher than what the uniform model predicts! However, similar methods make it possible to
take into account non-uniform letter probabilities (Subsection III. 6.1, p. 189): based on the
frequencies of letters in the English text itself, the expected number of occurrences is found to
be 1.71 · 1039—this is now only within 5% of what is observed. Thus, Shakespeare did not
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(probably) conceal any message relative to combinatorics—see Example V.7, p. 315, for more
on this topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� I.25. A refined analysis.Further consideration of the subdominant pole atz = 1/(m− 1)
yields, by the methods of Theorem IV.9 (p. 256), the refined estimate:

1− Ln

mn = O

(
nk−1

(
1− 1

m

)n)
.

Thus, the probability ofnot containing a given subsequence pattern is exponentially small.�

� I.26. Dynamic programming.The number of occurrences of a subsequence pattern in a text
can be determined efficiently by scanning the text from left to right and maintaining a running
count of the number of occurrences of the pattern as well as all its prefixes. �

I. 4.2. Finite automata. We begin with a simple device, thefinite automaton,
that is widely used in the study of models of computation [189] and has wide descrip-
tive power with regard to structural properties of words. (Asystematic treatment of
automata and paths in graphs, combining both algebraic and asymptotic aspects, is
given in Part B, Section V. 5, p. 336.)

Definition I.11. A finite automatonis a directed multigraph whose edges are labelled
by letters of the alphabetA. It is customary to refer to vertices asstatesand to denote
by Q the set of states. One designates an initial state q0 ∈ Q and a set of final states
Q ⊆ Q.

The automaton is said to bedeterministicif for each pair(q, α) with q ∈ Q and
α ∈ A there exists at most one edge (one also says atransition) starting from q, which
is labelled by the letterα.

A finite automaton (Figure I.11) is able to process words, as we now explain.
A word w = w1 . . . wn is acceptedby the automaton if there exists a path in the
multigraph connecting the initial stateq0 to one of the final states ofQ and whose
sequence of edge labels is preciselyw1, . . . , wn. For a deterministic finite automaton,
it suffices to start from the initial stateq0, scan the letters of the word from left to right,
and follow at each stage the only transition permitted; the word is accepted if the state
reached in this way after scanning the last letter ofw is a final state. Schematically:

a b a b b a

Q

A finite automaton thus keeps only a finite memory of the past (hence its name) and
is in a sense a combinatorial counterpart of the notion of Markov chain in probability
theory. In this book, we shall only consider deterministic automata.

As an illustration, consider the classL of all wordsw that contain the pattern
abbas a factor (the letters of the pattern should appear contiguously). Such words are
recognized by a finite automaton with four states,q0,q1,q2,q3. The construction is
classical: stateq j is interpreted as meaning “the first j characters of the pattern have



I. 4. WORDS AND REGULAR LANGUAGES 57

a b b

a, bb a

a

0 1 2 3

Figure I.11. Words that contain the patternabb are recognized by a four-state au-
tomaton with initial stateq0 and final stateq3.

just been scanned”, and the corresponding automaton appears in Figure I.11. The
initial state isq0, and there is a unique final stateq3.

Definition I.12. A language is said to be A–regular(automaton regular) if it coincides
with the set of words accepted by a deterministic finite automaton. A classM is A–
regular if for some regular languageL, one hasM ∼= L.
� I.27. Congruence languages.The language of binary representations of numbers that are
congruent to 2 modulo 7 isA–regular. A similar property holds for any numeration base and
any boolean combination of basic congruence conditions. �

� I.28. Binary representation of primes.The language of binary representations of prime num-
bers is neitherA–regular norS–regular. [Hint: use the Prime Number Theorem and asymptotic
methods of Chapter IV.] �

The following equivalence theorem is briefly discussed in Appendix A.7:Regular
languages, p. 733.

Equivalence theorem (Kleene–Rabin–Scott). A language is S–regular (specifica-
tion regular) if and only if it is A–regular (automaton regular).

These two equivalent notions also coincide with the notion of regularity in for-
mal language theory, where the latter is defined by means of (possibly ambiguous)
regular expressions and (possibly non-deterministic) finite automata [6, 189]. As al-
ready pointed out, the equivalences are non-trivial: they are given by algorithms that
transform one formalism into the other, but do not transparently preserve combina-
torial structure (in some cases, an exponential blow-up in the size of descriptions is
involved). For this reason, we have opted to develop independently the notions of
S–regularity andA–regularity.

We next examine the way generating functions can be obtainedfrom a determin-
istic automaton. The process was first discovered in the late1950s by Chomsky and
Scḧutzenberger [119].

Proposition I.3. Suppose that G is a deterministic finite automaton with stateset
Q = {q0, . . . ,qs}, initial state q0, and set of final statesQ = {qi1, . . . ,qi f }. The
generating function of the languageL of all words accepted by the automaton is a
rational function that is determined under matrix form as

L(z) = u(I − zT)−1v.
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Here the transition matrix T is defined by

Tj,k = card
{
α ∈ A such that an edge(q j ,qk) is labelled byα

}
;

the row vectoru is the vector(1,0,0, . . . ,0) and the column vectorv = (v0, . . . , vs)
t

is such that11v j = [[q j ∈ Q]] .

In particular, by Cramer’s rule, the OGF of a regular language is the quotient of two
(sparse) determinants whose structure directly reflects the automaton transitions.

Proof. The proof we present is based on a “first-letter decomposition”, which is
conceptually analogous to the Kolmogorov backward-equations of Markov chain the-
ory [93, p. 153]. (Note I.29 provides an alternative approach.) For j ∈ {0, . . . , s}, in-
troduce the class (language)L j of all wordsw such that the automaton, when started
in stateq j , terminates in one of the final states ofQ, after having readw. The follow-
ing relation holds for anyj :

(57) L j ∼= 1 j +
(∑

α∈A
{α}L(q j ◦α)

)
;

there1 j is the class{ǫ} formed of the word of length 0 ifq j is final and the empty
set (∅) otherwise; the notation(q j ◦ α) designates the state reached in one step from
stateq j upon reading letterα. The justification is simple: a languageL j contains the
word of length 0 only if the corresponding stateq j is final; a word of length≥ 1 that
is accepted starting from stateq j has a first letterα followed by a word that must lead
to an accepting state, when starting from stateq j ◦ α.

The translation of (57) is then immediate:

(58) L j (z) = [[q j ∈ Q]] + z
∑

α∈A
L(q j ◦α)(z).

The collection of all the equations asj varies forms a linear system: withL(z) the
column vector(L0(z), . . . , Ls(z)), one has

L(z) = v+ zT L(z),

wherev andT are as described in the statement. The result follows by matrix inversion
upon observing that the OGF of the languageL is L0(z). �

� I.29. The forward equations.Let Mk be the set of words, which lead to stateqk, when the
automaton is started in stateq0. By a “last-letter decomposition”, theMk satisfy a system that
is a transposed version of (58). �

The patternabb. Consider the automaton recognizing the patternabb as given
in Figure I.11. The languagesL j (whereL j is the set of accepted words when starting
from stateq j ) are connected by the system of equations

L0 = aL1 + bL0
L1 = aL1 + bL2
L2 = aL1 + bL3
L3 = aL3 + bL3 + ǫ,

11It proves convenient at this stage to introduce Iverson’s bracket notation: for a predicateP, the
quantity [[P]] has value 1 ifP is true and 0 otherwise.
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which directly reflects the graph structure of the automaton. This gives rise to a set of
equations for the associated OGFs

L0 = zL1 + zL0
L1 = zL1 + zL2
L2 = zL1 + zL3
L3 = zL3 + zL3 + 1.

Solving the system, we find the OGF of all words containing thepatternabb: it is
L0(z) since the initial state of the automaton isq0, and

(59) L0(z) =
z3

(1− z)(1− 2z)(1− z− z2)
.

The partial fraction decomposition

L0(z) =
1

1− 2z
− 2+ z

1− z− z2
+ 1

1− z
,

then yields

L0,n = 2n − Fn+3+1,

with Fn a Fibonacci number (p. 42). In particular the number of wordsof lengthn that
donotcontainabb is Fn+3−1, a quantity that grows at an exponential rate ofϕn, with
ϕ = (1+

√
5)/2 the golden ratio. Thus, all but an exponentially vanishingproportion

of the strings of lengthn contain the given patternabb, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, from Note I.32, p. 61, a random
word contains a large number, about∼ n/8, of occurrences of the patternabb.)
� I.30. Regular specification for pattern abb.The patternabb is simple enough that one can
come up with an equivalent regular expression describingL0, whose existence is otherwise
granted by the Kleene–Rabin–Scott Theorem. An accepting path in the automaton of Fig-
ure I.11 loops around state 0 with a sequence ofb, then reads ana, loops around state 1 with
a sequence ofa’s and moves to state 2 upon reading ab; then there should be letters making
the automaton passs through states 1-2-1-2-· · · -1-2 and finally ab followed by an arbitrary
sequence ofas andbs at state 3. This corresponds to the specification (withX⋆ abbreviating
SEQ(X))

L0 = (b)⋆ a(a)⋆b (a(a)⋆b)⋆ b(a+ b)⋆ H⇒ L0(z) =
z3

(1− z)2(1− z2

1−z)(1− 2z)
,

which gives back a form equivalent to (59). �

Example I.12. Words containing or excluding a pattern.Fix an arbitrary patternp =
p1p2 · · · pk and letL be the language of words containingat leastone occurrence ofp as
a factor. Automata theory implies that the set of words containing a pattern as a factor isA–
regular, hence admits a rational generating function. Indeed, the construction given forp = abb
generalizes in an easy manner: there exists a deterministic finite automaton with k + 1 states
that recognizesL, the states memorizing the largest prefix of the patternp just seen. As a con-
sequence:the OGF of the language of words containing a given factor pattern of length kis a
rational function of degree at most k+ 1. (The corresponding automaton is in fact known as a
Knuth–Morris–Pratt automaton [382].) The automaton construction however provides the OGF
L(z) in determinantal form, so that the relation between this rational form and thestructure of
the pattern is not transparent.
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Autocorrelations. An explicit construction due to Guibas and Odlyzko [313] nicely cir-
cumvents this problem. It is based on an “equational” specification that yields an alternative
linear system. The fundamental notion is that of anautocorrelation vector. For a givenp, this
vector of bitsc = (c0, . . . , ck−1) is most conveniently defined in terms of Iverson’s bracket as

ci = [[ pi+1pi+2 · · · pk = p1p2 · · · pk−i ]] .

In other words, the bitci is determined by shiftingp right by i positions and putting a 1 if
the remaining letters match the originalp. Graphically,ci = 1 if the two framed factors ofp
coincide in

p ≡ p1 · · · pi pi+1 · · · pk

p1 · · · pk−i pk−i+1 · · · pk ≡ p.

For instance, withp = aabbaa, one has

a a b b a a

a a b b a a 1
a a b b a a 0

a a b b a a 0
a a b b a a 0

a a b b a a 1
a a b b a a 1 .

The autocorrelation is thenc = (1, 0, 0, 0, 1, 1). Theautocorrelation polynomialis defined as

c(z) :=
k−1∑

j=0

c j z
j .

For the example pattern, this givesc(z) = 1+ z4+ z5.
Let S be the language of words withnooccurrence ofp andT the language of words that

end withp but have no other occurrence ofp. First, by appending a letter to a word ofS, one
finds a non-empty word either inS or T , so that

(60) S + T = {ǫ} + S ×A.

Next, appending a copy of the wordp to a word inS may only give words that containp at or
“near” the end. In precise terms, the decomposition based on the left-most occurrence ofp in
Sp is

(61) S × {p} = T ×
∑

ci 6=0

{pk−i+1pk−i+2 · · · pk},

corresponding to the configurations

S ///////p//////

//////p//////
︸ ︷︷ ︸

T

pk−i+1 · · · pk

The translation of the system (60), (61) into OGFs then gives a system of two equations in the
two unknownsS, T ,

S+ T = 1+mzS, S · zk = T c(z),

which is then readily solved.
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Proposition I.4. The OGF of wordsnotcontaining the patternp as a factor is

(62) S(z) = c(z)

zk + (1−mz)c(z)
,

where m is the alphabet cardinality, k= |p| the pattern length, and c(z) the autocorrelation
polynomial ofp.

A bivariate generating function based on the autocorrelation polynomial isderived in
Chapter III, p. 212, from which is deduced, in Proposition IX.10, p. 660, the existence of a
limiting Gaussian law for the number of occurrences of any pattern. . . . .. . . . . . . . . . . . . . . . .�

� I.31. At least once.The GFs of words containing at least once the pattern (anywhere) and
containing it only once at the end are

L(z) = zk

(1−mz)(zk + (1−mz)c(z))
, T(z) = zk

zk + (1−mz)c(z)
,

respectively. �

� I.32. Expected number of occurrences of a pattern.For themeannumber of occurrences
of a factor pattern, calculations similar to those employed for the number ofoccurrences of
a subsequence (even simpler) can be based on regular specifications. All the occurrences
(contexts) ofp = p1p2 · · · pk as a factor are described by

Ô = SEQ(A) (p1p2 · · · pk) SEQ(A), H⇒ Ô(z) = zk

(1−mz)2
.

Consequently, the expected number of such contiguous occurrencessatisfies

(63) �̂n = m−k(n− k+ 1) ∼ n

mk
.

Thus, the mean number of occurrences is proportional ton. �

� I.33. Waiting times in strings.Let L ⊂ SEQ{a,b} be a language andS= {a,b}∞ be the set
of infinite strings with the product probability induced byP(a) = P(b) = 1

2 . The probability
that a random stringω ∈ S starts with a word ofL is L̂(1/2), whereL̂(z) is the OGF of the
“prefix language” ofL, that is, the set of wordsw ∈ L that have no strict prefix belonging toL.
The GFL̂(z) serves to express the expected time at which a word inL is first encountered: this
is 1

2 L̂ ′(1
2). For a regular language, this quantity must be a rational number. �

� I.34. A probabilistic paradox on strings.In a random infinite sequence, a patternp of lengthk
first occurs on average at time 2kc(1/2), wherec(z) is the autocorrelation polynomial. For
instance, the patternp = abb tends to occur “sooner” (at average position 8) thanp′ = aaa (at
average position 14). See [313] for a thorough discussion. Here arefor instance the epochs at
whichp andp′ are first found in a sample of 20 runs:

p : 3, 4, 5, 5, 6, 6, 7, 8, 8,8, 8, 9, 9, 10, 11, 14, 15, 15, 16, 21

p′ : 3, 4, 8, 8, 9, 10, 11, 11, 11, 12, 17, 22, 23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the same expected number of occurrences,
which is puzzling. Is analytic combinatorics contradictory?(Hint. The catch is that, due to
overlaps ofp′ with itself, occurrences ofp′ tend to occur in clusters, but, then, clusters tend to
be separated by wider gaps than forp; eventually, there is no contradiction.) �

� I.35. Borges’s Theorem.Take any fixed finite set5 of patterns. A random text of lengthn
contains all the patterns of the set5 (as factors) with probability tending to 1 exponentially
fast asn → ∞. Reason: the rational functionsS(z/2) with S(z) as in (62) have no pole
in |z| ≤ 1; see also Chapters III (p. 213), IV(p. 271), V(p. 308). This property is sometimes
called “Borges’s Theorem” as a tribute to the famous Argentinian writer Jorge Luis Borges
(1899–1986) who, in his essay“The Library of Babel”, describes a library so huge as to contain:
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“Everything: the minutely detailed history of the future, the archangels’ autobiogra-
phies, the faithful catalogues of the Library, thousands and thousandsof false cat-
alogues, the demonstration of the fallacy of those catalogues, the demonstration of
the fallacy of the true catalogue, the Gnostic gospel of Basilides, the commentary
on that gospel, the commentary on the commentary on that gospel, the truestory of
your death, the translation of every book in all languages, the interpolations of every
book in all books.”

Strong versions of Borges’s Theorem, including the existence of limit Gaussian laws, hold for
many random combinatorial structures, including trees, permutations, and planar maps (see
Chapter IX, p. 659 and pp. 680–684). �

� I.36. Variable length codes.A finite setF ⊂W, whereW = SEQ(A) is called acodeif any
word ofW decomposes in at most one manner into factors that belong toF (with repetitions
allowed). For instanceF = {a,ab,bb} is a code andaaabbb= a|a|ab|bb has a unique
decomposition;F ′ = {a,aa,b} is not a code sinceaaa= a|aa= aa|a = a|a|a. The OGF of
the setSF of all words that admit a decomposition into factors all inF is a computable rational
function, irrespective of whetherF is a code. (Hint: use an “Aho–Corasick” automaton [5].) A
finite setF is a code iffSF (z) = (1− F(z))−1. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. The book by Berstel and Perrin [55]
develops systematically the theory of such variable-length codes. �

In general, automata are useful in establishinga priori the rational character of
generating functions. They are also surrounded by interesting analytic properties (e.g.,
Perron–Frobenius theory, Section V. 5, p. 336, that characterizes the dominant poles)
and by asymptotic probability distributions of associatedparameters that are normally
Gaussian. They are most conveniently used for proving existence theorems, then sup-
plemented when possible by regular specifications, which are likely to lead to more
tractable expressions.

I. 4.3. Related constructions.Words can, at least in principle, encode any com-
binatorial structure. We detail here one situation that demonstrates the utility of such
encodings: it is relative to set partitions and Stirling numbers. The point to be made is
that some amount of “combinatorial preprocessing” is sometimes necessary in order
to bring combinatorial structures into the orbit of symbolic methods.

Set partitions and Stirling partition numbers.A set partitionis a partition of a
finite domain into a certain number of non-empty sets, also called blocks. For instance,
if the domain isD = {α, β, γ, δ}, there are 15 ways to partition it (Figure I.12). Let
S
(r )
n denote the collection of all partitions of the set [1. .n] into r non-empty blocks

andS(r )n = card(S(r )n ) the corresponding cardinality. The basic object under consid-
eration here is aset partition(not to be confused with integer partitions considered
earlier).

It is possible to find an encoding of partitions inS(r )n of ann-set intor blocks by
words over ar letter alphabet,B = {b1,b2, . . . ,br } as follows. Consider a set partition
̟ that is formed ofr blocks. Identify each block by its smallest element called the
block leader; then sort the block leaders into increasing order. Define the index of
a block as the rank of its leader among all ther leaders, with ranks conventionally
starting at 1. Scan the elements 1 ton in order and produce sequentiallyn letters from
the alphabetB: for an element belonging to the block of indexj , produce the letterb j .
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α β γ δ

α β | γ δ
α γ |β δ
α δ |β γ
α |β γ δ
β |α γ δ
γ |α β δ
δ |α β γ

α |β | γ δ
α | γ |β δ
α |δ |β γ
β | γ |α δ
β | δ |α γ
γ | δ |α β

α |β | γ | δ

Figure I.12. The 15 ways of partitioning a four-element domain into blocks corres-

pond toS(1)4 = 1, S(2)4 = 7, S(3)4 = 6, S(4)4 = 1.

For instance forn = 6, r = 3, the set partition̟ = {{6,4}, {5,1,2}, {3,7,8}},
is reorganized by putting leaders in first position of the blocks and sorting them,

̟ = {
b1︷ ︸︸ ︷

{1,2,5},
b2︷ ︸︸ ︷

{3,7,8},
b3︷ ︸︸ ︷
{4,6}},

so that the encoding is (
1 2 3 4 5 6 7 8
b1 b1 b2 b3 b1 b3 b2 b2

)
.

In this way, a partition is encoded as a word of lengthn overB with the additional
properties that:(i ) all r letters occur;(i i ) the first occurrence ofb1 precedes the first
occurrence ofb2, which itself precedes the first occurrence ofb3, etc. Graphically,
this correspondence can be rendered by an “irregular staircase” representation, such
as

4 − 6 − −
3 − − − 7 8

1 2 − − 5 − − −
where the staircase has lengthn and heightr , each column contains exactly one ele-
ment, each row corresponds to a class in the partition.

From the foregoing discussion,S(r )n is mapped into words of lengthn in the lan-
guage

b1 SEQ(b1) ·b2 SEQ(b1+b2) ·b3 SEQ(b1+b2+b3) · · · br SEQ(b1+b2+· · ·+br ).

The language specification immediately gives the OGF

S(r )(z) = zr

(1− z)(1− 2z)(1− 3z) · · · (1− rz)
.

The partial fraction expansion ofS(r )(z) is then readily computed,

S(r )(z) = 1

r !

r∑

j=0

(
r

j

)
(−1)r− j

1− j z
, so that S(r )n =

1

r !

r∑

j=1

(−1)r− j
(

r

j

)
j n.
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In particular, one has

S(1)n = 1, S(2)n =
1

2!
(2n − 2), S(3)n =

1

3!
(3n − 3 · 2n + 3).

These numbers are known as the Stirling numbers of the secondkind, or better, as
the Stirling partition numbers, and theS(r )n are nowadays usually denoted by

{n
r

}
;

see Appendix A.8:Stirling numbers, p. 735.
The counting of set partitions could eventually be done successfully thanks to an

encoding into words, and the corresponding language forms aconstructible class of
combinatorial structures (indeed, a regular language). Inthe next chapter, we shall
examine a flexible approach to the counting of set partitionsthat is based on labelled
structures and exponential generating functions (Subsection II. 3.1, p. 106).

Circular words (necklaces).Let A be a binary alphabet, viewed as comprised
of beads of two distinct colours. The class ofcircular wordsor necklaces(Note I.1,
p. 18, and Equation (20), p. 26) is defined by a CYC composition:

(64) N = CYC(A) H⇒ N(z) =
∞∑

k=1

ϕ(k)

k
log

1

1− 2zk
.

The series starts as (EISA000031)

N(z) = 2z+ 3z2+ 4z3+ 6z4+ 8z5+ 14z6+ 20z7+ 36z8+ 60z9+ · · · ,
and the OGF can be expanded:

(65) Nn =
1

n

∑

k | n
ϕ(k)2n/k.

It turns out thatNn = Dn + 1 whereDn is the wheel count, p. 47. [The connection is
easily explained combinatorially: start from a wheel and repaint in white all the nodes
that are not on the basic circle; then fold them onto the circle.] The same argument
proves that the number of necklaces over anm–ary alphabet is obtained by replacing 2
by m in (65).
� I.37. Finite languages.Viewed as a combinatorial object, afinite languageλ is a set of
distinct words, with size being the total number of letters of all words inλ. For a binary alphabet,
the class of all finite languages is thus

FL = PSET(SEQ≥1(A)) H⇒ F L(z) = exp


∑

k≥1

(−1)k−1

k

2zk

1− 2zk


 .

The series is (EISA102866) 1+ 2z+ 5z2+ 16z3+ 42z4+ 116z5+ 310z6+ · · · . �

I. 5. Tree structures

This section is concerned with basictree enumerations. Trees are, as we saw
already, the prototypical recursive structure. The corresponding specifications nor-
mally lead tononlinearequations (and systems of such) over generating functions,the
Lagrange inversion theorem being exactly suited to solvingthe simplest category of
problems. The functional equations furnished by the symbolic method can then con-
veniently be exploited by the asymptotic theory of Chapter VII (pp. 452–482). As we
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Specification OGF coefficient

Trees:

plane general G = Z × SEQ(G)
1

2
(1−
√

1− 4z)
1

n

(
2n− 2

n− 1

)
∼ 4n−1
√
πn3

— binary B = 1+ Z × B × B
1

2z
(1−
√

1− 4z)
1

n+ 1

(
2n

n

)
∼ 4n
√
πn3

— simple T = Z × SEQ�(T ) T(z) = zφ(T(z)) ∼ cρ−nn−3/2

non-plane gen.H = Z ×MSET(H) H(z) = zExp(H(z)) ∼ λ · βn/n3/2

— binary U = Z +MSET2(U) Eq. (76), p. 72 ∼ λ2 · βn
2/n3/2

— simple V = Z MSET�(V) Eq. (73), p. 71 ∼ c̄ρ̄−nn−3/2

Figure I.13. Rooted trees of type either plane or non-plane and asymptotic forms.
There,λ

.= 0.43992,β
.= 2.95576;λ2

.= 0.31877,β2
.= 2.48325. References for

asymptotics are pp. 452–482 of Chapter VII.

shall see there, a certain type of analytic behaviour appears to be “universal” in trees,
namely the occurrence of a

√
-singularity; accordingly, most tree families arising in

the combinatorial world have counting sequences obeying a universal asymptotic form
C Ann−3/2, which widely extends what we obtained elementarily for Catalan numbers
on p. 38. A synopsis of what awaits us in this section is given in Figure I.13.

I. 5.1. Plane trees.Trees are commonly defined as undirected acyclic connected
graphs. In addition, the trees considered in this book are, unless otherwise specified,
rooted(Appendix A.9:Tree concepts, p. 737 and [377, §2.3]). In this subsection, we
focus attention onplane trees, also sometimes called ordered trees, where subtrees
dangling from a node are ordered between themselves. Alternatively, these trees may
be viewed as abstract graph structures accompanied by an embedding into the plane.
They are precisely described in terms of a sequence construction.

First, consider the classG of general plane trees where all node degrees are al-
lowed (this repeats material on p. 35): we have

(66) G = Z × SEQ(G) H⇒ G(z) = z

1− G(z)
,

and, accordingly,G(z) = 1−
√

1− 4z

2
, so that the number of general trees of sizen

is a shifted Catalan number:

(67) Gn = Cn−1 =
1

n

(
2n− 2

n− 1

)
.

Many classes of trees defined by all sorts of constraints on properties of nodes
appear to be of interest in combinatorics and in related areas such as formal logic and
computer science. Let� be a subset of the integers that contains 0. Define the class
T � of �–restricted treesas formed of trees such that the outdegrees of nodes are
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constrained to lie in�. In what follows, an essential rôle is played by a characteristic
function that encapsulates�,

φ(u) :=
∑

ω∈�
uω.

Thus,� = {0,2} determines binary trees, where each node has either 0 or 2 descen-
dants, so thatφ(u) = 1+ u2; the choices� = {0,1,2} and� = {0,3} determine,
respectively, unary–binary trees (φ(u) = 1+u+u2) and ternary trees (φ(u) = 1+u3);
the case of general trees corresponds to� = Z≥0 andφ(u) = (1− u)−1.

Proposition I.5. The ordinary generating function T�(z) of the classT � of �–
restricted trees is determined implicitly by the equation

T�(z) = zφ(T�(z)),

whereφ is the characteristic of�, namelyφ(u) := ∑
ω∈� uω. The tree counts are

given by

(68) T�n ≡ [zn]T�(z) = 1

n
[un−1]φ(u)n.

A class of trees whose generating function satisfies an equation of the form y =
zφ(y(z)) is also called asimple variety of trees. The study of such families (in the
unlabelled and labelled cases alike) is one of the recurrentthemes of this book.

Proof. Clearly, for�–restricted sequences, we have

A = SEQ�(B) H⇒ A(z) = φ(B(z)),
so

T � = Z × SEQ�(T
�) H⇒ T�(z) = zφ(T�(z)).

This shows thatT ≡ T� is related toz by functional inversion:

z= T

φ(T)
.

The Lagrange Inversion Theorem precisely provides expressions for such a case (see Ap-
pendix A.6:Lagrange Inversion, p. 732 for an analytic proof and Note I.47, p. 75, for
combinatorial aspects):

Lagrange Inversion Theorem. The coefficients of an inverse function and of all its
powers are determined by coefficients of powers of the directfunction: if z= T/φ(T),
then one has (with any k∈ Z≥0):

(69) [zn]T(z) = 1

n
[wn−1]φ(w)n, [zn]T(z)k = k

n
[wn−k]φ(w)n.

The theorem immediately implies (68). �

The form relative to powersTk in (69) is known as “B̈urmannn’s form” of La-
grange inversion; it yields the counting of (ordered)k–forests, which arek–sequences
of trees. Furthermore, the statement of Proposition I.5 extends trivially to the case
where� is a multiset; that is, a set of integers with repetitions allowed. For instance,
� = {0,1,1,3} corresponds to unary–ternary trees with two types of unary nodes,
say, having one of two colours; in this case, the characteristic isφ(u) = u0+2u1+u3.
The theorem gives back the enumeration of general trees, whereφ(u) = (1−u)−1, by
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Figure I.14. A general tree ofG51 (left) and a binary tree ofT {0,2}51
∼= B25 (right)

drawn uniformly at random among theC50 andC25 possible trees, respectively, with
Cn = 1

n+1

(2n
n
)
, thenth Catalan number.

way of the binomial theorem applied to(1− u)−n. In general, it implies that, when-
ever� comprisesr elements,� = {ω1, . . . , ωr }, the tree counts are expressed as an
(r − 1)-fold summation of binomial coefficients (use the multinomial expansion). An
important special case detailed in the next two examples below is when� has only
two elements.

Example I.13. Binary trees and Catalan numbers.A binary treeis a rooted plane tree, in
which every node has either 0 or 2 successors (Figure I.14). In this case, it is customary to
considersizeto be the number of internal “branching” nodes, and we shall do so in most of the
analyses to come. (By elementary combinatorics, if such a tree hasν internal nodes, it hasν+1
external nodes, hence it comprises 2ν + 1 nodes in total.) The specification and OGF of the
classB of binary trees are then

B = 1+ (Z × B × B) H⇒ B(z) = 1+ zB(z)2

(observe the structural analogy with triangulations in (31), p. 36), so that

B(z) = 1−
√

1− 4z

2z
and Bn =

1

n+ 1

(
2n

n

)
,

again a Catalan number (with a shift of index when compared to (67)). Insummary:

The number Bn of plane binary trees having n internal nodes, i.e.,(n + 1) external nodes
and(2n+ 1) nodes in total, is the Catalan number Bn = Cn ≡ 1

n+1

(2n
n
)
.

If one considers all nodes, internal and external alike, as contributingto size, the corres-
ponding specification and OGF become

B̂ = Z + (Z × B̂ × B̂) H⇒ B̂(z) = z
(
1+ B̂(z)2

)
,

and the Lagrangean form is recovered (as well asB̂2n+1 = Bn), with φ(u) = (1+ u2).
Alternatively, consider the classB of pruned binary trees, which are binary trees stripped

of their external nodes (Appendix A.9:Tree concepts, p. 737), where only trees inB \ B0 are
taken. The corresponding classB satisfies (upon distinguishing left- and right-branching unary
nodes of the pruned tree)

B = Z + (Z × B)+ (Z × B)+ (Z × B × B) H⇒ B(z) = z
(
1+ B(z)

)2

which is now Lagrangean withφ(u) = (1+ u)2. These calculations, all with a strongly similar
flavour, are explained by natural bijections in Subsection I. 5.3, p. 73.. . . . . . . . . . . . . . . . . . . .�
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� I.38. Forests. Consider orderedk–forests of trees defined byF = SEQk(T ). The general
form of Lagrange inversion implies

[zn]F(z) ≡ [zn]T(z)k = k

n
[un−k] φ(u)n.

In particular, one has for forests of general trees (φ(u) = (1− u)−1):

[zn]

(
1−
√

1− 4z

2

)k

= k

n

(
2n− k− 1

n− 1

)
;

the coefficients are also known as “ballot numbers”. �

ExampleI.14. “Regular” (t–ary) trees. A tree is said to bet–regular ort–ary if� consists
only of the elements{0, t} (the caset = 2 gives back binary trees). In other words, all internal
nodes have degreet exactly. LetA := T {0,t}. In this case, the characteristic isφ(u) = 1+ ut

and the binomial theorem combined with the Lagrange inversion formula gives

An = 1

n
[un−1] (1+ ut )n

= 1

n

(
n

n−1
t

)
providedn ≡ 1 modt .

As the formula shows, only trees of total size of the formn = tν + 1 exist (a well-known fact
otherwise easily checked by induction), and

(70) Atν+1 =
1

tν + 1

(
tν + 1

ν

)
= 1

(t − 1)ν + 1

(
tν

ν

)
.

As in the binary case, there is a variant of the determination of (70) that avoids congruence
restrictions. Define the classA of “pruned” trees as trees ofA \ A0 deprived of all their
external nodes. The trees inA now have nodes that are of degree at mostt . In order to make
A bijectively equivalent toA , it suffices to regard trees ofA as having

( t
j
)

possible types of

nodes of degreej , for any j ∈ [0, t ]: each node type inA plainly encodes which of the original
t − j subtrees have been pruned. With� now being a multiset, we findφ(u) = (1+ u)t and
A(z) = zφ(A(z)), so that, by Lagrange inversion,

Aν =
1

ν

(
tν

ν − 1

)
= 1

(t − 1)ν + 1

(
tν

ν

)
,

yet another form of (70), sinceAν = Atν+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� I.39. Unary–binary trees and Motzkin numbers.LetM be the class of unary–binary trees:

M = Z × SEQ≤2(M) H⇒ M(z) = 1− z−
√

1− 2z− 3z2

2z
.

One hasM(z) = z+ z2 + 2z3 + 4z4 + 9z5 + 21z6 + 51z7 + · · · . The coefficientsMn =
[zn]M(z), known as Motzkin numbers (EISA001006), are given by

Mn =
1

n

∑

k

(
n

k

)(
n− k

k− 1

)
,

as a consequence of the Lagrange Inversion Theorem. �

� I.40. Yet another variant of t–ary trees.Let Ã be the class oft–ary trees, but with size now
defined as the number of external nodes (leaves). Then, one has

Ã = Z + SEQt (Ã).
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The binomial form ofÃn follows from Lagrange inversion, sincẽA = z/(1− Ãt−1). Can this
last relation be interpreted combinatorially? �

ExampleI.15. Hipparchus of Rhodes and Schröder. In 1870, the German mathematician Ernst
Schr̈oder (1841–1902) published a paper entitledVier combinatorische Probleme. The paper
had to do with the number of terms that can be built out ofn variables using non-associative
operations. In particular, the second of his four problems asks for thenumber of ways a string
of n identical letters, sayx, can be “bracketed”. The rule is best stated recursively:x itself is a
bracketing and ifσ1, σ2, . . . , σk with k ≥ 2 are bracketed expressions, then thek–ary product
(σ1σ2 · · · σk) is a bracketing. For instance:(((x x)x(x xx))((x x)(x x)x)).

Let S denote the class of all bracketings, wheresizeis taken to be the number of variable
instances. Then, the recursive definition is readily translated into the formal specification (with
Z representingx) and the OGF equation:

(71) S = Z + SEQ≥2(S) H⇒ S(z) = z+ S(z)2

1− S(z)
.

Indeed, to each bracketing of sizen is associated a tree whose external nodes contain the vari-
ablex (and determine size), with internal nodes corresponding to bracketingsand having degree
at least 2 (while not contributing to size).

The functional equation satisfied by the OGF is nota priori of the type correspond-
ing to Proposition I.5, becausenot all nodes contribute to size in this particular application.
Note I.41 provides a reduction to Lagrangean form; however, in a simple case like this, the
quadratic equation induced by (71) is readily solved, giving

S(z) = 1

4

(
1+ z−

√
1− 6z+ z2

)

= z+ z2+ 3z3+ 11z4+ 45z5+ 197z6+ 903z7+ 4279z8+ 20793z9

+ 103049z10+ 518859z11+ · · · ,
where the coefficients areEISA001003. (These numbers also count series–parallel networks of
a specified type (e.g., serial in Figure I.15, bottom), where placement in the plane matters.)

In an instructive paper, Stanley [553] discusses a page of Plutarch’sMoralia where there
appears the following statement:

“Chrysippus says that the number of compound propositions that can be made from
only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this
by showing that on the affirmative side there are 103 049compound statements, and
on the negative side 310 952.)”

It is notable that the tenth number of Hipparchus of Rhodes12 (c. 190–120BC) is precisely
S10 = 103 049. This is, for instance, the number of logical formulae that can be formed from
ten boolean variablesx1, . . . , x10 (used once each and in this order) using and–or connectives in
alternation (no “negation”), upon starting from the top in some conventional fashion13, e.g, with

12This was first observed by David Hough in 1994; see [553]. In [315], Habsiegeret al. further note
that 1

2(S10+S11) = 310 954, and suggest a related interpretation (based on negated variables) for the other

count given by Hipparchus.
13Any functional term admits a unique tree representation. Here, as soon as the root type has been

fixed (e.g., an∧ connective), the others are determined by level parity. The constraint of node degrees≥ 2
in the tree means that no superfluous connectives are used. Finally, any monotone boolean expression can
be represented by a series–parallel network: thex j are viewed as switches with thetrue andfalsevalues
being associated with closed and open circuits, respectively.
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(x1) ∧ (x2 ∨ (x3 ∧ x4 ∧ x5) ∨ x6) ∧ ((x7 ∧ x8) ∨ (x9 ∧ x10))

∧

x1 ∨ ∨

x2 ∧ x6

x3 x4 x5

∧ ∧

x7 x8 x9 x10

x1 x3 x4 x5

x2

x6

x7 x8

x9 x10

Figure I.15. An and–or positive proposition of the conjunctive type (top), its associ-
ated tree (middle), and an equivalent planar series–parallel network of the serial type
(bottom).

an and-clause; see Figure I.15. Hipparchus was naturally not cognizant of generating functions,
but with the technology of the time (and a rather remarkable mind!), he would still be able to
discover a recurrence equivalent to (71),

(72) Sn = [[n ≥ 2]]


 ∑

n1+···+nk=n

Sn1 Sn2 · · · Snk


+ [[n = 1]],

where the sum has only 42 essentially different terms forn = 10 (see [553] for a discussion),
and finally determineS10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . �

� I.41. The Lagrangean form of Schröder’s GF.The generating functionS(z) admits the form

S(z) = zφ(S(z)) where φ(y) = 1− y

1− 2y

is the OGF of compositions. Consequently, one has

Sn =
1

n
[un−1]

(
1− u

1− 2u

)n

= (−1)n−1

n

∑

k

(−2)k
(

n

k+ 1

)(
n+ k− 1

k

)
= 1

n

n−2∑

k=0

(
2n− k− 2

n− 1

)(
n− 2

k

)
.

Is there a direct combinatorial relation to compositions? �

� I.42. Faster determination of Schröder numbers.By forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

(n+ 2)Sn+2− 3(2n+ 1)Sn+1+ (n− 1)Sn = 0, n ≥ 1,

that entails a fast determination, in linear time, of theSn. (This technique, which originates
with Euler [199], is applicable to any algebraic function; see Appendix B.4: Holonomic func-
tions, p. 748.) In contrast, Hipparchus’s recurrence (72) implies an algorithm of complexity
exp(O(

√
n)) in the number of arithmetic operations involved. �
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I. 5.2. Non-plane trees.An unordered tree, also callednon-planetree, is just
a tree in the general graph-theoretic sense, so that there isno order between subtrees
emanating from a common node. The unordered trees considered here are furthermore
rooted, meaning that one of the nodes is distinguished as theroot. Accordingly, in the
language of constructions, a rootedunorderedtree is a root node linked to amultiset
of trees. Thus, the classH of all unordered trees, admits the recursive specification:

(73) H = Z ×MSET(H) H⇒





H(z) = z
∞∏

m=1

(1− zm)−Hm

= zexp
(

H(z)+ 1
2 H(z2)+ · · ·

)
.

The first form of the OGF was given by Cayley in 1857 [67, p. 43];it does not admit
a closed form solution, although the equation permits one todetermine all theHn

recursively (EISA000081):

H(z) = z+ z2+ 2z3+ 4z4+ 9z5+ 20z6+ 48z7+ 115z8+ 286z9+ · · · .
The enumeration of the class of trees defined by an arbitrary set� of node degrees
immediately results from the translation of sets of fixed cardinality.

Proposition I.6. Let� ⊂ N be a finite set of integers containing0. The OGF U(z) of
non-plane trees with degrees constrained to lie in� satisfies a functional equation of
the form

(74) U (z) = z8(U (z),U (z2),U (z3), . . .),

for some computable polynomial8.

Proof. The class of trees satisfies the combinatorial equation,

U = Z ×MSET�(U)

(
MSET�(U) ≡

∑

ω∈�
MSETω(U)

)
,

where the multiset construction reflects non-planarity, since subtrees stemming from
a node can be freely rearranged between themselves and may appear repeated. An-
ticipating on what we shall see later, we note that Theorem I.3 (p. 84) provides the
translation of MSETk(U):

8(U (z),U (z2),U (z3), . . .) =
∑

ω∈�

[
uω
]

exp

(
u

1
U (z)+ u2

2
U (z2)+ · · ·

)
.

The statement then follows immediately. �

In the area of non-plane tree enumerations, there are no explicit formulae but only
functional equations implicitly determining the generating functions. However, as we
shall see in Section VII. 5 (p. 475), the equations may be usedto analyse the dominant
singularity ofU (z). We shall find that a “universal” law governs the singularities of
simple tree generating functions, either plane or non-plane (Figure I.13): the singu-
larities are of the general type

√
1− z/ρ, which, by singularity analysis, translates
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into

(75) U�
n ∼ λ�

(β�)
n

√
n3
.

Many of these questions have their origin in enumerative combinatorial chemistry, a
subject started by Cayley in the nineteenth century [67, Ch.4]. Pólya re-examined
these questions, and, in his important paper [488] published in 1937, he developed
at the same time a general theory of combinatorial enumerations under group actions
and systematic methods giving rise to estimates such as (75). See the book by Harary
and Palmer [319] for more on this topic or Read’s edition of Pólya’s paper [491].

� I.43. Fast determination of the Cayley–Pólya numbers.Logarithmic differentiation ofH(z)
provides for theHn a recurrence by which one computesHn in time polynomial inn. (Note: a
similar technique applies to the partition numbersPn; see p. 42.) �

� I.44. Binary non-plane trees.Unordered binary treesV, with size measured by the number
of external nodes, are described by the equationV = Z +MSET2(V). The functional equation
determiningV(z) is

(76) V(z) = z+ 1

2
V(z)2+ 1

2
V(z2); V(z) = z+ z2+ z3+ 2z4+ 3z5+ · · · .

The asymptotic analysis of the coefficients (EISA001190) was carried out by Otter [466] who
established an estimate of type (75). The quantityVn is also the number of structurally distinct
products ofn elements under a commutative non-associative binary operation. �

� I.45. Hierarchies.Define the classK of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. We have (Cayley1857, see [67, p.43])

K = Z +MSET≥2(K) H⇒ K (z) = 1

2
z+ 1

2

[
exp

(
K (z)+ 1

2
K (z2)+ · · ·

)
− 1

]
,

from which the first values are found (EISA000669)

K (z) = z+ z2+ 2z3+ 5z4+ 12z5+ 33z6+ 90z7+ 261z8+ 766z9+ 2312z10+ · · · .
These numbers also enumerate hierarchies in statistical classification theory [585]. They are the
non-planar analogues of the Hipparchus–Schröder numbers on p. 69. �

� I.46. Non-plane series–parallel networks.Consider the classSP of series–parallel networks
as previously considered in relation to the Hipparchus example, p. 69, but ignoring planar em-
beddings: all parallel arrangements of the (serial) networkss1, . . . , sk are considered equiva-
lent, while the linear arrangement in each serial network matters. For instance, forn = 2, 3:

Thus,SP2 = 2 andSP3 = 5. This is modelled by the grammar:

S = Z + SEQ≥2(P), P = Z +MSET≥2(S),

and, avoiding to count networks of one element twice,

SP(z) = S(z)+ P(z)− z= z+ 2z2+ 5z3+ 15z4+ 48z5+ 167z6+ 602z7+ 2256z8+ · · · ,
(EISA003430). These objects are usually described as networks of electric resistors. �
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I. 5.3. Related constructions.Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalan numbers,Cn = 1

n+1

(2n
n

)
count

general trees (G) of sizen + 1, binary trees (B) of sizen (if size is defined as the
number of internal nodes), as well as triangulations (T ) comprised ofn triangles.
The combinatorialist John Riordan even coined the nameCatalan domainfor the area
within combinatorics that deals with objects enumerated byCatalan numbers, and
Stanley’s book contains an exercise [554, Ex. 6.19] whose statement alone spans ten
full pages, with a list of 66 types of object(!) belonging to the Catalan domain. We
shall illustrate the importance of Catalan numbers by describing a few fundamental
correspondences (combinatorial isomorphisms, bijections) that explain the occurrence
of Catalan numbers in several areas of combinatorics.

Rotation of trees.The combinatorial isomorphism relatingG andB (albeit with
a shift in size) coincides with a classical technique of computer science [377, §2.3.2].
To wit, a general tree can be represented in such a way that every node has two types
of links, one pointing to the left-most child, the other to the next sibling in left-to-right
order. Under this representation, if the root of the generaltree is put aside, then every
node is linked to two other (possibly empty) subtrees. In other words, general trees
with n nodes are equinumerous with pruned binary trees withn− 1 nodes:

Gn ∼= Bn−1.

Graphically, this is illustrated as follows:

The right-most tree is a binary tree drawn in a conventional manner, following a 45◦

tilt. This justifies the name of “rotation correspondence” often given to this transfor-
mation.

Tree decomposition of triangulations.The relation between binary treesB and
triangulationsT is equally simple: draw a triangulation; define the root triangle as
the one that contains the edge connecting two designated vertices (for instance, the
vertices numbered 0 and 1); associate to the root triangle the root of a binary tree;
next, associate recursively to the subtriangulation on theleft of the root triangle a left
subtree; do similarly for the right subtriangulation giving rise to a right subtree.
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Under this correspondence, tree nodes correspond to triangle faces, while edges con-
nect adjacent triangles. What this correspondence proves isthe combinatorial isomor-
phism

Tn ∼= Bn.

We turn next to another type of objects that are in correspondence with trees.
These can be interpreted as words encoding tree traversals and, geometrically, as paths
in the discrete planeZ× Z.

Tree codes and Łukasiewicz words.Any plane tree can be traversed starting from
the root, proceeding depth-first and left-to-right, and backtracking upwards once a
subtree has been completely traversed. For instance, in thetree

(77) τ =

a

b c

d e f g

h i j

the first visits to nodes take place in the following order

a, b, d, h, e, f, c, g, i, j .

(Note: the tagsa,b, . . ., added for convenience in order to distinguish between nodes,
have no special meaning; only the abstract tree shape matters here.) This order is
known aspreorder or prefix order since a node is preferentially visited before its
children.

Given a tree, the listing of the outdegrees of nodes in prefix order is called the
preorder degree sequence. For the tree of (77), this is

σ = (2,3,1,0,0,0,1,2,0,0).
It is a fact that the degree sequence determines the tree unambiguously. Indeed, given
the degree sequence, the tree is reconstructed step by step,adding nodes one after the
other at the left-most available place. Forσ , the first steps are then

+2 +3 +1 +0 +0

.Next, if one represents degreej by a “symbol” f j , then the degree sequence becomes
aword over the infinite alphabetF = { f0, f1, . . .}, for instance,

σ ; f2 f3 f1 f0 f0 f0 f1 f2 f0 f0.

This can be interpreted in the language of logic as a denotation for a functional term
built out of symbols fromF , where f j represents a function of degree (or “arity”)
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j . The correspondence even becomes obvious if superfluous parentheses are added at
appropriate places to delimit scope:

σ ; f2( f3( f1( f0), f0, f0), f1( f2( f0, f0))).

Such codes are known as Łukasiewicz codes14, in recognition of the work of the Polish
logician with that name. Jan Łukasiewicz (1878–1956) introduced them in order to
completely specify thesyntaxof terms in various logical calculi; they prove nowadays
basic in the development of parsers and compilers in computer science.

Finally, a tree code can be rendered as a walk over the discrete latticeZ × Z.
Associate to anyf j (i.e., any node of outdegreej ) the displacement(1, j−1) ∈ Z×Z,
and plot the sequence of moves starting from the origin. In our example we find:

f2 f3 f1 f0 f0 f0 f1 f2 f0 f0

1 2 0 −1 −1 −1 0 1 −1 −1 .

There, the last line represents the vertical displacements. The resulting paths are
known as Łukasiewicz paths. Such a walk is then characterized by two conditions:
the vertical displacements are in the set{−1,0,1,2, . . .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of Łukasiewicz paths with n steps is the
shifted Catalan number,1n

(2n−2
n−1

)
.

� I.47. Conjugacy principle and cycle lemma.Let L be the class of all Łukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, ends at level−1 but is otherwise allowed
to include arbitrary negative points; letM be the corresponding class. Then, each relaxed path
can be cut-and-pasted uniquely after its left-most minimum as described here:

This associates to every relaxed path of lengthν a unique standard path. A bit of combinatorial
reasoning shows that correspondence is 1-to-ν (each element ofL hasexactlyν preimages.)
One thus hasMν = νLν . This correspondence preserves the number of steps of each type
( f0, f1, . . .), so that the number of Łukasiewicz paths withν j steps of typef j is

1

ν
[x−1uν0

0 uν1
1 · · · ]

(
x−1u0+ u1+ xu2+ x2u3+ · · ·

)ν
= 1

ν

(
ν

ν0, ν1, . . .

)
,

14A less dignified name is “Polish prefix notation”. The “reversePolish notation” is a variant based
on postorder that has been used in some calculators since the 1970s.
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under the necessary condition(−1)ν0+ 0ν1+ 1ν2+ 2ν3+ · · · = −1. This combinatorial way
of obtaining refined Catalan statistics is known as theconjugacy principle[503] or thecycle
lemma[129, 155, 184]. It is logically equivalent to the Lagrange Inversion Theorem, as shown
by Raney [503]. Dvoretzky & Motzkin [184] have employed this technique to solve a number
of counting problems related to circular arrangements. �

Example I.16. Binary tree codes and Dyck paths. Walks associated with binary trees have
a very special form since the vertical displacements can only be+1 or−1. The paths result-
ing from the Łukasiewicz correspondence are then equivalently characterized as sequences of
numbersx = (x0, x1, . . . , x2n, x2n+1) satisfying the conditions

(78) x0 = 0; x j ≥ 0 for 1≤ j ≤ 2n;
∣∣x j+1− x j

∣∣ = 1; x2n+1 = −1.

These coincide with “gambler ruin sequences”, a familiar object from probability theory: a
player plays head and tails. He starts with no capital (x0 = 0) at time 0; his total gain isx j at
time j ; he is allowed no credit (x j ≥ 0) and loses at the very end of the gamex2n+1 = −1; his
gains are±1 depending on the outcome of the coin tosses (

∣∣x j+1− x j
∣∣ = 1).

It is customary to drop the final step and consider “excursions’ that take place in the upper
half-plane. The resulting objects defined as sequences(x0 = 0, x1, . . . , x2n−1, x2n = 0)
satisfying the first three conditions of (78) are known in combinatorics asDyck paths15. By
construction, Dyck paths of length 2n correspond bijectively to binary trees withn internal
nodes and are consequently enumerated by Catalan numbers. LetD be the combinatorial class
of Dyck paths, with size defined as length. This property can also be checked directly: the
quadratic decomposition

(79)
= +

(ε)
D D

D

D = {ǫ} + (ր D ց)×D

H⇒ D(z) = 1 + (zD(z)z) D(z).

From this OGF, the Catalan numbers are found (as expected):D2n = 1
n+1

(2n
n
)
. The decom-

position (79) is known as the “first passage” decomposition as it is basedon the first time the
accumulated gain in the coin-tossing game passes through the value zero.

Dyck paths also arise in connection will well-parenthesized expressions.These are recog-
nized by keeping a counter that records at each stage the excess of thenumber of opening
brackets “(” over closing brackets “)”. Finally, one of the origins of the Dyck path is the famous
ballot problem, which goes back to the nineteenth century [423]: there are two candidates A
andB that stand for election, 2n voters, and the election eventually results in a tie; what is the
probability thatA is always ahead of or tied withB when the ballots are counted? The answer is

D2n(2n
n
) =

1

n+ 1
,

since there are
(2n

n
)

possibilities in total, of which the number of favourable cases isD2n, a Cata-
lan number. The central rôle of Dyck paths and Catalan numbers in problems coming from such
diverse areas is quite remarkable. Section V. 4, p. 318 presents refined counting results regarding
lattice paths (e.g., the analysis of height) and Subsection VII. 8.1, p. 506 introduces exact and as-
ymptotic results in the harder case of an arbitrary finite collection of step types (not just±1). �

15Dyck paths are closely associated with free groups on one generator and are named after the German
mathematician Walther (von) Dyck (1856–1934) who introducedfree groups around 1880.
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� I.48. Dyck paths, parenthesis systems, and general trees.The class of Dyck paths admits an
alternative sequence decomposition

(80)
=

D D
DD

D = SEQ(Z ×D ×Z),

which again leads to the Catalan GF. The decomposition (80) is known as the “arch decom-
position” (see Subsection V. 4.1, p. 319, for more). It can also be directly related to traversal
sequences of general trees, but with the directions ofedgetraversals being recorded (instead of
traversals based on node degrees): for a general treeτ , define its encodingκ(τ) over the binary
alphabet{ր,ց} recursively by the rules:

κ(τ) = ǫ, κ(•(τ1, . . . , τr )) =ր κ(τ1) · · · κ(τr )ց .

This is the classical representation of trees by a parenthesis system (interpret “ր” and “ց” as
“(” and “)”, respectively), which associates to a tree ofn nodes a path of length 2n− 2. �

� I.49. Random generation of Dyck paths.Dyck paths of length 2n can be generated uniformly
at random in time linear inn. (Hint: By Note I.47, it suffices to generate uniformly a sequence
of n as and(n+ 1) bs, then reorganize it according to the conjugacy principle.) �

� I.50. Excursions, bridges, and meanders.Adapting a terminology from probability theory,
one sets the following definitions:(i ) a meander(M) is a word over{−1,+1}, such that the
sum of the values of any of its prefixes is always a non-negative integer; (i i ) a bridge (B) is a
word whose values of letters sum to 0. Thus a meander represents a walkthat wanders in the
first quadrant; a bridge, regarded as a walk, may wander above andbelow the horizontal line,
but its final altitude is constrained to be 0; an excursion is both a meander and a bridge. Simple
decompositions provide

M(z) = D(z)

1− zD(z)
, B(z) = 1

1− 2z2D(z)
,

implying Mn =
( n
⌊n/2⌋

)
[EISA001405] and B2n =

(2n
n
)

[EISA000984]. �

� I.51. Motzkin paths and unary–binary trees.Motzkin paths are defined by changing the
third condition of (78) defining Dyck paths into

∣∣x j+1− x j
∣∣ ≤ 1. They appear as codes for

unary–binary trees and are enumerated by the Motzkin numbers of NoteI.39, p. 68. �

Example I.17. The complexity of boolean functions.Complexity theory provides many
surprising applications of enumerative combinatorics and asymptotic estimates. In general,
one starts with a finite set of abstract mathematical objects� and a combinatorial classD
of concretedescriptions. By assumption, to every element ofδ ∈ D is associated an object
µ(δ) ∈ �, its “meaning”; conversely any object of� admits at least one description inD
(that is, the functionµ is surjective). It is then of interest to quantify properties of the shortest
description function defined forω ∈ � as

σ(ω) := min
{
|δ|D

∣∣ µ(δ) = ω
}
,

and called thecomplexityof the elementω ∈ � (with respect toD).
We take here� to be the class of all boolean functions onm variables. Their number is

||�|| = 22m
. As descriptions, we adopt the class of logical expressions involving thelogical

connectives∨,∧ and pure or negated variables. Equivalently,D is the class of binary trees,
where internal nodes are tagged by a logical disjunction (“∨”) or a conjunction (“∧”), and each
external node is tagged by either a boolean variable of{x1, . . . , xm} or a negated variable of
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{¬x1, . . . ,¬xm}. Define the size of a tree description as the number of internal nodes; that is,
the number of logical operators. Then, one has

(81) Dn =
(

1

n+ 1

(
2n

n

))
· 2n · (2m)n+1,

as seen by counting tree shapes and possibilities for internal as well as external node tags.
The crux of the matter is that if the inequality

(82)
ν∑

j=0

D j < ||�||,

holds, then there are not enough descriptions of size≤ ν to exhaust�. (This is analogous to the
coding argument of Note I.23, p. 53.) In other terms, there must exist at least one object in�
whose complexity exceedsν. If the left side of (82) is much smaller than the right side, then it
must even be the case that “most”�–objects have a complexity that exceedsν.

In the case of boolean functions and tree descriptions, the asymptotic form (33) is available.
From (81) it can be seen that, forn, ν getting large, one has

Dn = O(16nmnn−3/2),

ν∑

j=0

D j = O(16νmνν−3/2).

Chooseν such that the second expression iso(||�||), which is ensured for instance by taking for
ν the value

ν(m) := 2m

4+ log2 m
.

With this choice, one has the following suggestive statement:

A fraction tending to1 (as m→ ∞) of boolean functions in m variables have tree complexity
at least2m/(4+ log2 m).

Regarding upper bounds on boolean function complexity, a function always has a tree
complexity that is at most 2m+1− 3. To see this, note that form= 1, the four functions are

0≡ (x1 ∧ ¬x1), 1≡ (x1 ∨ ¬x1), x1, ¬x1.

Next, a function ofm variables is representable by a technique known as the binary decision
tree (BDT),

f (x1, . . . , xm−1, xm) =
(
¬xm ∧ f (x1, . . . , xm−1, 0)

)
∨
(
xm ∧ f (x1, . . . , xm−1, 1)

)
,

which provides the basis of the induction as it reduces the representation of an m–ary func-
tion to the representation of two(m− 1)–ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “most” boolean functions have a
tree-complexity (2m/ logm) that is fairly close to the maximum possible, namely,O(2m). A
similar result has been established by Shannon for the measure called circuit complexity: cir-
cuits are more powerful than trees, but Shannon’s result states thatalmost all boolean functions
of m variables have circuit complexity O(2m/m). See the chapter by Li and Vitányi in [591]
and Gardy’s survey [283] on random boolean expressions for a discussion of such counting
techniques within the framework of complexity theory and logic. We resumethis thread in Ex-
ample VII.17, p. 487, where we quantify the probability that a large random boolean expression
computes a fixed function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�
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I. 5.4. Context-free specifications and languages.Many of the combinatorial
examples encountered so far in this section can be organizedinto a common frame-
work, which is fundamental in formal linguistics and theoretical computer science.

Definition I.13. A classC is said to becontext-freeif it coincides with the first com-
ponent(T = S1) of a system of equations

(83)





S1 = F1(Z,S1, . . . ,Sr )

...
...

...

Sr = Fr (Z,S1, . . . ,Sr ),

where eachF j is a constructor that only involves the operations of combinatorial sum
(+) and cartesian product (×), as well as the neutral class,E = {ǫ}.

A languageL is said to be anunambiguous context-freelanguage if it is combi-
natorially isomorphic to a context-free class of trees:C ∼= T .

The classes of general trees (G) and binary trees (B) are context-free, since they
are specifiable as





G = Z × F

F = {ǫ} + (G × F), B = Z + (B × B);
hereF designates ordered forests of general trees. Context-freespecifications may
be used to describe all sorts of combinatorial objects. For instance, the classU =
T \ T0 of non-empty triangulations of convex polygons (Note 10, p.36) is specified
symbolically by

(84) U = ∇ + (∇ × U)+ (U ×∇)+ (U ×∇ × U),

where∇ ∼= Z represents a generic triangle. The Łukasiewicz language and the set of
Dyck paths are context-free classes since they are bijectively equivalent toG andU .

The term “context-free” comes from linguistics: it stresses the fact that objects
can be “freely” generated by the rules of (83), this without any constraints imposed
by an outside context16. There, one classically defines a context-free language as
the language formed with words that are obtained as sequences of leaf tags (read in
left-to-right order) of a context-free variety of trees. Informal linguistics, the one-to-
one mapping between trees and words is not generally imposed; when it is satisfied,
the context-free language is said to beunambiguous; in such cases, words and trees
determine each other uniquely, cf Note I.54 below.

An immediate consequence of the admissibility theorems is the following propo-
sition first encountered by Chomsky and Schützenberger [119] in the course of their
research relating formal languages and formal power series.

16Formal language theory also defines context-sensitive grammars where each rule (called a produc-
tion) is applied only if it is enabled by some external context. Context-sensitive grammars have greater
expressive power than context-free ones, but they depart significantly from decomposability and are sur-
rounded by strong undecidability properties. Accordingly, context-sensitive grammars cannot be associated
with any global generating function formalism.
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Figure I.16. A directed animal, its tilted version, (after a+π/4 rotation), and three
of its equivalent representations as a heap of dimers.

Proposition I.7. A combinatorial classC that iscontext-freeadmits an OGF that is
an algebraic function.In other words, there exists a (non-null) bivariate polynomial
P(z, y) ∈ C[z, y] such that

P(z,C(z)) = 0.

Proof. By the basic sum and product rules, the context-free system(83) translates into
a system of OGF equations,





S1(z) = 81(z, S1(z), . . . , Sr (z))
...

...
...

Sr (z) = 8r (z, S1(z), . . . , Sr (z)),

where the8 j are the polynomials translating the constructionsF j .
It is then well known that algebraic elimination is possiblein polynomial sys-

tems. Here, it is possible to eliminate the auxiliary variables S2, . . . , Sr , one by one,
preserving the polynomial character of the system at each stage. The end result is
then a single polynomial equation satisfied byC(z) ≡ S1(z). (Methods for effec-
tively performing polynomial elimination include a repeated use of resultants as well
as Gr̈obner basis algorithms; see Appendix B.1:Algebraic elimination, p. 739 for a
brief discussion and references.) �

Proposition I.7 is a counterpart of Proposition I.3 (p. 57) according to which ratio-
nal generating functions arise from finite state devices, and it justifies the importance
of algebraic functions in enumeration theory. We shall encounter applications of such
algebraic generating functions to planar non-crossing configurations (p. 485) walks
(p. 506) and planar maps (p. 513), when we develop a general asymptotic theory of
their coefficients in Chapter VII, based on singularity theory. The example below
shows the way certain lattice configurations can be modelledby a context-free speci-
fication.

Example I.18. Directed animals.Consider the square latticeZ2. A directed animal with a
compact source of size kis a finite set of pointsα of the lattice such that:(i ) for 0≤ i < k, the
points(−i, i ), called source points, belong toα; (i i ) all other points inα can be reached from
one of the source points by a path made of North and East steps and having all its vertices inα.
(The animal in Figure I.16 has one source.) Such lattice configurationshave been introduced
by statistical physicists Dharet al. [162], since they provide a tractable model of 2-dimensional
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percolation. Our discussion follows Bousquet-Mélou’s insightful presentation in [84], itself
based on Viennot’s elegant theory ofheaps of pieces[597].

The best way to visualize an animal is as follows (Figure I.16): rotate the lattice by+π/4
and associate to each vertex of the animal a horizontal piece, also called adimer. The length of
a piece is taken to be slightly less than the diagonal of a mesh of the original lattice. Pieces are
allowed to slide vertically (up or down) in their column, butnot to jump over each other. One
can then think of an animal as being a heap of pieces, where pieces take their places naturally,
under the effect of gravity, and each one stops as soon as it is blockedby a piece immediately
below. (The heap associated to an animal satisfies the additional propertythat no two pieces in
a column can be immediately adjacent to one another.)

Define apyramid to be a one-source animal and ahalf-pyramidto be a pyramid that has
no vertex strictly to the left of its source point, in the tilted representation. LetP andH be
respectively the class of pyramids and half-pyramids, viewed as heaps. By a corner decomposi-
tion (Note I.52), pyramids and half-pyramids can be constructed as suggested by the following
diagram:

(85)





P H H

P

= +

H = + H + H

H

.

The pictorial description (85) is equivalent to a context-free specification:




P = H+ P ×H

H = Z + Z ×H+Z ×H× P
H⇒





P = H + P H

H = z+ zH+ zH2,

in which the second equation, a quadratic, is readily solved to provideH , which in turn gives
P, by the first equation. One finds:

(86)





P(z) = 1

2

(√
1+ z

1− 3z
− 1

)
= z+ 2z2+ 5z3+ 13z4+ 35z5+ · · ·

H(z) = 1− z−√(1+ z)(1− 3z)

2z
= z+ z2+ 2z3+ 4z4+ 9z5+ · · · ,

corresponding respectively toEISA005773andEISA001006(Motzkin numbers, cf Notes I.39,
p. 68 and I.51, p. 77). See Example VI.3 and Note VI.11, p. 396, for relevant asymptotics.

Similar constructions permit us to decompose compact-source directed animals, whose
class we denote byA. For instance:

A = P H H H

Compact-source animals withk sources are then specified byP × SEQk−1(H), and we have

(87) A ∼= P × SEQ(H) H⇒ A(z) = P(z)

1− H(z)
= z

1− 3z
,
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where the last form results from basic algebraic simplifications. A consequence of (87) is the
surpringly simple (but non-trivial) result that there are 3n−1 compact-source animals of sizen.
The papers [61, 87] develop further aspects of the rich counting theory of animals. . . . . . . . .�

� I.52. Understanding animals.In the first equation of (85), a pyramidπ that is not a half-
pyramid has a unique dimer which is of lowest altitude and immediately to the leftof the source.
Take that dimer and push it upwards, in the direction of imaginary infinity; itwill then carry with
it a group of dimers that constitute, by construction, a pyramidω. What remains has no dimer
to the left of its source, and hence forms a half-pyramidχ . The following diagram illustrates
the decomposition, with the dimers ofω equipped with an upward-pointing arrow:

.

↑

π =
H⇒

ω =

χ =

Conversely, given a pair(ω, χ) ∈ P ×H, attach firstχ to the base; then, letω fall down from
imaginary infinity. The dimers ofω will take their place above the dimers ofχ , blocked in
various manners on their way down, the whole set eventually forming a pyramid. A moment
of reflection convinces one that the original pyramidπ is recovered in this way; that is, the
transformationπ → (ω, χ) is bijective. �

� I.53.“Tree-like” structures.A context-free specification can always be regarded as defining
a class of trees. Indeed, if thej th term in the constructionFi of (83) is “coloured” with the
pair (i, j ), it is seen that a context-free system yields a class of trees whose nodesare tagged by
pairs(i, j ) in a way consistent with the system’s rules. However, despite this correspondence,
it is often convenient to preserve the possibility of operating directly with objects when the tree
aspect may be unnatural. (Some authors have developed a parallel notion of “object grammars”;
see for instance [183], itself inspired by techniques of polyomino surgery in [150].) By a termi-
nology borrowed from the theory of syntax analysis in computer science, such trees are referred
to as “parse trees” or “syntax trees”. �

� I.54. Context-free languages. Let A be a fixed finite alphabet whose elements are called
letters. Agrammar Gis a collection of equations

(88) G :





L1 = F1(a,L1, . . . ,Lm)

...
...

Lm = Fm(a,L1, . . . ,Lm),

where eachF j involves only the operations of union (∪) and concatenation product( · ) with a
the vector of letters inA. For instance,

F1(a,L1,L2,L3) = a2 · L2 · L3 ∪ a3 ∪ L3 · a2 · L1.

A solution to (88) is anm–tuple of languages over the alphabetA that satisfies the system. By
convention, one declares that the grammarG defines the first component,L1.

To each grammar (88), one can associate a context-free specification(60) by transforming
unions into disjoint union, “∪ 7→ +”, and catenation into cartesian products, “· 7→ ×”. Let
Ĝ be the specification associated in this way to the grammarG. The objects described bŷG
appear in this perspective to be trees (see the discussion above regarding parse trees). Leth
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be the transformation from trees of̂G to languages ofG that lists letters in infix (i.e., left-to-
right) order: we call such anh the erasing transformation since it “forgets” all the structural
information contained in the parse tree and only preserves the succession of letters. Clearly,
application ofh to the combinatorial specifications determined byĜ yields languages that obey
the grammarG. For a grammarG and a wordw ∈ A⋆, the number of parse treest ∈ Ĝ such
thath(t) = w is called theambiguity coefficientof w with respect to the grammarG.

A grammarG is unambiguousif all the corresponding ambiguity coefficients are either 0
or 1. This means that there is a bijection between parse trees ofĜ and words of the language
described byG: each word generated is uniquely “parsable” according to the grammar. One has,
from Proposition I.7:The OGF of an unambiguous context-free language satisfies a polynomial
system of the form(61), and is consequently an algebraic function. �

� I.55. Extended context-free specifications.If A,B are context-free specifications then:
(i ) the sequence classC = SEQ(A) is context-free;(i i ) the substitution classD = A[b 7→ B],
formally defined in the next section, is also context-free. �

I. 6. Additional constructions

This section is devoted to the constructions of sequences, sets, and cycles in the
presence of restrictions on the number of components as wellas to mechanisms that
enrich the framework of core constructions; namely, pointing, substitution, and the
use of implicit combinatorial definitions.

I. 6.1. Restricted constructions.An immediate formula for OGFs is that of the
diagonal1 of a cartesian productB × B defined as

A ≡ 1(B × B) := {(β, β) | β ∈ B}.
Then, one has the relationA(z) = B(z2), as shown by the combinatorial derivation

A(z) =
∑

(β,β)

z2|β| = B(z2),

or by the equally obvious observation thatA2n = Bn.
The diagonal construction permits us to access the class of all unordered pairs of

(distinct) elements ofB, which isA = PSET2(B). A direct argument then runs as
follows: the unordered pair{α, β} is associated to the two ordered pairs(α, β) and
(β, α) except whenα = β, where an element of the diagonal is obtained. In other
words, one has the combinatorial isomorphism,

PSET2(B)+ PSET2(B)+1(B × B) ∼= B × B,

meaning that
2A(z)+ B(z2) = B(z)2.

This gives the translation of PSET2, and, by a similar argument for MSET2 and CYC2
(observe also that CYC2 ∼= MSET2), one has:

A = PSET2(B) H⇒ A(z) = 1
2 B(z)2− 1

2 B(z2)

A = MSET2(B) H⇒ A(z) = 1
2 B(z)2+ 1

2 B(z2)

A = CYC2(B) H⇒ A(z) = 1
2 B(z)2+ 1

2 B(z2).
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This type of direct reasoning could in principle be extendedto treat triples, and so
on, but the computations easily grow out of control. The classical treatment of these
questions relies on what is known asPólya theory, of which we offer a glimpse in
Notes I.58–I.60. We follow instead here an easier global approach, based on multi-
variate generating functions, that suffices to generatesimultaneouslyall cardinality-
restricted constructions of our standard collection.

Theorem I.3 (Component-restricted constructions). The OGF of sequences with k
componentsA = SEQk(B) satisfies

A(z) = B(z)k.

The OGF of sets,A = PSETk(B), is a polynomial in the quantities B(z), . . . , B(zk),

A(z) = [uk] exp

(
u

1
B(z)− u2

2
B(z2)+ u3

3
B(z3)− · · ·

)
.

The OGF of multisets,A = MSETk(B), is

A(z) = [uk] exp

(
u

1
B(z)+ u2

2
B(z2)+ u3

3
B(z3)+ · · ·

)
.

The OGF of cycles,A = CYCk(B), is, withϕ the Euler totient function (p. 721)

A(z) = [uk]
∞∑

ℓ=1

ϕ(ℓ)

ℓ
log

1

1− uℓB(zℓ)
.

The explicit forms for small values ofk are summarized in Figure I.18, p. 93.

Proof. The result for sequences is obvious since SEQk(B) meansB × · · · × B (k
times). For the other constructions, the proof makes use of the techniques of Theo-
rem I.1, p. 27, but it is best based on bivariate generating functions that are otherwise
developed fully in Chapter III to which we refer for details (p. 171). The idea consists
in describing all composite objects and introducing a supplementary marking variable
to keep track of the number of components.

TakeK to be a construction among SEQ,CYC,MSET,PSET. Consider the rela-
tionA = K(B), and letχ(α) for α ∈ A be the parameter “number ofB–components”.
Define the multivariate quantities

An,k := card
{
α ∈ A

∣∣ |α| = n, χ(α) = k
}

A(z,u) :=
∑

n,k

An,kukzn =
∑

α∈A
z|α|uχ(α).

For instance, a direct calculation shows that, for sequences,

A(z,u) =
∑

k≥0

uk B(z)k = 1

1− uB(z)
.

For multisets and powersets, a simple adaptation of the already seen argument gives
A(z,u) as

A(z,u) =
∏

n

(1− uzn)−Bn, A(z,u) =
∏

n

(1+ uzn)Bn,
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respectively. The result follows from here by the exp–log transformation upon ex-
tracting [uk] A(z,u). The case of cycles results from the bivariate generating function
derived in Appendix A.4:Cycle construction, p. 729 (alternatively use Note I.60).�

� I.56. Aperiodic words.An aperiodic word is a primitive sequence of letters (in the sense
of Appendix A.4: Cycle construction, p. 729); that is, the wordw is aperiodic provided it is
not obtained by repetition of a proper factor:w 6= u · · ·u. The number of aperiodic words of
lengthn over anm–ary alphabet is (withµ(k) the Möbius function, p. 721)

PW(m)
n =

∑

d | n
µ(d)mn/d.

For m= 2, the sequence starts as 2, 2, 6, 12, 30, 54, 126, 240, 504, 990 (EISA027375). �

� I.57.Around the cycle construction.A calculation with arithmetical functions (APPENDIXA,
p. 721) yields the OGFs ofmultisets of cyclesandmultisets of aperiodic cyclesas

∏

k≥1

1

1− A(zk)
and

1

1− A(z)
,

respectively [144]. (The latter fact corresponds to the combinatorialproperty that any word can
be written as a decreasing product of Lyndon words; notably, it serves to construct bases of free
Lie algebras [413, Ch. 5].) �

� I.58. Pólya theory I: the cycle indicator.Consider a finite setM of cardinalitym and a
groupG of permutations ofM. Whenever convenient, the setM can be identified with the
interval [1. .m]. The cycle indicator(“Zyklenzeiger”) of G is, by definition, the multivariate
polynomial

Z(G) ≡ Z(G; x1, . . . , xm) =
1

card(G)

∑

g∈G

x j1(g)
1 · · · x jm(g)

m ,

where jk(g) is the number of cycles of lengthk in the permutationg. For instance, ifIm =
{Id} is the group reduced to the identity permutation,Sm is the group of all permutations of
sizem, andRm is the group consisting of the identity permutation and the “mirror-reflection”
permutation

(1 ··· m
m ···1

)
, then

(89)

Z(Im) = xm
1 ; Z(Sm) =

∑

j1,..., jm≥0

x j1
1 · · · x

jm
m

j1! 1 j1 · · · jm! m jm
;

Z(Rm) =





1
2xν2 +

1
2x2ν

1 if m= 2ν is even

1
2x1xν2 +

1
2x2ν+1

1 if m= 2ν + 1 is odd.

(For the case ofSm, see Equation (40), Chapter III, p. 188.) �

� I.59. Pólya theory II: the fundamental theorem.Let B be a combinatorial class andM a
finite set on which the groupG acts. Consider the setBM of all mappings fromM into B.
Two mappingsφ1, φ2 ∈ BM are declared to be equivalent if there exists ag ∈ G such that
φ1 ◦ g = φ2, and we let(BM/G) be the set of equivalence classes. The problem is to enumer-
ate(BM/G), given the dataB, M, and the “symmetry group”G.

Letw be a weight function that assigns to anyβ ∈ B a weightw(β); the weight is extended
multiplicativelyto anyφ ∈ BM, hence to(BM/G), byw(φ) :=∏k∈M w(φ(k)). ThePólya–
Redfield Theoremexpresses the identity

(90)
∑

φ∈(BM/G)

w(φ) = Z


G;

∑

β∈B
w(β), . . . ,

∑

β∈B
w(β)m


 .
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In particular, we can choosew(β) = z|β| with z a formal parameter; the Pólya–Redfield
Theorem (90) then provides the OGF of objects ofBM up to symmetries byG:

(91)
∑

φ∈(BM/G)

z|φ| = Z
(
G; B(z), . . . , B(zm)

)
.

(There are many excellent presentations of this classic theory, starting with Pólya himself [488,
491]; see for instance Comtet [129, §6.6], De Bruijn [142], and Harary–Palmer [319, Ch. 2].
The proof relies on orbit counting and Burnside’s lemma.) �

� I.60. Pólya theory III: basic constructions.Say we want to obtain the OGF ofA =
MSET3(B). We view A as the set of triplesBM, with M = [1 . .3], taken up toS3, the
set of all permutations of three elements. The cycle indicator is given by (89), from which
the translation of MSET3 results (see Figure I.18, p. 93, for the outcome); the calculation ex-
tends to all MSETm, providing an alternative approach to Theorem I.3. The translation of the
CYCm construction can be obtained in this way via the cycle index of the groupCm of all cyclic
permutations; namely,

Z(Cm) =
1

m

∑

d | m
ϕ(d)xn/d

d ,

whereϕ(k) is the Euler totient function. The use of the groupsRm gives rise to theundirected
sequenceconstruction,

A = USEQ(B) H⇒ A(z) = 1

2

1

1− B(z)
+ 1

2

1+ B(z)

1− B(z2)
,

where a sequence and its mirror image are identified. Similar principles give rise to theundi-
rected cycleconstruction UCYC, generated by cyclic permutationsandmirror reflection. (The
approach taken in the text can be seen, in the perspective of Pólya theory, as a direct deter-
mination of

∑
m≥0 Z(Gm), for an entire family of symmetry groups{Gm}, whereGm =

Cm,Sm, . . .) �

� I.61. Sets with distinct component sizes.LetA be the class of the finite sets of elements from
B, with the additional constraint that no two elements in a set have the same size. One has

A(z) =
∞∏

n=1

(1+ Bnzn).

Similar identities serve in the analysis of polynomial factorization algorithms [236]. �

� I.62. Sequences without repeated components.The generating function is formally

∫ ∞

0
exp


∑

j≥1

(−1) j−1 u j

j
B(z j )


 e−u du.

(This representation is based on the Eulerian integral:k! =
∫∞
0 e−uuk du.) �

I. 6.2. Pointing and substitution. Two more constructions, namely pointing and
substitution, translate agreeably into generating functions. Combinatorial structures
are viewed as always as formed of atoms (letters, nodes, etc), which determine their
sizes. Pointing means “pointing at a distinguished atom”; substitution, writtenB ◦ C
orB[C], means “substitute elements ofC for atoms ofB”.

Definition I.14. Let {ǫ1, ǫ2, . . .} be a fixed collection of distinct neutral objects of
size 0. Thepointingof a classB, denotedA = 2B, is formally defined as

2B :=
∑

n≥0

Bn × {ǫ1, . . . , ǫn}.
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Thesubstitutionof C intoB (also known as composition ofB andC), notedB ◦ C
or B[C], is formally defined as

B ◦ C ≡ B[C] :=
∑

k≥0

Bk × SEQk(C).

With Bn the number ofB structures of sizen, the quantitynBn can be interpreted
as counting pointed structures whereoneof then atoms composing aB–structure has
been distinguished (here by a special “pointer” of size 0 attached to it). Elements of
B ◦ C may also be viewed as obtained by selecting in all possible ways an element
β ∈ B and replacing each of its atoms by an arbitrary element ofC, while preserving
the underlying structure ofβ.

The interpretations above rely (silently) on the fact that atoms in an object can
be eventually distinguished from each other. This can be obtained by “canonicaliz-
ing”17 the representations of objects: first define inductively thelexicographic order-
ing for products and sequences; next represent powersets and multisets as increasing
sequences with the induced lexicographic ordering (more complicated rules can also
canonicalize cycles). In this way, any constructible object admits a unique “rigid”
representation in which each particular atom is determinedby its place. Such a canon-
icalization thus reconciles the abstract definitions of Definition I.14 with the intuitive
interpretation of pointing and substitution.

Theorem I.4 (Pointing and substitution). The constructions of pointing and substitu-
tion are admissible18:

A = 2B H⇒ A(z) = z∂zB(z) ∂z := d

dz
A = B ◦ C H⇒ A(z) = B(C(z))

Proof. By the definition of pointing, one has

An = n · Bn, so that A(z) = z∂zB(z).

The definition of substitution implies, by the sum and product rules,

A(z) =
∑

k≥0

Bk · (C(z))k = B(C(z)),

and the proof is completed. �

17Such canonicalization techniques also serve to develop fast algorithms for the exhaustive listing
of objects of a given size as well as for the range of problems known as “ranking” and “unranking”, with
implications in fast random generation. See, for instance, [430, 456, 607] for the general theory as well
as [500, 623] for particular cases such as necklaces and trees.

18In this book, we borrow from differential algebra the convenient notation∂z := d
dz to represent

derivatives.
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Permutations as pointed objects.As an example of pointing, consider the classP

of all permutations written as words over integers startingfrom 1. One can go from a
permutation of sizen−1 to a permutation of sizen by selecting a “gap” and inserting
the valuen. When this is done in all possible ways, it gives rise to the combinatorial
relation

P = E +2(Z × P), E = {ǫ}, H⇒ P(z) = 1+ z
d

dz
(zP(z)).

The OGF satisfies an ordinary differential equation whose formal solution isP(z) =∑
n≥0 n!zn, since it is equivalent to the recurrencePn = nPn−1.

Unary–binary trees as substituted objects.As an example of substitution, con-
sider the classB of (plane–rooted) binary trees, where all nodes contributeto size. If
at each node a linear chain of nodes (linked by edges placed ontop of the node) is
substituted, one forms an element of the classM of unary–binary trees; in symbols:

M = B ◦ SEQ≥1(Z) H⇒ M(z) = B

(
z

1− z

)
.

Thus from the known OGF,B(z) = (1−
√

1− 4z2)/(2z), one derives

M(z) = 1−
√

1− 4z2(1− z)−2

2z(1− z)−1
= 1− z−

√
1− 2z− 3z2

2z
,

which matches the direct derivation on p. 68 (Motzkin numbers).
� I.63. Combinatorics of derivatives.The combinatorial operationD of “erasing–pointing”
points to an atom in an object and replaces it by a neutral object, otherwise preserving the
overall structure of the object. The translation ofD on OGFs is then simply∂ := ∂z. Classical
identities of analysis then receive transparent combinatorial interpretations: for instance,

∂(A× B) = (A× ∂B)+ (∂A× B)

as well as Leibniz’s identity,∂m( f · g) = ∑
j
(m

j
)
(∂ j f ) · (∂m− j g), also follow from basic

logic. Similarly, for the “chain rule”∂( f ◦ g) = ((∂ f ) ◦ g) · ∂g. (Example VII.25, p. 529,
illustrates the use of these methods for analytically solving manyurn processes.) �

� I.64. The combinatorics of Newton–Raphson iteration.Given a real functionf , the iter-
ation scheme of Newton–Raphson finds (conditionally) a root of the equation f (y) = 0 by
repeated use of the transformationα⋆ = α − f (α)/ f ′(α), starting for instance fromα = 0.
(For sufficiently smooth functions, this scheme is quadratically convergent.) The application of
Newton–Raphson iteration to the equationy = zφ(y) associated with a simple variety of trees
in the sense of Proposition I.5, p. 66, leads to the scheme:

αm+1 = αm+
zφ(αm)− αm

1− zφ′(αm)
; α0 = 0.

It can be seen, analyticallyandcombinatorially, thatαm has a contact of order at least 2m − 1
with y(z). The interesting combinatorics is due to Décoste, Labelle, and Leroux [147]; it in-
volves a notion of “heavy” trees (such that at least one of the root subtrees is large enough, in a
suitable sense); see [50, §3.3] and [485] for further developments. �

I. 6.3. Implicit structures. There are many cases where a combinatorial classX

is determined by a relationA = B+X , whereA andB are known. (An instance of this
is the equational technique of Subsection I. 4.2, p. 56 for enumerating words thatdo
contain a given patternp.) Less trivial examples involve inverting cartesian products
as well as sequences and multisets (examples below).
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Theorem I.5 (Implicit specifications). The generating functions associated to the im-
plicit equations with unknownX

A = B + X , A = B × X , A = SEQ(X ),

are, respectively,

X(z) = A(z)− B(z), X(z) = A(z)

B(z)
, X(z) = 1− 1

A(z)
.

For the implicit constructionA = MSET(X ), one has

X(z) =
∑

k≥1

µ(k)

k
log A(zk),

whereµ(k) is the M̈obius function19.

Proof. The first two cases result from kindergarten algebra, sincein terms of OGFs
one hasA = B + X and A = B X, respectively. For sequences, the relationA(z) =
(1− X(z))−1 is readily inverted as stated. For multisets, start from thefundamental
relation of Theorem I.1 (p. 27) and take logarithms:

log(A(z)) =
∞∑

k=1

1

k
X(zk).

Let L = log A andLn = [zn]L(z). One has

nLn =
∑

d | n
(d Xd),

to which it suffices to apply M̈obius inversion (p. 721). �

ExampleI.19. Indecomposable permutations.A permutationσ = σ1 · · · σn (written here as a
word of distinct letters) is said to bedecomposableif, for somek < n, σ1 · · · σk is a permutation
of {1, . . . , k}; i.e., a strict prefix of the permutation (in word form) is itself a permutation.
Any permutation decomposes uniquely as a concatenation of indecomposable permutations, as
shown in Figure I.17.

As a consequence of our definitions, the classP of all permutations and the classI of
indecomposable ones are related by

P = SEQ(I).

This determinesI (z) implicitly, and Theorem I.5 gives

I (z) = 1− 1

P(z)
where P(z) =

∑

n≥0

n! zn .

This example illustrates the utility of implicit constructions, and at the same time thepos-
sibility of bona fidealgebraic calculations with power series even in cases where they are diver-
gent (Appendix A.5:Formal power series, p. 730). One finds

I (z) = z+ z2+ 3z3+ 13z4+ 71z5+ 461z6+ 3447z7+ · · · ,

19The Möbius functionµ(n) is µ(n) = (−1)r if n is the product ofr distinct primes andµ(n) = 0
otherwise (Appendix A.1:Arithmetical functions, p. 721).
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1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

σ = 2 5 4 1 3 6 8 10 7 9

Figure I.17. The decomposition of a permutation (σ ).

where the coefficients (EISA003319) are

In = n! −
∑

n1+n2=n
n1,n2≥1

(n1!n2!)+
∑

n1+n2+n3=n
n1,n2,n3≥1

(n1!n2!n3!)− · · · .

From this, simple majorizations of the terms imply thatIn ∼ n!, so thatalmost all permutations
are indecomposable[129, p. 262]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . �

� I.65. Two-dimensional wanderings.A drunkard starts from the origin in theZ×Z plane and,
at each second, he makes a step in either one of the four directions, NW,NE, SW, SE. The steps
are thusտ,ր,ւ,ց. Consider the classL of “primitive loops” defined as walks that start and
end at the origin, but do not otherwise touch the origin. The GF ofL is (EISA002894)

L(z) = 1− 1
∑∞

n=0
(2n

n
)2

z2n
= 4z2+ 20z4+ 176z6+ 1876z8+ · · · .

(Hint: a walk is determined by its projections on the horizontal and vertical axes; one-dimensional
walks that return to the origin in 2n steps are enumerated by

(2n
n
)
.) In particular [z2n]L(z/4) is

the probability that the random walk first returns to the origin in 2n steps.
Such problems largely originate with Pólya and implicit constructions were well-mastered

by him [490]; see also [85] for certain multidimensional extensions. Thefirst-return problem
is analysed asymptotically in Chapter VI, p. 425, based on singularity theory and Hadamard
closure properties. �

ExampleI.20. Irreducible polynomials over finite fields.Objects not obviously of a combina-
torial nature can sometimes be enumerated by symbolic methods. Here is an indirect construc-
tion relative to polynomials over finite fields. We fix a prime numberp and consider the base
field Fp of integers taken modulop. The polynomial ringFp[X] is the ring of polynomials
in X with coefficients inFp.

For all practical purposes, one may restrict attention to polynomials that are monic; that
is, ones whose leading coefficient is 1. We regard the setP of monic polynomials inFp[X]
as a combinatorial class, with the size of a polynomial being identified to its degree. Since a
polynomial is specified by the sequence of its coefficients, one has, withA the “alphabet” of
coefficients,A = Fp treated as a collection of atomic objects,

(92) P = SEQ(A) H⇒ P(z) = 1

1− pz
,
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in agreement with the fact that there arepn monic polynomials of degreen.
Polynomials are aunique factorization domain, since they can be subjected to Euclidean

division. A polynomial that has no proper non-constant divisor is termedirreducible—irreducibles
are thus the analogues of the primes in the integer realm. For instance, over F3, one has

X10+ X8+ 1= (X + 1)2(X + 2)2(X6+ 2X2+ 1).

Let I be the set of monic irreducible polynomials. The unique factorization property implies
that the collection of all polynomials is combinatorially isomorphic to the multiset class (there
may be repeated factors) of the collection of irreducibles:

(93) P ∼= MSET(I) H⇒ P(z) = exp

(
I (z)+ 1

2
I (z2)+ 1

3
I (z3)+ · · ·

)
.

The irreducibles are thus determinedimplicitly from the class of all polynomials whose
OGF is known by (92). Theorem I.5 then implies the identity

(94) I (z) =
∑

k≥1

µ(k)

k
log

1

1− pzk
and In =

1

n

∑

k | n
µ(k)pn/k.

In particular,In is asymptotic topn/n. This estimate constitutes the density theorem for irre-
ducible polynomials, a result already known to Gauss (see the scholarly notes of von zur Gathen
and Gerhard in [599, p. 396]):

The fraction of irreducible polynomials among all polynomials of degree n over the finite field
Fp is asymptotic to1

n .

This property is analogous to the Prime Number Theorem (which howeverlies muchdeeper,
see [22, 138]), according to which the proportion of prime numbers in the interval [1, n] is
asymptotic to 1/logn. Indeed, a polynomial of degreen appears to be roughly comparable to
a number written in basep havingn digits. (On the basis of such properties, Knopfmacher
has further developed in [370] an abstract theory of statistical properties of arithmetical semi-
groups.) We pursue this thread further in the book: we shall prove thatthe number of factors
in a random polynomial of degreen is on average∼ logn (Example VII.4, p. 449) and that the
corresponding distribution is asymptotically Gaussian (Example IX.21, p.672). . . . . . . . . . .�

� I.66. Square-free polynomials.Let Q be the class of monic square-free polynomials (i.e.,
polynomials not divisible by the square of a polynomial). One has by “Vallée’s identity” (p. 30)
Q(z) = P(z)/P(z2), hence

Q(z) = 1− pz2

1− pz
and Qn = pn − pn−1 (n ≥ 2).

Berlekamp’s book [51] discusses such facts together with relations to error correcting codes.�

� I.67. Balanced trees.The classE of balanced 2-3 trees contains all the (rooted planar) trees
whose internal nodes have degree 2 or 3 and such that all leaves are at the same distance from
the root. Only leaves contribute to size. Such trees, which are particular cases ofB–trees, are a
useful data structure for implementing dynamic dictionaries [378, 537].Balanced trees satisfy
an implicit equation based on combinatorial substitution:

E = Z + E ◦ [(Z × Z)+ (Z ×Z × Z)] H⇒ E(z) = z+ E(z2+ z3).

The expansion starts as (EISA014535)

E(z) = z+ z2+ z3+ z4+ 2z5+ 2z6+ 3z7+ 4z8+ 5z9+ 8z10+ · · · .
Odlyzko [459] has determined the growth ofEn to be roughly asϕn/n, whereϕ = (1+

√
5)/2

is the golden ratio. See Subsection IV. 7.2, p. 280 for an analysis. �
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I. 7. Perspective

This chapter and the next amount to a survey of elementary combinatorial enu-
merations, organized in a coherent manner and summarized inFigure I.18, in the case
of the unlabelled universe that is considered here. We referto the process of specify-
ing combinatorial classes using these constructions and then automatically having ac-
cess to the corresponding generating functions as thesymbolic method. The symbolic
method is the “combinatorics” in analytic combinatorics: it allows us to structure clas-
sical results in combinatorics with a unifying overall approach, to derive new results
that generalize and extend classical problems, and to address new classes of problems
that are arising in computer science, computational biology, statistical physics, and
other scientific disciplines.

More importantly, the symbolic method leaves us with generating functions that
we can handle with the “analytic” part of analytic combinatorics. A full treatment of
this feature of the approach is premature, but a brief discussion may help place the rest
of the book in context.

For a given family of problems, the symbolic method typically leads to a natural
class of functions in which the corresponding generating functions lie. Even though
the symbolic method is completely formal, we can often successfully proceed by using
classical techniques from complex and asymptotic analysis. For example, denumer-
ants with a finite set of coin denominations always lead to rational generating functions
with poles on the unit circle. Such an observation is useful as a common strategy for
coefficient extraction can then be applied (partial fraction expansion, in the case of
denumerants with fixed coin denominations). In the same vein, run statistics consti-
tute a particular case of the general theorem of Chomsky and Schützenberger to the
effect that the generating function of a regular language isnecessarily a rational func-
tion. Similarly, context-free structures are attached to generating functions that are
invariably algebraic. Theorems of this sort establish a bridge between combinatorial
analysis and special functions.

Not all applications of the symbolic method are automatic (although that is cer-
tainly one goal underlying the approach). The example of counting set partitions
shows that application of the symbolic method may require finding an adequate pre-
sentation of the combinatorial structures to be counted. Inthis way, bijective combi-
natorics enters the game in a non-trivial fashion.

Our introductory examples of compositions and partitions correspond to classes
of combinatorial structures withexplicit “iterative” definitions, a fact leading in turn
to explicit generating function expressions. The tree examples then introducerecur-
sively definedstructures. In that case, the recursive definition translates into afunc-
tional equationthat only determines the generating function implicitly. In simpler
situations (such as binary or general trees), the generating function equations can be
solved and explicit counting results often follow. In othercases (such as non-plane
trees) one can usually conduct an analysis of singularitiesdirectly from the functional
equations and obtain very preciseasymptotic estimates: Chapters IV–VIII of Part B
offer an abundance of illustrations of this paradigm. The further development on a
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1. The main constructions of disjoint union (combinatorial sum), product, sequence, powerset,
multiset, and cycle and their translation into generating functions (Theorem I.1).

Construction OGF

Union A = B + C A(z) = B(z)+ C(z)

Product A = B × C A(z) = B(z) · C(z)
Sequence A = SEQ(B) A(z) = 1

1− B(z)

Powerset A = PSET(B) A(z) = exp

(
B(z)− 1

2
B(z2)+ · · ·

)

Multiset A = MSET(B) A(z) = exp

(
B(z)+ 1

2
B(z2)+ · · ·

)

Cycle A = CYC(B) A(z) = log
1

1− B(z)
+ 1

2
log

1

1− B(z2)
+ · · ·

2. The translation for sequences, powersets, multisets, and cycles constrained by the number of
components (Theorem I.3, p. 84).

SEQk(B) : B(z)k

PSET2(B) : B(z)2

2 − B(z2)
2

MSET2(B) : B(z)2

2 + B(z2)
2

CYC2(B) : B(z)2

2 + B(z2)
2

PSET3(B) : B(z)3

6 − B(z) B(z2)
2 + B(z3)

3

MSET3(B) : B(z)3

6 + B(z) B(z2)
2 + B(z3)

3

CYC3(B) : B(z)3

3 + 2B(z3)
3

PSET4(B) : B(z)4

24 −
B(z)2B(z2)

4 + B(z)B(z3)
3 + B(z2)2

8 − B(z4)
4

MSET4(B) : B(z)4

24 +
B(z)2B(z2)

4 + B(z)B(z3)
3 + B(z2)2

8 + B(z4)
4

CYC4(B) : B(z)4

4 + B(z2)2

4 + B(z4)
2 .

3. The additional constructions of pointing and substitution (Section I. 6).

Construction OGF

Pointing A = 2B A(z) = z d
dzB(z)

Substitution A = B ◦ C A(z) = B(C(z))

Figure I.18. A dictionary of constructions applicable tounlabelledstructures, to-
gether with their translation into ordinary generating functions (OGFs). (The labelled
counterpart of this table appears in Figure II.18, p. 148.)
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suitable perturbative theory will then lead us to systematic ways of quantifying pa-
rameters (not just counting sequences) of large combinatorial structures—this is the
subject of Chapter IX, in Part C of this book.

Bibliographic notes. Modern presentations of combinatorial analysis appear in the books of
Comtet [129] (a beautiful book largely example-driven), Stanley [552, 554] (a rich set with an
algebraic orientation), Wilf [608] (generating functions oriented), and Lando [400] (a neat mod-
ern introduction). An elementary but insightful presentation of the basic techniques appears in
Graham, Knuth, and Patashnik’s classic [307], a popular book with a highly original design. An
encyclopaedic reference is the book of Goulden & Jackson [303] whose descriptive approach
very much parallels ours.

The sources of the modern approaches to combinatorial analysis are hard to trace since
they are usually based on earlier traditions and informally stated mechanisms that were well-
mastered by practicing combinatorial analysts. (See for instance MacMahon’s book [428]Com-
binatory Analysisfirst published in 1917, the introduction of denumerant generating functions
by Pólya as presented in [489, 493], or the “domino theory” in [307, Sec. 7.1].) One source in re-
cent times is the Chomsky–Schützenberger theory of formal languages and enumerations [119].
Rota [518] and Stanley [550, 554] developed an approach which is largely based on partially
ordered sets. Bender and Goldman developed a theory of “prefabs”[42] whose purposes are
similar to the theory developed here. Joyal [359] proposed an especially elegant framework, the
“theory of species”, that addresses foundational issues in combinatorial theory and constitutes
the starting point of the superb exposition by Bergeron, Labelle, and Leroux [50]. Parallel (but
largely independent) developments by the “Russian School” are nicely synthesized in the books
by Sachkov [525, 526].

One of the reasons for the revival of interest in combinatorial enumerations and proper-
ties of random structures is the analysis of algorithms (a subject foundedin modern times by
Knuth [381]), in which the goal is to model the performance of computeralgorithms and pro-
grams. The symbolic ideas expounded here have been applied to the analysis of algorithms
in surveys [221, 598], with elements presented in our book [538]. Further implications of
the symbolic method in the area of the random generation of combinatorial structures appear
in [177, 228, 264, 456].

[. . . ] une propríet́e qui se traduit par unéegalit́e |A| = |B| est mieux explicit́ee lorsque l’on
construit une bijection entre deux ensemblesA et B, plutôt qu’en calculant les coefficients
d’un polyn̂ome dont les variables n’ont pas de significations particulières. La ḿethode des
fonctions ǵeńeratrices, qui a exercé ses ravages pendant un siècle, est tomb́ee en d́esúetude

pour cette raison.

(“[. . . ] a property, which is translated by an equality|A| = |B|, is understood better, when one constructs

a bijection between the two sets A and B, than when one calculates the coefficients of a polynomial whose

variables have no particular meaning. The method of generating functions, which has had devastating
effects for a century, has fallen into obsolescence, for this reason.”)

—CLAUDE BERGE [48, p. 10]
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Many objects of classical combinatorics present themselves naturally aslabelled struc-
tures, where atoms of an object (typically nodes in a graph or a tree) are distinguish-
able from one another by the fact that they bear distinctlabels. Without loss of gen-
erality, we may take the set from which labels are drawn to be the set of integers. For
instance, a permutation can be viewed as a linear arrangement of distinct integers, and
the classical cycle decomposition represents it as an unordered collection of circular
digraphs, whose vertices are themselves integers.

Operations on labelled structures are based on a special product: thelabelled
product that distributes labels between components. This operation is a natural ana-
logue of the cartesian product for plain unlabelled objects. The labelled product in
turn leads to labelled analogues of the sequence, set, and cycle constructions.

Labelled constructions translate overexponential generating functions—the trans-
lation schemes turn out to be even simpler than in the unlabelled case. At the same
time, these constructions enable us to take into account structures that are in some
ways combinatorially richer than their unlabelled counterparts of Chapter I, in par-
ticular with regard to order properties. Labelled constructions constitute the second
pillar of the symbolic method for combinatorial enumeration.

In this chapter, we examine some of the most important classes of labelled objects,
including surjections, set partitions, permutations, as well as labelled graphs, trees,
and mappings from a finite set into itself. Certain aspects ofwords can also be treated

1“This approach eliminates virtually all calculations.”Foata and Sch́utzenberger refer here to a “geo-
metric” approach to combinatorics, much akin to ours, that permits one to relate combinatorial properties
and special function identities.

95
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by this theory, a fact which has important consequences not only in combinatorics
itself but also in probability and statistics. In particular, labelled constructions of
words provide an elegant solution to two classical problems, the birthday problem and
the coupon collector problem, as well as several of their variants that have numerous
applications in other fields, including the analysis of hashing algorithms in computer
science.

II. 1. Labelled classes

Throughout this chapter, we consider combinatorial classes in the sense of Def-
inition I.1, p. 16: we deal exclusively with finite objects; acombinatorial classA is
a set of objects, with a notion of size attached, so that the number of objects of each
size inA is finite. To these basic concepts, we now add that the objectsarelabelled,
by which we mean that each atom carries with it a distinctive colour, or equivalently
an integer label, in such a way that all the labels occurring in an object are distinct.
Precisely:

Definition II.1. A weakly labelled objectof size n is a graph whose set of vertices
is a subset of the integers. Equivalently, we say that the vertices bear labels, with
the implied condition that labels are distinct integers from Z. An object of size n is
said to bewell-labelled, or, simply,labelled, if it is weakly labelled and, in addition,
its collection of labels is the complete integer interval[1 . .n]. A labelled classis a
combinatorial class comprised of well-labelled objects.

The graphs considered may be directed or undirected. In fact, when the need
arises, we shall take “object” in a broad sense to mean any kind of discrete structure
enriched by integer labels. Virtually all labelled classesconsidered in this book can
eventually be encoded as graphs of sorts, so that this extended use of the notion of
a labelled class is a harmless convenience. (See Section II.7, p. 147 for a brief dis-
cussion of alternative but logically equivalent frameworks for the notion of a labelled
class.)

ExampleII.1. Labelled graphs.By definition, alabelled graphis an undirected graph such that
distinct integer labels forming an interval of the form{1,2, . . . , n} are supported by vertices. A
particular labelled graph of size 4 is for instance

g=
4 2

31
,

which represents a graph whose vertices bear the labels{1,2, 3, 4} and whose set of edges is

{{1, 3}, {2,3}, {2,4}, {1, 4} } .
Only the graph structure (as defined by its adjacency structure, i.e., its set of edges) counts, so
that this is the same abstract graph as in the alternative physical representations

g=
3 2

41
,

1 4

23
.

However, this graph is different from either of
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There are altogetherG4 = 64 = 26 labelled graphs of size 4, i.e., comprising 4 nodes, in
agreement with the general formula (see p. 105 for details):Gn = 2n(n−1)/2. The labelled
graphs can be grouped into equivalence classes up to arbitrary permutation of the labels, which
determines thêG4 = 11 unlabelled graphs of size 4. Each unlabelled graph corresponds to a
variable number of labelled graphs: for instance, the totally disconnectedgraph (bottom, left)
and the complete graph (top right) correspond to 1 labelling only, while the linegraph (top left)
admits1

2 4! = 12 possible labellings.

Figure II.1 . Labelled versus unlabelled graphs for sizen = 4.

h =
3 2

14
, j =

4 2

13
,

since, for instance, 1 and 2 are adjacent inh and j , but not in g. Altogether, there are 3
different labelled graphs (namely,g, h, j ), that have the same “shape”, corresponding to the
single unlabelled quadrangle graph

Q =
• •

••
.

Figure II.1 lists all the 64 labelled graphs of size 4 as well as their 11 unlabelled counterparts
viewed as equivalence classes of labelled graphs when labels are ignored. . . . . . . . . . . . . . . . .�

In order to count labelled objects, we appeal to exponentialgenerating functions.

Definition II.2. Theexponential generating function(EGF) of a sequence(An) is the
formal power series

(1) A(z) =
∑

n≥0

An
zn

n !
.
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Theexponential generating function(EGF) of a classA is the exponential generating
function of the numbers An = card(An). Equivalently, the EGF of classA is

A(z) =
∑

n≥0

An
zn

n !
=
∑

α∈A

z|α|

|α| ! .

It is also said that the variable zmarkssize in the generating function.

With the standard notation for coefficients of series, the coefficient An in an exponen-
tial generating function is then recovered by2

An = n ! · [zn] A(z),

since [zn] A(z) = An/n! by the definition of EGFs and in accordance with the coeffi-
cient extractor notation, Equation (9), p. 19, in Chapter I.

Note that, as in the previous chapter, we adhere to a systematic naming convention
for generating functions of combinatorial structures. A labelled classA, its counting
sequence(An) (or (an)), and its exponential generating functionA(z) (or a(z)) are all
denoted by the same group of letters. As usual, combinatorially isomorphic classes
(Definition I.3, p. 19) are freely identified.

Neutral and atomic classes.As in the unlabelled universe (p. 24), it proves useful
to introduce a neutral (empty, null) objectǫ that has size 0 and bears no label at all, and
consider it as a special labelled object; aneutral classE is then by definitionE = {ǫ}
and is also denoted by boldface1. The (labelled)atomic classZ = {1 } is formed of a
unique object of size 1 that, being well-labelled, bears theinteger label1 . The EGFs
of the neutral class and the atomic class are, respectively,

E(z) = 1, Z(z) = z.

Permutations, urns, and circular graphs.These structures, described in Exam-
ples II.2–II.4, are undoubtedly the most fundamental ones for labelled enumeration.

ExampleII.2. Permutations.The classP of all permutations is prototypical of labelled classes.
Under the linear representation of permutations, where

σ =
(

1 2 · · · n
σ1 σ2 · · · σn

)

is represented as the sequence(σ1, σ2, . . . , σn), the classP is schematically

P =





ǫ , 1 , 1 − 2
2 − 1

,

1 − 2 − 3
2 − 3 − 1
3 − 1 − 2
2 − 1 − 3
1 − 3 − 2
3 − 2 − 1

, . . .





,

so thatP0 = 1, P1 = 1, P2 = 2, P3 = 6, etc. There, by definition, all the possible orderings
of the distinct labels are taken into account, so that the classP can be equivalently viewed as
the class of all labelled linear digraphs (with an implicit direction, from left to right, say, in the
representation). Accordingly, the classP of permutations has the counting sequencePn = n!

2Some authors prefer the notation [zn

n! ] A(z) to n![zn] A(z), which we avoid in this book. Indeed,
Knuth [376] argues convincingly that the variant notation is not consistent with many desirable properties
of a “good” coefficient operator (e.g., bilinearity).
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(argument: there aren choices of where to place the element 1, then(n− 1) possible positions
for 2, and so on). Thus the EGF ofP is

P(z) =
∑

n≥0

n!
zn

n!
=
∑

n≥0

zn = 1

1− z
.

Permutations, as they contain information relative to the ordering of their elements are essential
in many applications related to order statistics. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .�

ExampleII.3. Urns. The classU of totally disconnected graphs starts as

U =




ǫ , 1 , 1 2 ,

1 2

3
,

1 2

3 4
,

1 2
5

3 4

, . . .




.

The ordering between the labelled atoms doesnot matter, so that for eachn, there is onlyone
possible arrangement andUn = 1. The classU can be regarded as the class ofurns, where
an urn of sizen containsn distinguishable balls in an unspecified (and irrelevant) order. The
corresponding EGF is

U (z) =
∑

n≥0

1
zn

n!
= exp(z) = ez.

(The fact that the EGF of the constant sequence(1)n≥0 is the exponential function explains the
term “exponential generating function”.) It also proves convenient, inseveral applications, to
represent elements of an urn in a sorted sequence, which leads to an equivalent representation
of urns asincreasing linear graphs; for instance,

1 − 2 − 3 − 4 − 5

may be equivalently used to represent the urn of size 5. Though urns look trivial at first glance,
they are of particular importance as building blocks of complex labelled structures (e.g., alloca-
tions of various sorts), as we shall see shortly. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

Example II.4. Circular graphs. Finally, the class ofcircular graphs, in which cycles are
oriented in some conventional manner (say, positively here) is

C =
{

1 ,

1

2
,

1

2 3
,

1

3 2
, . . .

}
.

Circular graphs correspond bijectively tocyclic permutations. One hasCn = (n − 1)! (argu-
ment: a directed cycle is determined by the succession of elements that “follow” 1, hence by a
permutation ofn− 1 elements). Thus, one has

C(z) =
∑

n≥1

(n− 1)!
zn

n!
=
∑

n≥1

zn

n
= log

1

1− z
.

As we shall see in the next section, the logarithm is characteristic of circulararrangements of
labelled objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� II.1. Labelled trees.Let Un now be the number of labelled graphs withn vertices that are
connected and acyclic; equivalently,Un is the number of labelled unrooted non-plane trees. Let
Tn be the number of labelled rooted non-plane trees. The identityTn = nUn is elementary,
since all vertices in a labelled tree are distinguished by their labels and a rootcan be chosen inn
ways. In Section II. 5, p. 125, we shall prove thatUn = nn−2 andTn = nn−1. �
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II. 2. Admissible labelled constructions

We now describe a toolkit of constructions that make it possible to build complex
labelled classes from simpler ones. Combinatorial sum, also known as disjoint union
is taken in the sense of Chapter I, p. 25: it is the union of disjoint copies. Next, in
order to define a product adapted to labelled structures, we cannot rely on the carte-
sian product, since a pair of two labelled objects is not well-labelled (for instance the
label 1 would invariably appear repeated twice). Instead, we define a new operation,
the labelled product, which translates naturally into exponential generating functions.
From here, simple translation rules follow for labelled sequences, sets, and cycles.

Binomial convolutions. As a preparation to the translation of labelled construc-
tions, we first briefly review the effect of products over EGFs. Let a(z),b(z), c(z) be
EGFs, witha(z) =∑n anzn/n!, and so on. Thebinomial convolutionformula is:

(2) if a(z) = b(z) · c(z), then an =
n∑

k=0

(
n

k

)
bkcn−k,

where
(n
k

)
= n!/(k! (n−k)!) represents, as usual, a binomial coefficient. This formula

results from the usual product of formal power series,

an

n!
=

n∑

k=0

bk

k!
· cn−k

(n− k)!
and

(
n

k

)
= n!

k! (n− k)!
.

In the same vein, ifa(z) = b(1)(z)b(2)(z) · · · b(r )(z), then

(3) an =
∑

n1+n2+···+nr=n

(
n

n1,n2, . . . ,nr

)
b(1)n1

b(2)n2
· · ·b(r )nr

.

In Equation (3) there occurs the multinomial coefficient
(

n

n1,n2, . . . ,nr

)
= n!

n1!n2! · · · nr !
,

which counts the number of ways of splittingn elements intor distinguishable classes
of cardinalitiesn1, . . . ,nr . This property lies at the very heart of enumerative appli-
cations of binomial convolutions and EGFs.

II. 2.1. Labelled constructions. A labelled object may be relabelled.We only
considerconsistent relabellingsdefined by the fact that they preserve the order rela-
tions among labels.Then two dual modes of relabellings prove important:

— Reduction: For a weakly labelled structure of sizen, this operation reduces
its labels to the standard interval [1. .n] while preserving the relative order
of labels. For instance, the sequence〈7,3,9,2〉 reduces to〈3,2,4,1〉. We
useρ(α) to denote this canonical reduction of the structureα.

— Expansion: This operation is defined relative to a relabelling function e :
[1 . .n] 7→ Z that is assumed to be strictly increasing. To a well-labelled
objectα of sizen, it associates a weakly labelled objectα̃, in which label j
of α is replaced by labellede( j ). For instance,〈3,2,4,1〉 may expand as
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Figure II.2 . The 10≡
(5
2
)

elements in the labelled product of a triangle and a segment.

〈33,22,44,11〉, 〈7,3,9,2〉, and so on. We usee(α) to denote the result of
relabellingα by e.

These notions enable us to devise a product well suited to labelled objects, which was
originally formalized under the name of “partitional product” by Foata [265]. The
idea is simply to relabel objects, so as to avoid duplicate labels.

Given two labelled objectsβ ∈ B andγ ∈ C, their labelled product, or simply
product, denoted byβ ⋆γ , is a set comprised of the collection of well-labelled ordered
pairs(β ′, γ ′) that reduce to(β, γ ):

(4) β ⋆ γ := {(β ′, γ ′)
∣∣ (β ′, γ ′) is well-labelled, ρ(β ′) = β, ρ(γ ′) = γ }.

An equivalent form, via expansion of labels, is

(5) β⋆γ = {(e(β), f (γ )
∣∣ Im(e)∩Im( f ) = ∅, Im(e)∪Im( f ) = [ 1 . . |β| + |γ | ] },

wheree, f are relabelling functions with ranges Im(e), Im( f ), respectively.
Note that elements of a labelled product are, by construction, well-labelled. The

labelled product(β ⋆ γ ) of two elementsβ, γ of respective sizesn1,n2 is a set whose
cardinality is, withn = n1+ n2, expressed as

(
n1+ n2

n1,n2

)
≡
(

n

n1

)
,

since this quantity is the number of legal relabellings by expansion of the pair(β, γ ).
(Figure II.2 displays the

(5
2

)
= 10 elements of the labelled product of a particular

object of size 3 with another object of size 2.) The labelled product of classes is then
defined by the natural extension of operations to sets.

Definition II.3. Thelabelled productofB andC, denotedB⋆C, is obtained by forming
ordered pairs fromB × C and performing all possible order-consistent relabellings.
In symbols:

(6) B ⋆ C =
⋃

β∈B, γ∈C
(β ⋆ γ ).
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Equipped with this notion, we can build sequences, sets, andcycles, in a way
much similar to the unlabelled case. We proceed to do so and, at the same time,
establishadmissibility3 of the constructions.

Labelled product.WhenA = B ⋆ C, the corresponding counting sequences sat-
isfy the relation,

(7) An =
∑

|β|+|γ |=n

(|β| + |γ |
|β|, |γ |

)
B|β|C|γ | =

∑

n1+n2=n

(
n

n1,n2

)
Bn1Cn2.

The productBn1Cn2 keeps track of all the possibilities for theB andC components
and the binomial coefficient accounts for the number of possible relabellings, in accor-
dance with our earlier discussion. The binomial convolution property (7) then implies
admissibility

A = B ⋆ C H⇒ A(z) = B(z) · C(z),
with the labelled product simply translating into the product operation on EGFs.
� II.2. Multiple labelled products.The (binary) labelled product satisfies the associativity
property,

B ⋆ (C ⋆D) ∼= (B ⋆ C) ⋆D,
which serves to defineB ⋆ C ⋆ D. The corresponding EGF is the productB(z) · C(z) · D(z).
This rule generalizes tor factors with coefficients given by a multinomial convolution (3).�

k–sequences and sequences.The kth (labelled)powerof B is defined as(B ⋆
B · · ·B), with k factors equal toB. It is denoted SEQk(B) as it corresponds to forming
k–sequences and performing all consistent relabellings. The (labelled)sequenceclass
of B is denoted by SEQ(B) and is defined by

SEQ(B) := {ǫ} + B + (B ⋆ B)+ (B ⋆ B ⋆ B)+ · · · =
⋃

k≥0

SEQk(B).

The product relation for EGFs extends to arbitrary products(Note II.2 above), so that




A = SEQk(B) H⇒ A(z) = B(z)k

A = SEQ(B) H⇒ A(z) =
∞∑

k=0

B(z)k = 1

1− B(z)
,

where the last equation requiresB0 = ∅.
k–sets and sets.We denote by SETk(B) the class ofk–sets formed fromB. The

set class is defined formally, as in the case of the unlabelledmultiset: it is the quotient
SETk(B) := SEQk(B)/R, where the equivalence relationR identifies two sequences
when the components of one are a permutation of the components of the other (p. 26).
A “set” is like a sequence, but the order between components is immaterial. The
(labelled)setconstruction applied toB, denoted SET(B), is then defined by

SET(B) := {ǫ} + B + SET2(B)+ · · · =
⋃

k≥0

SETk(B).

3We recall that a construction is admissible (Definition I.5, p. 22) if the counting sequence of the result
only depends on the counting sequences of the operands. An admissible construction therefore induces a
well-defined transformation over exponential generating functions.
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A labelledk–set is associated with exactlyk! different sequences, since all its compo-
nents are distinguishable by their labels. Precisely, one may choose to identify each
component in a labelled set or sequence by its “leader”; that is, the value of its small-
est label. There is then a uniformk!–to–one correspondence betweenk–sequences
andk–sets, as illustrated in a particular case (k = 3) by the diagram below:

5

5

5

5

5

5

5

9

2

2
9

2
9

9
2

9
2

2
9

9
2

.

In figurative terms: the contents of a bag containingk different items can be laid on a
table ink! ways. Thus in terms of EGFs, one has, assumingB0 = ∅,




A = SETk(B) H⇒ A(z) = 1

k!
B(z)k

A = SET(B) H⇒ A(z) =
∞∑

k=0

1

k!
B(z)k = exp(B(z)).

In the unlabelled case, formulae are more complex, since components in multisets
are not necessarily different. Note also that the distinction between multisets and
powersets, which is meaningful for unlabelled structures is here immaterial, and we
have the unlabelled-to-labelled analogy: MSET,PSET ; SET.

k–cycles and cycles.We also introduce the class ofk–cycles, CYCk(B) and the
cycle class. The cycle class is defined formally, as in the unlabelled case, to be the
quotient CYCk(B) := SEQk(B)/S, where the equivalence relationS identifies two
sequences when the components of one are a cyclic permutation of the components
of the other (p. 26). A cycle is like a sequence whose components can be cyclically
shifted, so that there is now a uniformk–to–one correspondence betweenk–sequences
andk–cycles. In terms of EGFs, we have (assumingB0 = ∅ andk ≥ 1)





A = CYCk(B) H⇒ A(z) = 1

k
B(z)k

A = CYC(B) H⇒ A(z) =
∞∑

k=1

1

k
B(z)k = log

1

1− B(z)
,

since each cycle admits exactlyk representations as a sequence. In summary:

Theorem II.1 (Basic admissibility, labelled universe). The constructions of combina-
torial sum, labelled product, sequence, set, and cycle are all admissible. Associated
operators on EGFs are:

Sum: A = B + C H⇒ A(z) = B(z)+ C(z),

Product: A = B ⋆ C H⇒ A(z) = B(z) · C(z),
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Sequence: A = SEQ(B) H⇒ A(z) = 1

1− B(z)
,

— k components: A = SEQk(B) ≡ (B)⋆k H⇒ A(z) = B(z)k,

Set: A = SET(B) H⇒ A(z) = exp(B(z)),

— k components: A = SETk(B) H⇒ A(z) = 1

k!
B(z)k,

Cycle: A = CYC(B) H⇒ A(z) = log
1

1− B(z)
,

— k components: A = CYCk(B) H⇒ A(z) = 1

k
B(z)k .

Constructible classes.As in the previous chapter, we say that a class of labelled
objects is constructible if it admits a specification in terms of sums (disjoint unions),
the labelled constructions of product, sequence, set, cycle, and the initial classes de-
fined by the neutral structure of size 0 and the atomic classZ = {1 }. Regarding the
elementary classes discussed in Section II. 1, it is immediately recognized that

P = SEQ(Z), U = SET(Z), C = CYC(Z),

specify permutations, urns, and circular graphs, respectively. These classes are basic
building blocks out of which more complex objects can be constructed. In particular,
as we shall explain shortly (Section II. 3 and Section II. 4),set partitions (S), surjec-
tions (R), permutations under their cycle decomposition (P), and alignments(O) are
constructible classes corresponding to

Surjections: R ∼= SEQ(SET≥1(Z)) (sequences-of-sets);
Set partitions: S ∼= SET(SET≥1(Z)) (sets-of-sets);
Alignments: O ∼= SEQ(CYC(Z)) (sequences-of-cycles);
Permutations: P ∼= SET(CYC(Z)), (sets-of-cycles).

An immediate consequence of Theorem II.1 is the fact that a functional equation
for the EGF of a constructible labelled class can be computedautomatically.

Theorem II.2 (Symbolic method, labelled universe). The exponential generating func-
tion of a constructible class of labelled objects is a component of a system of generat-
ing function equations whose terms are built from1 and z using the operators

+ , × , Q( f ) = 1

1− f
, E( f ) = e f L( f ) = log

1

1− f
.

When we further allow restrictions in composite constructions, the operatorsf k (for
SEQk), f k/k! (for SETk), and f k/k (for CYCk) are to be added to the list.

II. 2.2. Labelled versus unlabelled enumeration.Any labelled classA has an
unlabelled counterpart̂A: objects inÂ are obtained from objects ofA by ignoring
the labels. This idea is formalized by identifying two labelled objects if there is an
arbitrary relabelling (not just an order-consistent one, as has been used so far) that
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transforms one into the other. For an object of sizen, each equivalence class contains
a priori between 1 andn! elements. Thus:

Proposition II.1. The counts of a labelled classA and its unlabelled counterpart̂A
are related by

(8) Ân ≤ An ≤ n! Ân or equivalently 1≤ An

Ân
≤ n!.

ExampleII.5. Labelled and unlabelled graphs.This phenomenon has been already encoun-
tered in our discussion of graphs (Figure II.1, p. 97). Let in general Gn andĜn be the number
of graphs of sizen in the labelled and unlabelled case, respectively. One finds forn = 1 . .15:

Ĝn (unlabelled) Gn (labelled)

1 1

2 2

4 8

11 64

34 1024

156 32768

1044 2097152

12346 268435456

274668 68719476736

12005168 35184372088832

1018997864 36028797018963968

165091172592 73786976294838206464

The sequence(Ĝn) constitutesEISA000088, which can be obtained by an extension of methods
of Chapter I, p. 85, specifically by Pólya theory [319, Ch. 4]. The sequence(Gn) is determined
directly by the fact that a graph ofn vertices can have each of the

(n
2
)

possible edges either
present or not, so that

Gn = 2(
n
2) = 2n(n−1)/2.

The sequence of labelled counts obviously grows much faster than its unlabelled counterpart.
We may then verify the inequality (8) in this particular case. The normalized ratios,

ρn := Gn/Ĝn, σn := Gn/(n!Ĝn),

are observed to be

n ρn = Gn/Ĝn σn = Gn/(n!Ĝn)

1 1.000000000 1.0000000000
2 1.000000000 0.5000000000
3 2.000000000 0.3333333333
4 5.818181818 0.2424242424
6 210.0512821 0.2917378918
8 21742.70663 0.5392536367
12 446946830.2 0.9330800361
16 0.2076885783· 1014 0.9926428522

From these data, it is natural to conjecture thatσn tends rapidly to 1 asn tends to infinity. This is
indeed a non-trivial fact originally established by Pólya (see Chapter 9 of Harary and Palmer’s
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book [319] dedicated to asymptotics of graph enumerations):

Ĝn ∼
1

n!
2(

n
2) = Gn

n!
.

In other words, “almost all” graphs of sizen should admit a number of labellings close ton!.
(Combinatorially, this corresponds to the fact that in a random unlabelled graph, with high
probability, all of the nodes can be distinguished via the adjacency structure of the graph; in
such a case, the graph has no non-trivial automorphism and the number of distinct labellings is
n! exactly.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

In contrast with the case of all graphs, whereĜn ∼ Gn/n!, urns (totally discon-
nected graphs) illustrate the other extreme situation where

Ûn = Un = 1.

These examples indicate that, beyond the general bounds of Proposition II.1, there
is no automatic way to translate between labelled and unlabelled enumerations. But
at least, if the classA is constructible, its unlabelled counterpart̂A can be obtained
by interpreting all the intervening constructions as unlabelled ones in the sense of
Chapter I (with SET 7→ MSET); both generating functions are computable, and their
coefficients can then be compared.
� II.3. Permutations and their unlabelled counterparts.The labelled class of permutations can
be specified byP = SEQ(Z); the unlabelled counterpart is the setP̂ of integers in unary nota-
tion, andP̂n ≡ 1, so thatPn = n! P̂n exactly. The specificationP ′ = SET(CYC(Z)) describes
sets of cycles and, in the labelled universe, one hasP ′ ∼= P; however, the unlabelled counter-
part ofP ′ is the clasŝP ′ 6= P̂ of integer partitions examined in Chapter I. [In the unlabelled
universe, there are special combinatorial isomorphisms such as SEQ≥1(Z) ∼= MSET≥1(Z) ∼=
CYC(Z). In the labelled universe, the identity SET◦CYC ≡ SEQ holds.] �

II. 3. Surjections, set partitions, and words

This section and the next are devoted to what could be termed level-two non-
recursive structures defined by the fact that they combine two constructions. In this
section, we discuss surjections and set partitions (Subsection II. 3.1), which constitute
labelled analogues of integer compositions and integer partitions in the unlabelled
universe. The symbolic method then extends naturally to words over a finite alpha-
bet, where it opens access to an analysis of the frequencies of letters composing words.
This in turn has useful consequences for the study of classical random allocation prob-
lems, of which the birthday paradox and the coupon collectorproblem stand out (Sub-
section II. 3.2). Figure II.3 summarizes some of the main enumeration results derived
in this section.

II. 3.1. Surjections and set partitions. We examine classes

R = SEQ(SET≥1(Z)) and S = SET(SET≥1(Z)),

corresponding to sequences-of-sets (R) and sets-of-sets (S), or equivalently, sequences
of urns and sets of urns, respectively. Such abstract specifications model basic objects
of discrete mathematics, namely surjections (R) and set partitions (S)
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Specification EGF coefficient

Surjections: R = SEQ(SET≥1(Z))
1

2− ez ∼ n!

2(log 2)n+1
(pp. 109, 259)

— r images R(r ) = SEQr (SET≥1(Z)) (e
z− 1)r r !

{
n

r

}
(p. 107)

Set partitions: S = SET(SET≥1(Z)) eez−1 ≈ n!

(logn)n
(pp. 109, 560)

— r blocks S(r ) = SETr (SET≥1(Z))
1

r !
(ez− 1)r

{
n

r

}
(p. 108)

— blocks≤ b S = SET(SET1 . .b(Z)) eeb(z)−1 ≈ nn(1−1/b) pp. 111, 568

Words: W = SEQr (SET(Z)) erz r n (p. 112)

Figure II.3 . Major enumeration results relative to surjections, set partitions, and words.

Surjections withr images. In elementary mathematics, a surjection from a setA
to a setB is a function fromA to B that assumes each valueat least once(an onto
mapping). Fix some integerr ≥ 1 and letR(r )

n denote the class of all surjections from
the set [1. .n] onto [1 . . r ] whose elements are also calledr –surjections. A particular
objectφ ∈ R

(5)
9 is depicted in Figure II.4.

We setR(r ) =⋃n R
(r )
n and proceed to compute the corresponding EGF,R(r )(z).

First, let us observe that anr –surjectionφ ∈ R
(r )
n is determined by theordered r–

tuple formed with the collection of all preimage sets,
(
φ−1(1), φ−1(2), . . . , φ−1(r )

)
,

themselves disjoint non-empty sets of integers that cover the interval [1. .n]. In the
case of the surjectionφ of Figure II.4, this alternative representation is

φ : [ {2}, {1,3}, {4,6,8}, {9}, {5,7} ] .
One has the combinatorial specification and EGF relation:

(9) R(r ) = SEQr (V), V = SET≥1(Z) H⇒ R(r )(z) = (ez− 1)r .

HereV ∼= U \ {ǫ} designates the class of urns (U) that are non-empty, with EGF
V(z) = ez−1. In words: “a surjection is a sequence of non-empty sets”. (Figure II.4).

Expression (9) does solve the counting problem for surjections. For smallr , one
finds

R(2)(z) = e2z− 2ez+ 1, R(3)(z) = e3z− 3e2z+ 3ez− 1,

whence, by expanding,

R(2)n = 2n − 2, R(3)n = 3n − 3 · 2n + 3 .

The general formula follows similarly from expanding ther th power in (9) by the
binomial theorem, and then extracting coefficients:

(10) R(r )n = n! [zn]
r∑

j=0

(
r

j

)
(−1) j e(r− j )z =

r∑

j=0

(
r

j

)
(−1) j (r − j )n.



108 II. LABELLED STRUCTURES AND EGFS

6

84
5

7
93

12

41 532

92 7531 864

1

2

2

1

3

2

4

3

5

5

6

3

7

5

8

3

9

4

1 2 3

1

4

2

5

3

6

4

7

5

8 9

[    {2},          {1,  3},          {4,  6,  8},           {9},          {5, 7}    ]

Figure II.4 . The decomposition of surjections as sequences-of-sets: a surjectionφ

given by its graph (top), its table (second line), and its sequence of preimages (bottom
lines).

� II.4. A direct derivation of the surjection EGF.One can verify the result provided by the
symbolic method by returning to first principles. The preimage of valuej by a surjection is a
non-empty set of some cardinalityn j ≥ 1, so that

(11) R(r )n =
∑

(n1,n2,...,nr )

(
n

n1,n2, . . . , nr

)
,

the sum being overn j ≥ 1, n1 + n2 + · · · + nr = n. Introduce the numbersVn := [[n ≥ 1]],
where [[P]] is Iverson’s bracket (p. 58). The formula (11) then assumes thesimple form

(12) R(r )n ≡
∑

n1,n2,...,nr

(
n

n1,n2, . . . , nr

)
Vn1Vn2 · · ·Vnr ,

where the summation now extends toall tuples(n1,n2, . . . , nr ). The EGF of theVn is V(z) =∑
Vnzn/n! = ez− 1. Thus the convolution relation (12) leads again to (9). �

Set partitions intor blocks. Let S(r )n denote the number of ways of partitioning
the set [1. .n] into r disjoint and non-empty equivalence classes also known asblocks.
We setS(r ) = ⋃n S

(r )
n ; the corresponding objects are calledset partitions(the latter

not to be confused with integer partitions examined in Section I. 3). The enumeration
problem for set partitions is closely related to that of surjections. Symbolically, a
partition is determined as a labelledsetof classes (blocks), each of which is a non-
empty urn. Thus, one has

(13) S(r ) = SETr (V), V = SET≥1(Z) H⇒ S(r )(z) = 1

r !

(
ez− 1

)r
.

The basic formula connecting the two counting sequencesR(r )n andS(r )n is

S(r )n =
1

r !
R(r )n ,
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in accordance with (9) and (13). This can also be interpreteddirectly: anr –partition is
associated with a group of exactlyr ! distinct r –surjections, two surjections belonging
to the same group iff one is obtained from the other by permuting the range values,
[1 . . r ].

The numbersS(r )n = n![zn]S(r )(z) are known as theStirling numbers of the sec-
ond kind, or better, theStirling partition numbers. They were already encountered in
connection with encodings by words (Chapter I, p. 62). Knuth, following Karamata,
advocated for theS(r )n the notation

{n
r

}
. From (10), an explicit form also exists:

(14) S(r )n ≡
{

n

r

}
= 1

r !

r∑

j=0

(
r

j

)
(−1) j (r − j )n.

The books by Graham, Knuth, and Patashnik [307] and Comtet [129] contain a thor-
ough discussion of these numbers; see also Appendix A.8:Stirling numbers, p. 735.

All surjections and set partitions.Define now the collection of all surjections
and all set partitions by

R =
⋃

r

R(r ), S =
⋃

r

S(r ).

ThusRn is the class of all surjections of [1. .n] onto any initial segment of the inte-
gers, andSn is the class of all partitions of the set [1. .n] into anynumber of blocks
(Figure II.5). Symbolically, one has

(15)
R = SEQ(SET≥1(Z)) H⇒ R(z) = 1

2− ez

S = SET(SET≥1(Z)) H⇒ S(z) = eez−1.

The numbersRn = n! [zn]R(z) are calledsurjection numbers(also, “preferential
arrangements”,EISA000670). The numbersSn are theBell numbers(EISA000110).
These numbers are easily determined by expanding the EGFs:

R(z) = 1+ z+ 3
z2

2!
+ 13

z3

3!
+ 75

z4

4!
+ 541

z5

5!
+ 4683

z6

6!
+ 47293

z7

7!
+ · · ·

S(z) = 1+ z+ 2
z2

2!
+ 5

z3

3!
+ 15

z4

4!
+ 52

z5

5!
+ 203

z6

6!
+ 877

z7

7!
+ · · · .

Explicit expressions as finite double sums result from summing Stirling numbers,

Rn =
∑

r≥0

r !

{
n

r

}
, and Sn =

∑

r≥0

{
n

r

}
,

where each Stirling number is itself a sum given by (14). Alternatively, single (though
infinite) sums arise from the expansions





R(z) = 1

2

1

1− 1
2ez

=
∞∑

ℓ=0

1

2ℓ+1
eℓz

and





S(z) = eez−1 = 1

e
eez

= 1

e

∞∑

ℓ=0

1

ℓ!
eℓz,
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Figure II.5 . A complete listing of all set partitions for sizesn = 1, 2, 3, 4. The
corresponding sequence 1, 1, 2, 5, 15, . . . is formed of Bell numbers,EISA000110.

from which coefficient extraction yields

Rn = 1

2

∞∑

ℓ=0

ℓn

2ℓ
and Sn = 1

e

∞∑

ℓ=0

ℓn

ℓ!
.

The formula for Bell numbers was found by Dobinski in 1877.
The asymptotic analysis of the surjection numbers (Rn) will be performed in Ex-

ample IV.7 (p. 259), as one of the very first illustrations of complex asymptotic meth-
ods (the meromorphic case); that of Bell’s partition numbers is best done by means of
the saddle-point method (Example VIII.6, p. 560). The asymptotic forms found are

(16) Rn ∼
n!

2

1

(log 2)n+1
and Sn ∼ n!

eer−1

r n
√

2πr (r + 1)er
,

wherer ≡ r (n) is the positive root of the equationrer = n + 1. One hasr (n) ∼
logn− log logn, so that

log Sn = n (logn− log logn− 1+ o(1)) .

Elementary derivations (i.e., based solely on real analysis) of these asymptotic forms
are also possible, a fact discussed briefly in Appendix B.6:Laplace’s method, p. 755.

The line of reasoning adopted for enumerating surjections viewed as sequences-
of-sets and partitions viewed as sets-of-sets yields a general result that is applicable to
a wide variety of constrained objects.

Proposition II.2. The classR(A,B) of surjections, where the cardinalities of the
preimages lie in A⊆ Z≥1 and the cardinality of the range belongs to B, has EGF

R(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a!
, β(z) =

∑

b∈B

zb.
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The classS(A,B) of set partitions with block sizes in A⊆ Z≥1 and with a number
of blocks that belongs to B has EGF

S(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a!
, β(z) =

∑

b∈B

zb

b!
.

Proof. One hasR(A,B) = SEQB(SETA(Z)) andS(A,B) = SETB(SETA(Z)), where,
in accordance with our general convention of p. 30, the notation K� specifies a con-
structionK with a number of components restricted to set�. �

Example II.6. Smallest and largest blocks in set partitions.Let eb(z) denote the truncated
exponential function,

eb(z) := 1+ z

1!
+ z2

2!
+ · · · + zb

b!
.

The EGFsS〈≤b〉(z) = exp(eb(z)−1) andS〈>b〉(z) = exp(ez−eb(z)) correspond to partitions
with all blocks of size≤ b and all blocks of size> b, respectively. . . . . . . . . . . . . . . . . . . . . . .�

� II.5. No singletons.The EGF of partitions without singleton parts iseez−1−z. The EGF of
“double surjections” (each preimage contains at least two elements) is(2+ z− ez)−1. �

Example II.7. Comtet’s square.An exercise in Comtet’s book [129, Ex. 13, p. 225] serves
beautifully to illustrate the power of the symbolic method. The question is to enumerate set
partitions such that a parity constraint is satisfied by the number of blocks and/or the number of
elements in each block. Then, the EGFs are tabulated as follows:

Set partitions: Any # of blocks Odd # of blocks Even # of blocks

any block sizes eez−1 sinh(ez− 1) cosh(ez− 1)

odd block sizes esinhz sinh(sinhz) cosh(sinhz)

even block sizes ecoshz−1 sinh(coshz− 1) cosh(coshz− 1)

The proof is a direct application of Proposition II.2, upon noting thatez, sinhz, coshz are the
characteristic EGFs ofZ≥0, 2Z≥0 + 1, and 2Z≥0 respectively. The sought EGFs are then
obtained by forming the compositions

{
exp
sinh
cosh

}
◦
{ −1+ exp

sinh
−1+ cosh

}
,

in accordance with general principles. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

II. 3.2. Applications to words and random allocations. Numerous enumera-
tion problems present themselves when analysing statistics on letters in words. They
find applications in the study ofrandom allocations[388] and the design ofhashing
algorithmsin computer science [378, 538]. Fix an alphabet

X = {a1,a2, . . . ,ar }
of cardinalityr , and letW be the class of all words over the alphabetX , the size of
a word being its length. A wordw ∈ Wn of lengthn can be viewed as a function
from [1 . .n] to [1 . . r ], namely the function associating to each position the value of
the corresponding letter (canonically numbered from 1 tor ) in the word. For instance,
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let X = {a,b, c,d,p,q, r} and take the letters ofX canonically numbered asa1 =
a, . . . ,a7 = r; for the wordw = “abracadabra”, the table giving the position-to-
letter mapping is




a b r a c a d a b r a
1 2 3 4 5 6 7 8 9 10 11
1 2 7 1 3 1 4 1 2 7 1


,

which is itself determined by its sequence of preimages:

a=a1︷ ︸︸ ︷
{1,4,6,8,11},

b=a2︷ ︸︸ ︷
{2,9},

c=a3︷︸︸︷
{5} ,

d=a4︷︸︸︷
{7} ,

p=a5︷︸︸︷
{ } ,

q=a6︷︸︸︷
{ } ,

r=a7︷ ︸︸ ︷
{3,10} .

This decomposition is the same as the one used for surjections; only, it is no longer
imposed that all preimages should be non-empty.

The decomposition based on preimages then gives, withU the class of all urns

(17) W ∼= U r ≡ SEQr (U) H⇒ W(z) = (ez)r = erz,

which yields backWn = r n, as was to be expected. In summary: words over anr –ary
alphabet are equivalent to functions into a set of cardinality r and are described by an
r -fold labelled product.

For the situation where restrictions are imposed on the number of occurrences of
letters, the decomposition (17) generalizes as follows.

Proposition II.3. LetW(A) denote the family of words over an alphabet of cardinal-
ity r , such that the number of occurrences of each letter liesin a set A. Then

(18) W(A)(z) = α(z)r where α(z) =
∑

a∈A

za

a!
.

The proof is a one-liner:W(A) ∼= SEQr (SETA(Z)). Although this result is tech-
nically a shallow consequence of the symbolic method, it hasseveral important appli-
cations in discrete probability, as we see next.

ExampleII.8. Restricted words.The EGF of words containing each letterat most btimes, and
that of words containing each lettermorethanb times are

(19) W〈≤b〉(z) = eb(z)
r , W〈>b〉(z) =

(
ez− eb(z)

)r
,

respectively. (Observe the analogy with Example II.6, p. 111.) Taking b = 1 in the first formula
gives the number ofn-arrangements ofr elements (i.e., of ordered combinations ofn elements
amongr possibilities),

(20) n! [zn](1+ z)r = n!

(
r

n

)
= r (r − 1) · · · (r − n+ 1),

as anticipated; takingb = 0, but now in the second formula, gives back the number ofr –
surjections. For generalb, the generating functions of (19) contain valuable information on the
least frequent and most frequent letter in random words. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�
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ExampleII.9. Random allocations (balls-in-bins model).Throw at randomn distinguishable
balls intom distinguishable bins. A particular realization is described by a word of lengthn
(balls are distinguishable, say, as numbers from 1 ton) over an alphabet of cardinalitym (rep-
resenting the bins chosen). Let Min and Max represent the size of the least filled and most filled
bins, respectively. Then4,

(21)
P{Max≤ b} = n! [zn]eb

( z

m

)m

P{Min > b} = n! [zn]
(
ez/m − eb

( z

m

))m
.

The justification of this formula relies on the easy identity

(22)
1

mn [zn] f (z) ≡ [zn] f
( z

m

)
,

and on the fact that a probability is determined as the ratio between the number of favorable
cases (given by (19)) and the total number of cases (mn). The formulae of (21) lend themselves
to evaluation using symbolic manipulations systems; for instance, withm = 100 andn = 200,
one finds, forP(Max= k):

k 2 4 5 6 7 8 9 12 15 20

P(Max= k) 10−55 1.4 · 10−3 0.17 0.46 0.26 0.07 0.01 9· 10−5 2 · 10−7 4 · 10−10

The valuesk = 5, 6, 7, 8 concentrate about 99% of the probability mass.
An especially interesting case is whenm andn are asymptotically proportional, that is,

n/m= α andα lies in a compact subinterval of(0,+∞). In that case, with probability tending
to 1 asn tends to infinity, one has

Min = 0, Max∼ logn

log logn
.

In other words, there are, almost surely, empty urns (in fact many ofthem, see Example III.10,
p. 177) and the most filled urn grows logarithmically in size (Example VIII.14, p. 598). Such
probabilistic properties are best established by complex analytic methods,whose starting point
is exact generating function representations such as (19) and (21). They form the core of the
reference book [388] by Kolchin, Sevastyanov, and Chistyakov. The resulting estimates are in
turn invaluable in the analysis of hashing algorithms [301, 378, 538] to which the balls-in-bins
model has been recognized to apply with great accuracy [425]. . . . .. . . . . . . . . . . . . . . . . . . . . .�

� II.6. Number of different letters in words.The probability that a random word of lengthn
over an alphabet of cardinalityr containsk different letters is (with

{n
k
}

a Stirling number)

p(r )n,k := 1

r n

(
r

k

){
n

k

}
k!

(Choosek letters amongr , then split then positions intok distinguished non-empty classes.)

The quantityp(r )n,k is also the probability that a random mapping from [1. .n] to [1 . . r ] has an
image of cardinalityk. �

� II.7. Arrangements.An arrangementof sizen is an ordered combination of (some) elements
of [1 . .n]. LetA be the class of all arrangements. Grouping together into an urn all the elements
notpresent in the arrangement shows that a specification and its companionEGF are [129, p. 75]

A ∼= U ⋆ P, U = SET(Z), P = SEQ(Z) H⇒ A(z) = ez

1− z
.

4We letP(E) represent the probability of an eventE andE(X) the expectation of the random vari-
ableX; cf Appendix A.3:Combinatorial probability, p. 727 and Appendix C.2:Random variables, p. 771.
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The counting sequenceAn =
∑n

k=0
n!
k! starts as 1, 2, 5, 16, 65, 326, 1957 (EISA000522). �

Birthday paradox and coupon collector problem.The next two examples show
applications of EGFs to two classical problems of probability theory, thebirthday
paradoxand thecoupon collector problem. They constitute a neat illustration of the
fact that the symbolic method may be used to analyse discreteprobabilistic models—
this theme is explored systematically in Chapter III, as regards exact results, and Chap-
ter IX, which is dedicated to asymptotic laws.

Assume that there is a very long line of persons ready to entera very large room
one by one. Each person is let in and declares her birthday upon entering the room.
How many people must enter in order to find two that have the same birthday? The
birthday paradox is the counterintuitive fact that on average a birthday collision is
likely to take place as early as at timen

.= 24. Dually, the coupon collector problem
asks for the average number of persons that must enter in order to exhaust all the
possible days in the year as birthdates. In this case, the average is the rather large
numbern′ .= 2364. (The term “coupon collection” refers to the situationwhere images
or coupons of various sorts are inserted in sales items and some premium is given to
those who succeed in gathering a complete collection.) The birthday problem and
the coupon collector problem are relative to a potentially infinite sequence of events;
however, the fact that the first birthday collision or the first complete collection occurs
at any fixed timen only involves finite events. The following diagram illustrates the
events of interest:

INJECTIVE SURJECTIVE

B (1st collision) C (complete collection)n = 0

n→+∞./////////////////////////////////

In other words, we seek the time at which injectivityceasesto hold (the first birthday
collision, B) and the time at which surjectivitybeginsto be satisfied (a complete col-
lection,C). In what follows, we consider a year withr days (readers from Earth may
taker = 365) and letX represent an alphabet withr letters (the days in the year).

ExampleII.10. Birthday paradox.Let B be the time of the first collision, which is a random
variable ranging between 2 andr + 1 (where the upper bound is derived from the pigeonhole
principle). A collision has not yet occurred at timen, if the sequence of birthdatesβ1, . . . , βn
has no repetition. In other words, the functionβ from [1 . .n] to X must be injective; equiva-
lently,β1, . . . , βn is ann-arrangement ofr objects. Thus, we have the fundamental relation

(23)

P {B > n} = r (r − 1) · · · (r − n+ 1)

r n

= n!

r n [zn](1+ z)r

= n! [zn]
(
1+ z

r

)r
,

where the second line repeats (20) and the third results from the series transformation (22).
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The expectation of the random variableB is elementarily

(24) E(B) =
∞∑

n=0

P {B > n} ,

this by virtue of a general formula valid for all discrete random variables(Appendix C.2:Ran-
dom variables, p. 771). From (23), line 1, this gives us a sum expressing the expectation:
namely,

(25) E(B) = 1+
r∑

n=1

r (r − 1) · · · (r − n+ 1)

r n .

For instance, withr = 365, one finds that the expectation is the rational number,

E(B) = 12681· · ·06674

5151· · ·0625
.= 24.61658,

where the denominator comprises as much as 864 digits.
An alternative form of the expectation is derived from the generating function involved

in (23), line 3. Let f (z) =∑n fnzn be an entire function with non-negative coefficients. Then
the formula

(26)
∞∑

n=0

fnn! =
∫ ∞

0
e−t f (t)dt,

a particular case of the Laplace transform, is valid provided either the sumor the integral on
the right converges. The proof is a direct consequence of the usualEulerian representation of
factorials,

n! =
∫ ∞

0
e−t tn dt.

Applying this principle to (24) with the probabilities given by (23) [third line], one finds

(27) E(B) =
∫ ∞

0
e−t

(
1+ t

r

)r
dt.

Asymptotic analysis can take up from here. The Laplace method5 can be applied either
in its version for discrete sums to (25) or in its version for integrals to (27);see Appendix B.6:
Laplace’s method, p. 755. Either way provides the estimate

(28) E(B) =
√
πr

2
+ 2

3
+ O(r−1/2),

asr tends to infinity. In particular, the approximation provided by the first two terms of (28),
for r = 365, is 24.61119, which only represents a relative error of 2· 10−4. See also a sample
realization in Figure II.6, corresponding tor = 20. The quantityE(B) is related to Ramanujan’s
Q-function (see Equation (50), p. 130) byE(B) = 1+ Q(r ), and we shall examine a global
way to deal with an entire class of related sums in Example VI.13, p. 416.

The interest of such integral representations based on generating functions is that they
arerobust: they adjust naturally to many kinds of combinatorial conditions. For instance, the
same calculations applied to (21) prove the following:the expected time necessary for the

5Knuth [377, Sec. 1.2.11.3] uses this calculation as a pilot example for (real) asymptotic analysis.
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0
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15

20

20 40 60 80

(letter chosen)

(time of arrival)

Figure II.6 . A sample realization of the “birthday paradox” and “coupon collection”
with an alphabet ofr = 20 letters. The first collision occurs at timeB = 6 and the
collection becomes complete at timeC = 87.

first occurrence of the event “b persons have the same birthday” has expectation given by the
integral

(29) I (r, b) :=
∫ ∞

0
e−t eb−1

(
t

r

)r
dt.

(The basic birthday paradox corresponds tob = 2.) The formula (29) was first derived by
Klamkin and Newman in 1967; their paper [366] shows in addition that

I (r, b) ∼
r→∞

b√
b! Ŵ

(
1+ 1

b

)
r 1−1/b,

once more a consequence of Laplace’s method. The asymptotic form evaluates to 82.87, for
r = 365 andb = 3, and the exact value of the expectation is 88.73891. Thus three-way
collisions also tend to occur much sooner than one might think, after about89 persons on
average. Globally, such developments illustrate the versatility of the symbolicapproach and its
applicability to many basic probabilistic problems (see also Subsection III. 6.1, p. 189). . . .�

� II.8. The probability distribution of time till a birthday collision.Elementary approximations
show that, for larger , and in the “central” regimen = t

√
r , one has

P(B > t
√

r ) ∼ e−t2/2, P(B = t
√

r ) ∼ 1√
r

te−t2/2.

The continuous probability distribution with densityte−t2/2 is called aRayleigh distribution.
Saddle-point methods (Chapter VIII) may be used to show that for the first occurrence of a

b-fold birthday collision:P(B > tr 1−1/b) ∼ e−tb/b! . �

ExampleII.11. Coupon collector problem.This problem is dual to the birthday paradox. We
ask for the first timeC whenβ1, . . . , βC contains all the elements ofX : that is, all the possible
birthdates have been “collected”. In other words, the event{C ≤ n}means the equality between
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sets,{β1, . . . , βn} = X . Thus, the probabilities satisfy

(30)

P {C ≤ n} = R(r )n

r n = r !
{n

r
}

r n

= n!

r n [zn]
(
ez− 1

)r

= n![zn]
(
ez/r − 1

)r
,

by our earlier enumeration of surjections. The complementary probabilities are then

P {C > n} = 1− P {C ≤ n} = n![zn]
(
ez−

(
ez/r − 1

)r )
.

An application of the Eulerian integral trick of (27) then provides a representation of the expec-
tation of the time needed for a full collection as

(31) E(C) =
∫ ∞

0

(
1− (1− e−t/r )r

)
dt.

A simple calculation (expand by the binomial theorem and integrate termwise)shows that

E(C) = r
r∑

j=1

(
r

j

)
(−1) j−1

j
,

which constitutes a first answer to the coupon collector problem in the form of an alternating
sum. Alternatively, in (31), perform the change of variablesv = 1− e−t/r , then expand and
integrate termwise; this process provides the more tractable form

(32) E(C) = r Hr ,

where Hr is the harmonic number:

(33) Hr = 1+ 1

2
+ 1

3
+ · · · + 1

r
.

Formula (32) is by the way easy to interpret directly6: one needs on average 1= r/r trials to
get the first day, thenr/(r − 1) to get a different day, etc.

Regarding (32), one has available the well-known formula (by comparing sums with inte-
grals or by Euler–Maclaurin summation),

Hr = logr + γ + 1

2r
+ O(r−2), γ

.= 0.57721 56649,

whereγ is known as Euler’s constant. Thus, the expected time for a full collection satisfies

(34) E(C) = r logr + γ r + 1

2
+ O(r−1).

Here the “surprise” lies in the nonlinear growth of the expected time for a full collection. For a
year on Earth,r = 365, the exact expected value is

.= 2364.64602 whereas the approximation
provided by the first three terms of (34) yields 2364.64625, representing a relative error of only
one in ten million.

As usual, the symbolic treatment adapts to a variety of situations, for instance, to multiple
collections. One finds:the expected time till each item (birthday or coupon) is obtained b times
is

J(r, b) =
∫ ∞

0

(
1−

(
1− eb−1(t/r )e

−t/r
)r )

dt.

6Such elementary derivations are very much problem specific: contrary to the symbolic method, they
do not usually generalize to more complex situations.
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This expression vastly generalizes the standard case (31), which corresponds tob = 1. From it,
one finds [454]

J(r,b) = r (logr + (b− 1) log logr + γ − log(b− 1)! + o(1)) ,

so that only a few more trials are needed in order to obtain additional collections. . . . . . . . . .�

� II.9. The little sister.The coupon collector has a little sister to whom he gives his duplicates.
Foata, Lass, and Han [266] show that the little sister misses on average Hr coupons when her
big brother first obtains a complete collection. �

� II.10. The probability distribution of time till a complete collection.The saddle-point method
(Chapter VIII) may be used to prove that, in the regimen = r logr + tr , we have

lim
t→∞P(C ≤ r logr + tr ) = e−e−t

.

This continuous probability distribution is known as adouble exponential distribution. For the
timeC(b) till a collection of multiplicityb, one has

lim
t→∞ P(C(b) < r logr + (b− 1)r log logr + tr ) = exp(−e−t/(b− 1)!),

a property known as the Erdős–Ŕenyi law, which finds application in the study of random
graphs [195]. �

Words as both labelled and unlabelled objects.What distinguishes a labelled
structure from an unlabelled one? There is nothing intrinsic there, and everything is in
the eye of the beholder—or rather in the type of construction adopted when modelling
a specific problem. Take the class of wordsW over an alphabet of cardinalityr . The
two generating functions (an OGF and an EGF respectively),

Ŵ(z) ≡
∑

n

Wnzn = 1

1− rz
and W(z) ≡

∑

n

Wn
zn

n!
= erz,

leading in both cases toWn = r n, correspond to two different ways of constructing
words: the first one directly as an unlabelled sequence, the other as a labelled power of
letter positions. A similar situation arises forr –partitions, for which we find as OGF
and EGF,

Ŝ(r )(z) = zr

(1− z)(1− 2z) · · · (1− rz)
and S(r )(z) = (ez− 1)r

r !
,

by viewing these either as unlabelled structures (an encoding via words of a regular
language in Section I. 4.3, p. 62) or directly as labelled structures (this chapter, p. 108).

� II.11. Balls switching chambers: the Ehrenfest2 model. Consider a system of two cham-
bersA andB (also classically called “urns”). There areN distinguishable balls, and, initially,
chamberA contains them all. At any instant12,

3
2, . . ., one ball is allowed to change from one

chamber to the other. LetE[ℓ]
n be the number of possible evolutions that lead to chamberA

containingℓ balls at instantn andE[ℓ](z) the corresponding EGF. Then

E[ℓ](z) =
(

N

ℓ

)
(coshz)ℓ(sinhz)N−ℓ, E[N](z) = (coshz)N ≡ 2−N(ez+ e−z)N .

[Hint: the EGFE[N] enumerates mappings where each preimage has an even cardinality.] In
particular the probability that urnA is again full at time 2n is

1

2N N2n

N∑

k=0

(
N

k

)
(N − 2k)2n.
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This famous model was introduced by Paul and Tatiana Ehrenfest [188] in 1907, as a simplified
model of heat transfer. It helped resolve the apparent contradictionbetween irreversibility in
thermodynamics (the caseN →∞) and recurrence of systems undergoing ergodic transforma-
tions (the caseN < ∞). See especially Mark Kac’s discussion [361]. The analysis can also
be carried out by combinatorial methods akin to those of weighted lattice paths: see Note V.25,
p. 336 and [304]. �

II. 4. Alignments, permutations, and related structures

In this section, we start by considering specifications built by piling up two con-
structions, sequences-of-cycles and sets-of-cycles respectively. They define a new
class of objects, alignments, while serving to specify permutations in a novel way.
(These specifications otherwise parallel surjections and set partitions.) In this context,
permutations are examined under their cycle decomposition, the corresponding enu-
meration results being the most important ones combinatorially (Subsection II. 4.1 and
Figure II.8, p. 123). In Subsection II. 4.2, we recapitulatethe meaning of classes that
can be defined iteratively by a combination of any two nested labelled constructions.

II. 4.1. Alignments and permutations. The two specifications under consider-
ation now are

(35) O = SEQ(CYC(Z)), and P = SET(CYC(Z)),

specifying new objects calledalignments(O) as well as an important decomposition
of permutations(P).

Alignments. An alignment is a well-labelled sequence of cycles. LetO be the
class of all alignments. Schematically, one can visualize an alignment as a collection
of directed cycles arranged in a linear order, somewhat likeslices of a sausage fastened
on a skewer:

The symbolic method provides,

O = SEQ(CYC(Z)) H⇒ O(z) = 1

1− log(1− z)−1
,

and the expansion starts as

O(z) = 1+ z+ 3
z2

2!
+ 14

z3

3!
+ 88

z4

4!
+ 694

z5

5!
+ · · · ,

but the coefficients (seeEIS A007840: “ordered factorizations of permutations into
cycles”) appear to admit no simple form.
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A permutation may be viewed as asetof cycles that are labelled circular digraphs. The diagram
shows the decomposition of the permutation

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
11 12 13 17 10 15 14 9 3 4 6 2 7 8 1 5 16

)
.

(Cycles here read clockwise andi is connected toσi by an edge in the graph.)

Figure II.7 . The cycle decomposition of permutations.

Permutations and cycles.From elementary mathematics, it is known that a per-
mutation admits a unique decomposition into cycles. Letσ be a permutation. Start
with any element, say 1, and draw a directed edge from 1 toσ(1), then continue con-
necting toσ 2(1), σ 3(1), and so on; a cycle containing 1 is obtained after at mostn
steps. If one repeats the construction, taking at each stagean element not yet con-
nected to earlier ones, the cycle decomposition of the permutationσ is obtained; see
Figure II.7. This argument shows that the class of sets-of-cycles (corresponding toP
in (35)) is isomorphic to the class of permutations as definedin Example II.2, p. 98:

(36) P ∼= SET(CYC(Z)) ∼= SEQ(Z).

This combinatorial isomorphism is reflected by the obvious series identity

P(z) = exp

(
log

1

1− z

)
= 1

1− z
.

The property that exp and log are inverse of one another is nothing but an analytic
reflex of the combinatorial fact that permutations uniquelydecompose into cycles!

As regards combinatorial applications, what is especiallyfruitful is the variety of
special results derived from the decomposition of permutations into cycles. By a use
of restricted construction that entirely parallels Proposition II.2, p. 110, we obtain the
following statement.

Proposition II.4. The classP(A,B) of permutations with cycle lengths in A⊆ Z>0
and with cycle number that belongs to B⊆ Z≥0 has EGF

P(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a
, β(z) =

∑

b∈B

zb

b!
.

� II.12. What about alignments?With similar notations, one has for alignments

O(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a
, β(z) =

∑

b∈B

zb,

corresponding toO(A,B) = SEQB(CYCA(Z)). �
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ExampleII.12. Stirling cycle numbers.The classP(r ) of permutations that decompose intor
cycles, satisfies

(37) P(r ) = SETr (CYC(Z)) H⇒ P(r )(z) = 1

r !

(
log

1

1− z

)r
.

The number of such permutations of sizen is then

(38) P(r )n = n!

r !
[zn]

(
log

1

1− z

)r
.

These numbers are fundamental quantities of combinatorial analysis. They are known as the
Stirling numbers of the first kind, or better, according to a proposal of Knuth, theStirling cycle
numbers. Together with the Stirling partition numbers, the properties of the Stirling cyclenum-
bers are explored in the book by Graham, Knuth, and Patashnik [307] where they are denoted
by
[n
r
]
. See Appendix A.8:Stirling numbers, p. 735. (Note that the number of alignments

formed withr cycles isr !
[n
r
]
.) As we shall see shortly (p. 140) Stirling numbers also surface in

the enumeration of permutations by their number of records.
It is also of interest to determine what happens regarding cycles in a random permutation of

sizen. Clearly, when the uniform distribution is placed over all elements ofPn, each particular
permutation has probability exactly 1/n!. Since the probability of an event is the quotient of
the number of favorable cases over the total number of cases, the quantity

pn,k := 1

n!

[
n

k

]

is the probability that a random element ofPn hask cycles. This probabilities can be effectively
determined for moderate values ofn from (38) by means of a computer algebra system. Here
are for instance selected values forn = 100:

k 1 2 3 4 5 6 7 8 9 10
pn,k 0.01 0.05 0.12 0.19 0.21 0.17 0.11 0.06 0.03 0.01

For this valuen = 100, we expect in a vast majority of cases the number of cycles to be in the
interval [1,10]. (The residual probability is only about 0.005.) Under this probabilistic model,
the mean is found to be about 5.18. Thus:A random permutation of size 100 has on average a
little more than 5 cycles; it rarely has more than 10 cycles.

Such procedures demonstrate a direct exploitation of symbolic methods.They do not
however tell us how the number of cycles could depend onn, asn increases unboundedly. Such
questions are to be investigated systematically in Chapters III and IX. Here, we shall content
ourselves with a brief sketch. First, form thebivariate generating function,

P(z, u) :=
∞∑

r=0

P(r )(z)ur ,

and observe that

P(z, u) =
∞∑

r=0

ur

r !

(
log

1

1− z

)r
= exp

(
u log

1

1− z

)
= (1− z)−u.

Newton’s binomial theorem then provides

[zn](1− z)−u = (−1)n
(−u

n

)
.
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In other words, a simple formula

(39)
n∑

k=0

[
n

k

]
uk = u(u+ 1)(u+ 2) · · · (u+ n− 1)

encodes precisely all the Stirling cycle numbers corresponding to a fixedvalue ofn. From here,
the expected number of cycles,µn := ∑

k kpn,k is easily found to be expressed in terms of
harmonic numbers (use logarithmic differentiation of (39)):

µn = Hn ≡ 1+ 1

2
+ · · · + 1

n
.

In particular, one hasµ100 ≡ H100
.= 5.18738. In general:The mean number of cycles in a

random permutation of size n grows logarithmically with n,µn ∼ logn. . . . . . . . . . . . . . . . . .�

Example II.13. Involutions and permutations without long cycles.A permutationσ is an
involution if σ2 = Id, with Id the identity permutation. Clearly, an involution can have only
cycles of sizes 1 and 2. The classI of all involutions thus satisfies

(40) I = SET(CYC1,2(Z)) H⇒ I (z) = exp

(
z+ z2

2

)
.

The explicit form of the EGF lends itself to expansion,

In =
⌊n/2⌋∑

k=0

n!

(n− 2k)!2kk!
,

which solves the counting problem explicitly. Apairing is an involution without a fixed point.
In other words, only cycles of length 2 are allowed, so that

J = SET(CYC2(Z)) H⇒ J(z) = ez2/2, J2n = 1 · 3 · 5 · · · (2n− 1).

(The formula forJn, hence that ofIn, can be checked by a direct reasoning.)
Generally, the EGF of permutations, all of whose cycles (in particular the largest one) have

length at most equal tor , satisfies

B(r )(z) = exp




r∑

j=1

z j

j


 .

The numbersb(r )n = [zn]B(r )(z) satisfy the recurrence

(n+ 1)b(r )n+1 = (n+ 1)b(r )n − b(r )n−r ,

by which they can be computed quickly, while they can be analysed asymptotically by means of
the saddle-point method (Chapter VIII, p. 568). This gives access tothe statistics of the longest
cycle in a permutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleII.14. Derangements and permutations without short cycles.Classically, a derange-
ment is defined as a permutation without fixed points, i.e.,σi 6= i for all i . Given an integer
r , anr –derangement is a permutation all of whose cycles (in particular the shortest one) have
length larger thanr . LetD(r ) be the class of allr –derangements. A specification is

(41) D(r ) = SET(CYC>r (Z)),
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Specification EGF coefficient

Permutations: SEQ(Z)
1

1− z
n! (p. 104)

r cycles SETr (CYC(Z))
1

r !

(
log

1

1− z

)r [
n

r

]
(p. 121)

involutions SET(CYC1 . .2(Z)) ez+z2/2 ≈ nn/2 (pp. 122, 558)

all cycles≤ r SET(CYC1 . . r (Z)) exp

(
z

1
+ · · · + zr

r

)
≈ n1−1/r (pp. 122, 568)

derangements SET(CYC>1(Z))
e−z

1− z
∼ n!e−1 (pp. 122, 261)

all cycles> r SET(CYC>r (Z))

exp
(
− z

1 − · · · −
zr

r

)

1− z
∼ n!e−Hr (pp. 123, 261)

Figure II.8 . A summary of permutation enumerations.

the corresponding EGF then being

(42) D(r )(z) = exp


∑

j>r

z j

j


 =

exp(−∑r
j=1

z j

j )

1− z
.

For instance, whenr = 1, a direct expansion yields

D(1)n

n!
= 1− 1

1!
+ 1

2!
− · · · + (−1)n

n!
,

a truncation of the series expansion of exp(−1) that converges rapidly toe−1. Phrased differ-
ently, this becomes a famous combinatorial problem with a pleasantly quaintnineteenth-century
formulation [129]: “A numbern of people go to the opera, leave their hats on hooks in the cloak-
room and grab them at random when leaving; the probability that nobody gets back his own hat
is asymptotic to 1/e, which is nearly 37%.” The usual proof uses inclusion–exclusion; seeSec-
tion III. 7, p. 198 for both the classical and symbolic arguments. (It is asign of changing times
that Motwani and Raghavan [451, p. 11] describe the problem as one of sailors that return to
their ship in a state of inebriation and choose random cabins to sleep in.)

For the generalized derangement problem, we have, for any fixedr (with Hr a harmonic
number, p. 117),

(43)
D(r )n

n!
∼ e−Hr ,

which is proved easily by complex asymptotic methods (Chapter IV, p. 261). . . . . . . . . . . . . .�

Similar to several other structures that we have been considering previously, per-
mutation allow for transparent connections between structural constraints and the
forms of generating functions. The major counting results encountered in this sec-
tion are summarized in Figure II.8.



124 II. LABELLED STRUCTURES AND EGFS

� II.13. Permutations such thatσ f = Id. Such permutations are “roots of unity” in the
symmetric group. Their EGF is

exp


∑

d | f

zd

d


 ,

where the sum extends to all divisorsd of f . �

� II.14. Parity constraints in permutations.The EGFs of permutations having only even-size
cycles or odd-size cycles (O(z)) are, respectively,

E(z) = exp

(
1

2
log

1

1− z2

)
= 1√

1− z2
, O(z) = exp

(
1

2
log

1+ z

1− z

)
=
√

1+ z

1− z
.

One findsE2n = (1 · 3 · 5 · · · (2n− 1))2 andO2n = E2n, O2n+1 = (2n+ 1)E2n.
The EGFs of permutations having an even number of cycles (E∗(z)) and an odd number

of cycles (O∗(z)) are, respectively,

E∗(z) = cosh

(
log

1

1− z

)
= 1

2

1

1− z
+ 1− z

2
, O∗(z) = sinh

(
log

1

1− z

)
= 1

2

1

1− z
+ z− 1

2
,

so that parity of the number of cycles is evenly distributed among permutations of sizen as soon
asn ≥ 2. The generating functions obtained in this way are analogous to the ones appearing in
the discussion of “Comtet’s square”, p. 111. �

� II.15. A hundred prisoners I.This puzzle originates with a paper of Gál and Miltersen [275,
612]. A hundred prisoners, each uniquely identified by a number between 1 and 100, have
been sentenced to death. The director of the prison gives them a last chance. He has a cabinet
with 100 drawers (numbered 1 to 100). In each, he’ll place at randoma card with a prisoner’s
number (all numbers different). Prisoners will be allowed to enter the room one after the other
and open, then close again, 50 drawers of their own choosing, but will not in any way be allowed
to communicate with one another afterwards. The goal of each prisoneris to locate the drawer
that contains his own number. Ifall prisoners succeed, then they will all be spared; if at least
one fails, they will all be executed.

There are two mathematicians among the prisoners. The first one, a pessimist, declares
that their overall chances of success are only of the order of 1/2100 .= 8 · 10−31. The second
one, a combinatorialist, claims he has a strategy for the prisoners, which has a greater than 30%
chance of success. Who is right? [Note III.10, p. 176 provides a solution, but our gentle reader
is advised to reflect on the problem for a few moments, before she jumpsthere.] �

II. 4.2. Second-level structures.Consider the three basic constructors of labelled
sequences (SEQ), sets (SET), and cycles (CYC). We can play the formal game of ex-
amining what the various combinations produce as combinatorial objects. Restricting
attention to superpositions of two constructors (an external one applied to an internal
one) gives nine possibilities summarized by the table of Figure II.9.

The classes of surjections, alignments, set partitions, and permutations appear
naturally as SEQ◦SET, SEQ◦CYC, SET◦SET, and SET◦CYC (top right corner).
The others represent essentially non-classical objects. The case of the classL =
SEQ(SEQ≥1(Z)) describes objects that are (ordered) sequences of linear graphs; this
can be interpreted as permutations with separators inserted, e.g, 53|264|1, or alterna-
tively as integer compositions with a labelling superimposed, so thatLn = n! 2n−1.
The classF = SET(SEQ≥1(Z)) corresponds to unordered collections of permuta-
tions; in other words, “fragments” are obtained by breakinga permutation into pieces
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ext.\int. SEQ≥1 SET≥1 CYC

SEQ

Labelled compositions (L)

SEQ◦SEQ

1− z

1− 2z

Surjections (R)

SEQ◦SET

1

2− ez

Alignments (O)

SEQ◦CYC

1

1− log(1− z)−1

SET

Fragmented permutations (F )

SET◦SEQ

ez/(1−z)

Set partitions (S)

SET◦SET

eez−1

Permutations (P)

SET◦CYC

1

1− z

CYC

Supernecklaces (S I )

CYC ◦SEQ

log
1− z

1− 2z

Supernecklaces (S I I )

CYC ◦SET

log(2− ez)−1

Supernecklaces (S I I I )

CYC ◦CYC

log
1

1− log(1− z)−1

Figure II.9 . The nine second-level structures.

(pieces must be non-empty for definiteness). The interesting EGF is

F(z) = ez/(1−z) = 1+ z+ 3
z2

2!
+ 13

z3

3!
+ 73

z4

4!
+ · · · ,

(EISA000262: “sets of lists”). The corresponding asymptotic analysis serves to illus-
trate an important aspect of the saddle-point method in Chapter VIII (p. 562). What we
termed “supernecklaces” in the last row represents cyclic arrangements of composite
objects existing in three brands.

All sorts of refinements, of which Figures II.8 and II.9 may give an idea, are
clearly possible. We leave to the reader’s imagination the task of determining which
among the level 3 structures may be of combinatorial interest. . .
� II.16. A meta-exercise: Counting specifications of level n.The algebra of constructions sat-
isfies the combinatorial isomorphism SET(CYC(X )) ∼= SEQ(X ) for all X . How many different
terms involvingn constructions can be built from three symbols CYC,SET,SEQ satisfying a
semi-group law (“◦”) together with the relation SET◦CYC = SEQ? This determines the num-
ber of specifications of leveln. [Hint: the OGF is rational as normal forms correspond to words
with an excluded pattern.] �

II. 5. Labelled trees, mappings, and graphs

In this section, we considerlabelled treesas well as other important structures that
are naturally associated with them. As in the unlabelled case considered in Section I. 6,
p. 83, the corresponding combinatorial classes are inherently recursive, since a tree is
obtained by appending a root to a collection (set or sequence) of subtrees. From here,
it is possible to build the “functional graphs” associated to mappingsfrom a finite set
to itself—these decompose as sets of connected components that are cycles of trees.
Variations of these construction finally open up the way to the enumeration ofgraphs
having a fixed excess of the number of edges over the number of vertices.
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67

( 3, 2, 5, 1, 7, 4, 6)

Figure II.10 . A labelled plane tree is determined by an unlabelled tree (the “shape”)
and a permutation of the labels 1, . . . , n.

II. 5.1. Trees. The trees to be studied here are labelled, meaning that nodesbear
distinct integer labels. Unless otherwise specified, they are rooted, meaning as usual
that one node is distinguished as the root. Labelled trees, like their unlabelled coun-
terparts, exist in two varieties:(i ) plane trees where an embedding in the plane is
understood (or, equivalently, subtrees dangling from a node are ordered, say, from
left to right); (i i ) non-plane trees where no such embedding is imposed (such trees
are then nothing but connected undirected acyclic graphs with a distinguished root).
Trees may be further restricted by the additional constraint that the nodes’ outdegrees
should belong to a fixed set� ⊆ Z≥0 where� ∋ 0.

Plane labelled trees.We first dispose of the plane variety of labelled trees. Let
A be the set of (rooted labelled) plane trees constrained by�. This family is

A = Z ⋆ SEQ�(A),

whereZ represents the atomic class consisting of a single labellednode:Z = {1}.
The sequence construction appearing here reflects the planar embedding of trees, as
subtrees stemming from a common root are ordered between themselves. Accord-
ingly, the EGFA(z) satisfies

A(z) = zφ(A(z)) where φ(u) =
∑

ω∈�
uω.

This is exactly the same equation as the one satisfied by theordinary GF of �–
restrictedunlabelledplane trees (see Proposition I.5, p. 66). Thus,1

n! An is the number
of unlabelled trees. In other words:in the plane rooted case, the number of labelled
trees equals n! times the corresponding number of unlabelled trees.As illustrated by
Figure II.10, this is easily understood combinatorially: each labelled tree can be de-
fined by its “shape” that is an unlabelled tree and by the sequence of node labels where
nodes are traversed in some fixed order (preorder, say). In a way similar to Proposi-
tion I.5, p. 66, one has, by Lagrange inversion (Appendix A.6: Lagrange Inversion,
p. 732):

An = n![zn] A(z) = (n− 1)![un−1]φ(u)n.
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Figure II.11 . There areT1 = 1, T2 = 2, T3 = 9, and in generalTn = nn−1 Cayley
trees of sizen.

This simple analytic–combinatorial relation enables us totranspose all of the enumer-
ation results of Subsection I. 5.1, p. 65, to plane labelled trees, upon multiplying the
evaluations byn!, of course. In particular, the total number of “general” plane labelled
trees (with no degree restriction imposed, i.e.,� = Z≥0) is

n! × 1

n

(
2n− 2

n− 1

)
= (2n− 2)!

(n− 1)!
= 2n−1 (1 · 3 · · · (2n− 3)) .

The corresponding sequence starts as 1,2,12,120,1680 and isEISA001813.

Non-plane labelled trees.We next turn to non-plane labelled trees (Figure II.11)
to which the rest of this section will be devoted. The classT of all such trees is
definable by a symbolic equation, which provides an implicitequation satisfied by the
EGF:

(44) T = Z ⋆ SET(T ) H⇒ T(z) = zeT(z).

There the set construction translates the fact that subtrees stemming from the root are
not ordered between themselves. From the specification (44), the EGFT(z) is defined
implicitly by the “functional equation”

(45) T(z) = zeT(z).

The first few values are easily found, for instance by the method of indeterminate
coefficients:

T(z) = z+ 2
z2

2!
+ 9

z3

3!
+ 64

z4

4!
+ 625

z5

5!
+ · · · .

As suggested by the first few coefficients(9= 32,64 = 43,625 = 54), the general
formula is

(46) Tn = nn−1

which is established (as in the case of plane unlabelled trees) by Lagrange inversion:

(47) Tn = n! [zn]T(z) = n!

(
1

n
[un−1](eu)n

)
= nn−1.

The enumeration resultTn = nn−1 is a famous one, attributed to the prolific
British mathematician Arthur Cayley (1821–1895) who had keen interest in com-
binatorial mathematics and published altogether over 900 papers and notes. Con-
sequently, formula (46) given by Cayley in 1889 is often referred to as “Cayley’s
formula” and unrestricted non-plane labelled trees are often called “Cayley trees”.
See [67, p. 51] for a historical discussion. The functionT(z) is also known as the



128 II. LABELLED STRUCTURES AND EGFS

(Cayley) “tree function”; it is a close relative of theW-function [131] defined implic-
itly by WeW = z, which was introduced by the Swiss mathematician Johann Lambert
(1728–1777) otherwise famous for first proving the irrationality of the numberπ .

A similar process gives the number of (non-plane rooted) trees where all out-
degrees of nodes are restricted to lie in a set�. This corresponds to the specification

T (�) = Z ⋆ SET�(T
(�)) H⇒ T (�)(z) = zφ(T (�)(z)), φ(u) :=

∑

ω∈�

uω

ω!
.

What the last formula involves is the “exponential characteristic” of the degree se-
quence (as opposed to the ordinary characteristic, in the planar case). It is once more
amenable to Lagrange inversion. In summary:

Proposition II.5. The number of rooted non-plane trees, where all nodes have outde-
gree in�, is

T (�)n = (n− 1)![un−1](φ(u))n where φ(u) =
∑

ω∈�

uω

ω!
.

In particular, when all node degrees are allowed, i.e., when� ≡ Z≥0, the number of
trees is Tn = nn−1 and its EGF is the Cayley tree function satisfying T(z) = zeT(z).

As in the unlabelled case (p. 66), we refer to a class of labelled trees defined by
degree restrictions as asimple variety of trees: its EGF satisfies an equation of the
form y = zφ(y).
� II.17. Prüfer’s bijective proofs of Cayley’s formula.The simplicity of Cayley’s formula calls
for a combinatorial explanation. The most famous one is due to Prüfer (in 1918). It establishes
as follows a bijective correspondence between unrooted Cayley trees whose number isnn−2 for
sizen and sequences(a1, . . . ,an−2) with 1 ≤ a j ≤ n for each j . Given an unrooted treeτ ,
remove the endnode (and its incident edge) with the smallest label; leta1 denote the label of
the node that was joined to the removed node. Continue with the pruned treeτ ′ to geta2 in a
similar way. Repeat the construction of the sequence until the tree obtainedonly consists of a
single edge. For instance:

1

3

7

4 8
2

5

6

−→ (4,8, 4, 8, 8, 4).

It can be checked that the correspondence is bijective; see [67, p. 53] or [445, p. 5]. �

� II.18. Forests.The number of unorderedk–forests (i.e.,k–sets of trees) is

F(k)n = n![zn]
T(z)k

k!
= (n− 1)!

(k− 1)!
[un−k](eu)n =

(
n− 1

k− 1

)
nn−k,

as follows from B̈urmann’s form of Lagrange inversion, relative to powers (p. 66). �

� II.19. Labelled hierarchies. The classL of labelled hierarchiesis formed of trees whose
internal nodes are unlabelled and are constrained to have outdegree larger than 1, while their
leaves have labels attached to them. As for other labelled structures, size isthe number of labels
(internal nodes do not contribute). Hierarchies satisfy the specification(compare with p. 72)

L = Z + SET≥2(L), H⇒ L = z+ eL − 1− L .
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Figure II.12 . A functional graph of sizen = 26 associated to the mappingϕ such
thatϕ(1) = 16,ϕ(2) = ϕ(3) = 11,ϕ(4) = 23, and so on.

This happens to be solvable in terms of the Cayley function:L(z) = T(1
2ez/2−1/2) + z

2 −
1
2 . The first few values are 0, 1,4, 26, 236, 2752 (EISA000311): these numbers count phylo-
genetic trees, used to describe the evolution of a genetically-related groupof organisms, and
they correspond to Schröder’s “fourth problem” [129, p. 224]. The asymptotic analysis is done
in Example VII.12, p. 472.

The class of binary (labelled) hierarchies defined by the additional factthat internal nodes
can have degree 2 only is expressed by

M = Z + SET2(M) H⇒ M(z) = 1−
√

1− 2z and Mn = 1 · 3 · · · (2n− 3),

where the counting numbers are now, surprisingly perhaps, the odd factorials. �

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or
“functions”) from [1. .n] to itself. A mapping f ∈ [1 . .n] 7→ [1 . .n] can be repre-
sented by a directed graph over the set of vertices [1. .n] with an edge connectingx
to f (x), for all x ∈ [1 . .n]. The graphs so obtained are calledfunctional graphsand
they have the characteristic property that the outdegree ofeach vertex is exactly equal
to 1.

Mappings and associated graphs.Given a mapping (or function)f , upon start-
ing from any pointx0, the succession of (directed) edges in the graph traverses the
vertices corresponding to iterated values of the mapping,

x0, f (x0), f ( f (x0)), . . . .

Since the domain is finite, each such sequence must eventually loop back on itself.
When the operation is repeated, starting each time from an element not previously hit,
the vertices group themselves into (weakly connected) components. This leads to a
valuable characterization of functional graphs (Figure II.12): a functional graph is a
set of connected functional graphs; a connected functionalgraph is a collection of
rooted trees arranged in a cycle.(This decomposition is seen to extend the decom-
position of permutations into cycles, p. 120.)
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Thus, withT being as before the class of all Cayley trees, and withK the class of
all connected functional graphs, we have the specification:

(48)





F = SET(K)

K = CYC(T )

T = Z ⋆ SET(T )

H⇒





F(z) = eK (z)

K (z) = log
1

1− T(z)

T(z) = zeT(z).

What is especially interesting here is a specification binding three types of related
structures. From (48), the EGFF(z) is found to satisfyF = (1− T)−1. It can be
checked from this, by Lagrange inversion once again (p. 733), that we have

(49) Fn = nn,

as was to be expected (!) from the origin of the problem. More interestingly, Lagrange
inversion also gives the number of connected functional graphs (expand log(1−T)−1

and recover coefficients by Bürmann’s form, p. 66):

(50) Kn = nn−1Q(n) where Q(n) := 1+ n− 1

n
+ (n− 1)(n− 2)

n2
+ · · · .

The quantityQ(n) that appears in (50) is a famous one that surfaces in many prob-
lems of discrete mathematics (including the birthday paradox, Equation (27), p. 115).
Knuth has proposed naming it “Ramanujan’sQ-function” as it already appears in the
first letter of Ramanujan to Hardy in 1913. The asymptotic analysis is elementary
and involves developing a continuous approximation of the general term and approx-
imating the resulting Riemann sum by an integral: this is an instance of the Laplace
method for sums briefly explained in Appendix B.6:Laplace’s method, p. 755 (see
also [377, Sec. 1.2.11.3] and [538, Sec. 4.7]). In fact, veryprecise estimates come
out naturally from an analysis of the singularities of the EGF K (z), as we shall see in
Chapters VI (p. 416) and VII (p. 449). The net result is

Kn ∼ nn

√
π

2n
,

so that a fraction about 1/
√

n of all the graphs consist of a single component.

Constrained mappings.As is customary with the symbolic method, basic con-
structions open the way to a large number of related countingresults (Figure II.13).
First, by an adaptation of (48), the mappings without fixed points, (∀x : f (x) 6= x) and
those without 1,2–cycles, (additionally,∀x : f ( f (x)) 6= x), have EGFs, respectively,

e−T(z)

1− T(z)
,

e−T(z)−T2(z)/2

1− T(z)
.

The first term is consistent with what a direct count yields, namely(n− 1)n, which is
asymptotic toe−1nn, so that the fraction of mappings without fixed point is asymptotic
to e−1. The second one lends itself easily to complex asymptotic methods that give

n![zn]
e−T−T2/2

1− T
∼ e−3/2nn,
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EGF coefficient

Mappings:
1

1− T
nn (p. 130)

connected log
1

1− T
∼ nn

√
π

2n
(pp. 130, 449)

no fixed-point
e−T

1− T
∼ e−1nn (p. 130)

idempotent ezez ≈ nn

(logn)n
(pp. 131, 571)

partial
eT

1− T
∼ e nn (p. 132)

Figure II.13 . A summary of various counting results relative to mappings, withT ≡
T(z) the Cayley tree function. (Bijections, surjections, involutions, and injectionsare
covered by previous constructions.)

and the proportion is asymptotic toe−3/2. These two particular estimates are of
the same form as that found for permutations (the generalized derangements, Equa-
tion (43)). Such facts are not quite obvious by elementary probabilistic arguments, but
they are neatly explained by the singular theory of combinatorial schemas developed
in Part B of this book.

Next, idempotent mappings, i.e., ones satisfyingf ( f (x)) = f (x) for all x, cor-
respond toI ∼= SET(Z ⋆ SET(Z)), so that

I (z) = ezez
and In =

n∑

k=0

(
n

k

)
kn−k.

(The specification translates the fact that idempotent mappings can have only cycles
of length 1 on which are grafted sets of direct antecedents.)The latter sequence
is EIS A000248, which starts as 1,1,3,10,41,196,1057. An asymptotic estimate can
be derived either from the Laplace method or, better, from the saddle-point method
expounded in Chapter VIII (p. 571).

Several analyses of this type are of relevance to cryptography and the study of
random number generators. For instance, the fact that a random mapping over [1. .n]
tends to reach a cycle inO(

√
n) steps (Subsection VII. 3.3, p. 462) led Pollard to

design a surprising Monte Carlo integer factorization algorithm; see [378, p. 371]
and [538, Sec 8.8], as well as our discussion in Example VII.11, p. 465. This al-
gorithm, once suitably optimized, first led to the factorization of the Fermat number
F8 = 228 + 1 obtained by Brent in 1980.
� II.20. Binary mappings.The classBF of binary mappings, where each point has either 0
or 2 preimages, is specified by

BF = SET(K), K = CYC(P), P = Z ⋆ B, B = Z ⋆ SET0,2(B)

(planted treesP and binary treesB are needed), so that

BF(z) = 1√
1− 2z2

, BF2n =
((2n)!)2

2n(n!)2
.



132 II. LABELLED STRUCTURES AND EGFS

The classBF is an approximate model of the behaviour of (modular) quadratic functions under
iteration. See [18, 247] for a general enumerative theory of randommappings including degree-
restricted ones. �

� II.21. Partial mappings.A partial mapping may be undefined at some points, and at those
we consider it takes a special value,⊥. The iterated preimages of⊥ form a forest, while
the remaining values organize themselves into a standard mapping. The classPF of partial
mappings is thus specified byPF = SET(T ) ⋆ F , so that

P F(z) = eT(z)

1− T(z)
and P Fn = (n+ 1)n.

This construction lends itself to all sorts of variations. For instance, the class P F I of injective
partial maps is described as sets of chains of linear and circular graphs, P F I = SET(CYC(Z)+
SEQ≥1(Z)), so that

P F I (z) = 1

1− z
ez/(1−z), P F In =

n∑

i=0

i !

(
n

i

)2
.

(This is a symbolic rewriting of part of the paper [78]; see Example VIII.13, p. 596, for asymp-
totics.) �

II. 5.3. Labelled graphs. Random graphs form a major chapter of the theory of
random discrete structures [76, 355]. We examine here enumerative results concerning
graphs of low “complexity”, that is, graphs which are very nearly trees. (Such graphs
for instance play an essential rôle in the analysis of early stages of the evolution of a
random graph, when edges are successively added, as shown in[241, 354].)

Unrooted trees and acyclic graphs.The simplest of all connected graphs are
certainly the ones that are acyclic. These are trees, but contrary to the case of Cayley
trees, no root is specified. LetU be the class of allunrootedtrees. Since a rooted tree
(rooted trees are, as we know, counted byTn = nn−1) is an unrooted tree combined
with a choice of a distinguished node (there aren such possible choices for trees of
sizen), one has

Tn = nUn implying Un = nn−2.

At generating function level, this combinatorial equalitytranslates into

U (z) =
∫ z

0
T(w)

dw

w
,

which integrates to give (takeT as the independent variable)

U (z) = T(z)− 1

2
T(z)2.

SinceU (z) is the EGF of acyclic connected graphs, the quantity

A(z) = eU (z) = eT(z)−T(z)2/2

is the EGF of all acyclic graphs. (Equivalently, these are unordered forests of unrooted
trees; the sequence isEISA001858: 1,1,2,7,38,291, . . . ) Singularity analysis meth-
ods (Note VI.14, p. 406) imply the estimateAn ∼ e1/2 nn−2. Surprisingly, perhaps,
there are barely more acyclic graphs than unrooted trees—such phenomena are easily
explained by singularity analysis.
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Unicyclic graphs. Theexcessof a graph is defined as the difference between the
number of edges and the number of vertices. For a connected graph, this quantity must
be at least−1, this minimal value being precisely attained by unrooted trees. The class
Wk is the class of connected graphs of excess equal tok; in particularU =W−1. The
successive classesW−1,W0,W1, . . ., may be viewed as describing connected graphs
of increasing complexity.

The classW0 comprises all connected graphs with the number of edges equal to
the number of vertices. Equivalently, a graph inW0 is a connected graph with exactly
one cycle (a sort of “eye”), and for that reason, elements ofW0 are sometimes re-
ferred to as “unicyclic components” or “unicycles”. In a way, such a graph looks very
much like an undirected version of a connected functional graph. In precise terms, a
graph ofW0 consists of a cycle of length at least 3 (by definition, graphshave neither
loops nor multiple edges) that is undirected (the orientation present in the usual cycle
construction is killed by identifying cycles isomorphic upto reflection) and on which
are grafted trees (these are implicitly rooted by the point at which they are attached
to the cycle). With UCYC representing the (new) undirected cycle construction, one
thus has

W0 ∼= UCYC≥3(T ).

We claim that this construction is reflected by the EGF equation

(51) W0(z) =
1

2
log

1

1− T(z)
− 1

2
T(z)− 1

4
T(z)2.

Indeed one has the isomorphism

W0+W0 ∼= CYC≥3(T ),

since we may regard the two disjoint copies on the left as instantiating two possible
orientations of the undirected cycle. The result of (51) then follows from the usual
translation of the cycle construction—it is originally due to the Hungarian probabilist
Rényi in 1959. Asymptotically, one finds (using methods of Chapter VI, p. 406):

(52) n![zn]W0 ∼
1

4

√
2πnn−1/2.

(The sequence starts as 0,0,1,15,222,3660,68295 and isEISA057500.)
Finally, the number of graphs made only of trees and unicyclic components has

EGF

eW−1(z)+W0(z) = eT/2−3T2/4

√
1− T

,

which asymptotically yieldsn![zn]eW−1+W0 ∼ Ŵ(3/4)(2e)−1/4π−1/2nn−1/4. Such
graphs stand just next to acyclic graphs in order of structural complexity. They are the
undirected counterparts of functional graphs encounteredin the previous subsection.
� II.22. 2–Regular graphs.This is based on Comtet’s account [129, Sec. 7.3]. A 2-regular
graph is an undirected graph in which each vertex has degree exactly 2. Connected 2–regular
graphs are thus undirected cycles of lengthn ≥ 3, so that their classR satisfies

(53) R = SET(UCYC≥3(Z)) H⇒ R(z) = e−z/2−z2/4
√

1− z
.
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EGF coefficient

Graphs: 2n(n−1)/2

acyclic, connected U ≡ W−1 = T − T2/2 nn−2

acyclic (forest) A = eT−T2/2 ∼ e1/2nn−2

unicycle W0 =
1

2
log

1

1− T
− T

2
− T2

4
∼ 1

4

√
2πnn−1/2

set of trees & unicycles B = eT/2−3T2/4
√

1− T
∼ Ŵ(3/4) (2e)−1/4

√
π

nn−1/4

connected, excessk Wk =
Pk(T)

(1− T)3k
∼ Pk(1)

√
2π

23k/2Ŵ(3k/2)
nn+(3k−1)/2

Figure II.14 . A summary of major enumeration results relative to labelled graphs.
The asymptotic estimates result from singularity analysis (Note VI.14, p. 406).

Givenn straight lines in general position in the plane, acloud is defined to be a set ofn inter-
section points, no three being collinear. Clouds and 2–regular graphs are equinumerous. [Hint:
Use duality.] The asymptotic analysis will serve as a prime example of the singularity analysis
process (Examples VI.1, p. 379 and VI.2, p. 395).

The general enumeration ofr –regular graphs becomes somewhat more difficult as soon
asr > 2. Algebraic aspects are discussed in [289, 303] while Bender and Canfield [39] have
determined the asymptotic formula (forrn even)

(54) R(r )n ∼
√

2e(r
2−1)/4 r r/2

er/2r !
nrn/2,

for the number ofr –regular graphs of sizen. (See also Example VIII.9, p. 583, for regular
multigraphs.) �

Graphs of fixed excess.The previous discussion suggests considering more gen-
erally the enumeration of connected graphs according to excess. E. M. Wright made
important contributions in this area [620, 621, 622] that are revisited in the famous
“giant paper on the giant component” by Janson, Knuth, Łuczak, and Pittel [354].
Wright’s result are summarized by the following proposition.

Proposition II.6. The EGF Wk(z) of connected graphs with excess (of edges over
vertices) equal to k is, for k≥ 1, of the form

(55) Wk(z) =
Pk(T)

(1− T)3k
, T ≡ T(z),

where Pk is a polynomial of degree3k+ 2. For any fixed k, as n→∞, one has

(56) Wk,n = n![zn]Wk(z) =
Pk(1)

√
2π

23k/2Ŵ (3k/2)
nn+(3k−1)/2

(
1+ O(n−1/2)

)
.

The combinatorial part of the proof (see Note II.23 below) isan interesting ex-
ercise ingraph surgeryand symbolic methods. The analytic part of the statement
follows straightforwardly from singularity analysis. ThepolynomialsP(T) and the
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constantsPk(1) are determined by an explicit nonlinear recurrence; one finds for in-
stance:

W1 =
1

24

T4(6− T)

(1− T)3
, W2 =

1

48

T4(2+ 28T − 23T2+ 9T3− T4)

(1− T)6
.

� II.23. Wright’s surgery. The full proof of Proposition II.6 by symbolic methods requires
the notion ofpointing in conjunction with multivariate generating function techniques of Chap-
ter III. It is convenient to definewk(z, y) := ykWk(zy), which is a bivariate generating function
with y marking the number of edges. Pick up an edge in a connected graph of excessk + 1,
then remove it. This results either in a connected graph of excessk with two pointed vertices
(and no edge in between) or in two connected components of respectiveexcessh andk − h,
each with a pointed vertex. Graphically (with connected components in grey):
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= +

This translates into the differential recurrence on thewk (∂x := ∂
∂x ),

2∂ywk+1 =
(

z2∂2
zwk − 2y∂ywk

)
+

k+1∑

h=−1

(z∂zwh) ·
(
z∂zwk−h

)
,

and similarly forWk(z) = wk(z, 1). From here, it can be verified by induction that eachWk
is a rational function ofT ≡ W−1. (See Wright’s original papers [620, 621, 622] or [354] for
details; constants related to thePk(1) occur in Subsection VII. 10.1, p. 532.) �

As explained in the giant paper [354], such results combinedwith complex ana-
lytic techniques provide, with great detail, information about a random graphŴ(n,m)
with n nodes andm edges. In the sparse case wherem is of the order ofn, one finds the
following properties to hold “with high probability” (w.h.p.)7; that is, with probability
tending to 1 asn→∞ .

• For m = µn, with µ < 1
2, the random graphŴ(m,n) has w.h.p. only tree

and unicycle components; the largest component is w.h.p. ofsizeO(logn).
• For m = 1

2n + O(n2/3), w.h.p. there appear one or several semi-giant
components that have sizeO(n2/3).
• For m = µn, with µ > 1

2, there is w.h.p. a unique giant component of size
proportional ton.

In each case, refined estimates follow from a detailed analysis of corresponding gen-
erating functions, which is a main theme of [241] and especially [354]. Raw forms
of these results were first obtained by Erdős and Ŕenyi who launched the subject in a
famous series of papers dating from 1959–60; see the books [76, 355] for a probabilis-
tic context and the paper [40] for the finest counting estimates available. In contrast,
the enumeration ofall connected graphs (irrespective of the number of edges, thatis,
without excess being taken into account) is a relatively easy problem treated in the

7Synonymous expressions are “asymptotically almost surely” (a.a.s) and “in probability”. The term
“almost surely” is sometimes used, though it lends itself to confusion with properties of continuous
measures.
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next section. Many other classical aspects of the enumerative theory of graphs are
covered in the bookGraphical Enumerationby Harary and Palmer [319].
� II.24. Graphs are not specifiable.The class ofall graphs does not admit a specification that
starts from single atoms and involves only sums, products, sets and cycles. Indeed, the growth
of Gn is such that the EGFG(z) has radius of convergence 0, whereas EGFs of constructible
classes must have a non-zero radius of convergence. (Section IV.4, p. 249, provides a detailed
proof of this fact for iterative structures; for recursively specifiedclasses, this is a consequence
of the analysis of inverse functions, p. 402, and systems, p. 489, with suitable adaptations based
on the technique of majorant series. p. 250.) �

II. 6. Additional constructions

As in the unlabelled case, pointing and substitution are available in the world of
labelled structures (Subsection II. 6.1), and implicit definitions enlarge the scope of
the symbolic method (Subsection II. 6.2). The inversion process needed to enumer-
ate implicit structures is even simpler, since in the labelled universe sets and cycles
have more concise translations as operators over EGF. Finally, and this departs sig-
nificantly from Chapter I, the fact that integer labels are naturally ordered makes it
possible to take into account certain order properties of combinatorial structures (Sub-
section II. 6.3).

II. 6.1. Pointing and substitution. The pointing operation is entirely similar to
its unlabelled counterpart since it consists in distinguishing one atom among all the
ones that compose an object of sizen. The definition of composition for labelled struc-
tures is however a bit more subtle as it requires singling out“leaders” in components.

Pointing. Thepointingof a classB is defined by

A = 2B iff An = [1 . .n] × Bn.

In other words, in order to generate an element ofA, select one of then labels and
point at it. Clearly

An = n · Bn H⇒ A(z) = z
d

dz
B(z).

Substitution (composition).Compositionor substitutioncan be introduced so
that it correspondsa priori to composition of generating functions. It is formally
defined as

B ◦ C =
∞∑

k=0

Bk × SETk(C),

so that its EGF is
∞∑

k=0

Bk
(C(z))k

k!
= B(C(z)).

A combinatorial way of realizing this definition and formingan arbitrary object of
B ◦ C, is as follows. First select an element ofβ ∈ B called the “base” and letk = |β|
be its size; then pick up ak–set of elements ofC; the elements of thek–set are naturally
ordered by the value of their “leader” (theleaderof an object being by convention the
value of its smallest label); the element with leader of rankr is then substituted to the
node labelled by valuer of β. Gathering the above, we obtain:
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Theorem II.3. The combinatorial constructions of pointing and substitution are ad-
missible

A = 2B H⇒ A(z) = z∂zB(z), ∂z ≡
d

dz
A = B ◦ C H⇒ A(z) = B(C(z)).

For instance, the EGF of (relabelled) pairings of elements drawn fromC is

eC(z)2/2,

since the EGF of involutions without fixed points isez2/2.
� II.25. Standard constructions based on substitutions.The sequence class ofA may be de-
fined by composition asP ◦A whereP is the set of all permutations. The set class ofA may be
defined asU ◦A whereU is the class of all urns. Similarly, cycles are obtained by substitution
into circular graphs. Thus,

SEQ(A) ∼= P ◦A, SET(A) ∼= U ◦A, CYC(A) ∼= C ◦A.
In this way, permutation, urns and circle graphs appear as archetypalclasses in a development
of combinatorial analysis based on composition. (Joyal’s “theory of species” [359] and the
book by Bergeron, Labelle, and Leroux [50] show that a far-reaching theory of combinatorial
enumeration can be based on the concept of substitution.) �

� II.26. Distinct component sizes.The EGFs of permutations with cycles of distinct lengths
and of set partitions with parts of distinct sizes are

∞∏

n=1

(
1+ zn

n

)
,

∞∏

n=1

(
1+ zn

n!

)
.

The probability that a permutation ofPn has distinct cycle sizes tends toe−γ ; see [309,
Sec. 4.1.6] for a Tauberian argument and [495] for precise asymptotics. The corresponding
analysis for set partitions is treated in the seven-author paper [368]. �

II. 6.2. Implicit structures. Let X be a labelled class implicitly characterized
by either of the combinatorial equations

A = B + X , A = B ⋆ X .

Then, solving the corresponding EGF equations leads to

X(z) = A(z)− B(z), X(z) = A(z)

B(z)
,

respectively. For the composite labelled constructions SEQ,SET,CYC, the algebra is
equally easy.

Theorem II.4 (Implicit specifications). The generating functions associated with the
implicit equations inX

A = SEQ(X ), A = SET(X ), A = CYC(X ),

are, respectively,

X(z) = 1− 1

A(z)
, X(z) = log A(z), X(z) = 1− e−A(z).
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Example II.15. Connected graphs.In the context of graphical enumerations, the labelled
set construction takes the form of an enumerative formula relating a classG of graphs and the
subclassK ⊂ G of its connected graphs:

G = SET(K) H⇒ G(z) = eK (z).

This basic formula is known in graph theory [319] as theexponential formula.
Consider the classG of all (undirected) labelled graphs, the size of a graph being the

number of its nodes. Since a graph is determined by the choice of its set ofedges, there are
(n
2
)

potential edges each of which may be taken in or out, so thatGn = 2(
n
2). Let K ⊂ G be the

subclass of all connected graphs. The exponential formula determines K (z) implicitly:

(57)

K (z) = log

(
1+

∑

n≥1

2(
n
2)

zn

n!

)

= z+ z2

2!
+ 4

z3

3!
+ 38

z4

4!
+ 728

z5

5!
+ · · · ,

where the sequence isEIS A001187. The series is divergent, that is, it has radius of conver-
gence 0. It can nonetheless be manipulated as a formal series (Appendix A.5: Formal power
series, p. 730). Expanding by means of log(1+ u) = u − u2/2+ · · · , yields a complicated
convolution expression forKn:

Kn = 2(
n
2) − 1

2

∑(
n

n1,n2

)
2(

n1
2 )+(

n2
2 ) + 1

3

∑(
n

n1,n2, n3

)
2(

n1
2 )+(

n2
2 )+(

n3
2 ) − · · · .

(Thekth term is a sum overn1+ · · · + nk = n, with 0< n j < n.) Given the very fast increase
of Gn with n, for instance

2(
n+1

2 ) = 2n 2(
n
2),

a detailed analysis of the various terms of the expression ofKn shows predominance of the first
sum, and, in that sum itself, the extreme terms corresponding ton1 = n − 1 or n2 = n − 1
predominate, so that

(58) Kn = 2(
n
2)
(
1− 2n2−n + o(2−n)

)
.

Thus:almost all labelled graphs of size n are connected. In addition, the error term decreases
very quickly: for instance, forn = 18, an exact computation based on the generating function
formula reveals that a proportion only 0.0001373291074 of all the graphs are not connected—
this isextremelyclose to the value 0.0001373291016predicted by the main terms in the asymp-
totic formula (58). Notice that good use could be made here of a purely divergent generating
function for asymptotic enumeration purposes. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

� II.27. Bipartite graphs.A plane bipartite graph is a pair(G, ω) whereG is a labelled graph,
ω = (ωW, ωE) is a bipartition of the nodes (intoWestandEastcategories), and the edges are
such that they only connect nodes fromωW to nodes ofωE . A direct count shows that the EGF
of plane bipartite graphs is

Ŵ(z) =
∑

n
γn

zn

n!
with γn =

∑

k

(
n

k

)
2k(n−k).

The EGF of plane bipartite graphs that are connected is logŴ(z).
A bipartite graph is a labelled graph whose nodes can be partitioned into two groups so

that edges only connect nodes of different groups. The EGF of bipartite graphs is

exp

(
1

2
logŴ(z)

)
=
√
Ŵ(z).



II. 6. ADDITIONAL CONSTRUCTIONS 139

[Hint. The EGF of a connected bipartite graph is1
2 logŴ(z), since a factor of12 kills the East–

West orientation present in a connected plane bipartite graph. See Wilf’s book [608, p. 78] for
details.] �

� II.28. Do two permutations generate the symmetric group?To two permutationsσ, τ of the
same size, associate a graphŴσ,τ whose set vertices isV = [1 . .n], if n = |σ | = |τ |, and set of
edges is formed of all the pairs(x, σ (x)), (x, τ (x)), for x ∈ V . The probability that a random
Ŵσ,τ is connected is

πn =
1

n!
[zn] log


∑

n≥0

n!zn


 .

This represents the probability that two permutations generate a transitive group (that is for all
x, y ∈ [0 . .n], there exists a composition ofσ, σ−1, τ, τ−1 that mapsx to y). One has

(59) πn ∼ 1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
− · · · ,

Surprisingly, the coefficients 1, 1, 4, 23, . . . (EISA084357) in the asymptotic formula (59) enu-
merate a “third-level” structure (Subsection II. 4.2, p. 124 and Note VIII.15, p. 571), namely:
SET(SET≥1(SEQ≥1(Z))). In addition, one hasn!2πn = (n− 1)! In, whereIn+1 is the number
of indecomposable permutations (Example I.19, p. 89).

Let π⋆n be the probability that two random permutations generate the whole symmetric
group. Then, by a result of Babai based on the classification of groups, the quantityπn − π⋆n is
exponentially small, so that (59) also applies toπ⋆n ; see Dixon [167]. �

II. 6.3. Order constraints. A construction well-suited to dealing with many of
the order properties of combinatorial structures is the modified labelled product:

A = (B2 ⋆ C).

This denotes the subset of the productB⋆C formed with elements such that the smallest
label is constrained to lie in theB component. (To make this definition consistent, it
must be assumed thatB0 = 0.) We call this binary operation on structures theboxed
product.

Theorem II.5. The boxed product is admissible:

(60) A = (B2 ⋆ C) H⇒ A(z) =
∫ z

0
(∂t B(t)) · C(t)dt, ∂t ≡

d

dt
.

Proof. The definition of boxed products implies the coefficient relation

An =
n∑

k=1

(
n− 1

k− 1

)
BkCn−k.

The binomial coefficient that appears in the standard convolution, Equation (2), p. 100,
is to be modified since onlyn−1 labels need to be distributed between the two compo-
nents:k− 1 go to theB component (that is already constrained to contain the label1)
andn− k to theC component. From the equivalent form

An =
1

n

n∑

k=0

(
n

k

)
(kBk)Cn−k,

the result follows by taking EGFs, viaA(z) = (∂zB(z)) · C(z). �
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0.5

1
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2.5

0 20 40 60 80 100

Figure II.15 . A numerical sequence of size 100 with records marked by circles:
there are 7 records that occur at times 1, 3, 5, 11, 60, 86, 88.

A useful special case is the min-rooting operation,

A =
(
Z2 ⋆ C

)
,

for which a variant definition goes as follows: take in all possible ways elements
γ ∈ C, prepend an atom with a label, for instance 0, smaller than the labels ofγ , and
relabel in the canonical way over [1. . (n+1)] by shifting all label values by 1. Clearly
An+1 = Cn, which yields

A(z) =
∫ z

0
C(t)dt,

a result which is also consistent with the general formula (60) of boxed products.
For some applications, it is convenient to impose constraints on themaximallabel

rather than the minimum. The max-boxed product written

A = (B� ⋆ C),

is then defined by the fact the maximum is constrained to lie intheB–component of
the labelled product. Naturally, translation by an integral in (60) remains valid for this
trivially modified boxed product.
� II.29. Combinatorics of integration.In the perspective of this book, integration by parts has
an immediate interpretation. Indeed, the equality

∫ z

0
A′(t) · B(t)dt +

∫ z

0
A(t) · B′(t)dt = A(z) · B(z)

reads:“The smallest label in an ordered pair appears either on the left or on the right.” �

Example II.16. Records in permutations.Given a sequence of numbersx = (x1, . . . , xn),
assumed all distinct, arecord is defined to be an elementx j such thatxk < x j for all k < j . (A
record is an element “better” than its predecessors!) Figure II.15 displays a numerical sequence
of lengthn = 100 that has 7 records. Confronted by such data, a statistician will typically
want to determine whether the data obey purely random fluctuations or if there could be some
indications of a “trend” or of a “bias” [139, Ch. 10]. (Think of the data as reflecting share prices
or athletic records, say.) In particular, if thex j are independently drawn from a continuous
distribution, then the number of records obeys the same laws as in a random permutation of
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[1 . .n]. This statistical preamble then invites the question:How many permutations of n have k
records?

First, we start with a special brand of permutations, the ones that have their maximumat
the beginning. Such permutations are defined as (“�” indicates the boxed product based on the
maximum label)

Q = (Z� ⋆ P),

whereP is the class of all permutations. Observe that this gives the EGF

Q(z) =
∫ z

0

(
d

dt
t

)
· 1

1− t
dt = log

1

1− z
,

implying the obvious resultQn = (n − 1)! for all n ≥ 1. These are exactly the permutations
with onerecord. Next, consider the class

P(k) = SETk(Q).

The elements ofP(k) are unordered sets of cardinalityk with elements of typeQ. Define
the max–leader (“el lider ḿaximo”) of any component ofP(k) as the value of its maximal
element. Then, if we place the components in sequence, ordered by increasing values of their
leaders, then read off the whole sequence, we obtain a permutation with exactly k records. The
correspondence8 is clearly revertible. Here is an illustration, with leaders underlined:

{
(7, 2, 6, 1), (4, 3), (9, 8, 5)

} ∼=
[
(4, 3), (7,2, 6, 1), (9,8, 5)

)
]

∼= 4, 3, 7, 2, 6, 1, 9, 8, 5.

Thus, the number of permutations withk records is determined by

P(k)(z) = 1

k!

(
log

1

1− z

)k
, P(k)n =

[
n

k

]
,

where we recognize Stirling cycle numbers from Example II.12, p. 121. In other words:

The number of permutations of size n having k records is counted by the
Stirling “cycle” number

[n
k
]
.

Returning to our statistical problem, the treatment of Example II.12 p. 121(to be revisited
in Chapter III, p. 189) shows that the expected number of records in arandom permutation of
sizen equals Hn, the harmonic number. One has H100

.= 5.18, so that for 100 data items, a little
more than 5 records are expected on average. The probability of observing 7 records or more
is still about 23%, an altogether not especially rare event. In contrast, observing twice as many
records as we did, namely 14, would be a fairly strong indication of a bias—on random data,
the event has probability very close to 10−4. Altogether, the present discussion is consistent
with the hypothesis for the data of Figure II.15 to have been generated independently at random
(and indeed they were). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .�

8This correspondence can also be viewed as a transformation onpermutations that maps the number
of records to the number of cycles—it is known as Foata’s fundamental correspondence [413, Sec. 10.2].
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It is possible to base a fair part of the theory of labelled constructions on sums and
products in conjunction with the boxed product. In effect, consider the three relations

F = SEQ(G) H⇒ f (z) = 1

1− g(z)
, f = 1+ g f

F = SET(G) H⇒ f (z) = eg(z), f = 1+
∫

g′ f

F = CYC(G) H⇒ f (z) = log
1

1− g(z)
, f =

∫
g′

1

1− g
.

The last column is easily checked, by standard calculus, to provide an alternative form
of the standard operator corresponding to sequences, sets,and cycles. Each case can
in fact be deduced directly from Theorem II.5 and the labelled product rule as follows.

(i ) Sequences: they obey the recursive definition

F = SEQ(G) H⇒ F ∼= {ǫ)+ (G ⋆ F).
(i i ) Sets: we have

F = SET(G) H⇒ F ∼= {ǫ} + (G� ⋆ F),

which means that, in a set, one can always single out the component with
the largest label, the rest of the components forming a set. In other words,
when this construction is repeated, the elements of a set canbe canonically
arranged according to increasing values of their largest labels, the “leaders”.
(We recognize here a generalization of the construction used for records in
permutations.)

(i i i ) Cycles: The element of a cycle that contains the largest label can betaken
canonically as the cycle “starter”, which is then followed by an arbitrary
sequence of elements upon traversing the cycle in cyclic order. Thus

F = CYC(G) H⇒ F ∼= (G� ⋆ SEQ(G)).

Greene [308] has developed a complete framework of labelledgrammars based
on standard and boxed labelled products. In its basic form, its expressive power is
essentially equivalent to ours, because of the above relations. More complicated order
constraints, dealing simultaneously with a collection of larger and smaller elements,
can be furthermore taken into account within this framework.
� II.30. Higher order constraints, after Greene.Let the symbols�, ⊡, � represent smallest,
second smallest, and largest labels, respectively. One has the correspondences (with∂z = d

dz)

A =
(
B2 ⋆ C�

)
∂2

z A(z) = (∂zB(z)) · (∂zC(z))

A =
(
B2� ⋆ C

)
∂2

z A(z) =
(
∂2

z B(z)
)
· C(z)

A =
(
B2 ⋆ C⊡ ⋆D�

)
∂3

z A(z) = (∂zB(z)) · (∂zC(z)) · (∂zD(z)) ,

and so on. These can be transformed into (iterated) integral representations. (See [308] for
more.) �

The next three examples demonstrate the utility of min/max-rooting used in con-
junction with recursion. Examples II.17 and II.18 introduce two important classes of
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Figure II.16 . A permutation of size 7 and its increasing binary tree lifting.

trees that are tightly linked to permutations. Example II.19 provides a simple symbolic
solution to a famous parking problem, on which many analysescan be built.

ExampleII.17. Increasing binary trees and alternating permutations.To each permutation,
one can associate bijectively a binary tree of a special type called anincreasing binary tree
and sometimes a heap-ordered tree or a tournament tree. This is a planerooted binary tree in
which internal nodes bear labels in the usual way, but with the additional constraint that node
labels increase along any branch stemming from the root. Such trees areclosely related to many
classical data structures of computer science, such as heaps and binomial queues.

The correspondence (Figure II.16) is as follows: Given a permutation written as a word,
σ = σ1σ2 . . . σn, factor it into the formσ = σL ·min(σ ) · σR, with min(σ ) the smallest label
value in the permutation, andσL , σR the factors left and right of min(σ ). Then the binary tree
β(σ) is defined recursively in the format〈root, left, right〉 by

β(σ) = 〈min(σ ), β(σL ), β(σR)〉, β(ǫ) = ǫ.
The empty tree (consisting of a unique external node of size 0) goes with the empty permutation
ǫ. Conversely, reading the labels of the tree in symmetric (infix) order gives back the original
permutation. (The correspondence is described for instance in Stanley’s book [552, p. 23–25]
who says that “it has been primarily developed by the French”, pointing at [267].)

Thus, the familyI of binary increasing trees satisfies the recursive definition

(61) I = {ǫ} +
(
Z2 ⋆ I ⋆ I

)
,

which implies the nonlinear integral equation for the EGF

I (z) = 1+
∫ z

0
I (t)2 dt.

This equation reduces toI ′(z) = I (z)2 and, under the initial conditionI (0) = 1, it admits the
solution I (z) = (1− z)−1. Thus In = n!, which is consistent with the fact that there are as
many increasing binary trees as there are permutations.

The construction of increasing trees is instrumental in deriving EGFs relative to various
local order patterns in permutations. We illustrate its use here by counting thenumber of
up-and-down(or zig-zag) permutations, also known asalternatingpermutations. The result,
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already mentioned in ourInvitationchapter (p. 2) was first derived by Désiŕe Andŕe in 1881 by
means of a direct recurrence argument.

A permutationσ = σ1σ2 · · · σn is an alternating permutation if

(62) σ1 > σ2 < σ3 > σ4 < · · · ,
so that pairs of consecutive elements form a succession of ups and downs; for instance,

6

2
3

4

1

7

5

6 2 3 1 7 4 5

Consider first the case of an alternating permutation ofodd size. It can be checked that the
corresponding increasing trees have no one-way branching nodes,so that they consist solely of
binary nodes and leaves. Thus, the corresponding specification is

J = Z +
(
Z2 ⋆ J ⋆ J

)
,

so that

J(z) = z+
∫ z

0
J(t)2 dt and

d

dz
J(z) = 1+ J(z)2.

The equation admits separation of variables, which implies, sinceJ(0) = 0, that arctan(J(z)) =
z, hence:

J(z) = tan(z) = z+ 2
z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ · · · .

The coefficientsJ2n+1 are known as thetangent numbersor theEuler numbersof odd index
(EISA000182).

Alternating permutations ofevensize defined by the constraint (62) and denoted byK can
be determined from

K = {ǫ} +
(
Z2 ⋆ J ⋆K

)
,

since now all internal nodes of the tree representation are binary, except for the right-most one
that only branches on the left. Thus,K ′(z) = tan(z)K (z), and the EGF is

K (z) = 1

cos(z)
= 1+ 1

z2

2!
+ 5

z4

4!
+ 61

z6

6!
+ 1385

z8

8!
+ · · · ,

where the coefficientsK2n are thesecant numbersalso known as Euler numbers of even index
(EISA000364).

Use will be made later in this book (Chapter III, p. 202) of this important tree represen-
tation of permutations as it opens access to parameters such as the number of descents, runs,
and (once more!) records in permutations. Analyses of increasing trees also inform us of cru-
cial performance issues regarding binary search trees, quicksort,and heap-like priority queue
structures [429, 538, 598, 600]. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� II.31. Combinatorics of trigonometrics.Interpret tan z
1−z, tan tanz, tan(ez−1) as EGFs of

combinatorial classes. �
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Figure II.17 . An increasing Cayley tree (left) and its associated regressive mapping (right).

Example II.18. Increasing Cayley trees and regressive mappings.An increasing Cayley
tree is a Cayley tree (i.e., it is labelled, non-plane, and rooted) whose labels along any branch
stemming from the root form an increasing sequence. In particular, theminimum must occur
at the root, and no plane embedding is implied. LetL be the class of such trees. The recursive
specification is now

L =
(
Z2 ⋆ SET(L)

)
.

The generating function thus satisfies the functional relations

L(z) =
∫ z

0
eL(t) dt, L ′(z) = eL(z),

with L(0) = 0. Integration ofL ′e−L = 1 shows thate−L = 1− z, hence

L(z) = log
1

1− z
and Ln = (n− 1)!.

Thus the number of increasing Cayley trees is(n−1)!, which is also the number of permutations
of size n − 1. These trees have been studied by Meir and Moon [435] under the name of
“recursive trees”, a terminology that we do not, however, retain here.

The simplicity of the formulaLn = (n− 1)! certainly calls for a combinatorial interpreta-
tion. In fact, an increasing Cayley tree is fully determined by its child–parent relationship
(Figure II.17). In other words, to each increasing Cayley treeτ , we associate a partial map
φ = φτ such thatφ(i ) = j iff the label of the parent ofi is j . Since the root of tree is an
orphan, the value ofφ(1) is undefined,φ(1) =⊥; since the tree is increasing, one hasφ(i ) < i
for all i ≥ 2. A function satisfying these last two conditions is called aregressive mapping. The
correspondence between trees and regressive mappings is then easily seen to be bijective.

Thus regressive mappings on the domain [1. .n] and increasing Cayley trees are equi-
numerous, so that we may as well useL to denote the class of regressive mappings. Now, a
regressive mapping of sizen is evidently determined by a single choice forφ(2) (sinceφ(2) =
1), two possible choices forφ(3) (either of 1, 2), and so on. Hence the formula

Ln = 1× 2× 3× · · · × (n− 1)

receives a natural interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�

� II.32. Regressive mappings and permutations.Regressive mappings can be related directly
to permutations. The construction that associates a regressive mappingto a permutation is
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called the “inversion table” construction; see [378, 538]. Given a permutationσ = σ1, . . . , σn,
associate to it a functionψ = ψσ from [1 . .n] to [0 . .n− 1] by the rule

ψ( j ) = card
{
k < j

∣∣ σk > σ j
}
.

The functionψ is a trivial variant of a regressive mapping. �

� II.33. Rotations and increasing trees.An increasing Cayley tree can be canonically drawn
by ordering descendants of each node from left to right according to their label values. The
rotation correspondence (p. 73) then gives rise to a binary increasingtree. Hence, increasing
Cayley trees and increasing binary trees are also directly related. Summarizing this note and
the previous one, we have a quadruple combinatorial connection,

Increasing Cayley trees∼= Regressive mappings∼= Permutations∼= Increasing binary trees,

which opens the way to yet more permutation enumerations. �

Example II.19. A parking problem. Here is Knuth’s introduction to the problem, dating
back from 1973 (see [378, p. 545]), which nowadays might be regarded by some as politically
incorrect:

“A certain one-way street hasm parking spaces in a row numbered 1 tom. A man and his
dozing wife drive by, and suddenly, she wakes up and orders him to park immediately. He
dutifully parks at the first available space [. . . ].”

Considern = m− 1 cars and condition by the fact that everybody eventually finds a parking
spaceand the last space remains empty. There aremn = (n + 1)n possible sequences of
“wishes”, among which only a certain numberFn satisfy the condition—this number is to be
determined. (An important motivation for this problem is the analysis of hashing algorithms
examined in Note III.11, p. 178, under the “linear probing” strategy.)

A sequence satisfying the condition called analmost-fullallocation, its sizen being the
number of cars involved. LetF represent the class of almost-full allocations. We claim the
decomposition:

(63) F =
[
(2F + F) ⋆Z� ⋆ F

]
.

Indeed, consider the car that arrived last, before it will eventually landin some positionk + 1
from the left. Then, there are two islands, which are themselves almost-full allocations (of
respective sizesk andn− k − 1). This last car’s intended parking wish must have been either
one of the firstk occupied cells on the left (the factor2F in (63)) or the last empty cell of the
first island (the termF in the left factor); the right island is not affected (the factorF on the
right). Finally, the last car is inserted into the street (the factorZ�). Pictorially, we have a sort
of binary tree decomposition of almost-full allocations:

Analytically, the translation of (63) into EGF is

(64) F(z) =
∫ z

0
(wF ′(w)+ F(w))F(w)dw,

which, through differentiation gives

(65) F ′(z) = (zF(z))′ · F(z).
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Simple manipulations do the rest: we haveF ′/F = (zF)′, which by integration gives logF =
(zF) and F = ezF. ThusF(z) satisfies a functional equation strangely similar to that of the
Cayley tree functionT(z); indeed, it is not hard to see that one has

(66) F(z) = 1

z
T(z) and Fn = (n+ 1)n−1,

which solves the original counting problem. The derivation above is based on articles by Fla-
jolet, Poblete, Viola, and Knuth [249, 380], who show that probabilistic properties of parking
allocations can be precisely analysed (for instance, total displacement, examined in Note VII.54,
p. 534, is found to be governed by an Airy distribution). . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .�

II. 7. Perspective

Together with the previous chapter and Figure I.18, this chapter and Figure II.18
provide the basis for the symbolic method that is at the core of analytic combinatorics.
The translations of the basic constructions for labelled classes to EGFs could hardly
be simpler, but, as we have seen, they are sufficiently powerful to embrace numerous
classical results in combinatorics, ranging from the birthday and coupon collector
problems to tree and graph enumeration.

The examples that we have considered for second-level structures, trees, map-
pings, and graphs lead to EGFs that are simple to express and natural to generalize.
(Often, the simple form is misleading—direct derivations ofmany of these EGFs that
do not appeal to the symbolic method can be rather intricate.) Indeed, the symbolic
method provides a framework that allows us to understand thenature of many of these
combinatorial classes. From here, numerous seemingly scattered counting problems
can be organized into broad structural categories and solved in an almost mechanical
manner.

Again, the symbolic method is only half of the story (the “combinatorics” in an-
alytic combinatorics), leading to EGFs for the counting sequences of numerous inter-
esting combinatorial classes. While some of these EGFs lead immediately to explicit
counting results, others require classical techniques in complex analysis and asymp-
totic analysis that are covered in Part B (the “analytic” part of analytic combinatorics)
to deliver asymptotic estimates. Together with these techniques, the basic construc-
tions, translations, and applications that we have discussed in this chapter reinforce
the overall message that the symbolic method is a systematicapproach that is success-
ful for addressing classical and new problems in combinatorics, generalizations, and
applications.

We have been focusing onenumeration problems—counting the number of ob-
jects of a given size in a combinatorial class. In the next chapter, we shall consider
how to extend the symbolic method to help analyse other properties of combinatorial
classes.

Bibliographic notes. The labelled set construction and the exponential formula were recog-
nized early by researchers working in the area of graphical enumerations [319]. Foata [265]
proposed a detailed formalization in 1974 of labelled constructions, especially sequences and
sets, under the names of partitional complex; a brief account is also given by Stanley in his
survey [550]. This is parallel to the concept of “prefab” due to Bender and Goldman [42]. The
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1. The main constructions of union, and product, sequence, set, and cycle for labelled structures
together with their translation into exponential generating functions.

Construction EGF

Union A = B + C A(z) = B(z)+ C(z)

Product A = B ⋆ C A(z) = B(z) · C(z)
Sequence A = SEQ(B) A(z) = 1

1− B(z)

Set A = SET(B) A(z) = exp(B(z))

Cycle A = CYC(B) A(z) = log
1

1− B(z)

2. Sets, multisets, and cycles of fixed cardinality.

Construction EGF

Sequence A = SEQk(B) A(z) = B(z)k

Set A = SETk(B) A(z) = 1

k!
B(z)k

Cycle A = CYCk(B) A(z) = 1

k
B(z)k

3. The additional constructions of pointing and substitution.

Construction EGF

Pointing A = 2B A(z) = z d
dzB(z)

Substitution A = B ◦ C A(z) = B(C(z))

4. The “boxed” product.

A = (B2 ⋆ C) H⇒ A(z) =
∫ z

0

(
d

dt
B(t)

)
· C(t)dt.

Figure II.18 . A “dictionary” of labelledconstructions together with their translation
into exponentialgenerating functions (EGFs). The first constructions are counterparts
of the unlabelled constructions of the previous chapter (the multiset construction is
not meaningful here). Translation for composite constructions of bounded cardinality
appears to be simple. Finally, the boxed product is specific to labelled structures.
(Compare with the unlabelled counterpart, Figure I.18, p. 18.)

books by Comtet [129], Wilf [608], Stanley [552], or Goulden and Jackson [303] have many
examples of the use of labelled constructions in combinatorial analysis.

Greene [308] has introduced in his 1983 dissertation a general framework of “labelled
grammars” largely based on the boxed product with implications for the random generation of
combinatorial structures. Joyal’s theory of species dating from 1981 (see [359] for the original
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article and the book by Bergeron, Labelle, and Leroux [50] for a rich exposition) is based on
category theory; it presents the advantage of uniting in a common framework the unlabelled and
the labelled worlds.

Flajolet, Salvy, and Zimmermann have developed a specification languageclosely related
to the system expounded here. They show in [255] how to compile automatically specifica-
tions into generating functions; this is complemented by a calculus that produces fast random
generation algorithms [264].

I can see looming ahead one of those terrible exercises in probability where six men have
white hats and six men have black hats and you have to work it out by mathematics how likely

it is that the hats will get mixed up and in what proportion. If you start thinking about things
like that, you would go round the bend. Let me assure you of that!

—AGATHA CHRISTIE

(The Mirror Crack’d. Toronto, Bantam Books, 1962.)
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Many scientific endeavours demand precise quantitative information on probabilis-
tic properties ofparametersof combinatorial objects. For instance, when designing,
analysing, and optimizing a sorting algorithm, it is of interest to determine the typi-
cal disorder of data obeying a given model of randomness, andto do so in the mean,
or even in distribution, either exactly or asymptotically.Similar situations arise in
a broad variety of fields, including probability theory and statistics, computer sci-
ence, information theory, statistical physics, and computational biology. The exact
problem is then a refined counting problem with two parameters, namely, size and
an additional characteristic: this is the subject addressed in this chapter and treated
by a natural extension of the generating function framework. The asymptotic prob-
lem can be viewed as one of characterizing in the limit a family of probability laws
indexed by the values of the possible sizes: this is a topic tobe discussed in Chap-
ter IX. As demonstrated here, the symbolic methods initially developed for counting
combinatorial objects adapt gracefully to the analysis of various sorts of parameters
of constructible classes, unlabelled and labelled alike.

Multivariate generating functions(MGFs)—ordinary or exponential—can keep
track of a collection of parameters defined over combinatorial objects. From the
knowledge of such generating functions, there result either explicit probability dis-
tributions or, at least, mean and variance evaluations. Forinheritedparameters, all the
combinatorial classes discussed so far are amenable to sucha treatment. Technically,
the translation schemes that relate combinatorial constructions and multivariate gen-
erating functions present no major difficulty—they appear tobe natural (notational,
even) refinements of the paradigm developed in Chapters I andII for the univariate
case. Typical applications from classical combinatorics are the number of summands

151
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in a composition, the number of blocks in a set partition, thenumber of cycles in a
permutation, the root degree or path length of a tree, the number of fixed points in a
permutation, the number of singleton blocks in a set partition, the number of leaves in
trees of various sorts, and so on.

Beyond its technical aspects anchored in symbolic methods,this chapter also
serves as a first encounter with the general area of random combinatorial structures.
The general question is:What does a random object of large size look like?Multi-
variate generating functions first provide an easy access tomomentsof combinatorial
parameters—typically the mean and variance. In addition, when combined with basic
probabilistic inequalities, moment estimates often lead to precise characterizations of
properties of large random structures that hold with high probability. For instance,
a large integer partition conforms with high probability toa deterministic profile, a
large random permutation almost surely has at least one longcycle and a few short
ones, and so on. Such a highly constrained behaviour of largeobjects may in turn
serve to design dedicated algorithms and optimize data structures; or it may serve to
build statistical tests—when does one depart from randomness and detect a “signal”
in large sets of observed data? Randomness forms a recurrenttheme of the book: it
will be developed much further in Chapter IX, where the complex asymptotic meth-
ods of Part B are grafted on the exact modelling by multivariate generating functions
presented in this chapter.

This chapter is organized as follows. First a few pragmatic developments related
to bivariate generating functions are presented in SectionIII. 1. Next, Section III. 2
presents the notion of bivariate enumeration and its relation to discrete probabilistic
models, including the determination of moments, since the language of elementary
probability theory does indeed provide an intuitively appealing way to conceive of bi-
variate counting data. The symbolic methodper se, declined in its general multivariate
version, is centrally developed in Sections III. 3 and III. 4: with suitable multi-index
notations, the extension of the symbolic method to the multivariate case is almost im-
mediate. Recursive parameters that often arise in particular from tree statistics form
the subject of Section III. 5, while complete generating functions and associated com-
binatorial models are discussed in Section III. 6. Additional constructions such as
pointing, substitution, and order constraints lead to interesting developments, in par-
ticular, an original treatment of the inclusion–exclusionprinciple in Section III. 7. The
chapter concludes, in Section III. 8, with a brief abstract discussion of extremal param-
eters like height in trees or smallest and largest components in composite structures—
such parameters are best treated via families of univariategenerating functions.

III. 1. An introduction to bivariate generating functions ( BGFs)

We have seen in Chapters I and II that a number sequence( fn) can be encoded
by means of a generating function in one variable, either ordinary or exponential:

( fn) ; f (z) =





∑

n

fnzn (ordinary GF)

∑

n

fn
zn

n!
(exponential GF).
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f00 −→ f0(u)

f10 f11 −→ f1(u)

f20 f21 f22 −→ f2(u)
...

...
...

↓ ↓ ↓
f 〈0〉(z) f 〈1〉(z) f 〈2〉(z)

Figure III.1 . An array of numbers and its associated horizontal and vertical GFs.

This encoding is powerful, since many combinatorial constructions admit a translation
as operations over such generating functions. In this way, one gains access to many
useful counting formulae.

Similarly, consider a sequence of numbers( fn,k) depending on two integer-valued
indices,n andk. Usually, in this book,( fn,k)will be an array of numbers (often a trian-
gular array), wherefn,k is the number of objectsϕ in some classF , such that|ϕ| = n
and some parameterχ(ϕ) is equal tok. We can encode this sequence by means of
a bivariate generating function (BGF)involving two variables: a primary variablez
attached ton and a secondaryu attached tok.

Definition III.1. Thebivariate generating functions (BGFs), either ordinaryor ex-
ponential, of an array( fn,k) are the formal power series in two variables defined by

f (z,u) =





∑

n,k

fn,kznuk (ordinary BGF)

∑

n,k

fn,k
zn

n!
uk (exponential BGF).

(The “double exponential” GF corresponding tozn

n!
uk

k! is not used in the book.)
As we shall see shortly, parameters of constructible classes become accessible

through such BGFs. According to the point of view adopted forthe moment, one
starts with an array of numbers and forms a BGF by a double summation process. We
present here two examples related to binomial coefficients and Stirling cycle numbers
illustrating how such BGFs can be determined, then manipulated. In what follows it
is convenient to refer to thehorizontalandverticalgenerating functions (Figure III.1)
that are each a one-parameter family of GFs in a single variable defined by

horizontal GF: fn(u) := ∑
k fn,kuk;

vertical GF: f 〈k〉(z) := ∑
n fn,kzn (ordinary case)

f 〈k〉(z) := ∑
n fn,k

zn

n! (exponential case).
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Figure III.2 . The setW5 of the 32 binary words over the alphabet{�,�} enumer-
ated according to the number of occurrences of the letter ‘�’ gives rise to the bivariate
counting sequence{W5, j } = 1, 5, 10, 10, 5, 1.

The terminology is transparently explained if the elements( fn,k) are arranged as an
infinite matrix, with fn,k placed in rown and columnk, since the horizontal and
vertical GFs appear as the GFs of the rows and columns respectively. Naturally, one
has

f (z,u) =
∑

k

uk f 〈k〉(z) =





∑

n

fn(u)z
n (ordinary BGF)

∑

n

fn(u)
zn

n!
(exponential BGF).

ExampleIII.1. The ordinary BGF of binomial coefficients.The binomial coefficient
(n
k
)

counts
binary words of lengthn havingk occurrences of a designated letter; see Figure III.2. In order
to compose the bivariate GF, start from the simplest case of Newton’s binomial theorem and
directly form the horizontal GFs corresponding to a fixedn:

(1) Wn(u) :=
n∑

k=0

(
n

k

)
uk = (1+ u)n,

Then a summation over all values ofn gives the ordinary BGF

(2) W(z,u) =
∑

k,n≥0

(
n

k

)
ukzn =

∑

n≥0

(1+ u)nzn = 1

1− z(1+ u)
.

Such calculations are typical of BGF manipulations. What we have done amounts to starting
from a sequence of numbers,Wn,k, determining the horizontal GFsWn(u) in (1), then the
bivariate GFW(z,u) in (2), according to the scheme:

Wn,k ; Wn(u) ; W(z,u).

The BGF in (2) reduces to the OGF(1− 2z)−1 of all words, as it should, upon settingu = 1.
In addition, one can deduce from (2) the vertical GFs of the binomial coefficients cor-

responding to a fixed value ofk

W〈k〉(z) =
∑

n≥0

(
n

k

)
zn = zk

(1− z)k+1
,
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from an expansion of the BGF with respect tou

(3) W(z,u) = 1

1− z

1

1− u z
1−z
=
∑

k≥0

uk zk

(1− z)k+1
,

and the result naturally matches what a direct calculation would give. . . .. . . . . . . . . . . . . . . . .�

� III.1. The exponential BGF of binomial coefficients.This is

(4) W̃(z, u) =
∑

k,n

(
n

k

)
uk zn

n!
=
∑

(1+ u)n
zn

n!
= ez(1+u).

The vertical GFs areezzk/k!. The horizontal GFs are(1+ u)n, as in the ordinary case. �

ExampleIII.2. The exponential BGF of Stirling cycle numbers.As seen Example II.12, p. 121,
the numberPn,k of permutations of sizen havingk cycles equals the Stirling cycle number

[n
k
]
,

a vertical EGF being

P〈k〉(z) :=
∑

n

[
n

k

]
zn

n!
= L(z)k

k!
, L(z) := log

1

1− z
.

From this, the exponential BGF is formed as follows (this revisits the calculations on p. 121):

(5) P(z, u) :=
∑

k

P〈k〉(z)uk =
∑

k

uk

k!
L(z)k = euL(z) = (1− z)−u.

The simplification is quite remarkable but altogether quite typical, as we shall see shortly, in the
context of a labelled set construction. The starting point is thus a collection of vertical EGFs
and the scheme is now

P〈k〉n ; P〈k〉(z) ; P(z, u).

The BGF in (5) reduces to the EGF(1− z)−1 of all permutations, upon settingu = 1.
Furthermore, an expansion of the BGF in terms of the variablez provides useful informa-

tion; namely, the horizontal GF is obtained by Newton’s binomial theorem:

(6)
P(z, u) =

∑

n≥0

(
n+ u− 1

n

)
zn =

∑

n≥0

Pn(u)
zn

n!
,

where Pn(u) = u(u+ 1) · · · (u+ n− 1).

This last polynomial is called theStirling cycle polynomialof index n and it describes com-
pletely the distribution of the number of cycles in all permutations of sizen. In addition, the
relation

Pn(u) = Pn−1(u)(u+ (n− 1)),

is equivalent to the recurrence
[
n

k

]
= (n− 1)

[
n− 1

k

]
+
[
n− 1

k− 1

]
,

by which Stirling numbers are often defined and easily evaluated numerically; see also Ap-
pendix A.8:Stirling numbers, p. 735. (The recurrence is susceptible to a direct combinatorial
interpretation—addn either to an existing cycle or as a “new” singleton.) . . . . . . . . . . . . . . . .�
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Numbers Horizontal GFs(
n

k

)
(1+ u)n

Vertical OGFs Ordinary BGF

zk

(1− z)k+1

1

1− z(1+ u)

Numbers Horizontal GFs[
n

k

]
u(u+ 1) · · · (u+ n− 1)

Vertical EGFs Exponential BGF

1

k!

(
log

1

1− z

)k
(1− z)−u

Figure III.3 . The various GFs associated with binomial coefficients (left) and Stir-
ling cycle numbers (right).

Concise expressions for BGFs, like (2), (3), (5), or (18), are summarized in Fig-
ure III.3; they are invaluable for deriving moments, variance, and even finer character-
istics of distributions, as we see next. The determination of such BGFs can be covered
by a simple extension of the symbolic method, as will be detailed in Sections III. 3
and III. 4.

III. 2. Bivariate generating functions and probability dis tributions

Our purpose in this book is to analyse characteristics of a broad range of combi-
natorial types. The eventual goal of multivariate enumeration is the quantification of
properties present with high regularity in large random structures.

We shall be principally interested in enumeration according to sizeandan auxil-
iary parameter, the corresponding problems being naturally treated by means of BGFs.
In order to avoid redundant definitions, it proves convenient to introduce the sequence
of fundamental factors(ωn)n≥0, defined by

(7) ωn = 1 for ordinary GFs, ωn = n! for exponential GFs.

Then, the OGF and EGF of a sequence( fn) are jointly represented as

f (z) =
∑

fn
zn

ωn
and fn = ωn [zn] f (z).

Definition III.2. Given a combinatorial classA, a (scalar) parameteris a function
from A to Z≥0 that associates to any objectα ∈ A an integer valueχ(α). The
sequence

An,k = card
(
{α ∈ A

∣∣ |α| = n, χ(α) = k}
)
,

is called thecounting sequenceof the pairA, χ . Thebivariate generating function
(BGF) of A, χ is defined as

A(z,u) :=
∑

n,k≥0

An,k
zn

ωn
uk,

and isordinary if ωn ≡ 1 and exponentialif ωn ≡ n!. One says that the variable z
marks sizeand the variable umarks the parameterχ .
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Naturally A(z,1) reduces to the usual counting generating functionA(z) associ-
ated withA, and the cardinality ofAn is expressible as

An = ωn[zn] A(z,1).

III. 2.1. Distributions and moments. Within this subsection, we examine the
relationship between probabilistic models needed to interpret bivariate counting se-
quences and bivariate generating functions. The elementary notions needed are re-
called in Appendix A.3:Combinatorial probability, p. 727.

Consider a combinatorial classA. Theuniform probability distributionoverAn

assigns to anyα ∈ An a probability equal to 1/An. We shall use the symbolP to
denote probability and occasionally subscript it with an indication of the probabilistic
model used, whenever this model needs to be stressed: we shall then writePAn (or
simply Pn if A is understood) to indicate probability relative to the uniform distribu-
tion overAn.

Probability generating functions.Consider a parameterχ . It determines over
eachAn a discreterandom variabledefined over the discrete probability spaceAn:

(8) PAn(χ = k) = An,k

An
= An,k∑

k An,k
.

Given a discrete random variableX, typically, a parameterχ taken over a subclassAn,
we recall that itsprobability generating function(PGF) is by definition the quantity

(9) p(u) =
∑

k

P(X = k)uk.

From (8) and (9), one has immediately:

Proposition III.1 (PGFs from BGFs). Let A(z,u) be the bivariate generating func-
tion of a parameterχ defined over a combinatorial classA. The probability generat-
ing function ofχ overAn is given by

∑

k

PAn(χ = k)uk = [zn] A(z,u)

[zn] A(z,1)
,

and is thus a normalized version of a horizontal generating function.

The translation into the language of probability enables usto make use of which-
ever intuition might be available in any particular case, while allowing for a natu-
ral interpretation of data (Figure III.4). Indeed, insteadof noting that the quantity
381922055502195 represents the number of permutations of size 20 that have 10
cycles, it is perhaps more informative to state the probability of the event, which is
0.00015, i.e., about 1.5 per 10 000. Discrete distributions are conveniently represented
by histogramsor “bar charts”, where the height of the bar at abscissak indicates the
value ofP{X = k}. Figure III.4 displays two classical combinatorial distributions
in this way. Given the uniform probabilistic model that we have been adopting, such
histograms are eventually nothing but a condensed form of the “stacks” corresponding
to exhaustive listings, like the one displayed in Figure III.2.
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Figure III.4 . Histograms of two combinatorial distributions. Left: the number of
occurrences of a designated letter in a random binary word of length 50 (binomial
distribution). Right: the number of cycles in a random permutation of size 50(Stirling
cycle distribution).

Moments. Important information is conveyed bymoments. Given a discrete ran-
dom variableX, theexpectationof f (X) is by definition the linear functional

E( f (X)) :=
∑

k

P{X = k} · f (k).

The (power)momentsare

E(Xr ) :=
∑

k

P{X = k} · kr .

Then the expectation (or average, mean) ofX, its variance, and its standard deviation,
respectively, are expressed as

E(X), V(X) = E(X2)− E(X)2, σ (X) =
√

V(X).

The expectation corresponds to what is typically seen when forming the arithmetic
mean value of a large number of observations: this property is theweak law of large
numbers[205, Ch X]. The standard deviation then measures the dispersion of values
observed from the expectation and it does so in a mean-quadratic sense.

Thefactorial momentdefined for orderr as

(10) E (X(X − 1) · · · (X − r + 1))

is also of interest for computational purposes, since it is obtained plainly by differen-
tiation of PGFs (Appendix A.3:Combinatorial probability, p. 727). Power moments
are then easily recovered as linear combinations of factorial moments, see Note III.9
of Appendix A. In summary:

Proposition III.2 (Moments from BGFs). The factorial moment of order r of a pa-
rameterχ is determined from the BGF A(z,u) by r-fold differentiation followed by
evaluation at 1:

EAn (χ(χ − 1) · · · (χ − r + 1)) =
[zn]∂r

u A(z,u)
∣∣
u=1

[zn] A(z,1)
.
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In particular, the first two moments satisfy

EAn(χ) = [zn]∂u A(z,u)|u=1

[zn] A(z,1)

EAn(χ
2) =

[zn]∂2
u A(z,u)

∣∣
u=1

[zn] A(z,1)
+ [zn]∂u A(z,u)|u=1

[zn] A(z,1)
,

the variance and standard deviation being determined by

V(χ) = σ(χ)2 = E(χ2)− E(χ)2.

Proof. The PGFpn(u) of χ overAn is given by Proposition III.1. On the other hand,
factorial moments are on general grounds obtained by differentiation and evaluation
atu = 1. The result follows. �

In other words, the quantities

�(k)n := ωn ·
(
[zn] ∂k

u A(z,u)
∣∣∣
u=1

)

give, after a simple normalization (byωn · [zn] A(z,1)), the factorial moments:

E (χ(χ − 1) · · · (χ − k+ 1)) = 1

An
�(k)n .

Most notably,�(1)n is thecumulated valueof χ over all objects ofAn:

�(1)n ≡ ωn · [zn] ∂u A(z,u)|u=1 =
∑

α∈An

χ(α) ≡ An · EAn(χ).

Accordingly, the GF (ordinary or exponential) of the�(1)n is sometimes named the
cumulativegenerating function. It can be viewed as an unnormalized generating func-
tion of the sequence of expected values. These considerations explain Wilf’s sugges-
tive motto quoted on p. 151:“Generating functions find averages, etc”. (The “etc” can
be interpreted as a token for higher moments and probabilitydistributions.)
� III.2. A combinatorial form of cumulative GFs.One has

�(1)(z) ≡
∑

n
EAn(χ)An

zn

ωn
=
∑

α∈A
χ(α)

z|α|

ω|α|
,

whereωn = 1 (ordinary case) orωn = n! (exponential case). �

ExampleIII.3. Moments of the binomial distribution.The binomial distribution of indexn can
be defined as the distribution of the number ofas in a random word of lengthn over the binary
alphabet{a,b}. The determination of moments results easily from the ordinary BGF,

W(z,u) = 1

1− z− zu
.

By differentiation, one finds

∂r

∂ur W(z,u)

∣∣∣∣
u=1
= r !zr

(1− 2z)r+1
.

Coefficient extraction then gives the form of the factorial moments of orders 1,2, 3, . . . , r as

n

2
,

n(n− 1)

4
,

n(n− 1)(n− 2)

8
, . . . ,

r !

2r

(
n

r

)
.
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In particular, the mean and the variance are1
2n and 1

4n. The standard deviation is thus12
√

n
which is of a smaller order than the mean: this indicates that the distribution is somehow con-
centrated around its mean value, as suggested by Figure III.4. . . . . .. . . . . . . . . . . . . . . . . . . . . .�

� III.3. De Moivre’s approximation of the binomial coefficients.The fact that the mean and
the standard deviation of the binomial distribution are respectively1

2n and 1
2
√

n suggests we
examine what goes on at a distance ofx standard deviations from the mean. Consider for
simplicity the case ofn = 2ν even. From the ratio

r (ν, ℓ) :=
( 2ν
ν+ℓ

)
(2ν
ν

) =
(1− 1

ν )(1− 2
ν ) · · · (1− k−1

ν )

(1+ 1
ν )(1+ 2

ν ) · · · (1+ k
ν )

,

the approximation log(1+ x) = x + O(x2) shows that, for any fixedy ∈ R,

lim
n→∞, ℓ=ν+y

√
ν/2

( 2ν
ν+ℓ

)
(2ν
ν

) = e−y2/2.

(Alternatively, Stirling’s formula can be employed.) This Gaussian approximation for the bino-
mial distribution was discovered by Abraham de Moivre (1667–1754),a close friend of Newton.
General methods for establishing such approximations are developed inChapter IX. �

Example III.4. Moments of the Stirling cycle distribution.Let us return to the example of
cycles in permutations which is of interest in connection with certain sorting algorithms like
bubble sort or insertion sort, maximum finding, andin situ rearrangement [374].

We are dealing with labelled objects, hence exponential generating functions. As seen
earlier on p. 155, the BGF of permutations counted according to cycles is

P(z, u) = (1− z)−u.

By differentiating the BGF with respect tou, then settingu = 1, we next get the expected
number of cycles in a random permutation of sizen as a Taylor coefficient:

(11) En(χ) = [zn]
1

1− z
log

1

1− z
= 1+ 1

2
+ · · · + 1

n
,

which is the harmonic number Hn. Thus, on average, a random permutation of sizen has about
logn+ γ cycles, a well-known fact of discrete probability theory, derived on p.122 by means
of horizontal generating functions.

For the variance, a further differentiation of the bivariate EGF gives

(12)
∑

n≥0

En(χ(χ − 1))zn = 1

1− z

(
log

1

1− z

)2
.

From this expression and Note III.4 (or directly from the Stirling cycle polynomials of p. 155),
a calculation shows that

(13) σ2
n =




n∑

k=1

1

k


−




n∑

k=1

1

k2


 = logn+ γ − π

2

6
+ O

(
1

n

)
.

Thus, asymptotically,
σn ∼

√
logn.

The standard deviation is of an order smaller than the mean, and therefore large deviations from
the mean have an asymptotically negligible probability of occurrence (see below the discussion
of moment inequalities). Furthermore, the distribution is asymptotically Gaussian, as we shall
see in Chapter IX, p. 644. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�
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� III.4. Stirling cycle numbers and harmonic numbers.By the “exp–log trick” of Chapter I,
p. 29, the PGF of the Stirling cycle distribution satisfies

1

n!
u(u+ 1) · · · (u+ n− 1) = exp

(
v Hn−

v2

2
H(2)n +

v3

3
H(3)n + · · ·

)
, u = 1+ v

where H(r )n is the generalized harmonic number
∑n

j=1 j−r . Consequently, any moment of the
distribution is a polynomial in generalized harmonic numbers; compare (11) and (13). Fur-
thermore, thekth moment satisfiesEPn(χ

k) ∼ (logn)k. (The same technique expresses the

Stirling cycle number
[n
k
]

as a polynomial in generalized harmonic numbers H(r )
n−1.)

Alternatively, start from the expansion of(1− z)−α and differentiate repeatedly with re-
spect toα; for instance, one has

(1− z)−α log
1

1− z
=
∑

n≥0

(
1

α
+ 1

α + 1
+ · · · + 1

n− 1+ α

)(
n+ α − 1

n

)
zn,

which provides (11) upon settingα = 1, while the next differentiation gives (13). �

The situation encountered with cycles in permutations is typical of iterative (non-
recursive) structures. In many other cases, especially when dealing with recursive
structures, the bivariate GF may satisfy complicated functional equations in two vari-
ables (see the example of path length in trees, Section III. 5below), which means we
do not know them explicitly. However, asymptotic laws can bedetermined in a large
number of cases (Chapter IX). In all cases, the BGFs are the central tool in obtain-
ing mean and variance estimates, since their derivatives evaluated atu = 1 become
univariate GFs that usually satisfy much simpler relationsthan the BGFs themselves.

III. 2.2. Moment inequalities and concentration of distributions. Qualitative-
ly speaking, families of distributions can be classified into two categories:(i ) distri-
butions that arespread, i.e., the standard deviation is of order at least as large asthe
mean (e.g.the uniform distributions over [0. .n], which have totally flat histograms);
(i i ) distributions for which the standard deviation is of an asymptotic order smaller
than the mean (e.g., the Stirling cycle distribution, Figure III.4, and the binomial distri-
bution, Figure III.5.) Such informal observations are indeed supported by the Markov–
Chebyshev inequalities, which take advantage of information provided by the first two
moments. (A proof is found in Appendix A.3:Combinatorial probability, p. 727.)

Markov–Chebyshev inequalities.Let X be a non-negative random variable and Y
an arbitrary real variable. One has for any t> 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y)| ≥ tσ(Y)} ≤ 1

t2
(Chebyshev inequality).

This result informs us that the probability of being much larger than the mean must
decay (Markov) and that an upper bound on the decay is measured in units given by
the standard deviation (Chebyshev).

The next proposition formalizes a concentration property of distributions. It ap-
plies to afamilyof distributions indexed by the integers.



162 III. PARAMETERS AND MULTIVARIATE GFS
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Figure III.5 . Plots of the binomial distributions forn = 5, . . . , 50. The horizontal
axis is normalized (by a factor of 1/n) and rescaled to 1, so that the curves display{
P( Xn

n = x)
}
, for x = 0, 1

n ,
2
n , . . . .

Proposition III.3 (Concentration of distribution). Consider a family of random vari-
ables Xn, typically, a scalar parameterχ on the subclassAn. Assume that the means
µn = E(Xn) and the standard deviationsσn = σ(Xn) satisfy the condition

lim
n→+∞

σn

µn
= 0.

Then the distribution of Xn is concentratedin the sense that, for anyǫ > 0, there
holds

(14) lim
n→+∞

P

{
1− ǫ ≤ Xn

µn
≤ 1+ ǫ

}
= 1.

Proof. The result is a direct consequence of Chebyshev’s inequality. �

The concentration property (14) expresses the fact that values ofXn tend to be-
come closer and closer (in relative terms) to the meanµn asn increases. Another
figurative way of describing concentration, much used in random combinatorics, is to
say that “Xn/µn tends to 1 in probability”; in symbols:

Xn

µn

P−→1.

When this property is satisfied, the expected value is in a strong sense a typical value—
this fact is an extension of theweak law of large numbersof probability theory.

Concentration properties of the binomial and Stirling cycle distributions. The
binomial distributionis concentrated, since the mean of the distribution isn/2 and
the standard deviation is

√
n/4, a much smaller quantity. Figure III.5 illustrates con-

centration by displaying the graphs (as polygonal lines) associated to the binomial
distributions forn = 5, . . . ,50. Concentration is also quite perceptible on simula-
tions asn gets large: the table below describes the results of batchesof ten (sorted)
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simulations from the binomial distribution
{

1
2n

(n
k

)}n

k=0
:

n = 100 39, 42, 43, 49, 50, 52, 54, 55, 55, 57
n = 1000 487, 492, 494, 494, 506, 508, 512, 516, 527, 545
n = 10 000 4972, 4988, 5000, 5004, 5012, 5017, 5023, 5025, 5034, 5065
n = 100 000 49798, 49873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284;

the maximal deviations from the mean observed on such samples are 22% (n = 102),
9% (n = 103), 1.3% (n = 104), and 0.6% (n = 105). Similarly, the mean and
variance computations of (11) and (13) imply that the numberof cycles in a random
permutation of large size is concentrated.

Finer estimates on distributions form the subject of our Chapter IX dedicated to
limit laws. The reader may get a feeling of some of the phenomena at stake when
examining Figure III.5 and Note III.3, p. 160: the visible emergence of a continu-
ous curve (the bell-shaped curve) corresponds to a common asymptotic shape for the
whole family of distributions—theGaussian law.

III. 3. Inherited parameters and ordinary MGFs

In this section and the next, we address the question of determining BGFs directly
from combinatorial specifications. The answer is provided by a simple extension of
the symbolic method, which is formulated in terms ofmultivariate generating func-
tions (MGFs). Such generating functions have the capability of taking into account a
finite collection (equivalently, a vector) of combinatorial parameters. Bivariate gener-
ating functions discussed earlier appear as a special case.

III. 3.1. Multivariate generating functions (MGFs). The theory is best devel-
oped in full generality for the joint analysis of a fixed finitecollection of parameters.

Definition III.3. Consider a combinatorial classA. A (multidimensional) parameter
χ = (χ1, . . . , χd) on the class is a function fromA to the setZd

≥0 of d–tuples of
natural numbers. Thecounting sequenceofA with respect to size and the parameterχ

is then defined by

An,k1,...,kd = card
{
α
∣∣ |α| = n, χ1(α) = k1, . . . , χd(α) = kd

}
.

We sometimes refer to such a parameter as a “multiparameter”whend > 1, and
a “simple” or “scalar” parameter otherwise. For instance, one may take the classP
of all permutationsσ , and forχ j ( j = 1,2,3) the number of cycles of lengthj in σ .
Alternatively, we may consider the classW of all wordsw over an alphabet with four
letters,{α1, . . . , α4} and take forχ j ( j = 1, . . . ,4) the number of occurrences of the
letterα j in w, and so on.

Themulti-index conventionemployed in various branches of mathematics greatly
simplifies notations: letx = (x1, . . . , xd) be a vector ofd formal variables andk =
(k1, . . . , kd) be a vector of integers of the same dimension; then, the multipowerxk is
defined as the monomial

(15) xk := xk1
1 xk2

2 · · · x
kd
d .

With this notation, we have:
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Definition III.4. Let An,k be a multi-index sequence of numbers, wherek ∈ Nd.
The multivariate generating function (MGF)of the sequence of either ordinary or
exponential type is defined as the formal power series

(16)

A(z,u) =
∑

n,k

An,kukzn (ordinary MGF)

A(z,u) =
∑

n,k

An,kuk zn

n!
(exponential MGF).

Given a classA and a parameterχ , the MGF of the pair〈A, χ〉 is the MGF of
the corresponding counting sequence. In particular, one has thecombinatorial forms:

(17)

A(z,u) =
∑

α∈A
uχ(α)z|α| (ordinary MGF; unlabelled case)

A(z,u) =
∑

α∈A
uχ(α)

z|α|

|α|! (exponential MGF; labelled case).

One also says that A(z,u) is the MGF of the combinatorial class with the formal
variable uj markingthe parameterχ j and zmarkingsize.

From the very definition, with1 a vector of all 1’s, the quantityA(z,1) coincides
with the generating function ofA, either ordinary or exponential as the case may be.
One can then view an MGF as a deformation of a univariate GF by way of a vectoru,
with the property that the multivariate GF reduces to the univariate GF atu = 1. If all
but one of theu j are set to 1, then a BGF results; in this way, the symbolic calculus
that we are going to develop gives full access to BGFs (and, from here, to moments).
� III.5. Special cases of MGFs.The exponential MGF of permutations withu1,u2 marking
the number of 1–cycles and 2–cycles respectively is

(18) P(z, u1, u2) =
exp

(
(u1− 1)z+ (u2− 1) z2

2

)

1− z
.

(This will be proved later in this chapter, p. 187.) The formula is checkedto be consistent with
three already known special cases derived in Chapter II:(i ) settingu1 = u2 = 1 gives back
the counting ofall permutations,P(z, 1,1) = (1− z)−1, as it should;(i i ) settingu1 = 0 and
u2 = 1 gives back the EGF of derangements, namelye−z/(1− z); (i i i ) settingu1 = u2 =
0 gives back the EGF of permutations with cycles all of length greater than 2, P(z, 0, 0) =
e−z−z2/2/(1− z), a generalized derangement GF. In addition, the particular BGF

P(z,u, 1) = e(u−1)z

1− z
,

enumerates permutations according to singleton cycles. This last BGF interpolates between the
EGF of derangements (u = 0) and the EGF of all permutations(u = 1). �

III. 3.2. Inheritance and MGFs. Parameters that areinherited from substruc-
tures (definition below) can be taken into account by a directextension of the symbolic
method. With a suitable use of the multi-index conventions,it is even the case that the
translation rules previously established in Chapters I andII can be copied verbatim.
This approach provides a large quantity of multivariate enumeration results that follow
automatically by the symbolic method.
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Definition III.5. Let 〈A, χ〉, 〈B, ξ 〉, 〈C, ζ 〉 be three combinatorial classes endowed
with parameters of the same dimension d. The parameterχ is said to beinheritedin
the following cases.

• Disjoint union: whenA = B + C, the parameterχ is inherited fromξ, ζ iff
its value is determined by cases fromξ, ζ :

χ(ω) =




ξ(ω) if ω ∈ B

ζ(ω) if ω ∈ C.

• Cartesian product: whenA = B×C, the parameterχ is inherited fromξ, ζ
iff its value is obtained additively from the values ofξ, ζ :

χ(β, γ ) = ξ(β)+ ζ(γ ).
• Composite constructions: whenA = K{B}, whereK is a metasymbol repre-

senting any ofSEQ,MSET,PSET,CYC, the parameterχ is inherited fromξ
iff its value is obtained additively from the values ofξ on components; for
instance, for sequences:

χ(β1, . . . , βr ) = ξ(β1)+ · · · + ξ(βr ).

With a natural extension of the notation used for constructions, we shall write

〈A, χ〉 = 〈B, ξ 〉 + 〈C, ζ 〉, 〈A, χ〉 = 〈B, ξ 〉 × 〈C, ζ 〉, 〈A, χ〉 = K {〈B, ξ 〉} .
This definition of inheritance is seen to be a natural extension of the axioms that

size itself has to satisfy (Chapter I): size of a disjoint union is defined by cases; size
of a pair, and similarly of a composite construction, is obtained by addition.

Next, we need a bit of formality. Consider a pair〈A, χ〉, whereA is a combi-
natorial class endowed with its usual size function| · | andχ = (χ1, . . . , χd) is a
d-dimensional (multi)parameter. Writeχ0 for size andz0 for the variable marking
size (previously denoted byz). The key point is to define anextended multiparameter
χ = (χ0, χ1, . . . , χd); that is,we treat size and parameters on an equal opportunity
basis. Then the ordinary MGF in (16) assumes an extremely simple and symmetrical
form:

(19) A(z) =
∑

k

Akzk =
∑

α∈A
zχ(α).

Here, the indeterminates are the vectorz = (z0, z1, . . . , zd), the indices arek =
(k0, k1, . . . , kd), wherek0 indexes size (previously denoted byn) and the usual multi-
index convention introduced in (15) is in force:

(20) zk := zk0
0 zk1

1 · · · zd
kd ,

but it is now applied to(d + 1)-dimensional vectors. With this convention, we have:

Theorem III.1 (Inherited parameters and ordinary MGFs). LetA be a combinatorial
class constructed fromB, C, and letχ be a parameter inherited fromξ defined on
B and (as the case may be) fromζ on C. Then the translation rules of admissible
constructions stated in Theorem I.1, p. 27, are applicable,provided the multi-index
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convention(19) is used. The associated operators on ordinary MGFs are then (ϕ(k)
is the Euler totient function, defined on p. 721):

Union: A = B + C H⇒ A(z) = B(z)+ C(z),

Product: A = B × C H⇒ A(z) = B(z) · C(z),

Sequence: A = SEQ(B) H⇒ A(z) = 1

1− B(z)
,

Powerset: A = PSET(B) H⇒ A(z) = exp

( ∞∑

ℓ=1

(−1)ℓ−1

ℓ
B(zℓ)

)
.

Multiset: A = MSET(B) H⇒ A(z) = exp

( ∞∑

ℓ=1

1

ℓ
B(zℓ)

)
,

Cycle: A = CYC(B) H⇒ A(z) =
∞∑

ℓ=1

ϕ(ℓ)

ℓ
log

1

1− B(zℓ)
,

Proof. For disjoint unions, one has

A(z) =
∑

α∈A
zχ(α) =

∑

β∈B
zξ(β) +

∑

γ∈C
zζ (γ ),

since inheritance is defined by cases on unions. For cartesian products, one has

A(z) =
∑

α∈A
zχ(α) =

∑

β∈B
zξ(β) ×

∑

γ∈C
zζ (γ ),

since inheritance corresponds to additivity on products.
The translation of composite constructions in the case of sequences, powersets,

and multisets is then built up from the union and product schemes, in exactly the
same manner as in the proof of Theorem I.1. Cycles are dealt with by the methods of
Appendix A.4:Cycle construction, p. 729. �

The multi-index notation is a crucial ingredient for developing the general theory
of multivariate enumerations. When we work with only a small number of parameters,
typically one or two, we will however often find it convenientto return to vectors of
variables like(z,u) or (z,u, v). In this way, unnecessary subscripts are avoided.

The reader is especially encouraged to study the treatment of integer composi-
tions in Examples III.5 and III.6 below carefully, since it illustrates the power of the
multivariate symbolic method, in its bare bones version.

Example III.5. Integer compositions and MGFs I.The classC of all integer compositions
(Chapter I) is specified by

C = SEQ(I), I = SEQ≥1(Z),

whereI is the set of all positive numbers. The corresponding OGFS are

C(z) = 1

1− I (z)
, I (z) = z

1− z
,

so thatCn = 2n−1 (n ≥ 1). Say we want to enumerate compositions according to the numberχ

of summands. One way to proceed, in accordance with the formal definition of inheritance, is
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as follows. Letξ be the parameter that takes the constant value 1 on all elements ofI. The
parameterχ on compositions is inherited from the (almost trivial) parameterξ ≡ 1 defined on
summands. The ordinary MGF of〈I, ξ〉 is

I (z, u) = zu+ z2u+ z3u+ · · · = zu

1− z
.

Let C(z, u) be the BGF of〈C, χ〉. By Theorem III.1, the schemes translating admissible con-
structions in the univariate case carry over to the multivariate case, so that

(21) C(z, u) = 1

1− I (z, u)
= 1

1− u z
1−z
= 1− z

1− z(u+ 1)
.

Et voilà! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

Markers. There is an alternative way of arriving at MGFs, as in (21), which is
important and will be of much use thoughout this book. Amarker(or mark) in a spec-
ification6 is a neutral object (i.e., an object of size 0) attached to a construction or an
atom by a product. Such a marker does not modify size, so that the univariate counting
sequence associated to6 remains unaffected. On the other hand, the total number of
markers that an object contains determines by design an inherited parameter, so that
Theorem III.1 is automatically applicable. In this way, onemay decorate specifica-
tions so as to keep track of “interesting” substructures andget BGFs automatically.
The insertion of several markers similarly gives MGFs.

For instance, say we are interested in the number of summandsin compositions,
as in Example III.5 above. Then, one has an enriched specification, and its translation
into MGF,

(22) C = SEQ
(
µSEQ≥1(Z)

)
H⇒ C(z,u) = 1

1− uI (z)
,

based on the correspondence:Z 7→ z, µ 7→ u.

Example III.6. Integer compositions and MGFs II.Consider the double parameterχ =
(χ1, χ2) whereχ1 is the number of parts equal to 1 andχ2 the number of parts equal to 2.
One can write down an extended specification, withµ1 a combinatorial mark for summands
equal to 1 andµ2 for summands equal to 2,

(23)
C = SEQ

(
µ1Z + µ2Z

2+ SEQ≥3(Z)

)

H⇒ C(z, u1, u2) =
1

1− (u1z+ u2z2+ z3(1− z)−1)
,

whereu j ( j = 1, 2) records the number of marks of typeµ j .
Similarly, letµ mark each summand andµ1 mark summands equal to 1. Then, one has,

(24) C = SEQ

(
µµ1Z + µSEQ≥2(Z)

)
H⇒ C(z, u1, u) =

1

1− (uu1z+ uz2(1− z)−1)
,

whereu keeps track of the total number of summands andu1 records the number of summands
equal to 1.
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MGFs obtained in this way via the multivariate extension of the symbolic method can then
provide explicit counts, after suitable series expansions. For instance,the number of composi-
tions ofn with k parts is, by (21),

[znuk]
1− z

1− (1+ u)z
=
(

n

k

)
−
(

n− 1

k

)
=
(

n− 1

k− 1

)
,

a result otherwise obtained in Chapter I by direct combinatorial reasoning (the balls-and-bars
model). The number of compositions ofn containingk parts equal to 1 is obtained from the
special caseu2 = 1 in (23),

[znuk]
1

1− uz− z2

(1−z)

= [zn−k]
(1− z)k+1

(1− z− z2)k+1
,

where the last OGF closely resembles a power of the OGF of Fibonacci numbers.
Following the discussion of Section III. 2, such MGFs also carry completeinformation

about moments. In particular, the cumulated value of the number of partsin all compositions
of n has OGF

∂uC(z, u)|u=1 =
z(1− z)

(1− 2z)2
,

since cumulated values are obtained via differentiation of a BGF. Therefore, the expected num-
ber of parts in a random composition ofn is exactly (forn ≥ 1)

1

2n−1
[zn]

z(1− z)

(1− 2z)2
= 1

2
(n+ 1).

One further differentiation will give rise to the variance. The standard deviation is found to
be 1

2

√
n− 1, which is of an order (much) smaller than the mean. Thus, the distributionof the

number of summands in a random composition satisfies the concentration property asn→∞.
In the same vein, the number of parts equal to a fixed numberr in compositions is deter-

mined by

C = SEQ

(
µZr + SEQ6=r (Z)

)
H⇒ C(z, u) =

(
1−

(
z

1− z
+ (u− 1)zr

))−1
.

It is then easy to pull out the expected number ofr -summands in a random composition of
sizen. The differentiated form

∂uC(z, u)|u=1 =
zr (1− z)2

(1− 2z)2

gives, by partial fraction expansion,

∂uC(z, u)|u=1 =
2−r−2

(1− 2z)2
+ 2−r−1− r 2−r−2

1− 2z
+ q(z),

for a polynomialq(z) that we do not need to make explicit. Extracting thenth coefficient of
the cumulative GF∂uC(z, 1) and dividing by 2n−1 yields the mean number ofr –parts in a
random composition. Another differentiation gives access to the secondmoment. One obtains
the following proposition.

Proposition III.4 (Summands in integer compositions). The total number of summands in a
random composition of size n has mean1

2(n+1) and a distribution that is concentrated around
the mean. The number of r summands in a composition of size n has mean

n

2r+1
+ O(1);

and a standard deviation of order
√

n, which also ensures concentration of distribution.
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Figure III.6 . A random composition ofn = 100 represented as a ragged landscape
(top); its associated profile 120212310415171101, defined as the partition obtained by
sorting the summands (bottom).

Results of a simulation illustrating the proposition are displayed in Figure III.6to which
Note III.6 below adds further comments. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� III.6. The profile of integer compositions.From the point of view of random structures,
Proposition III.4 shows that random compositions of large size tend to conform to a global
“profile”. With high probability, a composition of sizen should have aboutn/4 parts equal to 1,
n/8 parts equal to 2, and so on. Naturally, there are statistically unavoidable fluctuations, and
for any finiten, the regularity of this law cannot be perfect: it tends to fade away, especially with
regard to largest summands that are log2(n)+ O(1) with high probability. (In this region mean
and standard deviation both become of the same order and areO(1), so that concentration no
longer holds.) However, such observationsdo tell us a great deal about what a typical random
composition must (probably) look like—it should conform to a “geometric profile”,

1n/4 2n/8 3n/164n/32 · · · .
Here are for instance the profiles of two compositions of sizen = 1024 drawn uniformly at
random:

1250213837042951561074 80,91 and 1253213636843151368 73 81 91 102.

These are to be compared with the “ideal” profile

1256212836443251668 74 82 91.

It is a striking fact that samples of a very few elements or even justoneelement (this would
be ridiculous by the usual standards of statistics) are often sufficient to illustrate asymptotic
properties of large random structures. The reason is once more to be attributed to concentration
of distributions whose effect is manifest here. Profiles of a similar nature present themselves
among objects defined by the sequence construction, as we shall see throughout this book.
(Establishing such general laws is usually not difficult but it requires thefull power of complex
analytic methods developed in Chapters IV–VIII.) �

� III.7. Largest summands in compositions.For anyǫ > 0, with probability tending to 1
asn → ∞, the largest summand in a random integer composition of sizen is in the interval
[(1− ǫ) log2 n, (1+ ǫ) log2 n]. (Hint: use the first and second moment methods. More precise
estimates are obtained by the methods of Example V.4, p. 308.) �
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K BGF (A(z, u)) cumulative GF(�(z))

SEQ :
1

1− uB(z)
A(z)2 · B(z) = B(z)

(1− B(z))2

PSET :





exp



∞∑

k=1

(−1)k−1 uk

k
B(zk)




∞∏

n=1

(1+ uzn)Bn

A(z) ·
∞∑

k=1

(−1)k−1B(zk)

MSET :





exp



∞∑

k=1

uk

k
B(zk)




∞∏

n=1

(1− uzn)−Bn

A(z) ·
∞∑

k=1

B(zk)

CYC :
∞∑

k=1

ϕ(k)

k
log

1

1− uk B(zk)

∞∑

k=1

ϕ(k)
B(zk)

1− B(zk)
.

Figure III.7 . Ordinary GFs relative to the number of components inA = K(B).

Simplified notation for markers.It proves highly convenient to simplify nota-
tions, much in the spirit of our current practice, where the atom Z is reflected by
the name of the variablez in GFs. The following convention will be systematically
adopted:the same symbol (usually u, v,u1,u2 . . .) is freely employed to designate a
combinatorial marker (of size0) and the corresponding marking variable in MGFs.

For instance, we can write directly, for compositions,

C = SEQ(u SEQ≥1Z)), C = SEQ(uu1Z + u SEQ≥2Z)),

whereu marks all summands andu1 marks summands equal to 1, giving rise to (22)
and (24) above. The symbolic scheme of Theorem III.1 invariably applies to enumer-
ation according to the number of markers.

III. 3.3. Number of components in abstract unlabelled schemas. Consider a
constructionA = K(B), where the metasymbolK designates any standardunlabelled
constructor among SEQ,MSET,PSET,CYC. What is sought is the BGFA(z,u) of
classA, with u marking each component. The specification is then of the form

A = K(uB), K = SEQ,MSET,PSET,CYC .

Theorem III.1 applies and yields immediately the BGFA(z,u). In addition, differ-
entiating with respect tou then settingu = 1 provides the GF of cumulated values
(hence, in a non-normalized form, the OGF of the sequence of mean values of the
number of components):

�(z) = ∂

∂u
A(z,u)

∣∣∣∣
u=1

.
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Figure III.8 . A random partition of sizen = 100 has an aspect rather different from
the profile of a random composition of the same size (Figure III.6).

In summary:

Proposition III.5 (Components in unlabelled schemas). Given a construction,A =
K(B), the BGF A(z,u) and the cumulated GF�(z) associated to the number of com-
ponents are given by the table of Figure III.7.

Mean values are then recovered with the usual formula,

EAn(# components) = [zn]�(z)

[zn] A(z)
.

� III.8. r–Components in abstract unlabelled schemas.Consider unlabelled structures. The
BGF of the number ofr –components inA = K{B} is given by

A(z, u) =
(
1− B(z)− (u− 1)Br zr )−1

, A(z, u) = A(z) ·
(

1− zr

1− uzr

)Br

,

in the case of sequences (K = SEQ) and multisets (K = MSET), respectively. Similar formulae
hold for the other basic constructions and for cumulative GFs. �

� III.9. Number of distinct components in a multiset.The specification and the BGF are

∏

β∈B

(
1+ u SEQ≥1(β)

)
H⇒

∏

n≥1

(
1+ uzn

1− zn

)Bn

,

as follows from first principles. �

As an illustration of Proposition III.5, we discuss the profile of random partitions
(Figure III.8).

Example III.7. The profile of partitions.Let P = MSET(I) be the class of all integer
partitions, whereI = SEQ≥1(Z) represents integers in unary notation. The BGF ofP with u
marking the numberχ of parts (or summands) is obtained from the specification

P = MSET(uI) H⇒ P(z, u) = exp



∞∑

k=1

uk

k

zk

1− zk


 .
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Figure III.9 . The number of parts in random partitions of size 1, . . . , 500: exact
values of the mean and simulations (circles, one for each value ofn).

Equivalently, from first principles,

P ∼=
∞∏

n=1

SEQ(uIn) H⇒
∞∏

n=1

1

1− uzn .

The OGF of cumulated values then results from the second form of the BGFby logarithmic
differentiation:

(25) �(z) = P(z) ·
∞∑

k=1

zk

1− zk
.

Now, the factor on the right in (25) can be expanded as
∞∑

k=1

zk

1− zk
=
∞∑

n=1

d(n)zn,

with d(n) the number of divisors ofn. Thus, the mean value ofχ is

(26) En(χ) =
1

Pn

n∑

j=1

d( j )Pn− j .

The same technique applies to the number of parts equal tor . The form of the BGF is

P̃ ∼= SEQ(uIr )×
∏

n6=r

SEQ(In) H⇒ P̃(z, u) = 1− zr

1− uzr
· P(z),

which implies that the mean value of the numberχ̃ of r –parts satisfies

En(χ̃) =
1

Pn
[zn]

(
P(z) · zr

1− zr

)
= 1

Pn

(
Pn−r + Pn−2r + Pn−3r + · · ·

)
.

From these formulae and a decent symbolic manipulation package, the means are calculated
easily up to values ofn well into the range of several thousand. . . . . . . . . . . . . . . . . . . . . . .. . . �

The comparison between Figures III.6 and III.8 shows that different combinatorial
models may well lead to rather different types of probabilistic behaviours. Figure III.9
displays the exact value of the mean number of parts in randompartitions of sizen =
1, . . . ,500, (as calculated from (26)) accompanied with the observed values of one
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Figure III.10 . Two partitions ofP1000 drawn at random, compared to the limiting
shape9(x) defined by (27).

random sample for each value ofn in the range. The mean number of parts is known
to be asymptotic to √

n logn

π
√

2/3
,

and the distribution, though it admits a comparatively large standard deviationO(
√

n),
is still concentrated, in the technical sense of the term. Weshall prove some of these
assertions in Chapter VIII, p. 581.

In recent years, Vershik and his collaborators [152, 595] have shown that most in-
teger partitions tend to conform to a definite profile given (after normalization by

√
n)

by the continuous plane curvey = 9(x) defined implicitly by

(27) y = 9(x) iff e−αx + e−αy = 1, α = π√
6
.

This is illustrated in Figure III.10 by two randomly drawn elements ofP1000 repre-
sented together with the “most likely” limit shape. The theoretical result explains the
huge differences that are manifest on simulations between integer compositions and
integer partitions.

The last example of this section demonstrates the application of BGFs to estimates
regarding the root degree of a tree drawn uniformly at randomamong the classGn of
general Catalan trees of sizen. Tree parameters such as number of leaves and path
length that are more global in nature and need a recursive definition will be discussed
in Section III. 5 below.

Example III.8. Root degree in general Catalan trees.Consider the parameterχ equal to
the degree of the root in a tree, and take the classG of all plane unlabelled trees, i.e., general
Catalan trees. The specification is obtained by first defining trees (G), then defining trees with a
mark for subtrees (G◦) dangling from the root:





G = Z × SEQ(G)

G◦ = Z × SEQ(uG)
H⇒





G(z) = z

1− G(z)

G(z,u) = z

1− uG(z)
.
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This set of equations reveals that the probability that the root degree equalsr is

Pn{χ = r } = 1

Gn
[zn−1]G(z)r = r

n− 1

(
2n− 3− r

n− 2

)
∼ r

2r+1
,

this by Lagrange inversion and elementary asymptotics. Furthermore, the cumulative GF is
found to be

�(z) = zG(z)

(1− G(z))2
.

The relation satisfied byG entails a further simplification,

�(z) = 1

z
G(z)3 =

(
1

z
− 1

)
G(z)− 1,

so that the mean root degree admits a closed form,

En(χ) =
1

Gn

(
Gn+1− Gn

)
= 3

n− 1

n+ 1
,

a quantity clearly asymptotic to 3.
A random plane tree is thus usually composed of a small number of root subtrees, at least

one of which should accordingly be fairly large. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

III. 4. Inherited parameters and exponential MGFs

The theory of inheritance developed in the last section applies almostverbatimto
labelled objects. The only difference is that the variable marking size must carry a fac-
torial coefficient dictated by the needs of relabellings. Once more, with a suitable use
of multi-index conventions, the translation mechanisms developed in the univariate
case (Chapter II) remain in force, this in a way that parallels the unlabelled case.

Let us consider a pair〈A, χ〉, whereA is a labelled combinatorial class endowed
with its size function| · | andχ = (χ1, . . . , χd) is a d-dimensional parameter. As
before, the parameterχ is extended intoχ by inserting size as zeroth coordinate and
a vectorz= (z0, . . . , zd) of d + 1 indeterminates is introduced, withz0 marking size
and z j markingχ j . Once the multi-index convention of (20) definingzk has been
brought into play, the exponential MGF of〈A, χ〉 (see Definition III.4, p. 164) can be
rephrased as

(28) A(z) =
∑

k

Ak
zk

k0!
=
∑

α∈A

zχ(α)

|α|! .

This MGF is exponential inz (aliasz0) but ordinary in the other variables; only the
factorialk0! is needed to take into account relabelling induced by labelled products.

We a priori restrict attention to parameters that do not depend on the absolute
values of labels (but may well depend on the relative order oflabels): a parameter is
said to becompatibleif, for anyα, it assumes the same value on any labelled objectα

and all the order-consistent relabellings ofα. A parameter is said to beinherited if it
is compatible and it is defined by cases on disjoint unions anddetermined additively
on labelled products—this is Definition III.5 (p. 165) with labelled products replacing
cartesian products. In particular, for a compatible parameter, inheritance signifies
additivity on components of labelled sequences, sets, and cycles. We can then cut-
and-paste (with minor adjustments) the statement of Theorem III.1, p. 165:
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Theorem III.2 (Inherited parameters and exponential MGFs). Let A be a labelled
combinatorial class constructed fromB, C, and letχ be a parameter inherited from
ξ defined onB and (as the case may be) fromζ on C. Then the translation rules of
admissible constructions stated in Theorem II.1, p. 103, are applicable, provided the
multi-index convention(28) is used. The associated operators on exponential MGFs
are then:

Union: A = B + C H⇒ A(z) = B(z)+ C(z)

Product: A = B ⋆ C H⇒ A(z) = B(z) · C(z)
Sequence: A = SEQ(B) H⇒ A(z) = 1

1− B(z)

Cycle: A = CYC(B) H⇒ A(z) = log
1

1− B(z)
.

Set: A = SET(B) H⇒ A(z) = exp
(
B(z)

)
.

Proof. Disjoint unions are treated in a similar manner to the unlabelled multivariate
case. Labelled products result from

A(z) =
∑

α∈A

zχ(α)

|α|! =
∑

β∈B,γ∈C

(|β| + |γ |
|β|, |γ |

)
zξ(β) zζ (γ )

(|β| + |γ |)! ,

and the usual translation of binomial convolutions that reflect labellings by means of
products of exponential generating functions (like in the univariate case detailed in
Chapter II). The translation for composite constructions is then immediate. �

This theorem can be exploited to determine moments, in a way that entirely par-
allels its unlabelled counterpart.

ExampleIII.9. The profile of permutations.Let P be the class of all permutations andχ the
number of components. Using the concept of marking, the specificationand the exponential
BGF are

P = SET (u CYC(Z)) H⇒ P(z, u) = exp

(
u log

1

1− z

)
= (1− z)−u,

as was already obtained by anad hoccalculation in (5). We also know (p. 160) that the mean
number of cycles is the harmonic number Hn and that the distribution is concentrated, since the
standard deviation is much smaller than the mean.

Regarding the numberχ of cycles of lengthr , the specification and the exponential BGF
are now

(29)
P = SET

(
CYC 6=r (Z)+ u CYC=r (Z)

)

H⇒ P(z, u) = exp

(
log

1

1− z
+ (u− 1)

zr

r

)
= e(u−1)zr /r

1− z
.

The EGF of cumulated values is then

(30) �(z) = zr

r

1

1− z
.

The result is a remarkably simple one:In a random permutation of size n, the mean number
of r–cycles is equal to1/r for any r ≤ n.

Thus, the profile of a random permutation, where profile is defined as theordered sequence
of cycle lengths, departs significantly from what has been encounteredfor integer compositions



176 III. PARAMETERS AND MULTIVARIATE GFS

Figure III.11 . The profile of permutations: a rendering of the cycle structure of six
random permutations of size 500, where circle areas are drawn in proportion to cycle
lengths. Permutations tend to have a few small cycles (of sizeO(1)), a few large ones
(of size2(n)), and altogether have Hn ∼ logn cycles on average.

and partitions. Formula (30) also sheds a new light on the harmonic number formula for the
mean number of cycles—each term 1/r in the harmonic number expresses the mean number
of r –cycles.

As formulae are so simple, one can extract more information. By (29) one has

P{χ = k} = 1

k! r k
[zn−kr ]

e−zr /r

1− z
,

where the last factor counts permutations without cycles of lengthr . From this (and the asymp-
totics of generalized derangement numbers in Note IV.9, p. 261), oneproves easily that the
asymptotic law of the number ofr –cycles is Poisson1 of rate 1/r ; in particular it is not concen-
trated. (This interesting property to be established in later chapters constitutes the starting point
of an important study by Shepp and Lloyd [540].)

Furthermore, the mean number of cycles whose size is betweenn/2 andn is Hn−H⌊n/2⌋,
a quantity that equals the probability ofexistenceof such a long cycle and is approximately
log 2

.= 0.69314. In other words, we expect a random permutation of sizen to have one or a
few large cycles. (See the article of Shepp and Lloyd [540] for the original discussion of largest
and smallest cycles.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� III.10. A hundred prisoners II.This is the solution to the prisoners problem of Note II.15,
p. 124 The better strategy goes as follows. Each prisoner will first openthe drawer which
corresponds to his number. If his number is not there, he’ll use the number he just found to
access another drawer, then find a number there that points him to a third drawer, and so on,
hoping to return to his original drawer in at most 50 trials. (The last opened drawer will then
contain his number.) This strategy globally succeeds provided the initial permutationσ defined
by σi (the number contained in draweri ) hasall its cycles of length at most 50. The probability
of the event is

p = [z100] exp

(
z

1
+ z2

2
+ · · · + z50

50

)
= 1−

100∑

j=51

1

j
.= 0.31182 78206.

1 The Poisson distribution of rateλ > 0 has the non-negative integers as support and is determined by

P{k} = e−λ
λk

k!
.
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Figure III.12 . Two random allocations withm = 12, n = 48, corresponding to
λ ≡ n/m = 4 (left). The right-most diagrams display the bins sorted by decreasing
order of occupancy.

Do the prisoners stand a chance against a malicious director who would not place the numbers
in drawers at random? For instance, the director might organize the numbers in a cyclic per-
mutation. [Hint: randomize the problem by renumbering the drawers according to a randomly
chosen permutation.] �

ExampleIII.10. Allocations, balls-in-bins models, and the Poisson law.Random allocations
and the balls-in-bins model were introduced in Chapter II in connection withthe birthday para-
dox and the coupon collector problem. Under this model, there aren balls thrown intom bins
in all possible ways, the total number of allocations being thusmn. By the labelled construction
of words, the bivariate EGF withz marking the number of balls andu marking the numberχ (s)

of bins that contains balls (s a fixed parameter) is given by

A = SEQm
(
SET6=s(Z)+ u SET=s(Z)

)
H⇒ A(s)(z, u) =

(
ez+ (u− 1)

zs

s!

)m
.

In particular, the distribution of the number of empty bins (χ (0)) is expressible in terms of
Stirling partition numbers:

Pm,n(χ
(0) = k) ≡ n!

mn [ukzn] A(0)(z, u) = (m− k)!

mn

(
m

k

){
n

m− k

}
.

By differentiating the BGF, we get an exact expression for the mean (any s ≥ 0):

(31)
1

m
Em,n(χ

(s)) = 1

s!

(
1− 1

m

)n−s n(n− 1) · · · (n− s+ 1)

ms .

Let m andn tend to infinity in such a way thatn/m = λ is a fixed constant. This regime
is extremely important in many applications, some of which are listed below. The average pro-
portion of bins containings elements is1

mEm,n(χ
(s)), and from (31), one obtains by straight-

forward calculations the asymptotic limit estimate,

(32) lim
n/m=λ, n→∞

1

m
Em,n(χ

(s)) = e−λ
λs

s!
.

(See Figure III.12 for two simulations corresponding toλ = 4.) In other words, a Poisson
formula describes the average proportion of bins of a given size in a large random allocation.
(Equivalently, the occupancy of a random bin in a random allocation satisfies a Poisson law in
the limit.)
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K exponential BGF(A(z, u)) cumulative GF(�(z))

SEQ :
1

1− uB(z)
A(z)2 · B(z) = B(z)

(1− B(z))2

SET : exp(uB(z)) A(z) · B(z) = B(z)eB(z)

CYC : log
1

1− uB(z)

B(z)

1− B(z)
.

Figure III.13 . Exponential GFs relative to the number of components inA = K(B).

The variance of eachχ (s) (with fixed s) is estimated similarly via a second derivative and
one finds:

Vm,n(χ
(s)) ∼ me−2λ λ

s

s!
E(λ), E(λ) :=

(
eλ − sλs−1

(s− 1)!
− (1− 2s)

λs

s!
− λ

s+1

s!

)
.

As a consequence, one has the convergence in probability,

1

m
χ (s)

P−→e−λ
λs

s!
,

valid for anyfixed s≥ 0. See Example VIII.14, p. 598 for an analysis of the most filled urn.�

� III.11. Hashing and random allocations.Random allocations of balls into bins are central
in the understanding of a class of important algorithms of computer science known ashash-
ing [378, 537, 538, 598]: given a universeU of data, set up a function (called a hashing func-
tion) h : U −→ [1 . .m] and arrange for an array ofm bins; an elementx ∈ U is placed in bin
numberh(x). If the hash function scrambles the data in a way that is suitably (pseudo)uniform,
then the process of hashing a file ofn records (keys, data items) intom bins is adequately mod-
elled by a random allocation scheme. Ifλ = n/m, representing the “load”, is kept reasonably
bounded (say,λ ≤ 10), the previous analysis implies that hashing allows for an almost direct
access to data. (See also Example II.19, p. 146 for a strategy that folds colliding items into a
table.) �

Number of components in abstract labelled schemas.As in the unlabelled uni-
verse, a general formula gives the distribution of the number of components for the
basic constructions.

Proposition III.6. Consider labelled structures and the parameterχ equal to the
number of components in a constructionA = K{B}, whereK is one ofSEQ,SET CYC.
The exponential BGF A(z,u) and the exponential GF�(z) of cumulated values are
given by the table of Figure III.13.

Mean values are then easily recovered, and one finds

En(χ) =
�n

An
= [zn]�(z)

[zn] A(z)
,

by the same formula as in the unlabelled case.
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� III.12. r–Components in abstract labelled schemas.The BGFA(z, u) and the cumulative
EGF�(z) are given by the following table,

SEQ :
1

1−
(

B(z)+ (u− 1) Br zr

r !

) 1

(1− B(z))2
· Br zr

r !

SET : exp

(
B(z)+ (u− 1)

Br zr

r !

)
eB(z) · Br zr

r !

CYC : log
1

1−
(

B(z)+ (u− 1) Br zr

r !

) 1

(1− B(z))
· Br zr

r !
,

in the labelled case. �

ExampleIII.11. Set partitions. Set partitionsS are sets of blocks, themselves non-empty sets
of elements. The enumeration of set partitions according to the number ofblocks is then given
by

S = SET(u SET≥1(Z)) H⇒ S(z, u) = eu(ez−1).

Since set partitions are otherwise known to be enumerated by the Stirling partition numbers,
one has the BGF and the vertical EGFs as a corollary,

∑

n,k

{
n

k

}
uk zn

n!
= eu(ez−1),

∑

n

{
n

k

}
zn

n!
= 1

k!
(ez− 1)k,

which is consistent with earlier calculations of Chapter II.
The EGF of cumulated values,�(z) is then almost a derivative ofS(z):

�(z) = (ez− 1)eez−1 = d

dz
S(z)− S(z).

Thus, the mean number of blocks in a random partition of sizen equals

�n

Sn
= Sn+1

Sn
− 1,

a quantity directly expressible in terms of Bell numbers. A delicate computation based on
the asymptotic expansion of the Bell numbers reveals that the expected value and the standard
deviation are asymptotic to

n

logn
,

√
n

logn
,

respectively (Chapter VIII, p. 595). Similarly the exponential BGF of the number of blocks of
sizek is

S = SET(u SET=k(Z)+ SET6=0,k(Z)) H⇒ S(z,u) = eez−1+(u−1)zk/k! ,

out of which mean and variance can also be derived. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

ExampleIII.12. Root degree in Cayley trees.Consider the classT of Cayley trees (non-plane
labelled trees) and the parameter “root-degree”. The basic specifications are





T = Z ⋆ SET(T )

T ◦ = Z ⋆ SET(uT )
H⇒





T(z) = zeT(z)

T(z, u) = zeuT(z).
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The set construction reflects the non-planar character of Cayley treesand the specificationT ◦ is
enriched by a mark associated to subtrees dangling from the root. Lagrange inversion provides
the fraction of trees with root degreek,

1

(k− 1)!

n!

(n− 1− k)!

(n− 1)n−2−k

nn−1
∼ e−1

(k− 1)!
, k ≥ 1.

Similarly, the cumulative GF is found to be�(z) = T(z)2, so that the mean root degree satisfies

ETn(root degree) = 2

(
1− 1

n

)
∼ 2.

Thus the law of root degree is asymptotically a Poisson law of rate 1, shiftedby 1. Probabilistic
phenomena qualitatively similar to those encountered in plane trees are observed here, since
the mean root degree is asymptotic to a constant. However a Poisson law eventually reflecting
the non-planarity condition replaces the modified geometric law (known as anegative binomial
law) present in plane trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�

� III.13. Numbers of components in alignments.Alignments (O) are sequences of cycles
(Chapter II, p. 119). The expected number of components in a random alignment ofOn is

[zn] log(1− z)−1(1− log(1− z)−1)−2

[zn](1− log(1− z)−1)−1
.

Methods of Chapter V imply that the number of components in a random alignment has expec-
tation∼ n/(e− 1) and standard deviation2(

√
n). �

� III.14. Image cardinality of a random surjection.The expected cardinality of the image of a
random surjection inRn (Chapter II, p. 106) is

[zn]ez(2− ez)−2

[zn](2− ez)−1
.

The number of values whose preimages have cardinalityk is obtained upon replacing the factor
ez by zk/k!. By the methods of Chapters IV (p. 259) and V (p. 296), the image cardinality of a
random surjection has expectationn/(2 log 2) and standard deviation2(

√
n). �

� III.15. Distinct component sizes in set partitions.Take the number ofdistinct block sizes
and cycle sizes in set partitions and permutations. The bivariate EGFs are

∞∏

n=1

(
1− u+ uezn/n!

)
,

∞∏

n=1

(
1− u+ uezn/n

)
,

as follows from first principles. �

Postscript: Towards a theory of schemas.Let us look back and recapitulate
some of the information gathered in pages 167–180 regardingthe number of compo-
nents in composite structures. The classes considered in Figure III.14 are composi-
tions of two constructions, either in the unlabelled or the labelled universe. Each entry
contains the BGF for the number of components (e.g., cycles in permutations, parts
in integer partitions, and so on), and the asymptotic ordersof the mean and standard
deviation of the number of components for objects of sizen.

Some obvious facts stand out from the data and call for explanation. First the
outer construction appears to play the essential rôle: outersequenceconstructs (com-
pare integer compositions, surjections and alignments) tend to dictate a number of
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Unlabelled structures

Integer partitions, MSET◦SEQ

exp

(
u

z

1− z
+ u2

2

z2

1− z2
+ · · ·

)

∼
√

n logn

π
√

2/3
, 2(

√
n)

Integer compositions, SEQ◦SEQ
(

1− u
z

1− z

)−1

∼ n

2
, 2(

√
n)

Labelled structures

Set partitions, SET◦SET

exp
(
u
(
ez− 1

))

∼ n

logn
∼
√

n

logn

Surjections, SEQ◦SET
(
1− u

(
ez− 1

))−1

∼ n

2 log 2
, 2(

√
n)

Permutations, SET◦CYC

exp
(
u log(1− z)−1

)

∼ logn, ∼
√

logn

Alignments, SEQ◦CYC
(
1− u log(1− z)−1

)−1

∼ n

e− 1
, 2(

√
n)

Figure III.14 . Major properties of the number of components in six level-two struc-
tures. For each class, from top to bottom:(i ) specification type;(i i ) BGF; (i i i )mean
and standard deviation of the number of components.

components that is2(n) on average, while outersetconstructs (compare integer par-
titions, set partitions, and permutations) are associatedwith a greater variety of asymp-
totic regimes. Eventually, such facts can be organized intobroadanalytic schemas, as
will be seen in Chapters V–IX.

� III.16. Singularity and probability.The differences in behaviour are to be assigned to the
rather different types of singularity involved (Chapters IV–VIII): onthe one hand sets corre-
sponding algebraically to an exp(·) operator induce an exponential blow-up of singularities; on
the other hand sequences expressed algebraically by quasi-inverses(1− ·)−1 are likely to in-
duce polar singularities. Recursive structures such as trees lead to yetother types of phenomena
with a number of components, e.g., the root degree, that is bounded inprobability. �

III. 5. Recursive parameters

In this section, we adapt the general methodology of previous sections in order to
treat parameters that are defined by recursive rules over structures that are themselves
recursively specified. Typical applications concern treesand tree-like structures.

Regarding the number of leaves, or more generally, the number of nodes of some
fixed degree, in a tree, the method of placing marks applies, as in the non-recursive
case. It suffices to distinguish elements of interest and mark them by an auxiliary
variable. For instance, in order to mark composite objects made ofr components,
wherer is an integer andK designates any of SEQ, SET (or MSET,PSET), CYC, one
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should split a constructionK(C) as follows:

K(C) = uK=r (C)+ K 6=r (C) = (u− 1)Kr (C)+ K(C).

This technique gives rise to specifications decorated by marks to which Theorems III.1
and III.2 apply. For a recursively-defined structure, the outcome is a functional equa-
tion defining the BGF recursively. The situation is illustrated by Examples III.13
and III.14 below in the case of Catalan trees and the parameter number of leaves.

ExampleIII.13. Leaves in general Catalan trees.How many leaves does a random tree of
some variety have? Can different varieties of trees be somehow distinguished by the proportion
of their leaves? Beyond the botany of combinatorics, such considerations are for instance rele-
vant to the analysis of algorithms since tree leaves, having no descendants, can be stored more
economically; see [377, Sec. 2.3] for an algorithmic motivation for such questions.

Consider once more the classG of plane unlabelled trees,G = Z × SEQ(G), enumerated
by the Catalan numbers:Gn = 1

n
(2n−2

n−1
)
. The classG◦ where each leaf is marked is

G◦ = Zu+Z × SEQ≥1(G
◦) H⇒ G(z,u) = zu+ zG(z, u)

1− G(z, u)
.

The induced quadratic equation can be solved explicitly

G(z,u) = 1

2

(
1+ (u− 1)z−

√
1− 2(u+ 1)z+ (u− 1)2z2

)
.

It is however simpler to expand using the Lagrange inversion theorem which yields

Gn,k = [uk]
(
[zn]G(z, u)

)
= [uk]

(
1

n
[yn−1]

(
u+ y

1− y

)n)

= 1

n

(
n

k

)
[yn−1]

yn−k

(1− y)n−k
= 1

n

(
n

k

)(
n− 2

k− 1

)
.

These numbers are known as Narayana numbers, seeEISA001263, and they surface repeatedly
in connection with ballot problems. The mean number of leaves is derivedfrom the cumulative
GF, which is

�(z) = ∂uG(z, u)|u=1 =
1

2
z+ 1

2

z√
1− 4z

,

so that the mean isn/2 exactly forn ≥ 2. The distribution is concentrated since the standard
deviation is easily calculated to beO(

√
n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleIII.14. Leaves and node types in binary trees.The classB of binary plane trees, also
enumerated by Catalan numbers (Bn = 1

n+1

(2n
n
)
) can be specified as

(33) B = Z + (B ×Z)+ (Z × B)+ (B ×Z × B),

which stresses the distinction between four types of nodes: leaves, left branching, right branch-
ing, and binary. Letu0, u1, u2 be variables that mark nodes of degree 0,1,2, respectively. Then
the root decomposition (33) yields, for the MGFB = B(z, u0, u1, u2), the functional equation

B = zu0+ 2zu1B+ zu2B2,

which, by Lagrange inversion, gives

Bn,k0,k1,k2 =
2k1

n

(
n

k0, k1, k2

)
,
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subject to the natural conditions:k0 + k1 + k2 = n andk0 = k2 + 1. Moments can be easily
calculated using this approach [499]. In particular, the mean number ofnodes of each type is
asymptotically:

leaves:∼ n

4
, 1–nodes :∼ n

2
, 2–nodes :∼ n

4
.

There is an equal asymptotic proportion of leaves, double nodes, left branching, and right
branching nodes. Furthermore, the standard deviation is in each caseO(

√
n), so that all the

corresponding distributions are concentrated. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� III.17. Leaves and node-degree profile in Cayley trees.For Cayley trees, the bivariate EGF
with u marking the number of leaves is the solution to

T(z, u) = uz+ z(eT(z,u) − 1).

(By Lagrange inversion, the distribution is expressible in terms of Stirling partition numbers.)
The mean number of leaves in a random Cayley tree is asymptotic tone−1. More generally, the
mean number of nodes of outdegreek in a random Cayley tree of sizen is asymptotic to

n · e−1 1

k!
.

Degrees are thus approximately described by a Poisson law of rate 1. �

� III.18. Node-degree profile in simple varieties of trees.For a family of trees generated
by T(z) = zφ(T(z)) with φ a power series, the BGF of the number of nodes of degreek
satisfies

T(z, u) = z
(
φ(T(z, u))+ φk(u− 1)T(z, u)k

)
,

whereφk = [uk]φ(u). The cumulative GF is

�(z) = z
φkT(z)k

1− zφ′(T(z))
= φkz2T(z)k−1T ′(z),

from which expectations can be determined. �

� III.19. Marking in functional graphs.Consider the classF of finite mappings discussed in
Chapter II:

F = SET(K), K = CYC(T ), T = Z ⋆ SET(T ).

The translation into EGFs is

F(z) = eK (z), K (z) = log
1

1− T(z)
, T(z) = zeT(z).

Here are the bivariate EGFs for(i ) the number of components,(i i ) the number of maximal
trees,(i i i ) the number of leaves:

(i ) euK(z), (i i )
1

1− uT(z)
,

(i i i )
1

1− T(z,u)
with T(z, u) = (u− 1)z+ zeT(z,u).

The trivariate EGFF(u1,u2, z) of functional graphs withu1 marking components andu2 mark-
ing trees is

F(z, u1,u2) = exp(u1 log(1− u2T(z))−1) = 1

(1− u2T(z))u1
.

An explicit expression for the coefficients involves the Stirling cycle numbers. �
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We shall now stop supplying examples that could be multiplied ad libitum, since
such calculations greatly simplify when interpreted in thelight of asymptotic analysis,
as developed in Part B. The phenomena observed asymptotically are, for good reasons,
especially close to what the classical theory of branching processes provides (see the
books by Athreya–Ney [21] and Harris [324], as well as our discussion in the context
of “complete” GFs on p. 196).

Linear transformations on parameters and path length in trees. We have so
far been dealing with a parameter defined directly by recursion. Next, we turn to
other parameters such as path length. As a preamble, one needs a simple linear trans-
formation on combinatorial parameters. LetA be a class equipped with two scalar
parameters,χ andξ , related by

χ(α) = |α| + ξ(α).
Then, the combinatorial form of BGFs yields

∑

α∈A
z|α|uχ(α) =

∑

α∈A
z|α|u|α|+ξ(α) =

∑

α∈A
(zu)|α|uξ(α) ;

that is,

(34) Aχ (z,u) = Aξ (zu,u).

This is clearly a general mechanism:

Linear transformations and MGFs: A linear transformation on parameters induces
a monomial substitution on the corresponding marking variables in MGFs.

We now put this mechanism to use in the recursive analysis of path length in trees.

ExampleIII.15. Path length in trees.The path length of a tree is defined as the sum of distances
of all nodes to the root of the tree, where distances are measured by thenumber of edges on
the minimal connecting path of a node to the root. Path length is an important characteristic
of trees. For instance, when a tree is used as a data structure with nodes containing additional
information, path length represents the total cost of accessing all data items when a search
is started from the root. For this reason, path length surfaces, under various models, in the
analysis of algorithms, in particular, in the area of algorithms and data structures for searching
and sorting (e.g., tree-sort, quicksort, radix-sort [377, 538]).

The formal definition of path length of a tree is

(35) λ(τ) :=
∑

ν∈τ
dist(ν, root(τ )),

where the sum is over all nodes of the tree and the distance between two nodes is measured by
the number of connecting edges. The definition implies an inductive rule

(36) λ(τ) =
∑

υ≺τ
(λ(υ)+ |υ|) ,

in whichυ ≺ τ indicates a summation over all the root subtreesυ of τ . (To verify the equiva-
lence of (35) and (36), observe that path length also equals the sum of all subtree sizes.)

From this point on, we focus the discussion on general Catalan trees (see Note III.20 for
other cases):G = Z×SEQ(G). Introduce momentarily the parameterµ(τ) = |τ |+λ(τ). Then,
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one has from the inductive definition (36) and the general transformation rule (34):

(37) Gλ(z,u) =
z

1− Gµ(z, u)
and Gµ(z, u) = Gλ(zu, u).

In other words,G(z,u) ≡ Gλ(z, u) satisfies a nonlinear functional equation of the difference
type:

G(z,u) = z

1− G(uz, u)
.

(This functional equation will be revisited in connection with area under Dyck paths in Chap-
ter V, p. 330.) The generating function�(z) of cumulated values ofλ is then obtained by
differentiation with respect tou, then settingu = 1. We find in this way that the cumulative GF
�(z) := ∂uG(z, u)|u=1 satisfies

�(z) = z

(1− G(z))2
(
zG′(z)+�(z)

)
,

which is a linear equation that solves to

�(z) = z2 G′(z)
(1− G(z))2− z

= z

2(1− 4z)
− z

2
√

1− 4z
.

Consequently, one has (n ≥ 1)

�n = 22n−3− 1

2

(
2n− 2

n− 1

)
,

where the sequence starting 1, 5, 22, 93, 386 forn ≥ 2 constitutesEISA000346. By elementary
asymptotic analysis, we get:

The mean path length of a random Catalan tree of size n is asymptotic to1
2

√
πn3;

in short: a branch from the root to a random node in a random Catalan tree of size n
has expected length of the order of

√
n.

Random Catalan trees thus tend to be somewhat imbalanced—by comparison, a fully balanced
binary tree has all paths of length at most log2 n+ O(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

The imbalance in random Catalan trees is a general phenomenon—it holds for bi-
nary Catalan and more generally for all simple varieties of trees. Note III.20 below and
Example VII.9 (p. 461) imply that path length is invariably of ordern

√
n on average

in such cases. Height is of typical order
√

n as shown by Ŕenyi and Szekeres [507], de
Bruijn, Knuth, and Rice [145], Kolchin [386], as well as Flajolet and Odlyzko [246]:
see Subsection VII. 10.2, p. 535 for the outline of a proof. Figure III.15 borrowed
from [538] illustrates this on a simulation. (The contour ofthe histogram of nodes by
levels, once normalized, has been proved to converge to the process known as Brow-
nian excursion.)
� III.20. Path length in simple varieties of trees.The BGF of path length in a variety of trees
generated byT(z) = zφ(T(z)) satisfies

T(z, u) = zφ(T(zu, u)).

In particular, the cumulative GF is

�(z) ≡ ∂u (T(z,u))u=1 =
φ′(T(z))
φ(T(z))

(zT′(z))2,

from which coefficients can be extracted. �
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Figure III.15 . A random pruned binary tree of size 256 and its associated level pro-
file: the histogram on the left displays the number of nodes at each level inthe tree.

III. 6. Complete generating functions and discrete models

By acompletegenerating function, we mean, loosely speaking, a generating func-
tion in a (possibly large, and even infinite in the limit) number of variables that mark
a homogeneous collection of characteristics of a combinatorial class2. For instance
one might be interested in the joint distribution ofall the different letters composing
words, the number of cycles ofall lengths in permutations, and so on. A complete
MGF naturally entails detailed knowledge on the enumerative properties of structures
to which it is relative. Complete generating functions, given their expressive power,
also make weighted models amenable to calculation, a situation that covers in particu-
lar Bernoulli trials (p. 190) and branching processes from classical probability theory
(p. 196).

Complete GFs for words.As a basic example, consider the class of all words
W = SEQ{A} over some finite alphabetA = {a1, . . . ,ar }. Let χ = (χ1, . . . , χr ),
whereχ j (w) is the number of occurrences of the lettera j in wordw. The MGF ofA
with respect toχ is

A = u1a1+ u2a2+ · · · ur ar H⇒ A(z,u) = zu1+ zu2+ · · · + zur ,

andχ onW is clearly inherited fromχ onA. Thus, by the sequence rule, one has

(38) W = SEQ(A) H⇒ W(z,u) = 1

1− z(u1+ u2+ · · · + ur )
,

which describes all words according to their compositions into letters. In particular,
the number of words withn j occurrences of lettera j and withn = ∑

n j is in this

2Complete GFs arenot new objects. They are simply an avatar of multivariate GFs. Thus the term is
only meant to be suggestive of a particular usage of MGFs, and essentially no new theory is needed in order
to cope with them.
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framework obtained as

[un1
1 un2

2 · · ·unr
r ] (u1+ u2+ · · · + ur )

n =
(

n

n1,n2, . . . ,nr

)
= n!

n1!n2! · · · nr
.

We are back to the usual multinomial coefficients.
� III.21. After Bhaskara Acharya(circa 1150AD). Consider all the numbers formed in decimal
with digit 1 used once, with digit 2 used twice,. . . , with digit 9 used nine times. Such numbers
all have 45 digits. Compute their sumSand discover, much to your amazement thatSequals

45875559600006153219084769286399999999999999954124440399993846780915230713600000.

This number has a long run of nines (and further nines are hidden!). Is there a simple explana-
tion? This exercise is inspired by the Indian mathematician Bhaskara Acharya who discovered
multinomial coefficients near 1150AD; see [377, pp. 23–24] for a brief historical note. �

Complete GFs for permutations and set partitions.Consider permutations and
the various lengths of their cycles. The MGF whereuk marks cycles of lengthk for
k = 1,2, . . . can be written as an MGF ininfinitely manyvariables:

(39) P(z,u) = exp

(
u1

z

1
+ u2

z2

2
+ u3

z3

3
+ · · ·

)
.

This MGF expression has the neat feature that, upon restricting all but a finite number
of u j to 1, we derive all the particular cases of interest with respect to any finite
collection of cycles lengths. Observe also that one can calculate in the usual way any
coefficient [zn] P as it only involves the variablesu1, . . . ,un.
� III.22. The theory of formal power series in infinitely many variables.(This note is for
formalists.) Mathematically, an object likeP in (39) is perfectly well defined. LetU =
{u1, u2, . . .} be an infinite collection of indeterminates. First, the ring of polynomialsR =
C[U ] is well defined and a given element ofR involves only finitely many indeterminates.
Then, fromR, one can define the ring of formal power series inz, namelyR[[z]]. (Note that,
if f ∈ R[[z]], then each [zn] f involves only finitely many of the variablesu j .) The basic op-
erations and the notion of convergence, as described in Appendix A.5:Formal power series,
p. 730, apply in a standard way.

For instance, in the case of (39), the complete GFP(z,u) is obtainable as the formal limit

P(z,u) = lim
k→∞

exp

(
u1

z

1
+ · · · + uk

zk

k
+ zk+1

k+ 1
+ · · ·

)

in R[[z]] equipped with the formal topology. (In contrast, the quantity evocativeof a generating
function of words over an infinite alphabet

W
!=


1− z

∞∑

j=1

u j



−1

cannot be soundly defined as an element of the formal domainR[[z]].) �

Henceforth, we shall keep in mind that verifications of formal correctness regard-
ing power series in infinitely many indeterminates are always possible by returning to
basic definitions.

Complete generating functions are often surprisingly simple to expand. For in-
stance, the equivalent form of (39)

P(z,u) = eu1z/1 · eu2z2/2 · eu3z3/3 · · ·
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implies immediately that the number of permutations withk1 cycles of size 1,k2 of
size 2, and so on, is

(40)
n!

k1! k2! · · · kn! 1k1 2k2 · · · nkn
,

provided
∑

jk j = n. This is a result originally due to Cauchy. Similarly, the EGF of
set partitions withu j marking the number of blocks of sizej is

S(z,u) = exp

(
u1

z

1!
+ u2

z2

2!
+ u3

z3

3!
+ · · ·

)
.

A formula analogous to (40) follows: the number of partitions with k1 blocks of size
1, k2 of size 2, and so on, is

n!

k1! k2! · · · kn! 1!k1 2!k2 · · ·n!kn
.

Several examples of such complete generating functions arepresented in Comtet’s
book; see [129], pages 225 and 233.
� III.23. Complete GFs for compositions and surjections.The complete GFs of integer
compositions and surjections withu j marking the number of components of sizej are

1

1−∑∞j=1 u j z j
,

1

1−∑∞j=1 u j
z j

j !

.

The associated counts withn =∑ j jk j are given by
(

k1+ k2+ · · ·
k1, k2, . . .

)
,

n!

1!k12!k2 · · ·

(
k1+ k2+ · · ·

k1, k2, . . .

)
.

These factored forms follow directly from the multinomial expansion. Thesymbolic form of
the multinomial expansion of powers of a generating function is sometimes expressed in terms
of Bell polynomials, themselves nothing but a rephrasing of the multinomialexpansion; see
Comtet’s book [129, Sec. 3.3] for a fair treatment of such polynomials. �

� III.24. Faà di Bruno’s formula.The formulae for the successive derivatives of a functional
compositionh(z) = f (g(z))

∂zh(z) = f ′(g(z))g′(z), ∂2
zh(z) = f ′′(g(z))g′(z)2+ f ′(z)g′′(z), . . . ,

are clearly equivalent to the expansion of a formal power series composition. Indeed, assume
without loss of generality thatz = 0 andg(0) = 0; set fn := ∂n

z f (0), and similarly forg, h.
Then

h(z) ≡
∑

n
hn

zn

n!
=
∑

k

fk
k!

(
g1z+ g2

2!
z2+ · · ·

)k
.

Thus in one direct application of the multinomial expansion, one finds

hn

n!
=
∑

k

fk
k!

∑

C

(
k

ℓ1, ℓ2, . . . , ℓk

)(g1

1!

)ℓ1
(g2

2!

)ℓ2 · · ·
(gk

k!

)ℓk
,

where the summation conditionC is: 1ℓ1 + 2ℓ2 + · · · + kℓk = n, ℓ1 + ℓ2 + · · · + ℓk = k.
This shallow identity is known as Faà di Bruno’s formula [129, p. 137]. (Faà di Bruno (1825–
1888) was canonized by the Catholic Church in 1988, presumably for reasons unrelated to his
formula.) �
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� III.25. Relations between symmetric functions.Symmetric functions may be manipulated
by mechanisms that are often reminiscent of the set and multiset construction. They appear in
many areas of combinatorial enumeration. LetX = {xi }ri=1 be a collection of formal variables.
Define the symmetric functions

∏

i

(1+ xi z) =
∑

n
anzn,

∏

i

1

1− xi z
=
∑

n
bnzn,

∑

i

xi z

1− xi z
=
∑

n
cnzn.

Thean, bn, cn, called, respectively, elementary, monomial, and power symmetric functions, are
expressible as

an =
∑

i1<i2<···<ir

xi1xi2 · · · xir , bn =
∑

i1≤i2≤···≤ir

xi1xi2 · · · xir , cn =
r∑

i=1

xr
i .

The following relations hold for the OGFsA(z), B(z),C(z) of an, bn, cn:

B(z) = 1

A(−z)
, A(z) = 1

B(−z)
,

C(z) = z
d

dz
log B(z), B(z) = exp

∫ z

0
C(t)

dt

t
.

Consequently, each ofan, bn, cn is polynomially expressible in terms of any of the other quan-
tities. (The connection coefficients, as in Note III.24, involve multinomials.) �

� III.26. Regular graphs.A graph isr –regular iff each node has degree exactly equal tor . The
number ofr –regular graphs of sizen is

[xr
1xr

2 · · · xr
n]

∏

1≤i< j≤n

(1+ xi x j ).

[Gessel [289] has shown how to extract explicit expressions from such huge symmetric func-
tions; see Appendix B.4:Holonomic functions, p. 748.] �

III. 6.1. Word models. The enumeration of words constitutes a rich chapter of
combinatorial analysis, and complete GFs serve to generalize many results to the case
of non-uniform letter probabilities, such as the coupon collector problem and the birth-
day paradox considered in Chapter II. Applications are to befound in classical prob-
ability theory and statistics [139] (the so-called Bernoulli trial models), as well as in
computer science [564] and mathematical models of biology [603].

ExampleIII.16. Words and records.Fix an alphabetA = {a1, . . . ,ar } and letW = SEQ{A}
be the class of all words overA, whereA is naturally ordered bya1 < a2 < · · · < ar .
Given a wordw = w1 · · ·wn, a (strict) record is an elementw j that is larger than all preceding
elements:w j > wi for all i < j . (Refer to Figure III.15 of Chapter II for a graphical rendering
of records in the case of permutations.)

Consider first the subset ofW comprising all words that have the lettersai1, . . . ,aik as
successive records, wherei1 < · · · < ik. The symbolic description of this set is in the form of
a product ofk terms

(41)

(
ai1 SEQ(a1+ · · · + ai1)

)
· · ·

(
aik SEQ(a1+ · · · + aik )

)
.

Consider now MGFs of words wherez marks length,v marks the number of records, and each
u j marks the number of occurrences of lettera j . The MGF associated to the subset described
in (41) is then

(
zvui1(1− z(u1+ · · · + ui1))

−1
)
· · ·

(
zvuik (1− z(u1+ · · · + uik ))

−1
)
.
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Summing over all values ofk and ofi1 < · · · < ik gives

(42) W(z, v, u) =
r∏

s=1

(
1+ zvus (1− z(u1+ · · · + us))

−1
)
,

the rationale being that, for arbitrary quantitiesys, one has by distributivity:
r∑

k=0

∑

1≤i1<···<ik≤r

yi1 yi2 · · · yik =
r∏

s=1

(1+ ys).

We shall encounter more applications of (42) below. For the time being let us simply
examine the mean number of records in a word of lengthn over the alphabetA, when all such
words are taken equally likely. One should setu j 7→ 1 (the composition into specific letters is
forgotten), so thatW assumes the simpler form

W(z, v) =
r∏

j=1

(
1+ vz

1− j z

)
.

Logarithmic differentiation then gives access to the generating function ofcumulated values,

�(z) ≡ ∂

∂v
W(z, v)

∣∣∣∣
v=1
= z

1− rz

r∑

j=1

1

1− ( j − 1)z
.

Thus, by partial fraction expansion, the mean number of records inWn (whose cardinality isr n)
has the exact value

(43) EWn(# records) = Hr −
r−1∑

j=1

( j/r )n

r − j
.

There appears the harmonic number Hr , as in the permutation case, but now with a negative
correction term which, for fixedr , vanishes exponentially withn. . . . . . . . . . . . . . . . . . . . . . . .�

Example III.17. Weighted word models and Bernoulli trials.Let A = {a1, . . . ,ar } be an
alphabet of cardinalityr , and let3 = {λ1, . . . , λr } be a system of numbers calledweights,
where weightλ j is viewed as attached to lettera j . Weights may be extended from letters to
words multiplicatively by defining the weightπ(w) of wordw as

π(w) = λi1λi2 · · · λin if w = ai1ai2 · · ·ain

=
r∏

j=1

λ
χ j (w)

j ,

whereχ j (w) is the number of occurrences of lettera j in w. Finally, the weight of a set is by
definition thesumof the weights of its elements.

Combinatorially, weights of sets are immediately obtained once the corresponding gener-
ating function is known. Indeed, letS ⊆W = SEQ{A} have the complete GF

S(z,u1, . . . , ur ) =
∑

w∈S

z|w|uχ1(w)
1 · · ·uχr (w)

r ,

whereχ j (w) is the number of occurrences of lettera j in w. Then one has

S(z, λ1, . . . , λr ) =
∑

w∈S

z|w|π(w),
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so that extracting the coefficient ofzn gives the total weight ofSn = S ∩Wn under the weight
system3. In other words,the GF of a weighted set is obtained by substitution of the numerical
values of the weights inside the associated complete MGF.

In probability theory, Bernoulli trials refer to sequences of independent draws from a fixed
distribution with finitely many possible values. One may think of the successionof flippings of
a coin or castings of a die. If any trial hasr possible outcomes, then the various possibilities can
be described by letters of ther –ary alphabetA. If the probability of thej th outcome is taken to
beλ j , then the3-weighted models on words becomes the usual probabilistic model of indepen-
dent trials. (In this situation, theλ j are often written asp j .) Observe that, in the probabilistic
situation, one must haveλ1+· · ·+λr = 1 with eachλ j satisfying 0≤ λ j ≤ 1. The equiproba-
ble case, where each outcome has probability 1/r can be obtained by settingλ j = 1/r , leaving
us with the usual enumerative model. In terms of GFs, the coefficient [zn]S(z, λ1, . . . , λr )

then represents the probability that a random word ofWn belongs toS. Multivariate gener-
ating functions and cumulative generating functions then obey propertiessimilar to their usual
(ordinary, exponential) counterparts.

As an illustration, assume one has a biased coin with probabilityp for heads (H ) andq =
1− p for tails (T). Consider the event: “in n tosses of the coin, there never appearℓ contiguous
heads”. The alphabet isA = {H, T}. The construction describing the events of interest is, as
seen in Subsection I. 4.1 (p. 51),

S = SEQ<ℓ{H}SEQ{T SEQ<ℓ{H}}.
Its GF, withu marking heads andv marking tails, is then

W(z,u, v) = 1− zℓuℓ

1− zu

(
1− zv

1− zℓuℓ

1− zu

)−1

.

Thus, the probability of the absence ofℓ–runs among a sequence ofn random coin tosses is
obtained after the substitutionu→ p, v → q in the MGF,

[zn]
1− pℓzℓ

1− z+ qpℓzℓ+1
,

leading to an expression which is amenable to numerical or asymptotic analysis. For instance,
Feller’s book [206, p. 322–326] offers a classical discussion of theproblem. . . . . . . . . . . . . . .�

Example III.18. Records in Bernoulli trials. We pursue the discussion of probabilistic
models on words and come back to the analysis of records. Assume nowthat the alphabet
A = {a1, . . . ,ar } has in all generality the probabilityp j associated with the lettera j . The
mean number of records is analysed by a process entirely parallel to thederivation of (43): one
finds by logarithmic differentiation of (42)

(44) EWn(# records) = [zn]�(z) where �(z) = z

1− z

r∑

j=1

p j

1− z(p1+ · · · + p j−1)
.

The cumulative GF�(z) in (44) has simple poles at the points 1, 1/Pr−1,1/Pr−2, and so on,
wherePs = p1 + · · · + ps. For asymptotic purposes, only the dominant pole atz = 1 counts
(see Chapter IV for a systematic discussion), near which

�(z) ∼
z→1

1

1− z

r∑

j=1

p j

1− Pj−1
.

Consequently, one has an elegant asymptotic formula, generalizing the case of permutations:
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The mean number of records in a random word of length n with non-uniform letter
probabilities pj satisfies asymptotically(n→+∞)

EWn(# records) ∼
r∑

j=1

p j

p j + p j+1+ · · · + pr
.

This relation and similar ones were obtained by Burge [97]; analogous ideas may serve to ana-
lyse the sorting algorithmQuicksortunder equal keys [536] as well as the hybrid data structures
of Bentley and Sedgewick; see [47, 124]. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

Coupon collector problem and birthday paradox.Similar considerations apply
to weighted EGFs of words, as considered in Chapter II. For instance, the proba-
bility of having a complete coupon collection at timen in the case a company issues
coupon j with probability p j , for 1≤ j ≤ r , is (coupon collector problem, p. 114)

P(C ≤ n) = n![zn]
r∏

j=1

(
ep j z− 1

)
.

The probability that all coupons are different at timen is (birthday paradox, p. 114)

P(B > n) = n![zn]
r∏

j=1

(
1+ p j z

)
,

which corresponds to the birthday problem in the case of non-uniform mating periods.
Integral representations comparable those of Chapter II are also available:

E(C) =
∫ ∞

0


1−

r∏

j=1

(1− e−pi t )


 dt, E(B) =

∫ ∞

0

r∏

j=1

(
1+ p j t

)
e−t dt.

See the study by Flajolet, Gardy, and Thimonier [231] for variations on this theme.
� III.27. Birthday paradox with leap years.Assume that the 29th of February exists precisely
once every fourth year. Estimate the effect on the expectation of the first birthday collision.�

Example III.19. Rises in Bernoulli trials: Simon Newcomb’s problem.Simon Newcomb
(1835–1909), otherwise famous for his astronomical work, was reportedly fond of playing the
following patience game: one draws from a deck of 52 playing cards, stacking them in piles in
such a way that one new pile is started each time a card appears whose number is smaller than
its predecessor. What is the probability of obtainingt piles? A solution to this famous problem
is found in MacMahon’s book [428] and a concise account by Andrews appears in [14, §4.4].

Simon Newcomb’s problem can be rephrased in terms of rises. Given aword w =
w1 · · ·wn over the alphabetA ordered bya1 < a2 < · · · , a weak riseis a position j < n
such thatw j ≤ w j+1. (The numbers of piles in Newcomb’s problem is the number of cards
minus 1 minus the number of weak rises.) LetW ≡ W(z, v, u) be the MGF of all words where
z marks length,v marks the number of weak rises, andu j marks the number of occurrences of
letter j . Setz j = zuj and letWj ≡ Wj (z, v, u) be the MGF relative to those non-empty words
that start with lettera j , so that

W = 1+ (W1+ · · · +Wr ).

TheWj satisfy the set of equations (j = 1, . . . , r ),

(45) Wj = z j + z j
(
W1+ · · · +Wj−1

)
+ vz j

(
Wj + · · · +Wr

)
,
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as seen by considering the first letter of each word. The linear system (45) is easily solved upon
settingWj = z j X j . Indeed, by differencing, one finds that

(46) X j+1− X j = z j X j (1− v), X j+1 = X j (1+ z j (1− v)).
In this way, eachX j can be determined in terms ofX1. Then transporting the resulting expres-
sions into the relation (45) taken withj = 1, and solving forX1 leads to an expression forX1,
hence for all theX j and finally forW itself:

(47) W = v − 1

v − P−1
, P :=

r∏

j=1

(1+ (1− v)z j ).

Goulden and Jackson obtain a similar expressions in [303] (pp. 72 and 236).
The result of (47) gives access to moments (e.g., mean and variance) of the number of

rises in a Bernoulli sequence as well as to counting results, once coefficients of the MGF are
extracted. (See also [289, 303] for an approach based on the theoryof symmetric functions.)
The OGF (47) can alternatively be derived by an inclusion–exclusion argument: refer to the
particular case of rises in permutations and Eulerian numbers, p. 210. .. . . . . . . . . . . . . . . . . . .�

� III.28. The final solution to Simon Newcomb’s problem.Consider a deck of cards witha suits
andr distinct card values. SetN = ra. (The original problem hasr = 13, a = 4, N = 52.)
One has from (47):W = (v − 1)P/(1− vP). The expansion of(1− y)−1 and the collection
of coefficients yields

[za
1 · · · za

r ]W = (1− v)
∑

k≥1

vk−1[za
1 · · · za

r ] Pk = (1− v)N+1
∑

k≥1

(
k

a

)r
vk−1,

so that [za
1 · · · za

r v
t ]W =

t+1∑

k=0

(−1)t+1−k
(

N + 1

t + 1− k

)(
k

a

)r
. �

III. 6.2. Tree models. We examine here two important GFs associated with tree
models; these provide valuable information concerning thedegree profileand thelevel
profile of trees, while being tightly coupled with an important class of stochastic pro-
cesses, namelybranching processes.

The major classes of trees that we have encountered so far arethe unlabelled
plane trees and the labelled non-plane trees, prototypes being general Catalan trees
(Chapter I) and Cayley trees (Chapter II). In both cases, thecounting GFs satisfy a
relation of the form

(48) Y(z) = zφ(Y(z)),

where the GF is either ordinary (plane unlabelled trees) or exponential (non-plane
labelled trees). Corresponding to the two cases, the functionφ is determined, respec-
tively, by

(49) φ(w) =
∑

ω∈�
wω, φ(w) =

∑

ω∈�

wω

ω!
,

where� ⊆ N is the set of allowed node degrees. Meir and Moon in an important
paper [435] have described some common properties of tree families that are deter-
mined by the Axiom (48). (For instance mean path length is invariably of ordern

√
n,

see Chapter VII, and height isO(
√

n).) Following these authors, we call asimple
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variety of treesany class whose counting GF is defined by an equation of type (48).
For each of the two cases of (49), we write

(50) φ(w) =
∞∑

j=0

φ jw
j .

Degree profile of trees.First we examine thedegree profileof trees. Such a
profile is determined by the collection of parametersχ j , whereχ j (τ ) is the number of
nodes of outdegreej in τ . The variableu j will be used to markχ j , that is, nodes of
outdegreej . The discussion already conducted regarding recursive parameters shows
that the GFY(z,u) satisfies the equation

Y(z,u) = z8(Y(z,u)) where 8(w) = u0φ0+ u1φ1w + u2φ2w
2+ · · · .

Formal Lagrange inversion can then be applied toY(z,u), to the effect that its coeffi-
cients are given by the coefficients of the powers of8.

Proposition III.7 (Degree profile of trees). The number of trees of size n and degree
profile (n0,n1,n2, . . .) in a simple variety of trees defined by the “generator”(50) is

(51) Yn;n0,n1,n2,... = ωn ·
1

n

(
n

n0,n1,n2, . . .

)
φ

n0
0 φ

n1
1 φ

n2
2 · · · .

There,ωn = 1 in the unlabelled case, whereasωn = n! in the labelled case. The
values of the nj are assumed to satisfy the two consistency conditions:

∑
j n j = n

and
∑

j jn j = n− 1.

Proof. The consistency conditions translate the fact that the total number of nodes
should ben while the total number of edges should equaln−1 (each node of degreej
is the originator ofj edges). The result follows from Lagrange inversion

Yn;n0,n1,n2,... = ωn · [un0
0 un1

1 un2
2 · · · ]

(
1

n
[wn−1]8(w)n

)
,

to which a standard multinomial expansion applies, yielding (51).
For instance, for general Catalan trees (φ j = 1) and for Cayley trees (φ j = 1/j !)

these formulae become

1

n

(
n

n0,n1,n2, . . .

)
and

(n− 1)!

0!n01!n12!n2 · · ·

(
n

n0,n1,n2, . . .

)
.

�

The proof above also reveals the logical equivalence between the general tree
counting result of Proposition III.7 and the most general case of Lagrange inversion.
(This equivalence is due to the fact that any fixed series is a special case of8.) Put
another way, any direct proof of (51) provides a combinatorial proof of the Lagrange
inversion theorem. Such direct derivations have been proposed by Raney [503] and
are based on simple but cunning surgery performed on latticepath representations of
trees (the “conjugation principle” of which a particular case is the “cycle lemma” of
Dvoretzky–Motzkin [184]; see Note I.47, p. 75).
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Level profile of trees.The next example demonstrates the utility of complete GFs
for investigating the level profile of trees.

ExampleIII.20. Trees and level profile.Given a rooted treeτ , its level profileis defined as the
vector(n0, n1, n2, . . .) wheren j is the number of nodes present at levelj (i.e., at distancej
from the root) in treeτ . Continuing within the framework of a simple variety of trees, we now
define the quantityYn;n0,n1,... to be the number of trees with sizen and level profile given by
then j . The corresponding complete GFY(z, u) with z marking size andu j marking nodes at
level j is expressible in terms of the fundamental “generator”φ:

(52) Y(z, u) = zu0φ (zu1φ (zu2φ (zu3φ(· · · )))) .

We may call this a “continuedφ-form”. For instance, general Catalan trees have generator
φ(w) = (1− w)−1, so that in this case the complete GF is the continued fraction:

(53) Y(z, u) = u0z

1− u1z

1− u2z

1− u3z

. . .

.

(See Section V. 4, p. 318, for complementary aspects.) In contrast, Cayley trees are generated
by φ(w) = ew, so that

Y(z, u) = zu0ezu1ezu2ezu3e..
.

,

which is a “continued exponential”; that is, a tower of exponentials. Expanding such generating
functions with respect tou0, u1, . . ., in order gives the following proposition straightforwardly.

Proposition III.8 (Level profile of trees). The number of trees of size n, having(n0, n1, n2, . . .)

as level profile, in a simple variety of trees with generatorφ(w) is

Yn;n0,n1,n2,... = ωn−1 · φ(n0)
n1 φ

(n1)
n2 φ

(n2)
n3 · · · where φ

(µ)
ν := [wν ]φ(w)µ.

There, the consistency conditions are n0 = 1 and
∑

j n j = n. In particular, the counts for
general Catalan trees and for Cayley trees are, respectively,

(
n0+ n1− 1

n1

)(
n1+ n2− 1

n2

)(
n2+ n3− 1

n3

)
· · · , (n− 1)!

n0!n1!n2! · · ·n
n1
0 nn2

1 nn3
2 · · · .

(Note that one must always haven0 = 1 for a single tree; the general formula withn0 6= 1
andωn−1 replaced byωn−n0 gives the level profile of forests.) The first of these enumerative
results is due to Flajolet [214] and it places itself within a general combinatorial theory of
continued fractions (Section V. 4, p. 318); the second one is due to Rényi and Szekeres [507] ,
who developed such a formula in the course of a deep study relative to thedistribution of height
in random Cayley trees (Chapter VII, p. 537). . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

� III.29. Continued forms for path length.The BGF of path length is obtained from the level
profile MGF by means of the substitutionu j 7→ q j . For general Catalan trees and Cayley trees,
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this gives

(54) G(z,q) = z

1− zq

1− zq2

. . .

, T(z,q) = zezqezq2e..
.

,

whereq marks path length. The MGFs are ordinary and exponential. (Combined with differen-
tiation, such MGFs represent an attractive option for mean value analysis.) �

Trees and processes.The next example is an especially important application of
complete GFs, as these GFs provide a bridge between combinatorial models and a
major class of stochastic processes, thebranching processesof probability theory.

ExampleIII.21. Weighted tree models and branching processes.Consider the familyG of all
general plane trees. Let3 = (λ0, λ1, . . .) be a system of numeric weights. The weight of a
node of outdegreej is taken to beλ j and the weight of a tree is the product of the individual
weights of its nodes:

(55) π(τ) =
∞∏

j=0

λ
χ j (τ )

j ,

with χ j (τ ) the number of nodes of degreej in τ . One can view the weighted model of trees as
a model in which a tree receives a probability proportional toπ(τ). Precisely, the probability
of selecting a particular treeτ under this model is, for a fixed sizen,

(56) PGn,3(τ ) =
π(τ)∑
|T |=n π(T)

.

This defines a probability measure over the setGn and one can consider events and random
variables under this weighted model.

The weighted model defined by (55) and (56) covers any simple varietyof trees: just
replace eachλ j by the quantityφ j given by the “generator’ (50) of the model. For instance,
plane unlabelled unary–binary trees are obtained by3 = (1,1, 1, 0, 0, . . .), while Cayley trees
correspond toλ j = 1/j !. Two equivalence-preserving transformationsare then especially
important in this context:

(i ) Let3∗ be defined byλ∗j = cλ j for some non-zero constantc. Then the weight cor-

responding to3∗ satisfiesπ∗(τ ) = c|τ |π(τ). Consequently, the models associated
to3 and3∗ are equivalent as regards (56).

(i i ) Let 3◦ be defined byλ◦j = θ j λ j for some non-zero constantθ . Then the weight

corresponding to3◦ satisfiesπ◦(τ ) = θ |τ |−1π(τ), since
∑

j jχ j (τ ) = |τ | − 1 for
any treeτ . Thus the models3◦ and3 are again equivalent.

Each transformation has a simple effect on the generatorφ, namely:

(57) φ(w) 7→ φ∗(w) = cφ(w) and φ(w) 7→ φ◦(w) = φ(θw).
Once equipped with such equivalence transformations, it becomes possible to describe

probabilistically the process that generates trees according to a weighted model. Assume that
λ j ≥ 0 and that theλ j are summable. Then the normalized quantities

p j =
λ j∑
j λ j
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form a probability distribution overN. By the first equivalence-preserving transformation the
model induced by the weightsp j is the same as the original model induced by theλ j . (By
the second equivalence transformation, one can furthermore assume that the generatorφ is the
probability generating function of thep j .)

Such a model defined by non-negative weights{p j } summing to 1 is nothing but the clas-
sical model ofbranching processes(also known as Galton–Watson processes); see [21, 324]. In
effect, a realizationT of the branching process is classically defined by the two rules:(i ) pro-
duce a root node of degreej with probability p j ; (i i ) if j ≥ 1, attach to the root node a
collectionT1, . . . , Tj of independent realizations of the process. This may be viewed as the
development of a “family” stemming from a common ancestor where anyindividual has prob-
ability p j of giving birth to j children. Clearly, the probability of obtaining a particular finite
tree τ has probabilityπ(τ), whereπ is given by (55) and the weights areλ j = p j . The
generator

φ(w) =
∞∑

j=0

p jw
j

is then nothing but the probability generating function of (one-generation)offspring, with the
quantityµ = φ′(1) being its mean size.

For the record, we recall that branching processes can be classifiedinto three categories
depending on the values ofµ.

Subcriticality: whenµ < 1, the random tree produced is finite with probability 1
and its expected size is also finite.
Criticality: whenµ = 1, the random tree produced is finite with probability 1 but its
expected size is infinite.
Supercriticality: whenµ > 1, the random tree produced is finite with probability
strictly less than 1.

From the discussion of equivalence transformations (57), it is furthermore true that, regarding
trees of afixed size n, there is complete equivalence between all branching processes with
generators of the form

φθ (w) =
φ(θw)

φ(θ)
.

Such families of related functions are known as “exponential families” in probability theory. In
this way, one may always regard at will the random tree produced by a weighted model of some
fixed sizen as originating from a branching process (of subcritical, critical, or supercritical
type) conditioned upon the size of the total progeny.

Finally, take a setS ⊆ G for which the complete generating function ofS with respect to
the degree profile is available,

S(z, u0, u1, . . .) =
∑

τ∈S
z|τ |

(
uχ0(τ )

0 uχ1(τ )
1 · · ·

)
.

Then, for a system of weights3, one has

S(z, λ0, λ1, . . .) =
∑

τ∈S
π(τ)z|τ |.

Thus, we can find the probability that a weighted tree of sizen belongs toS, by extracting
the coefficient ofzn. This appliesa fortiori to branching processes as well. In summary,the
analysis of parameters of trees of size n under either weighted models orbranching process
models follows from substituting weights or probability values in the corresponding complete
generating functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . �
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The reduction of combinatorial tree models to branching processes was pursued
early, most notably by the “Russian School”: see especiallythe books by Kolchin
[386, 387] and references therein. (For asymptotic purposes, the equivalence between
combinatorial models and critical branching processes often turns out to be most fruit-
ful.) Conversely, symbolic-combinatorial methods may be viewed as a systematic way
of obtaining equations relative to characteristics of branching processes. We do not
elaborate further along these lines as this would take us outside of the scope of the
present book.
� III.30. Catalan trees, Cayley trees, and branching processes.Catalan trees of sizen are
defined by the weighted model in whichλ j ≡ 1, but also equivalently bŷλ j = cθ j , for
anyc > 0 andθ ≤ 1. In particular they coincide with the random tree produced by the critical
branching process whose offspring probabilities are geometric:p j = 1/2 j+1.

Cayley trees area priori defined byλ j = 1/j !. They can be generated by the critical

branching process with Poisson probabilities,p j = e−1/j !, and more generally with an arbi-

trary Poisson distributionp j = e−λλ j /j !. �

III. 7. Additional constructions

We discuss here additional constructions already examinedin earlier chapters;
namely pointing and substitution (Section III. 7.1), orderconstraints (Section III. 7.2),
and implicit structures (Section III. 7.3). Given that basic translation mechanisms can
be directly adapted to the multivariate realm, such extensions involve basically no
new concept, and the methods of Chapters I and II can be easilyrecycled. In Sec-
tion III. 7.4, we revisit the classical principle of inclusion–exclusion under a generat-
ing function perspective. In this light, the principle appears as a typically multivariate
device well suited to enumerating objects according the number of occurrences of
subconfigurations.

III. 7.1. Pointing and substitution. Let 〈F , χ〉 be a class–parameter pair, where
χ is multivariate of dimensionr ≥ 1, and letF(z) be the MGF associated to it in
the notations of (19) and (28). In particularz0 ≡ z marks size, andzk marks the
componentk of the multiparameterχ . If z marks size, then, as in the univariate
case,θz ≡ z∂z translates the fact of distinguishing one atom. Generally,pick up a
variablex ≡ z j for some j with 0≤ j ≤ r . Then since

x∂x(s
atbx f ) = f · (satbx f ),

the interpretation of the operatorθx ≡ x∂x is immediate; it means “pick up in all
possible ways in objects ofF a configuration marked byx and point to it”. For
instance, ifF(z,u) is the BGF of trees wherez marks size andu marks leaves,
thenθuF(z,u) = u∂uF(z,u) enumerates trees with one distinguished leaf.

Similarly, the substitutionx 7→ S(z) in a GF F , whereS(z) is the MGF of a
classS, means attaching an object of typeS to configurations marked by the vari-
ablex in F . The process is better understood by practice than by long formal devel-
opments. Justification in each particular case can be easilyobtained by returning to
the combinatorial representation of generating functionsas images of combinatorial
classes.
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Figure III.16 . The technique of “adding a slice” for constrained compositions.

ExampleIII.22. Constrained integer compositions and “slicing”.This example illustrates
variations around the substitution scheme. Consider compositions of integers where successive
summands have sizes that are constrained to belong to a fixed setR ⊆ N2. For instance, the
relations

R1 = {(x, y) | 1≤ x ≤ y}, R2 = {(x, y) | 1≤ y ≤ 2x},
correspond to weakly increasing summands in the case ofR1 and to summands that can at most
double at each stage in the case ofR2. In the “ragged landscape” representation of composi-
tions, this means considering diagrams of unit cells aligned in columns alongthe horizontal
axis, with successive columns obeying the constraint imposed byR.

Let F(z, u) be the BGF of suchR–restricted compositions, wherez marks total sum andu
marks the value of the last summand; that is, the height of the last column.The functionF(z,u)
satisfies a functional equation of the form

(58) F(z, u) = f (zu)+ (L [F(z, u)])u7→zu ,

where f (z) is the generating function of the one-column objects andL is a linear operator over
formal series inu given by

(59) L[u j ] :=
∑

( j,k)∈R
uk.

In effect, Equation (58) describes inductively objects as comprising either one column (f (zu))
or else as being formed by adding a new column to an existing one; see Figure III.16. The
process of appending a slice of sizej to one of sizek, with ( j, k) ∈ R, is precisely what (59)
expresses; the functional equation (58) is obtained by effecting the final substitutionu 7→ zu,
in order to take into account thek atoms contributed by the new slice. The special caseF(z, 1)
gives the enumeration ofF–objects irrespective of the size of the last column.

For a ruleR that is “simple”, the basic equation (58) will often involve a substitution. Let
us first rederive in this way the enumeration of partitions. We takeR = R1 and assume that
the first column can have any positive size. Compositions into increasing summands are clearly
the same as partitions. Since

L[u j ] = u j + u j+1+ u j+2+ · · · = u j

1− u
,

the functionF(z, u) satisfies a functional equation involving a substitution,

(60) F(z, u) = zu

1− zu
+ 1

1− zu
F(z, zu).

This relation iterates:any linear functional equation of the substitution type

φ(u) = α(u)+ β(u)φ(σ (u))
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is solved formally by

(61) φ(u) = α(u)+ β(u)α(σ (u))+ β(u)β(σ (u))α(σ 〈2〉(u))+ · · · ,

whereσ 〈 j 〉(u) designates the jth iterate of u.
We can now return to partitions. The turnkey solution (61) gives, upon iterating on the

second argument and treating the first argument as a parameter,

(62) F(z, u) = zu

1− zu
+ z2u

(1− zu)(1− z2u)
+ z3u

(1− zu)(1− z2u)(1− z3u)
+ · · · .

Equivalence with the alternative form

(63) F(z, u) = zu

1− z
+ z2u2

(1− z)(1− z2)
+ z3u3

(1− z)(1− z2)(1− z3)
+ · · ·

is then easily verified from (60) by expandingF(z,u) as a series inu and applying the method of
indeterminate coefficients to the form(1−zu)F(z,u) = zu+F(z, zu). (The representation (63)
is furthermore consistent with the treatment of partitions given in Chapter Isince the quantity
[uk]F(z,u) clearly represents the OGF of non-empty partitions whose largest summand isk. In
passing, the equality between (62) and (63) is a shallow but curious identitythat is quite typical
of the area ofq–analogues.)

This same method has been applied in [250] to compositions satisfying condition R2
above. In this case, successive summands are allowed to double at most at each stage. The
associated linear operator is

L[u j ] = u+ · · · + u2 j = u
1− u2 j

1− u
.

For simplicity, it is assumed that the first column has size 1. Thus,F satisfies a functional
equation of the substitution type:

F(z, u) = zu+ zu

1− zu

(
F(z, 1)− F(z, z2u2)

)
.

This can be solved by means of the general iteration mechanism (61), treating for the moment
F(z, 1) as a known quantity: witha(u) := zu+ F(z, 1)/(1− zu), one has

F(z, u) = a(u)− zu

1− zu
a(z2u2)+ zu

1− zu

z2u2

1− z2u2
a(z6u4)− · · · .

Then, the substitutionu = 1 in the solution becomes permissible. Upon solving forF(z, 1),
one eventually gets the somewhat curious GF for compositions satisfyingR2:

(64)
F(z, 1) =

∑
j≥1(−1) j−1z2 j+1− j−2/Q j−1(z)
∑

j≥0(−1) j z2 j+1− j−2/Q j (z)

where Q j (z) = (1− z)(1− z3)(1− z7) · · · (1− z2 j−1).

The sequence of coefficients starts as 1, 1, 2, 3, 5, 9, 16, 28, 50 and isEIS A002572: it rep-
resents, for instance, the number of possible level profiles of binary trees, or equivalently the
number of partitions of 1 into summands of the form 1, 1

2,
1
4,

1
8, . . . (this is related to the number

of solutions to Kraft’s inequality). See [250] for details, including preciseasymptotic estimates,
and Tangora’s paper [571] for relations to algebraic topology. . . . . .. . . . . . . . . . . . . . . . . . . . .�



III. 7. ADDITIONAL CONSTRUCTIONS 201

The reason for presenting the slicing method3 in some detail is that it is very
general. It has been particularly employed to derive a number of original enumerations
of polyominoes by area, a topic of interest in some branches of statistical mechanics:
for instance, the book by Janse van Rensburg [592] discussesmany applications of
such lattice models to polymers and vesicles. Bousquet-Mélou’s review paper [82]
offers a methodological perspective. Some of the origins ofthe method point to Ṕolya
in the 1930s, see [490], and independently to Temperley [574, pp. 65–67].
� III.31. Pointing–erasing and the combinatorics of Taylor’s formula.The derivative oper-
ator ∂x corresponds combinatorially to a “pointing–erasing” operation: select inall possible
ways an atom marked byx and make it transparent tox-marking (e.g., by replacing it by a
neutral object). The operator1k! ∂

k
x f (x), then corresponds to picking up in all possible way a

subset(order does not count) ofk configurations marked byx. The identity (Taylor’s formula)

f (x + y) =
∑

k≥0

(
1

k!
∂k

x f (x)

)
yk

can then receive a simple combinatorial interpretation: Given a populationof individuals (F
enumerated byf ), form the bicoloured population of individuals enumerated byf (x + y),
where each atom of each object can be repainted either inx-colour ory-colour; the process is
equivalent to decidinga priori for each individual to repaintk of its atoms fromx to y, this for
all possible values ofk ≥ 0. Conclusion:seen from combinatorics, Taylor’s formula merely
expresses the logical equivalence between two ways of counting. �

� III.32. Carlitz compositions I. Let K be the class of compositions such that all pairs of
adjacent summands are formed of distinct values. These can be generated by the operator
L[u j ] = uz

1−uz − u j z j , so thatL[ f (u)] = uz
1−uz f (1) − f (uz). The BGFK (z, u), with u

marking the value of the last summand, then satisfies a functional equation,

K (z,u) = uz

1− uz
+ uz

1− uz
K (z,1)− K (z, zu),

giving eventuallyK (z) ≡ K (z,1) under the form

(65)
K (z) =


1+

∑

j≥1

(−z) j

1− z j



−1

= 1+ z+ z2+ 3z3+ 4z4+ 7z5+ 14z6+ 23z7+ 39z8+ · · · .
The sequence of coefficients constitutesEISA003242. Such compositions were introduced by
Carlitz in 1976; the derivation above is from a paper by Knopfmacher and Prodinger [369]
who provide early references and asymptotic properties. (We resumethis thread in Note III.35,
p. 206, then in Chapter IV, p. 263, with regard to asymptotics.) �

III. 7.2. Order constraints. We refer in this subsection to the discussion of or-
der constraints in labelled products that has been given in Subsection II. 6.3 (p. 139).
We recall that the modified labelled product

A = (B2 ⋆ C)

only includes the elements of(B ⋆ C) such that the minimal label lies in theA com-
ponent. Once more the univariate rules generalize verbatimfor parameters that are

3For other applications, see Examples V.20, p. 365 (horizontally convex polyominoes) and IX.14,
p. 660 (parallelogram polyominoes), as well as Subsection VII. 8.1, p. 506 (walks and the kernel method).
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peak: σi−1 < σi > σi+1 leaf node (u0)

double rise: σi−1 < σi < σi+1 unary right-branching (u1)

double fall: σi−1 > σi > σi+1 unary left-branching (u′1)

valley: σi−1 > σi < σi+1 binary node (u2)

Figure III.17 . Local order patterns in a permutation and the four types of nodes in
the corresponding increasing binary tree.

inherited and the corresponding exponential MGFs are related by

A(z,u) =
∫ z

0
(∂t B(t,u)) · C(t,u)dt.

To illustrate this multivariate extension, we shall consider a quadrivariate statistic on
permutations.

Example III.23. Local order patterns in permutations. An elementσi of a permutation
written σ = σ1, . . . , σn when compared to its immediate neighbours can be categorized into
one of four types4 summarized in the first two columns of Figure III.17. The correspondence
with binary increasing trees described in Example II.17 and Figure II.16 (p. 143) then shows the
following: peaks and valleys correspond to leaves and binary nodes, respectively, while double
rises and double falls are associated with right-branching and left-branching unary nodes. Con-
sider the clasŝI of non-emptyincreasing binary trees (so thatÎ = I \ {ǫ} in the notations of
p. 143) and letu0, u1, u

′
1, u2 be markers for the number of nodes of each type, as summarized

in Figure III.17. Then the exponential MGF of non-empty increasing trees under this statistic is
given by

Î = u0Z + u1(Z
2 ⋆ Î)+ u′1(Î ⋆ Z

2)+ u2(Î ⋆Z
2 ⋆ Î)

H⇒ Î (z) = u0z+
∫ z

0

(
(u1+ u1) Î (w)+ u2 Î (w)2

)
dw,

which gives rise to the differential equation:

∂

∂z
Î (z, u) = u0+ (u1+ u′1) Î (z, u)+ u2 Î (z, u)2.

This is solved by separation of variables as

(66) Î (z, u) = δ

u2

v1+ δ tan(zδ)

δ − v1 tan(zδ)
− v1

u2
,

where the following abbreviations are used:

v1 =
1

2
(u1+ u′1), δ =

√
u0u2− v2

1.

One finds

Î = u0z+ u0(u1+ u′1)
z2

2!
+ u0((u1+ u′1)

2+ 2u0u2)
z3

3!
+ · · · ,

4Here, for|σ | = n, we regardσ asborderedby (−∞,−∞), i.e., we setσ0 = σn+1 = −∞ and let
the indexi in Figure III.17 vary in [1. .n]. Alternative bordering conventions prove occasionally useful.
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Figure III.18 . The level profile of a random increasing binary tree of size 256.
(Compare with Figure III.15, p. 186, for binary trees drawn under the uniform Catalan
statistics.)

which agrees with the small cases. This calculation is consistent with what has been found in
Chapter II regarding the EGF of all non-empty permutations and of alternating permutations,

z

1− z
, tan(z),

that follow from the substitutions{u0 = u1 = u′1 = u2 = 1} and{u0 = u2 = 1, u1 = u′1 = 0},
respectively. The substitution{u0 = u1 = u, u′1 = u2 = 1} gives a simple variant (without the
empty permutation) of the BGF of Eulerian numbers (75) on p. 209.

From the quadrivariate GF, there results that, in a tree of sizen the mean number of nodes
of nullary, unary, or binary type is asymptotic ton/3, with a variance that isO(n), thereby
ensuring concentration of distribution. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

A similar analysis yields path length. It is found that a random increasing binary
tree of sizen has mean path length

2n logn+ O(n).

Contrary to what the uniform combinatorial model gives, such trees tend to be rather
well balanced, and a typical branch is only about 38.6% longer than in a perfect binary
tree (since 2/ log 2

.= 1.386): see Figure III.18 for an illustration. This fact applies
to binary search trees (Note III.33) and it justifies the factthat the performance of
such trees is quite good, when they are applied to random data[378, 429, 538] or
subjected to randomization [451, 520]. See Subsection VI. 10.3 (p. 427) dedicated
to tree recurrences for a general analysis of additive functionals on such trees and
Example IX.28, p. 684, for a distributional analysis of depth.
� III.33. Binary search trees (BSTs). Given a permutationτ , one defines inductively a tree
BST(τ ) by

BST(ǫ) = ∅; BST(τ ) = 〈τ1, BST(τ |<τ1), BST(τ |>τ1)〉.
(Here,τ |P represents the subword ofτ consisting of those elements that satisfy predicateP.)
Let IBT(σ ) be the increasing binary tree canonically associated toσ . Then one has the funda-
mentalEquivalence Principle,

IBT(σ )
shape≡ BST(σ−1),

whereA
shape≡ B means thatA and B have identical tree shapes. (Hint: relate the trees to the

cartesian representation of permutations [538, 600], as in Example II.17, p. 143.) �

III. 7.3. Implicit structures. For implicit structures defined by a relation of the
form A = K[X ], we note that equations involving sums and products, either labelled
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or not, are easily solved just as in the univariate case. The same remark applies for se-
quence and set constructions: refer to the corresponding sections of Chapters I (p. 88)
and II (p. 137). Again, the process is best understood by examples.

Suppose for instance one wants to enumerate connected labelled graphs by the
number of nodes (marked byz) and the number of edges (marked byu). The classK
of connected graphs and the classG of all graphs are related by the set construction,

G = SET(K),

meaning that every graph decomposes uniquely into connected components. The cor-
responding exponential BGFs then satisfy

G(z,u) = eK (z,u) implying K (z,u) = logG(z,u),

since the number of edges in a graph is inherited (additively) from the corresponding
numbers in connected components. Now, the number of graphs of size n havingk
edges is

(n(n−1)/2
k

)
, so that

(67) K (z,u) = log

(
1+

∞∑

n=1

(1+ u)n(n−1)/2 zn

n!

)
.

This formula, which appears as a refinement of the univariateformula of Chapter II
(p. 138), then simply reads:connected graphs are obtained as components (thelog
operator) of general graphs, where a general graph is determined by the presence or
absence of an edge (corresponding to(1+u)) between any pair of nodes (the exponent
n(n− 1)/2).

To pull information out of the formula (67) is, however, not obvious due to the
alternation of signs in the expansion of log(1+ w) and due to the strongly divergent
character of the involved series. As an aside, we note here that the quantity

K̂ (z,u) = K
( z

u
,u
)

enumerates connected graphs according to size (marked byz) and excess (marked
by u) of the number of edges over the number of nodes. This means that the results
of Note II.23 (p. 135), obtained by Wright’s decomposition, can be rephrased as the
expansion (withinC(u)[[z]]):

(68)
log

(
1+

∞∑

n=1

(1+ u)n(n−1)/2 znu−n

n!

)
= 1

u
W−1(z)+W0(z)+ · · ·

= 1

u

(
T − 1

2
T2
)
+
(

1

2
log

1

1− T
− 1

2
T − 1

4
T2
)
+ · · · ,

with T ≡ T(z). See Temperley’s early works [573, 574] as well as the “giantpaper on
the giant component” [354] and the paper [254] for direct derivations that eventually
constitute analytic alternatives to Wright’s combinatorial approach.

ExampleIII.24. Smirnov words.Following the treatment of Goulden and Jackson [303], we
define a Smirnov word to be any word that has no consecutive equal letters. LetW = SEQ(A)

be the set of words over the alphabetA = {a1, . . . ,ar } of cardinalityr , andS be the set of
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Smirnov words. Let alsov j mark the number of occurrences of thej th letter in a word. One

has5

W(v1, . . . , vr ) =
1

1− (v1+ · · · + vr )
Start from a Smirnov word and substitute for any lettera j that appears in it an arbitrary non-
empty sequence of lettersa j . When this operation is done at all places of a Smirnov word,
it gives rise to an unconstrained word. Conversely, any word can be associated to a unique
Smirnov word by collapsing into single letters maximal groups of contiguousequal letters. In
other terms, arbitrary words are derived from Smirnov words by a simultaneous substitution:

W = S
[
a1 7→ SEQ≥1{a1}, . . . ,ar 7→ SEQ≥1{ar }

]
.

This leads to the relation

(69) W(v1, . . . , vr ) = S

(
v1

1− v1
, . . . ,

vr

1− vr

)
.

This relation determines the MGFS(v1, . . . , vr ) implicitly. Now, since the inverse function of
v/(1− v) is v/(1+ v), one finds the solution:

(70) S(v1, . . . , vr ) = W

(
v1

1+ v1
, . . . ,

vr

1+ vr

)
=


1−

r∑

j=1

v j

1+ v j



−1

.

For instance, if we setv j = z, that is, we “forget” the composition of the words into letters,
we obtain the OGF of Smirnov words counted according to length as

1

1− r z
1+z
= 1+ z

1− (r − 1)z
= 1+

∑

n≥1

r (r − 1)n−1zn.

This is consistent with elementary combinatorics since a Smirnov word of length n is deter-
mined by the choice of its first letter (r possibilities) followed by a sequence ofn − 1 choices
constrained to avoid one letter amongr (and corresponding tor − 1 possibilities for each po-
sition). The interest of (70) is to apply equally well to the Bernoulli model where letters may
receive unequal probabilities and where a direct combinatorial argument does not appear to be
easy: it suffices to perform the substitutionv j 7→ p j z in this case: see Example IV.10, p. 262
and Note V.11, p. 311, for applications to asymptotics.

From these developments, one can next build the GF of words that nevercontain more
than m consecutive equal letters. It suffices to effect in (70) the substitutionv j 7→ v j +
· · · + vm

j . In particular for the univariate problem (or, equivalently, the case where letters are
equiprobable), one finds the OGF

1

1− r
z1−zm

1−z

1+ z1−zm

1−z

= 1− zm+1

1− rz+ (r − 1)zm+1
.

This extends to an arbitrary alphabet the analysis of single runs and double runs in binary words
that was performed in Subsection I. 4.1, p. 51. Naturally, the presentapproach applies equally
well to non-uniform letter probabilities and to a collection of run-length upper-bounds and
lower-bounds dependent on each particular letter. This topic is in particular pursued by different
methods in several works of Karlin and coauthors (see, e.g., [446]), themselves motivated by
applications to life sciences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

5The variablez marking length, being redundant, is best omitted in this calculation.
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� III.34. Enumeration in free groups.Consider the composite alphabetB = A ∪ A, where
A = {a1, . . . ,ar } andA = {a1, . . . ,ar }. A word over alphabetB is said to bereducedif it
arises from a word overB by a maximal application of the reductionsa j a j 7→ ǫ anda j a j 7→ ǫ
(with ǫ the empty word). A reduced word thus has no factor of the forma j a j or a j a j . Such a
reduced word serves as a canonical representation of an element in the free groupFr generated
by A, upon identifyinga j = a−1

j . The GF of the classR of reduced words, withu j andu j
marking the number of occurrences of lettera j anda j , respectively, is

R(u1, . . . , ur , u1, . . . , ur ) = S

(
u1

1− u1
+ u1

1− u1
, . . . ,

ur

1− ur
+ ur

1− ur

)
,

whereS is the GF of Smirnov words, as in (70). In particular this gives the OGF of reduced
words withz marking length asR(z) = (1+z)/(1− (2r −1)z); this impliesRn = 2r (2r −1)n,
which matches the result given by elementary combinatorics.

The Abelian imageλ(w) of an elementw of the free groupFk is obtained by letting all
letters commute and applying the reductionsa j · a−1

j = 1. It can then be put under the form

am1
1 · · ·a

mr
r , with eachm j in Z, so that it can be identified with an element ofZr . Let x =

(x1, . . . , xr ) be a vector of indeterminates and definexλ(w) to be the monomialxm1
1 · · · x

mr
r .

Of interest in certain group-theoretic investigations is the MGF of reduced words

Q(z; x) :=
∑

w∈R
z|w|xλ(w) = S

(
zx1

1− zx1
+

zx−1
1

1− zx−1
1

, . . . ,
zxr

1− zxr
+ zx−1

r

1− zx−1
r

)
,

which is found to simplify to

Q(z; x) = 1− z2

1− z
∑r

j=1(x j + x−1
j )+ (2r − 1)z2

.

This last form appears in a paper of Rivin [514], where it is obtained bymatrix techniques.
Methods developed in Chapter IX can then be used to establish central andlocal limit laws
for the asymptotic distribution ofλ(w) overRn, providing an alternative to the methods of
Rivin [514] and Sharp [539]. (This note is based on an unpublished memo of Flajolet, Noy, and
Ventura, 2006.) �

� III.35. Carlitz compositions II. Here is an alternative derivation of the OGF of Carlitz
compositions (Note III.32, p. 201). Carlitz compositions with largest summand≤ r are obtained
from the OGF of Smirnov words by the substitutionv j 7→ z j :

(71) K [r ](z) =


1−

r∑

j=1

z j

1+ z j



−1

,

The OGF of all Carlitz compositions then results from lettingr →∞:

(72) K (z) =


1−

∞∑

j=1

z j

1+ z j



−1

.

The asymptotic form of the coefficients is derived in Chapter IV, p. 263. �

III. 7.4. Inclusion–exclusion. Inclusion–exclusion is a familiar type of reason-
ing rooted in elementary mathematics. Its principle, in order to countexactly, consists
in grosslyovercounting, then performing a simple correction of the overcounting, then
correcting the correction, and so on. Characteristically,enumerative results provided
by inclusion exclusion involve an alternating sum. We revisit this process here in the
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perspective of multivariate generating functions, where it essentially reduces to a com-
bined use of substitution and implicit definitions. Our approach follows Goulden and
Jackson’s encyclopaedic treatise [303].

Let E be a set endowed with a real- or complex-valued measure| · | in such a way
that, for A, B ⊂ E , there holds

|A∪ B| = |A| + |B| whenever A∩ B = ∅.
Thus,| · | is an additive measure, typically taken as set cardinality (i.e., |e| = 1 for
e ∈ E) or a discrete probability measure onE (i.e., |e| = pe for e ∈ E). The general
formula

|A∪ B| = |A| + |B| − |AB| where AB := A∩ B,

follows immediately from basic set-theoretic principles:
∑

c∈A∪B

|c| =
∑

a∈A

|a| +
∑

b∈B

|b| −
∑

i∈A∩B

|i |.

What is called theinclusion–exclusion principleor sieve formulais the following mul-
tivariate generalization, for an arbitrary familyA1, . . . , Ar ⊂ E :

(73)
|A1 ∪ · · · ∪ Ar | ≡

∣∣E \ (A1A2 · · · Ar )
∣∣

=
∑

1≤i≤r

|Ai | −
∑

1≤i1<i2≤r

|Ai1 Ai2| + · · · + (−1)r−1|A1A2 · · · Ar |,

whereA := E \ A denotes complement. (The easy proof by induction results from el-
ementary properties of the boolean algebra formed by the subsets ofE ; see, e.g., [129,
Ch. IV].) An alternative formulation results from settingB j = A j , B j = A j :

(74) |B1B2 · · · Br | = |E |−
∑

1≤i≤r

|Bi |+
∑

1≤i1<i2≤r

|Bi1 Bi2|−· · ·+(−1)r |B1B2 · · · Br |.

In terms of measure, this equality quantifies the set of objects satisfyingexactlya
collection of simultaneousconditions (all theB j ) in terms of those that violateat
least someof the conditions (theB j ).

Derangements.Here is a textbook example of an inclusion–exclusion argument,
namely, the enumeration ofderangements. Recall that a derangement (p. 122) is a
permutationσ such thatσi 6= i , for all i . Fix E as the set of all permutations of [1,n],
take the measure| · | to be set cardinality, and letBi be the subset of permutations inE
associated to the propertyσi 6= i . (There are consequentlyr = n conditions.) Thus,
Bi means having no fixed point ati , while Bi means having a fixed point at thedistin-
guishedvaluei . Then, the left-hand side of (74) gives the number of permutations that
are derangements; that is,Dn. As regards the right-hand side, thekth sum comprises
itself

(n
k

)
terms counting possibilities attached to the choices of indicesi1 < · · · < ik;

each such choice is associated to a factorBi1 · · · Bik that describes all permutations
with fixed points at the distinguished pointsi1, . . . , ik (i.e.,σ(i1) = i1, . . . , σik = ik).
Clearly,|Bi1 · · · Bik | = (n− k)!. Therefore one has

Dn = n! −
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)! − · · · + (−1)n

(
n

n

)
0!,
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which rewrites into the more familiar form

Dn

n!
= 1− 1

1!
+ 1

2!
− · · · + (−1)n

n!
.

This gives an elementary derivation of the derangement numbers already encountered
in Chapter II and obtained there by means of the labelled set and cycle constructions.

Symbolic inclusion–exclusion.The derivation above is perfectly fine but com-
plex examples may represent somewhat of a challenge. In contrast, as we now explain,
there exists asymbolicalternative based on multivariate generating functions, which
is technically easy and has great versatility.

Let us now re-examine derangements in a generating functionperspective. Con-
sider the setP of all permutations and build a supersetQ as follows. The setQ
is comprised of permutations in which an arbitrary number offixed points—some,
possibly none, possibly all—have beendistinguished. (This corresponds to arbitrary
products of theB j in the argument above.) For instanceQ contains elements like

1,3,2, 1,3,2, 1,2,3, 1,2,3, 1,2,3, 1,2,3,

where distinguished fixed points are underlined. Clearly, if one removes the distin-
guished elements of aγ ∈ Q, what is left constitutes an arbitrary permutation of the
remaining elements. One has

Q ∼= U ⋆ P,

whereU denotes the class of urns that are sets of atoms. In particular, the EGF ofQ
is Q(z) = ez/(1− z). (What we have just done is to enumerate the quantities that
appear in (74), but with the signs “wrong”, i.e., all pluses.)

Introduce now the variablev to mark the distinguished fixed points in objects
of Q. The exponential BGF is then, by the general principles of this chapter,

Q(z, v) = evz 1

1− z
.

Let now P(z,u) be the BGF of permutations whereu marks the number of fixed
points. Permutations withsomefixed points distinguished are generated by the substi-
tutionu 7→ 1+ v insideP(z,u). In other words one has the fundamental relation

Q(z, v) = P(z,1+ v).
This is then immediately solved to give

P(z,u) = Q(z,u− 1),

so that knowledge of (the easy)Q gives (the harder)P. For the case at hand, this
yields

P(z,u) = e(u−1)z

1− z
, P(z,0) = D(z) = e−z

1− z
,

and, in particular, the EGF of derangements has been retrieved. Note that the de-
sired quantityP(z,0) comes out asQ(z,−1), so that signs corresponding to the sieve
formula (74) have now been put “right”, i.e., alternating.
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The process employed for derangements is clearly very general: counting objects
that contain an exact number of “patterns” is reduced to counting objects that con-
tain the pattern at distinguished places—the latter is usually a simpler problem. The
generating function analogue of inclusion–exclusion is then simply the substitution
v 7→ u − 1, if a bivariate GF is sought, orv 7→ −1 in the univariate case, when
patterns are altogether to be excluded.

Rises in permutations and patterns in words.The book by Goulden and Jack-
son [303, pp. 45–48] describes a useful formalization of theinclusion process operat-
ing on MGFs. Conceptually, it combines substitution and implicit definitions, just as
in the case of derangements above. Again, themodus operandiis best grasped through
examples, two of which are detailed now.

Example III.25. Rises and ascending runs in permutations.A rise (also called anascent)
in a permutationσ = σ1 · · · σn is a pair of consecutive elementsσi σi+1 satisfyingσi < σi+1
(with 1 ≤ i < n). The problem is to determine the numberAn,k of permutations of size
having exactlyk rises, together with the exponential BGFA(z, u). By symmetry, we are also
enumerating descents (defined byσi > σi+1) as well as ascending runs that are each terminated
by a descent.

Guided by the inclusion–exclusion principle, we tackle the easier problem ofenumerating
permutations withdistinguishedrises, of which the set is denoted byB. For instance,B contains
elements such as

2 6 1 3ր4ր8ր9ր11 15 12 5ր10 13 7 14,

where those rises that are distinguished are represented by arrows. (Note that some rises may
not be distinguished.) Maximal sequences of adjacent distinguished rises (boxed in the repre-
sentation) will be calledclusters. Then,B can be specified by the sequence construction applied
to atoms (Z) and clusters (C) as

B = SEQ(Z + C), where C = (Z ր Z)+ (Z ր Z ր Z)+ · · · = SET≥2(Z).

since a cluster is an ordered sequence, or equivalently a set, furthermore having at least two
elements. This gives the EGF ofB as

B(z) = 1

1− (z+ (ez− 1− z))
= 1

2− ez ,

which happens to coincide with the EGF of surjections.
For inclusion–exclusion purposes, we need the BGF ofB with v marking the number of

distinguished rises. A cluster of sizek containsk− 1 rises, so that

B(z, v) = 1

1− (z+ (ezv − 1− zv)/v)
= v

v + 1− ezv .

Now, the usual argument applies: the BGFA(z, u) satisfiesB(z, v) = A(z, 1 + v), so that
A(z, u) = B(z, u− 1), which yields the particularly simple form

(75) A(z, u) = u− 1

u− ez(u−1)
.

In particular, this GF expands as

A(z, u) = 1+ z+ (u+ 1)
z2

2!
+ (u2+ 4u+ 1)

z3

3!
+ (u3+ 11u2+ 11u+ 1)

z4

4!
+ · · · .
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The coefficientsAn,k are known as theEulerian numbers(Invitation, p. 9). In combinatorial
analysis, these numbers are almost as classic as the Stirling numbers; a detailed discussion of
their properties is to be found in classical treatises such as Comtet [129] or Grahamet al. [307].

Moments derive easily from an expansion of (75) atu = 1, which gives

A(z, u) = 1

1− z
+ 1

2

z2

(1− z)2
(u− 1)+ 1

12

z3(2+ z)

(1− z)3
(u− 1)2+ · · · .

In particular: the mean of the number of rises in a random permutation of size n is1
2(n − 1)

and the variance is∼ 1
12n, ensuring concentration of distribution.

The same method applies to the enumeration ofascending runs: for a fixed parameterℓ,
an ascending run of lengthℓ is a sequence of consecutive elementsσi σi+1 · · · σi+ℓ such that
σi < σi+1 < · · · < σi+ℓ. (Thus, a rise is an ascending run of length 1.) We define a cluster as a
sequence of distinguished runs which overlap in the sense that they share some of the elements
of the permutation. The exponential BGF of permutations with distinguished ascending runs is
then

B(z, v) = 1

1− z− Î (z, v)
, where Î (z, v) =

∑

n,k

In,kv
k zn

n!
,

andIn,k is the number of ways of covering the segment [1,n] with k distinct intervals of lengthℓ
that are contained in [1, n] and have integral end points. The numbersIn,k themselves result
from elementary combinatorics (see also the case of patterns in words below) and one has for
the OGF corresponding tôI :

I (z, v) = zℓ+1v

1− v(z+ z2+ · · · + zℓ)
.

(Proof: The first segment in the covering must be placed on the left, theothers appear in suc-
cession, each shifted right by 1 toℓ positions from the previous one.) The last two equations
finally determine the exponential BGF of permutations with size marked byz and ascending
runs of lengthℓ+ 1 marked byu,

(76) A(z, u) = B(z, u− 1),

given the inclusion–exclusion principle.
The resulting formulae generalize the case of rises (ℓ = 1). They can be made explicit

by first expanding the OGFI (z, v) into partial fractions, then applying the transformation(1−
ωz)−1 7→ eωz in order to translateI (z, v) into Î (z, v). The net result is

A(z, u) = 1

1− z− Î (z, u− 1)
, where Î (z, v) = (1− z)(v + 1)+

ℓ∑

j=1

c j (v)e
ω j (v)z

involves a sum of exponentials. In this last equation, theω j (v) are the roots of the characteristic

equationωℓ = v(1 + · · · + ωℓ−1) and thec j (v) are the corresponding coefficients in the
partial fraction decomposition ofI (z, v). These expressions were first published by Elizalde
and Noy [190] who obtained them by means of tree decompositions.

The BGF (76) can be exploited in order to determine quantitative informationon long runs
in permutations. First, an expansion atu = 1 (also, by a direct reasoning: see the discussion
of hidden words in Chapter I) shows that the mean number of ascendingruns of lengthℓ − 1
is (n − ℓ + 1)/ℓ! exactly, as soon asn ≥ ℓ. This entails that, ifn = o(ℓ!), the probability of
finding an ascending run of lengthℓ− 1 tends to 0 asn→∞. What is used in passing in this
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argument is the general fact that for a discrete variableX with values in 0, 1, 2, . . ., one has
(with Iverson’s notation),

P(X ≥ 1) = E([[ X ≥ 1]]) = E(min(X,1)) ≤ E(X).

An inequality in the converse direction can be obtained from the second moment method. In
effect, the variance of the number of ascending runs of lengthℓ− 1 is found to be of the exact
form αℓn+ βℓ, in whichαℓ is essentially 1/ℓ! andβℓ is of comparable order (details omitted).
Then, by Chebyshev’s inequalities, concentration of distribution holds aslong asℓ is such that
(ℓ+1)! = o(n). In this case, with high probability (i.e., with probability tending to 1 asn tends
to∞), there is at least one ascending run of lengthℓ− 1 (in fact, many). In particular:

Let Ln be the length of the longest ascending run in a random permutation of n
elements. Letℓ0(n) be the smallest integer such thatℓ! ≥ n. Then the distribu-
tion of Ln is concentrated: Ln/ℓ0(n) converges in probability to 1 (in the sense of
Equation(14), p. 162).

What has been found here is a fairly sharp threshold phenomenon. . .. . . . . . . . . . . . . . . . . . . .�

� III.36. Permutations withoutℓ–ascending runs.The EGF of permutations without 1–, 2–
and 3–ascending runs are respectively

∑

i≥0

x2i

(2i )!
− x2i+1

(2i + 1)!



−1

,


∑

i≥0

x3i

(3i )!
− x3i+1

(3i + 1)!



−1

,


∑

i≥0

x4i

(4i )!
− x4i+1

(4i + 1)!



−1

,

and so on. (See Carlitz’s review [103] as well as Elizalde and Noy’s article [190] for interesting
results involving several types of order patterns in permutations.) �

Many variations on the theme of rises and ascending runs are clearly possible. Lo-
cal order patterns in permutations have been intensely researched, notably by Carlitz
in the 1970s. Goulden and Jackson [303, Sec. 4.3] offer a general theory of patterns
in sequences and permutations. Special permutations patterns associated with binary
increasing trees are also studied by Flajolet, Gourdon, andMart́ınez [235] (by com-
binatorial methods) and Devroye [159] (by probabilistic arguments). On another reg-
ister, the longest ascending run has been found above to be oforder(logn)/ log logn
in probability. The superficially resembling problem of analysing the length of the
longest increasing sequencein random permutations (elements must be in ascending
order but need not be adjacent) has attracted a lot of attention, but is considerably
harder. This quantity is∼ 2

√
n on average and in probability, as shown by a pene-

trating analysis of the shape of random Young tableaux due toLogan and Shepp [411]
and Vershik and Kerov [596]. Solving a problem that had been open for over 20 years,
Baik, Deift, and Johansson [24] have eventually determinedits limiting distribution.
The undemanding survey by Aldous and Diaconis [10] discusses some of the back-
ground of this problem, while Chapter VIII (p. 596) shows howto derive bounds that
are of the right order of magnitude, using saddle-point methods.

Example III.26. Patterns in words. Take the set of all wordsW = SEQ{A} over a finite
alphabetA = {a1, . . . ,ar }. A patternp = p1p2 · · · pk, which is a particular word of lengthk
has been fixed. What is sought is the BGFW(z,u) of W, whereu marks the number of
occurrences of patternp inside a word ofW. The results of Chapter I already give access to
W(z,0), which is the OGF of words not containing the pattern.

In accordance with the inclusion–exclusion principle, one should introduce the classX of
words augmented by distinguishing an arbitrary number of occurrences of p. Define acluster
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as a maximal collection of distinguished occurrences that have an overlap. For instance, if
p = aaaaa, a particular word may give rise to the particular cluster:

a b a a a a a a a a a a a a a b a a a a a a a a b b
a a a a a

a a a a a
a a a a a

Then objects ofX decompose as sequences of either arbitrary letters fromA or clusters:

X = SEQ(A+ C) ,

with C the class of all clusters.
Clusters are themselves obtained by repeatedly sliding the pattern, but with the constraint

that it should constantly overlap partly with itself. Letc(z) be the autocorrelation polynomial
of p as defined in Chapter I (p. 61), and setĉ(z) = c(z) − 1. A moment’s reflection should
convince the reader thatzkĉ(z)s−1 when expanded describes all the possibilities for forming
clusters ofs overlapping occurrences. On the example above, one hasĉ(z) = z+ z2+ z3+ z4,
and a particular cluster of 3 overlapping occurrences corresponds toone of the terms inzkĉ(z)2

as follows:

z5
︷ ︸︸ ︷
a a a a a z5

a a a

z2
︷︸︸︷
a a × (z+ z2+ z3+ z4)

a

z4
︷ ︸︸ ︷
a a a a × (z+ z2+ z3+ z4).

The OGF of clusters is consequentlyC(z) = zk/(1− ĉ(z)) since this quantity describes all the
ways to write the pattern (zk) and then slide it so that it should overlap with itself (this is given
by (1− ĉ(z))−1).

By a similar reasoning, the BGF of clusters isvzk/(1− v ĉ(z)), and the BGF ofX with the
supplementary variablev marking the number of distinguished occurrences is

X(z, v) = 1

1− rz− vzk/(1− v ĉ(z))
.

Finally, the usual inclusion–exclusion argument (changev to u − 1) yields W(z, u) =
X(z,u− 1). As a result:

For a patternp with correlation polynomial c(z) and length k, the BGF of words
over an alphabet of cardinality r , where u marks the number of occurrences ofp, is

(77) W(z,u) = (u− 1)c(z)− u

(1− rz)((u− 1)c(z)− u)+ (u− 1)zk
.

The specializationu = 0 gives back the formula already found in Chapter I, p. 61. The same
principles clearly apply to weighted models corresponding to unequal letterprobabilities, pro-
vided a suitably weighted version of the correlation polynomial is introduced(see Note III.39
below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

There are a very large number of formulae related to patternsin strings. For
instance, BGFs are known for occurrences of one or several patterns under either
Bernoulli or Markov models; see Note III.39 below. We refer to Szpankowski’s
book [564] and Lothaire’s chapter [347], where such questions are treated system-
atically in great detail. Bourdon and Vallée [81] have succeeded in extending this
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approach todynamical sourcesof information, thereby uniting a large number of pre-
viously known results. Their approach even makes it possible to analyse the occur-
rence of patterns in continued fraction representations ofreal numbers.
� III.37. Moments of number of occurrences.The derivatives ofX(z, v) at v = 0 give access
to the factorial moments of the number of occurrences of a pattern. In this way or directly, one
determines

W(z,u) = 1

1− rz
+ zk

(1− rz)2
(u− 1)+ 2

zk((1− rz)(c(z)− 1)+ zk)

(1− rz)3
(u− 1)2

2!
+ · · · .

The mean number of occurrences isr−n times the coefficient ofzn in the coefficient of(u− 1)
and is(n− k+ 1)r−k, as anticipated. The coefficient of(u− 1)2/2! is of the form

2r−2k

(1− rz)3
+ 2r−k(1+ 2kr−k − c(1/r ))

(1− rz)2
+ P(z)

1− rz
,

with P a polynomial. This shows that the variance of the number of occurrences is of the form

αn+ β, α = r−k(2c(1/r )− 1+ r−k(1− 2k)).

Consequently, the distribution is concentrated around its mean. (See also the discussion of
“Borges’ Theorem” in Chapter I, p. 61.) �

� III.38. Words with fixed repetitions.Let W〈s〉(z) = [us]W(z,u) be the OGF of words
containing a pattern exactlys times. One has, fors> 0 ands= 0, respectively,

W〈s〉(z) = zkN(z)s−1

D(z)s+1
, W〈0〉(z) = c(z)

D(z)
,

with N(z) andD(z) given by

N(z) = (1− rz)(c(z)− 1)+ zk, D(z) = (1− rz)c(z)+ zk.

The expression ofW〈0〉 is in agreement with Chapter I, Equation (62), p. 61. �

� III.39. Patterns in Bernoulli sequences.Let A be an alphabet where letterα has probabil-
ity πα and consider the Bernoulli model where letters in words are chosen independently. Fix a
patternp = p1 · · · pk and define the finite language ofprotrusionsas

Ŵ =
⋃

i : ci 6=0

{pi+1pi+2 · · · pk},

where the union is over all correlation positions of the pattern. Define now the correlation
polynomialγ (z) (relative top and theπα) as the generating polynomial of the finite language
of protrusions weighted by(πα). For instance,p = ababagives rise toŴ = {ǫ, ba, baba} and

γ (z) = 1+ πaπbz2+ π2
aπ

2
bz4.

The BGF of words withz marking length andu marking the number of occurrences ofp is

W(z,u) = (u− 1)γ (z)− u

(1− z)((u− 1)γ (z)− u)+ (u− 1)π [p]zk
,

whereπ [p] is the product of the probabilities of letters ofp. �

� III.40. Patterns in trees I.Consider the classB of pruned binary trees. An occurrence of
patternt in a treeτ is defined by a node ofτ whose dangling subtree is isomorphic tot. We
seek the BGFB(z, u) of classB whereu marks the number of occurrences oft.

The OGF ofB is B(z) = (1−
√

1− 4z)/(2z). The quantityvB(zv) is the BGF ofB with v
marking external nodes. By virtue of the pointing operation, the quantity

Uk :=
(

1

k!
∂k
v (vB(zv))

)

v=1
,
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describes trees withk distinct external nodes distinguished (pointed). Letm= |t|. The quantity

V :=
∑

Ukuk(zm)k satisfies V = (vB(zv))v=1+uzm ,

by virtue of Taylor’s formula. It is also the BGF of trees with distinguished occurrences oft
marked byv. Settingv 7→ u− 1 in V then givesB(z, u) as

(78) B(z, u) = 1

2z

(
1−

√
1− 4z− 4(u− 1)zm+1

)
.

In particularB(z, 0) = 1
2z

(
1−

√
1− 4z+ 4zm+1

)
represents the OGF of treesnotcontaining

patternt. The method generalizes to any simple variety of trees. It can be used to prove that
the factored representation (as a directed acyclic graph) of a random tree of sizen has expected
sizeO(n/

√
logn). (These results appear in [257]; see also Example IX.26, p. 680, for a related

Gausian law.) �

� III.41. Patterns in trees II.Here follows an alternative derivation of (78) that is based on the
root decomposition of trees. A patternt occurs either in the left root subtreeτ0, or in the right
root subtreeτ1, or at the root iself in the case in whicht coincides withτ . Thus the number
ω[τ ] of occurrences oft in τ satisfies the recursive definition

ω[τ ] = ω[τ0] + ω[τ1] + [[τ = t]] , ω[∅] = 0.

The functionuω[τ ] is almost multiplicative, and

uω[τ ] = u[[τ=t]] uω[τ0]uω[τ1] = uω[τ0]uω[τ1] + [[τ = t]] · (u− 1).

Thus, the bivariate generating functionB(z, u) :=∑t z|t |uω[t ] satisfies the quadratic equation,

B(z, u) = 1+ (u− 1)zm+ zB(z, u)2,

which, when solved, yields (78). �

III. 8. Extremal parameters

Apart from additively inherited parameters already examined at length in this
chapter, another important category is that of parameters defined by a maximum rule.
Two major cases are the largest component in a combinatorialstructure (for instance,
the largest cycle of a permutation) and the maximum degree ofnesting of construc-
tions in a recursive structure (typically, the height of a tree). In this case, bivariate
generating functions are of little help, because of the nonlinear character of the max-
function. The standard technique consists in introducinga collection of univariate
generating functionsdefined by imposing a bound on the parameter of interest. Such
GFs can then be constructed by the symbolic method in its univariate version.

III. 8.1. Largest components. Consider a constructionB = 8[A], where8
may involve an arbitrary combination of basic constructions, and assume here for
simplicity that the construction forB is a non-recursive one. This corresponds to a
relation between generating functions

B(z) = 9[ A(z)],

where9 is the functional that is the “image” of the combinatorial construction8.
Elements ofA thus appear as components in an objectβ ∈ B. Let B〈b〉 denote the
subclass ofB formed with objects whoseA–components all have a size at mostb. The
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GF ofB〈b〉 is obtained by the same process as that ofB itself, save thatA(z) should
be replaced by the GF of elements of size at mostb. Thus,

B〈b〉(z) = 9[TbA(z)],

where thetruncation operatoris defined on series by

Tb f (z) =
b∑

n=0

fnzn ( f (z) =
∞∑

n=0

fnzn).

ExampleIII.27. A pot-pourri of largest components.Several instances of largest components
have already been analysed in Chapters I and II. For instance, the cycle decomposition of
permutations translated by

P = SET(CYC(Z)) H⇒ P(z) = exp

(
log

1

1− z

)

gives more generally the EGF of permutations with longest cycle≤ b,

P〈b〉(z) = exp

(
z

1
+ z2

2
+ · · · + zb

b

)
,

which involves the truncated logarithm.
The labelled specification of words over anm–ary alphabet

W = SETm(SET(Z)) H⇒ W(z) =
(
ez)m

leads to the EGF of words such that each letter occurs at mostb times:

W〈b〉(z) =
(

1+ z

1!
+ z2

2!
+ · · · + zb

b!

)m

,

which now involves the truncated exponential. Similarly, the EGF of set partitions with largest
block of size at mostb is

S〈b〉(z) = exp

(
z

1!
+ z2

2!
+ · · · + zb

b!

)
.

A slightly less direct example is that of the longest run in a binary string (p. 51), which we
now revisit. The collectionW of binary words over the alphabet{a,b} admits the unlabelled
specification

W = SEQ(a) · SEQ(b SEQ(a)),

corresponding to a “scansion” dictated by the occurrences of the letterb. The corresponding
OGF then appears under the form

W(z) = Y(z) · 1

1− zY(z)
, where Y(z) = 1

1− z

corresponds toY = SEQ(a). Thus, the OGF of strings with at mostk − 1 consecutive occur-
rences of the lettera obtains upon replacingY(z) by its truncation:

W〈k〉(z) = Y〈k〉(z)
1

1− zY〈k〉(z)
, where Y〈k〉(z) = 1+ z+ z2+ · · · + zk−1,

so that

W〈k〉(z) = 1− zk

1− 2z+ zk+1
.

An asymptotic analysis is given in Example V.4, p. 308. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .�
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Generating functions for largest components are thus easy to derive. The asymp-
totic analysis of their coefficients is however often hard when compared to additive
parameters, owing to the need to rely on complex analytic properties of the truncation
operator. The bases of a general asymptotic theory have beenlaid by Gourdon [305].
� III.42. Smallest components.The EGF of permutations with smallest cycle of size> b is

1

1− z
exp

(
− z

1
− z2

2
− · · · − zb

b

)
.

A symbolic theory ofsmallestcomponents in combinatorial structures is easily developed as
regards formal GFs. Elements of the corresponding asymptotic theoryare provided by Panario
and Richmond in [470]. �

III. 8.2. Height. The degree of nesting of a recursive construction is a general-
ization of the notion of height in the simpler case of trees. Consider for instance a
recursively defined class

B = 8[B],

where8 is a construction. LetB[h] denote the subclass ofB composed solely of ele-
ments whose construction involves at mosth applications of8. We have by definition

B[h+1] = 8{B[h]}.
Thus, with9 the image functional of construction8, the corresponding GFs are de-
fined by arecurrence,

B[h+1] = 9[B[h] ].

(This discussion is related to the semantics of recursion, p. 33.)

ExampleIII.28. Generating functions for tree height.Consider first general plane trees:

G = Z × SEQ(G) H⇒ G(z) = z

1− G(z)
.

Define the height of a tree as the number of edges on its longest branch.Then the set of trees of
height≤ h satisfies the recurrence

G[0] = Z, G[h+1] = Z × SEQ(G[h]).

Accordingly, the OGF of trees of bounded height satisfies

G[0](z) = z, G[h+1](z) = z

1− G[h](z)
.

The recurrence unwinds and one finds

(79) G[h](z) = z

1− z

1− z

. . .

1− z

,

where the number of stages in the fraction equalsb. This is the finite form (technically known
as a “convergent”) of acontinued fractionexpansion. From implied linear recurrences and
an analysis based on Mellin transforms, de Bruijn, Knuth, and Rice [145]have determined the
average height of a general plane tree to be∼ √πn. We provide a proof of this fact in Chapter V
(p. 329) dedicated to applications of rational and meromorphic asymptotics.
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For plane binary trees defined by

B = Z + B × B so that B(z) = z+ (B(z))2,
(size here is the number of external nodes), the recurrence is

B[0](z) = z, B[h+1](z) = z+ (B[h](z))2.

In this case, theB[h] are the approximants to a “continuous quadratic form”, namely

B[h](z) = z+ (z+ (z+ (· · · )2)2)2.
These are polynomials of degree 2h for which no closed form expression is known, nor even
likely to exist6. However, using complex asymptotic methods and singularity analysis, Flajolet
and Odlyzko [246] have shown that the average height of a binary plane tree is∼ 2

√
πn. See

Subsection VII. 10.2, p. 535 for the sketch of a proof.
For Cayley trees, finally, the defining equation is

T = Z ⋆ SET(T ) H⇒ T(z) = zeT(z).

The EGF of trees of bounded height satisfy the recurrence

T [0](z) = z, T [h+1](z) = zeT [h](z).

We are now confronted with a “continuous exponential”,

T [h](z) = zezeze.
. . zez

.

The average height was found by Rényi and Szekeres who appealed again to complex analytic
methods and found it to be∼

√
2πn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

These examples show that height statistics are closely related to iteration theory.
Except in a few cases like general plane trees, normally no algebra is available and
one has to resort to complex analytic methods as expounded inforthcoming chapters.

III. 8.3. Averages and moments.For extremal parameters, the GFs of mean val-
ues obey a general pattern. LetF be some combinatorial class with GFf (z). Consider
for instance an extremal parameterχ such that f [h](z) is the GF of objects withχ -
parameterat most h. The GF of objects for whichχ = h exactlyis equal to

f [h](z)− f [h−1](z).

Thus differencing gives access to the probability distribution of height overF . The
generating function of cumulated values (providing mean values after normalization)
is then

4(z) =
∞∑

h=0

h
[

f [h](z)− f [h−1](z)
]

=
∞∑

h=0

[
f (z)− f [h](z)

]
,

as is readily checked by rearranging the second sum, or equivalently using summation
by parts.

6These polynomials are exactly the much-studied Mandelbrot polynomials whose behaviour in the
complex plane gives rise to extraordinary graphics (Figure VII.23, p. 536).
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For the largest components, the formulae involve truncatedTaylor series. For
height, analysis involves in all generality the differences between the fixed point of a
functional8 (the GF f (z)) and the approximations to the fixed point (f [h](z)) pro-
vided by iteration. This is a common scheme in extremal statistics.
� III.43. The height of increasing binary trees.Given the specification of increasing binary
trees in Equation (61), p. 143, the EGF of trees of height at mosth is given by the recurrence

I [0](z) = 1, I [h+1](z) = 1+
∫ z

0
I [h](w)2 dw.

Devroye [157, 158] showed in 1986 that the expected height of a tree of size n is asymptotic
to c logn wherec

.= 4.31107 is a solution ofc log((2e)/c) = 1. �

� III.44. Hierarchical partitions.Let ε(z) = ez− 1. The generating function

ε(ε(· · · (ε(z)))) (h times).

can be interpreted as the EGF of certain hierarchical partitions. (Such structures show up in
statistical classification theory [585, 586].) �

� III.45. Balanced trees.Balanced structures lead to counting GFs close to the ones obtained
for height statistics. The OGF of balanced 2–3 trees of heighth counted by the number of leaves
satisfies the recurrence

Z[h+1](z) = Z[h](z2+ z3) = (Z[h](z))2+ (Z[h](z))3,

which can be expressed in terms of the iterates ofσ(z) = z2+ z3 (see Note I.67, p. 91, as well
as Chapter IV, p. 281, for asymptotics). It is possible to express the OGF of cumulated values
of the number of internal nodes in such trees in terms of the iterates ofσ . �

� III.46. Extremal statistics in random mappings.One can express the EGFs relative to the
largest cycle, longest branch, and diameter of functional graphs. Similarly for the largest tree,
largest component. [Hint: see [247] for details.] �

� III.47. Deep nodes in trees.The BGF giving the number of nodes at maximal depth in
a general plane tree or a Cayley tree can be expressed in terms of a continued fraction or a
continuous exponential. �

III. 9. Perspective

The message of this chapter is that we can use the symbolic method not just to
count combinatorial objects but also to quantify their properties. The relative ease
with which we are able to do so is testimony to the power of the method as a major
organizing principle of analytic combinatorics.

The global framework of the symbolic method leads us to a natural structural cat-
egorization of parameters of combinatorial objects. First, the concept ofinherited pa-
rameterspermits a direct extension of the already seen formal translation mechanisms
from combinatorial structures to GFs, for both labelled andunlabelled objects—this
leads to MGFs useful for solving a broad variety of classicalcombinatorial problems.
Second, the adaptation of the theory torecursive parametersprovides information
about trees and similar structures, this even in the absenceof explicit representations
of the associated MGFs. Third,extremal parameters, which are defined by a maxi-
mum rule (rather than an additive rule), can be studied by analysing families of uni-
variate GFs. Yet another illustration of the power of the symbolic method is found in
the notion ofcomplete GF, which in particular enables us to study Bernoulli trials and
branching processes.
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As we shall see starting with Chapter IV, these approaches become especially
powerful since they serve as the basis for theasymptotic analysis of properties of
structures. Not only does the symbolic method provide precise information about
particular parameters, but it also paves the way for the discovery of generalschemas
and theorems that tell us what to expect about a broad varietyof combinatorial types.

Bibliographic notes. Multivariate generating functions are a common tool from classical com-
binatorial analysis. Comtet’s book [129] is once more an excellent source of examples. A
systematization of multivariate generating functions for inherited parameters is given in the
book by Goulden and Jackson [303].

In contrast generating functions for cumulated values of parameters (related to averages)
seemed to have received relatively little attention until the advent of digital computers and
the analysis of algorithms. Many important techniques are implicit in Knuth’streatises, es-
pecially [377, 378]. Wilf discusses related issues in his book [608] and the paper [606].
Early systems specialized to tree algorithms were proposed by Flajolet andSteyaert in the
1980s [215, 261, 262, 560]; see also Berstel and Reutenauer’s work [56]. Some of the ideas
developed there initially drew their inspiration from the well-established treatment of formal
power series in non-commutative indeterminates; see the books by Eilenberg [189] and Sa-
lomaa and Soittola [527] as well as the proceedings edited by Berstel [54]. Several compu-
tations in this area can nowadays even be automated with the help of computeralgebra sys-
tems [255, 528, 628].

Je n’ai jamaiśet́e assez loin pour bien sentir l’application de l’algèbreà la ǵeoḿetrie. Je
n’aimais point cette manière d’oṕerer sans voir ce qu’on fait, et il me sembloit que résoudre un

probl̀eme de ǵeoḿetrie par leśequations, c’́etoit jouer un air en tournant une manivelle.

(“I never went far enough to get a good feel for the applicationof algebra to geometry. I was not pleased

with this method of operating according to the rules withoutseeing what one does; solving geometrical

problems by means of equations seemed like playing a tune by turning a crank.”)

— JEAN-JACQUESROUSSEAU, Les Confessions, Livre VI
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Entre deux v́erités du domaine réel, le chemin le plus facile et le plus court
passe bien souvent par le domaine complexe.

PAUL PAINLEV É [467, p. 2]

It has been written that
the shortest and best way between two truths of the real domain

often passes through the imaginary one1.

— JACQUESHADAMARD [316, p. 123]
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Generating functions are a central concept of combinatorial theory. In Part A, we have
treated them as formal objects; that is, as formal power series. Indeed, the major theme
of Chapters I–III has been to demonstrate how the algebraic structure of generating
functions directly reflects the structure of combinatorialclasses. From now on, we
examine generating functions in the light ofanalysis. This point of view involves
assigningvaluesto the variables that appear in generating functions.

Comparatively little benefit results from assigning only real values to the vari-
ablez that figures in a univariate generating function. In contrast, assigningcomplex
values turns out to have serendipitous consequences. When wedo so, a generating
function becomes a geometric transformation of the complexplane. This transforma-
tion is very regular near the origin—one says that it isanalytic (or holomorphic). In
other words, near 0, it only effects a smooth distortion of the complex plane. Farther
away from the origin, some cracks start appearing in the picture. These cracks—the
dignified name issingularities—correspond to the disappearance of smoothness. It
turns out that a function’s singularities provide a wealth of information regarding the
function’s coefficients, and especially their asymptotic rate of growth. Adopting a
geometric point of view for generating functions has a largepay-off.

1Hadamard’s quotation (1945) is a free rendering of the original one due to Painlevé (1900); namely,
“The shortest and easiest path betwen two truths of the real domain most often passes through the complex
domain.”

223
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By focusing on singularities, analytic combinatorics treads in the steps of many
respectable older areas of mathematics. For instance, Euler recognized that for the
Riemann zeta functionζ(s) to become infinite (hence have a singularity) at 1 im-
plies the existence of infinitely many prime numbers; Riemann, Hadamard, and de la
Vallée-Poussin later uncovered deep connections between quantitative properties of
prime numbers and singularities of 1/ζ(s).

The purpose of this chapter is largely to serve as an accessible introduction or
a refresher of basic notions regarding analytic functions.We start by recalling the
elementary theory of functions and their singularities in astyle tuned to the needs of
analytic combinatorics. Cauchy’s integral formula expresses coefficients of analytic
functions as contour integrals. Suitable uses of Cauchy’s integral formula then make
it possible to estimate such coefficients by suitably selecting an appropriate contour
of integration. For the common case of functions that have singularities at a finite
distance, the exponential growth formula relates thelocationof the singularities clos-
est to the origin—these are also known asdominantsingularities—to theexponential
order of growthof coefficients. Thenatureof these singularities then dictates the fine
structure of the asymptotics of the function’s coefficients, especially thesubexponen-
tial factors involved.

As regards generating functions, combinatorial enumeration problems can be
broadly categorized according to a hierarchy of increasingstructural complexity. At
the most basic level, we encounter scattered classes, whichare simple enough, so that
the associated generating function and coefficients can be made explicit. (Examples of
Part A include binary and general plane trees, Cayley trees,derangements, mappings,
and set partitions). In that case, elementary real-analysis techniques usually suffice
to estimate asymptotically counting sequences. At the next, intermediate, level, the
generating function is still explicit, but its form is such that no simple expression is
available for coefficients. This is where the theory developed in this and the next chap-
ters comes into play. It usually suffices to have an expression for a generating function,
but not necessarily its coefficients, so as to be able to deduce precise asymptotic esti-
mates of its coefficients. (Surjections, generalized derangements, unary–binary trees
are easily subjected to this method. A striking example, that of trains, is detailed in
Section IV. 4.) Properties of analytic functions then make this analysis depend only on
local propertiesof the generating function at a few points, its dominant singularities.
The third, highest, level, within the perspective of analytic combinatorics, comprises
generating functions that can no longer be made explicit, but are only determined by a
functional equation. This covers structures defined recursively or implicitly by means
of the basic constructors of Part A. The analytic approach even applies to a large
number of such cases. (Examples include simple families of trees, balanced trees,
and the enumeration of certain molecules treated at the end of this chapter. Another
characteristic example is that of non-plane unlabelled trees treated in Chapter VII.)

As we shall see throughout this book, the analytic methodology applies to almost
all the combinatorial classes studied in Part A, which are provided by the symbolic
method. In the present chapter we carry out this programme for rational functionsand
meromorphic functions(i.e., functions whose singularities arepoles).
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IV. 1. Generating functions as analytic objects

Generating functions, considered in Part A as purelyformalobjects subject to al-
gebraic operations, are now going to be interpreted asanalyticobjects. In so doing one
gains easy access to the asymptotic form of their coefficients. This informal section
offers a glimpse of themes that form the basis of Chapters IV–VII.

In order to introduce the subject, let us start with two simple generating functions,
one, f (z), being the OGF of the Catalan numbers (cfG(z), p. 35), the other,g(z),
being the EGF of derangements (cfD(1)(z), p. 123):

(1) f (z) = 1

2

(
1−
√

1− 4z
)
, g(z) = exp(−z)

1− z
.

At this stage, the forms above are merely compact descriptions of formal power series
built from the elementary series

(1− y)−1 = 1+ y+ y2+ · · · , (1− y)1/2 = 1− 1

2
y− 1

8
y2− · · · ,

exp(y) = 1+ 1

1!
y+ 1

2!
y2+ · · · ,

by standard composition rules. Accordingly, the coefficients of both GFs are known
in explicit form:

fn := [zn] f (z) = 1

n

(
2n− 2

n− 1

)
, gn := [zn]g(z) =

(
1

0!
− 1

1!
+ · · · + (−1)n

n!

)
.

Stirling’s formula and the comparison with the alternatingseries giving exp(−1) pro-
vide, respectively,

(2) fn ∼
n→∞

4n−1

√
πn3

, gn = ∼
n→∞e−1 .= 0.36787.

Our purpose now is to provide intuition on how such approximations could be
derived without appealing to explicit forms. We thus examine, heuristically for the
moment, the direct relationship between the asymptotic forms (2) and the structure of
the corresponding generating functions in (1).

Granted the growth estimates available forfn andgn, it is legitimate to substitute
in the power series expansions of the GFsf (z) andg(z) any real or complex value of
a small enough modulus, the upper bounds on modulus beingρ f = 1/4 (for f ) and
ρg = 1 (for g). Figure IV.1 represents the graph of the resulting functions when such
real values are assigned toz. The graphs are smooth, representing functions that are
differentiable any number of times forz interior to the interval(−ρ,+ρ). However,
at the right boundary point, smoothness stops:g(z) become infinite atz= 1, and so it
even ceases to be finitely defined;f (z) does tend to the limit12 asz→ (1

4)
−, but its

derivative becomes infinite there. Such special points at which smoothness stops are
calledsingularities, a term that will acquire a precise meaning in the next sections.

Observe also that, in spite of the series expressions being divergent outside the
specified intervals, the functionsf (z) andg(z) can becontinuedin certain regions: it
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Figure IV.1 . Left: the graph of the Catalan OGF,f (z), for z ∈ (−1
4,+

1
4); right: the

graph of the derangement EGF,g(z), for z ∈ (−1,+1).

suffices to make use of the global expressions of Equation (1), with exp and√ being
assigned their usual real-analytic interpretation. For instance:

f (−1) = 1

2

(
1−
√

5
)
, g(−2) = e2

3
.

Such continuation properties, most notably to thecomplexrealm, will prove essential
in developing efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose
modulus is less than the radius of convergence of the series defining the GF. Fig-
ure IV.2 displays the images of regular grids byf andg, as given by (1). This illus-
trates the fact that a regular grid is transformed into an orthogonal network of curves
and more precisely thatf andg preserve angles—this property corresponds to com-
plex differentiability and is equivalent to analyticity tobe introduced shortly. The
singularity of f is clearly perceptible on the right of its diagram, since, atz = 1/4
(corresponding tof (z) = 1/2), the function f folds lines and divides angles by a
factor of 2. The singularity ofg at z = 1 is indirectly perceptible from the fact that
g(z)→∞ asz→ 1 (the square grid had to be truncated atz= 0.75, since this book
can only accommodate finite graphs).

Let us now turn to coefficient asymptotics. As is expressed by(2), the coefficients
fn andgn each belong to a general asymptotic type for coefficients of afunction F ,
namely,

(3) [zn]F(z) = Anθ(n),

corresponding to anexponential growthfactor An modulated by a tame factorθ(n),
which is subexponential. Here, one hasA = 4 for fn and A = 1 for gn; also,
θ(n) ∼ 1

4(
√
πn3)−1 for fn and θ(n) ∼ e−1 for gn. Clearly, A should be related

to the radius of convergence of the series. We shall see that,invariably, for combi-
natorial generating functions, the exponential rate of growth is given byA = 1/ρ,
whereρ is the first singularity encountered along the positive realaxis (Theorem IV.6,
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Figure IV.2 . The images of regular grids byf (z) (left) andg(z) (right).

p. 240). In addition, under general complex analytic conditions, it will be established
thatθ(n) = O(1) is systematically associated to a simple pole of the generating func-
tion (Theorem IV.10, p. 258), whileθ(n) = O(n−3/2) systematically arises from a
singularity that is of the square-root type (Chapters VI andVII). We enunciate:

First Principle of Coefficient Asymptotics. The locationof a function’s
singularities dictates theexponential growth(An) of its coefficients.
Second Principle of Coefficient Asymptotics.Thenatureof a function’s
singularities determines the associatesubexponential factor(θ(n)).

Observe that the rescaling rule,

[zn]F(z) = ρ−n[zn]F(ρz),

enables one to normalize functions so that they are singularat 1. Then, various the-
orems, starting with Theorems IV.9 and IV.10, provide sufficient conditions under
which the following fundamental implication is valid,

(4) h(z) ∼ σ(z) H⇒ [zn]h(z) ∼ [zn]σ(z).

Thereh(z), whose coefficients are to be estimated, is a function singular at 1 andσ(z)
is a local approximation near the singularity; usuallyσ is a much simpler function,
typically like (1− z)α logβ(1− z) whose coefficients are comparatively easy to esti-
mate (Chapter VI). The relation (4) expressesa mapping between asymptotic scales
of functions near singularities and asymptotics scales of coefficients. Under suitable
conditions, it then suffices to estimate a function locally at a few special points (sin-
gularities), in order to estimate its coefficients asymptotically.
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A succinct roadmap.Here is what now awaits the reader. Section IV. 2 serves
to introduce basic notions of complex function theory. Singularities and exponential
growth of coefficients are examined in Section IV. 3, which justifies the First Principle.
Next, in Section IV. 4, we establish the computability of exponential growth rates
for all the non-recursive structures that are specifiable. Section IV. 5 presents two
important theorems that deal with rational and meromorphicfunctions and illustrate
the Second Principle, in its simplest version (the subexponential factors are merely
polynomials). Then, Section IV. 6 examines constructivelyways to locate singularities
and treats in detail the case of patterns in words. Finally, Section IV. 7 shows how
functions only known through a functional equation may be accessible to complex
asymptotic methods.
� IV.1. Euler, the discrete, and the continuous.Eulers’s proof of the existence of infinitely
many prime numbers illustrates in a striking manner the way analysis of generating functions
can inform us on the discrete realm. Define, for reals> 1 the function

ζ(s) :=
∞∑

n=1

1

ns ,

known as the Riemann zeta function. The decomposition (p ranges over the prime numbers
2, 3, 5, . . .)

(5)

ζ(s)=
(

1+ 1

2s +
1

22s
+ · · ·

)(
1+ 1

3s +
1

32s
+ · · ·

)(
1+ 1

5s +
1

52s
+ · · ·

)
· · ·

=
∏

p

(
1− 1

ps

)−1

expresses precisely the fact that each integer has a unique decomposition as a product of primes.
Analytically, the identity (5) is easily checked to be valid for alls> 1. Now suppose that there
were only finitely many primes. Lets tend to 1+ in (5). Then, the left-hand side becomes
infinite, while the right-hand side tends to the finite limit

∏
p(1− 1/p)−1: a contradiction has

been reached. �

� IV.2. Elementary transfers.Elementary series manipulation yield the following general re-
sult: Let h(z) be a power series with radius of convergence> 1 and assume that h(1) 6= 0; then
one has

[zn]
h(z)

1− z
∼ h(1), [zn]h(z)

√
1− z∼− h(1)

2
√
πn3

, [zn]h(z) log
1

1− z
∼ h(1)

n
.

See our discussion on p. 434 and Bender’s survey [36] for many similar statements, of which
this chapter and Chapter VI provide many far-reaching extensions. �

� IV.3. Asymptotics of generalized derangements.The EGF of permutations without cycles of
length 1 and 2 satisfies (p. 123)

j (z) = e−z−z2/2

1− z
with j (z) ∼

z→1

e−3/2

1− z
.

Analogy with derangements suggests that [zn] j (z) ∼
n→∞e−3/2. [For a proof, use Note IV.2 or

refer to Example IV.9 below, p. 261.] Here is a table of exact values of[zn] j (z) (with relative
error of the approximation bye−3/2 in parentheses):

n = 5 n = 10 n = 20 n = 50
jn : 0.2 0.22317 0.2231301600 0.2231301601484298289332804707640122

error : (10−1) (2 · 10−4) (3 · 10−10) (10−33)
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The quality of the asymptotic approximation is extremely good, such a property being, as we
shall see, invariably attached to polar singularities. �

IV. 2. Analytic functions and meromorphic functions

Analytic functionsare a primary mathematical concept of asymptotic theory. They
can be characterized in two essentially equivalent ways (see Subsection IV. 2.1): by
means of convergent series expansions (à la Cauchy and Weierstrass) and by differ-
entiability properties (̀a la Riemann). The first aspect is directly related to the use of
generating functions for enumeration; the second one allows for a powerful abstract
discussion of closure properties that usually requires little computation.

Integral calculus with analytic functions (see SubsectionIV. 2.2) assumes a shape
radically different from that which prevails in the real domain: integrals become
quintessentially independent of details of the integration contour—certainly the prime
example of this fact is Cauchy’s famous residue theorem. Conceptually, this indepen-
dence makes it possible to relate properties of a function ata point (e.g., the coeffi-
cients of its expansion at 0) to its properties at another far-away point (e.g., its residue
at a pole).

The presentation in this section and the next one constitutes an informal review
of basic properties of analytic functions tuned to the needsof asymptotic analysis of
counting sequences. The entry in Appendix B.2:Equivalent definitions of analyticity,
p. 741, provides further information, in particular a proofof the Basic Equivalence
Theorem, Theorem IV.1 below. For a detailed treatment, we refer the reader to one
of the many excellent treatises on the subject, such as the books by Dieudonńe [165],
Henrici [329], Hille [334], Knopp [373], Titchmarsh [577],or Whittaker and Wat-
son [604]. The reader previously unfamiliar with the theoryof analytic functions
should essentially be able to adopt Theorems IV.1 and IV.2 as“axioms” and start from
here using basic definitions and a fair knowledge of elementary calculus. Figure IV.19
at the end of this chapter (p. 287) recapitulates the main results of relevance toAnalytic
Combinatorics.

IV. 2.1. Basics. We shall consider functions defined in certainregions of the
complex domainC. By a region is meant anopensubset� of the complex plane
that isconnected. Here are some examples:

simply connected domain slit complex plane indented disc annulus.

Classical treatises teach us how to extend to the complex domain the standard
functions of real analysis: polynomials are immediately extended as soon as complex
addition and multiplication have been defined, while the exponential is definable by
means of Euler’s formula. One has for instance

z2 = (x2− y2)+ 2i xy, ez = ex cosy+ iex siny,
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if z = x + iy, that is,x = ℜ(z) andy = ℑ(z) are the real and imaginary parts ofz.
Both functions are consequently defined over the whole complex planeC.

The square-root and logarithm functions are conveniently described in polar co-
ordinates:

(6)
√

z= √ρei θ/2, logz= logρ + i θ,

if z = ρei θ . One can take the domain of validity of (6) to be the complex plane slit
along the axis from 0 to−∞, that is, restrictθ to the open interval(−π,+π), in which
case the definitions above specify what is known as theprincipal determination. There
is no way for instance to extend by continuity the definition of

√
z in any domain

containing 0 in its interior since, fora > 0 andz → −a, one has
√

z → i
√

a as
z→−a from above, whereas

√
z→−i

√
a asz→−a from below. This situation is

depicted here:

+i
√

a

−i
√

a

0
√

a The values of
√

z
asz varies along|z| = a.

The pointz = 0, where several determinations “meet”, is accordingly known as a
branch point.

Analytic functions. First comes the main notion of ananalytic functionthat
arises from convergent series expansions and is of obvious relevance to generating-
functionology.

Definition IV.1. A function f(z) defined over a region� is analyticat a point z0 ∈ �
if, for z in some open disc centred at z0 and contained in�, it is representable by a
convergent power series expansion

(7) f (z) =
∑

n≥0

cn(z− z0)
n.

A function is analytic in a region� iff it is analytic at every point of�.

As derived from an elementary property of power series (NoteIV.4), given a
function f that is analytic at a pointz0, there exists a disc (of possibly infinite radius)
with the property that the series representingf (z) is convergent forz inside the disc
and divergent forz outside the disc. The disc is called thedisc of convergenceand
its radius is theradius of convergenceof f (z) at z = z0, which will be denoted by
Rconv( f ; z0). The radius of convergence of a power series conveys basic information
regarding the rate at which its coefficients grow; see Subsection IV. 3.2 below for
developments. It is also easy to prove by simple series rearrangement that if a function
is analytic atz0, it is then analytic at all points interior to its disc of convergence
(see Appendix B.2:Equivalent definitions of analyticity, p. 741).
� IV.4. The disc of convergence of a power series.Let f (z) = ∑

fnzn be a power series.
Define R as the supremum of all values ofx ≥ 0 such that{ fnxn} is bounded. Then, for
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|z| < R, the sequencefnzn tends geometrically to 0; hencef (z) is convergent. For|z| > R,
the sequencefnzn is unbounded; hencef (z) is divergent. In short:a power series converges
in the interior of a disc; it diverges in its exterior. �

Consider for instance the functionf (z) = 1/(1− z) defined overC \ {1} in the
usual way via complex division. It is analytic at 0 by virtue of the geometric series
sum,

1

1− z
=
∑

n≥0

1 · zn,

which converges in the disc|z| < 1. At a pointz0 6= 1, we may write

(8)

1

1− z
= 1

1− z0− (z− z0)
= 1

1− z0

1

1− z−z0
1−z0

=
∑

n≥0

(
1

1− z0

)n+1

(z− z0)
n.

The last equation shows thatf (z) is analytic in the disc centred atz0 with radius
|1− z0|, that is, the interior of the circle centred atz0 and passing through the point 1.
In particular Rconv( f, z0) = |1− z0| and f (z) is globally analytic in the punctured
planeC \ {1}.

The example of(1− z)−1 illustrates the definition of analyticity. However, the
series rearrangement approach that it uses might be difficult to carry out for more
complicated functions. In other words, a more manageable approach to analyticity is
called for. The differentiability properties developed now provide such an approach.

Differentiable (holomorphic) functions.The next important notion is a geomet-
ric one based on differentiability.

Definition IV.2. A function f(z) defined over a region� is calledcomplex-differen-
tiable(alsoholomorphic) at z0 if the limit, for complexδ,

lim
δ→0

f (z0+ δ)− f (z0)

δ

exists. (In particular, the limit is independent of the wayδ tends to0 in C.) This

limit is denoted as usual by f′(z0), or d
dz f (z)

∣∣∣
z0

, or ∂z f (z0). A function is complex-

differentiable in� iff it is complex-differentiable at every z0 ∈ �.

From the definition, iff (z) is complex-differentiable atz0 and f ′(z0) 6= 0, it acts
locally as a linear transformation:

f (z)− f (z0) = f ′(z0)(z− z0)+ o(z− z0) (z→ z0).

Then, f (z) behaves in small regions almost like a similarity transformation (composed
of a translation, a rotation, and a scaling). In particular,it preserves angles2 and
infinitesimal squares get transformed into infinitesimal squares; see Figure IV.3 for a
rendering. Further aspects of the local shape of an analyticfunction will be examined
in Section VIII. 1, p. 543, in relation with the saddle-pointmethod.

2A mapping of the plane that locally preserves angles is also called aconformalmap. Section VIII. 1
(p. 543) presents further properties of the local “shape” ofan analytic function.
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Figure IV.3 . Multiple views of an analytic function. The image of the domain� =
{z
∣∣ |ℜ(z)| < 2, |ℑ(z)| < 2} by f (z) = exp(z) + z+ 2: [top] transformation of a

square grid in� by f ; [bottom] the modulus and argument off (z).

For instance the function
√

z, defined by (6) in the complex plane slit along the
ray (−∞,0), is complex-differentiable at anyz0 of the slit plane since

(9) lim
δ→0

√
z0+ δ −

√
z0

δ
= lim
δ→0

√
z0

√
1+ δ/z0− 1

δ
= 1

2
√

z0
,

which extends the customary proof of real analysis. Similarly,
√

1− z is complex-
differentiable in the complex plane slit along the ray(1,+∞). More generally, the
usual proofs from real analysis carry over almost verbatim to the complex realm, to
the effect that

( f +g)′ = f ′+g′, ( f g)′ = f ′g+ f g′,
(

1

f

)′
= − f ′

f 2
, ( f ◦g)′ = ( f ′ ◦g)g′.

The notion of complex differentiability is thus much more manageable than the notion
of analyticity.

It follows from a well known theorem of Riemann (see for instance [329, vol. 1,
p 143] and Appendix B.2:Equivalent definitions of analyticity, p. 741) that analyticity
and complex differentiability are equivalent notions.

Theorem IV.1 (Basic Equivalence Theorem). A function is analytic in a region� if
and only if it is complex-differentiable in�.

The following are known facts (see p. 236 and Appendix B):(i ) if a function
is analytic (equivalently complex-differentiable) in�, it admits (complex) deriva-
tives of any order there—this property markedly differs fromreal analysis: complex-
differentiable, equivalently analytic, functions are allsmooth; (i i ) derivatives of a
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function may be obtained through term-by-term differentiation of the series represen-
tation of the function.

Meromorphic functions. We finally introducemeromorphic3 functions that are
mild extensions of the concept of analyticity (or holomorphy) and are essential to
the theory. The quotient of two analytic functionsf (z)/g(z) ceases to be analytic
at a pointa whereg(a) = 0; however, a simple structure for quotients of analytic
functions prevails.

Definition IV.3. A function h(z) is meromorphicat z0 iff, for z in a neighbourhood of
z0 with z 6= z0, it can be represented as f(z)/g(z), with f (z) and g(z) being analytic
at z0. In that case, it admits near z0 an expansion of the form

(10) h(z) =
∑

n≥−M

hn(z− z0)
n.

If h−M 6= 0 and M ≥ 1, then h(z) is said to have apoleof order M at z= z0. The
coefficient h−1 is called theresidueof h(z) at z= z0 and is written as

Res[h(z); z= z0].

A function is meromorphic in a region iff it is meromorphic atevery point of the region.

IV. 2.2. Integrals and residues.A path in a region� is described by its pa-
rameterization, which is a continuous functionγ mapping [0,1] into �. Two paths
γ, γ ′ in � that have the same end points are said to behomotopic(in �) if one can
be continuously deformed into the other while staying within � as in the following
examples:

homotopic paths:

A closed path is defined by the fact that its end points coincide: γ (0) = γ (1), and a
path issimpleif the mappingγ is one-to-one. A closed path is said to be aloop of
� if it can be continuously deformedwithin� to a single point; in this case one also
says that the path is homotopic to 0. In what follows paths aretaken to be piecewise
continuously differentiable and, by default,loops are oriented positively.

Integrals along curves in the complex plane are defined in theusual way as curvi-
linear integrals of complex-valued functions. Explicitly: let f (x + iy) be a function

3“Holomorphic” and “meromorphic” are words coming from Greek, meaning, respectively, “of com-
plete form” and “of partial form”.
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andγ be a path; then,
∫

γ

f (z)dz :=
∫ 1

0
f (γ (t))γ ′(t)dt

=
∫ 1

0
[ AC− BD] dt + i

∫ 1

0
[ AD+ BC] dt,

where f ◦ γ = A+ i B andγ ′ = C + i D . However, integral calculus in the complex
plane greatly differs from its form on the real line—in many ways, it is muchsimpler
and much morepowerful. One has:

Theorem IV.2 (Null Integral Property). Let f be analytic in� and letλ be a simple
loop of�. Then, one has

∫
λ f = 0.

Equivalently, integrals are largely independent of details of contours: forf analytic
in �, one has

(11)
∫

γ

f =
∫

γ ′
f,

providedγ andγ ′ are homotopic (not necessarily closed) paths in�. A proof of The-
orem IV.2 is sketched in Appendix B.2:Equivalent definitions of analyticity, p. 741.

Residues.The importantResidue Theoremdue to Cauchy relatesglobal prop-
erties of a meromorphic function (its integral along closedcurves) to purelylocal
characteristics at designated points (its residues at poles).

Theorem IV.3 (Cauchy’s residue theorem). Let h(z) be meromorphic in the region�
and letλ be a positively oriented simple loop in� along which the function is analytic.
Then

1

2iπ

∫

λ

h(z)dz=
∑

s

Res[h(z); z= s],

where the sum is extended to all poles s of h(z) enclosed byλ.

Proof. (Sketch) To see it in the representative case whereh(z) has only a pole at
z= 0, observe by appealing to primitive functions that

∫

λ

h(z)dz=
∑

n≥−M
n6=−1

hn

[
zn+1

n+ 1

]

λ

+ h−1

∫

λ

dz

z
,

where the bracket notation
[
u(z)

]
λ

designates the variation of the functionu(z) along
the contourλ. This expression reduces to its last term, itself equal to 2iπh−1, as is
checked by using integration along a circle (setz = rei θ ). The computation extends
by translation to the case of a unique pole atz= a.

Next, in the case of multiple poles, we observe that the simple loop can only
enclose finitely many poles (by compactness). The proof thenfollows from a simple
decomposition of the interior domain ofλ into cells, each containing only one pole.
Here is an illustration in the case of three poles.
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(Contributions from internal edges cancel.) �

Global (integral) to local (residues) connections.Here is a textbook example of
a reduction from global to local properties of analytic functions. Define the integrals

Im :=
∫ ∞

−∞

dx

1+ x2m
,

and consider specificallyI1. Elementary calculus teaches us thatI1 = π since the
antiderivative of the integrand is an arc tangent:

I1 =
∫ ∞

−∞

dx

1+ x2
= [arctanx]+∞−∞ = π.

Here is an alternative, and in many ways more fruitful, derivation. In the light
of the residue theorem, we consider the integral over the whole line as the limit of
integrals over large intervals of the form [−R,+R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

��
��
��

��
��
��

0−R +R

i

Let γ be the contour comprised of the interval and the semi-circle. Insideγ , the
integrand has a pole atx = i , where

1

1+ x2
≡ 1

(x + i )(x − i )
= − i

2

1

x − i
+ · · · ,

so that its residue there is−i /2. By the residue theorem, the integral taken overγ is
equal to 2iπ times the residue of the integrand ati . As R→ ∞, the integral along
the semi-circle vanishes (it is less thanπR/(R2 − 1) in modulus), while the integral
along the real segment givesI1 in the limit. There results the relation givingI1:

I1 = 2iπ Res

(
1

1+ x2
; x = i

)
= (2iπ)

(
− i

2

)
= π.

The evaluation of the integral in the framework of complex analysis rests solely
upon the local expansion of the integrand at special points (here, the pointi ). This is a
remarkable feature of the theory, one that confers it much simplicity, when compared
with real analysis.
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� IV.5. The general integral Im. Let α = exp( iπ
2m) so thatα2m = −1. Contour integration of

the type used forI1 yields

Im = 2iπ
m∑

j=1

Res

(
1

1+ x2m
; x = α2 j−1

)
,

while, for anyβ = α2 j−1 with 1≤ j ≤ m, one has

1

1+ x2m
∼

x→β
1

2mβ2m−1

1

x − β ≡ −
β

2m

1

x − β .

As a consequence,

I2m = −
iπ

m

(
α + α3+ · · · + α2m−1

)
= π

msin π
2m
.

In particular,I2 = π/
√

2, I3 = 2π/3, I4 = π
4

√
2
√

2+
√

2, and 1
π I5, 1

π I6 are expressible by

radicals, but1π I7,
1
π I9 are not. The special cases1

π I17,
1
π I257 are expressible by radicals.�

� IV.6. Integrals of rational fractions.Generally, all integrals of rational functions taken over
the whole real line are computable by residues. In particular,

Jm =
∫ +∞

−∞
dx

(1+ x2)m
, Km =

∫ +∞

−∞
dx

(12+ x2)(22+ x2) · · · (m2+ x2)

can be explicitly evaluated. �

Cauchy’s coefficient formula.Many function-theoretic consequences are derived
from the residue theorem. For instance, iff is analytic in�, z0 ∈ �, andλ is a simple
loop of� encirclingz0, one has

(12) f (z0) =
1

2iπ

∫

λ

f (ζ )
dζ

ζ − z0
.

This follows directly since

Res[ f (ζ )/(ζ − z0); ζ = z0] = f (z0).

Then, by differentiation with respect toz0 under the integral sign, one has similarly

(13)
1

k!
f (k)(z0) =

1

2iπ

∫

λ

f (ζ )
dζ

(ζ − z0)k+1
.

The values of a function and its derivatives at a point can thus be obtained as values of
integrals of the function away from that point. The world of analytic functions is a very
friendly one in which to live: contrary to real analysis, a function is differentiableany
number of timesas soon as it is differentiableonce. Also, Taylor’s formula invariably
holds: as soon asf (z) is analytic atz0, one has

(14) f (z) = f (z0)+ f ′(z0)(z− z0)+
1

2!
f ′′(z0)(z− z0)

2+ · · · ,

with the representation being convergent in a disc centred at z0. [Proof: a verification
from (12) and (13), or a series rearrangement as in Appendix B, p. 742.]

A very important application of the residue theorem concerns coefficients of ana-
lytic functions.
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Theorem IV.4 (Cauchy’s Coefficient Formula). Let f(z) be analytic in a region�
containing0 and letλ be a simple loop around0 in � that is positively oriented.
Then, the coefficient[zn] f (z) admits the integral representation

fn ≡ [zn] f (z) = 1

2iπ

∫

λ

f (z)
dz

zn+1
.

Proof. This formula follows directly from the equalities

1

2iπ

∫

λ

f (z)
dz

zn+1
= Res

[
f (z)z−n−1; z= 0

]
= [zn] f (z),

of which the first one follows from the residue theorem, and the second one from the
identification of the residue at 0 as a coefficient. �

Analytically, the coefficient formula allows us to deduce information about the
coefficients from the values of the function itself, using adequately chosen contours of
integration. It thus opens the possibility of estimating the coefficients [zn] f (z) in the
expansion off (z) near 0 by using information onf (z) awayfrom 0. The rest of this
chapter will precisely illustrate this process in the case of rational and meromorphic
functions. Observe also that the residue theorem provides the simplest proof of the
Lagrange inversion theorem (see Appendix A.6:Lagrange Inversion, p. 732) whose
rôle is central to tree enumerations, as we saw in Chapters I and II. The notes below
explore some independent consequences of the residue theorem and the coefficient
formula.
� IV.7. Liouville’s Theorem. If a function f (z) is analytic in the whole ofC and is of modulus
bounded by an absolute constant,| f (z)| ≤ B, then it must be a constant. [By trivial bounds,
upon integrating on a large circle, it is found that the Taylor coefficients atthe origin of index
≥ 1 are all equal to 0.] Similarly, iff (z) is of at most polynomial growth,| f (z)| ≤ B (|z|+1)r ,
over the whole ofC, then it must be a polynomial. �

� IV.8. Lindelöf integrals. Let a(s) be analytic inℜ(s) > 1
4 where it is assumed to satisfy

a(s) = O(exp((π − δ)|s|)) for someδ with 0< δ < π . Then, one has for|arg(z)| < δ,
∞∑

k=1

a(k)(−z)k = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
a(s)zs π

sinπs
ds,

in the sense that the integral exists and provides the analytic continuation of the sum in|arg(z)| <
δ. [Close the integration contour by a large semi-circle on the right and evaluate by residues.]
Such integrals, sometimes called Lindelöf integrals, provide representations for many functions
whose Taylor coefficients are given by an explicit rule [268, 408]. �

� IV.9. Continuation of polylogarithms.As a consequence of Lindelöf’s representation, the
generalizedpolylogarithmfunctions,

Liα,k(z) =
∑

n≥1

n−α(logn)kzn (α ∈ R, k ∈ Z≥0),

are analytic in the complex planeC slit along (1+,∞). (More properties are presented in
Section VI. 8, p. 408; see also [223, 268].) For instance, one obtainsin this way

“
∞∑

n=1

(−1)n logn ” = −1

4

∫ +∞

−∞

log(1
4 + t2)

cosh(π t)
dt = 0.22579· · · = log

√
π

2
,

when the divergent series on the left is interpreted as Li0,1(−1) = limz→−1+ Li0,1(z). �
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� IV.10. Magic duality.Let φ be a function initially defined over the non-negative integers but
admitting a meromorphic extension over the whole ofC. Under growth conditions in the style
of Note IV.8, the function

F(z) :=
∑

n≥1

φ(n)(−z)n,

which is analytic at the origin, is such that, near positive infinity,

F(z) ∼
z→+∞ E(z)−

∑

n≥1

φ(−n)(−z)−n,

for some elementary functionE(z), which is a linear combination of terms of the formzα(logz)k.
[Starting from the representation of Note IV.8, close the contour of integration by a large semi-
circle to the left.] In such cases, the function is said to satisfy the principle ofmagic duality—its
expansion at 0 and∞ are given by one and the same rule. Functions

1

1+ z
, log(1+ z), exp(−z), Li2(−z), Li3(−z),

satisfy a form of magic duality. Ramanujan [52] made a great use of this principle, which
applies to a wide class of functions including hypergeometric ones; see Hardy’s insightful dis-
cussion [321, Ch XI]. �

� IV.11. Euler–Maclaurin and Abel–Plana summations. Under simple conditions on the ana-
lytic function f , one has Plana’s (also known as Abel’s) complex variables version ofthe Euler–
Maclaurin summation formula:

∞∑

n=0

f (n) = 1

2
f (0)+

∫ ∞

0
f (x)dx+

∫ ∞

0

f (iy)− f (−iy)

e2iπy − 1
dy.

(See [330, p. 274] for a proof and validity conditions.) �

� IV.12. Nörlund–Rice integrals.Let a(z) be analytic forℜ(z) > k0 − 1
2 and of at most

polynomial growth in this right half-plane. Then, withγ a simple loop around the interval
[k0, n], one has

n∑

k=k0

(
n

k

)
(−1)n−ka(k) = 1

2iπ

∫

γ
a(s)

n! ds

s(s− 1)(s− 2) · · · (s− n)
.

If a(z) is meromorphic and suitably small in a larger region, then the integral can be estimated
by residues. For instance, with

Sn =
n∑

k=1

(
n

k

)
(−1)k

k
, Tn =

n∑

k=1

(
n

k

)
(−1)k

k2+ 1
,

it is found thatSn = −Hn (a harmonic number), whileTn oscillates boundedly asn →
+∞. [This technique is a classical one in the calculus of finite differences, going back to
Nörlund [458]. In computer science it is known as the method of Rice’s integrals [256] and
is used in the analysis of many algorithms and data structures including digitaltrees and radix
sort [378, 564].] �

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally definedas a point where the
function ceases to be analytic. (Poles are the simplest typeof singularity.) Singu-
larities are, as we have stressed repeatedly, essential to coefficient asymptotics. This
section presents the bases of a discussion within the framework of analytic function
theory.
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IV. 3.1. Singularities. Let f (z) be an analytic function defined over the interior
region determined by a simple closed curveγ , and letz0 be a point of the bounding
curveγ . If there exists an analytic functionf ⋆(z) defined over some open set�⋆

containingz0 and such thatf ⋆(z) = f (z) in �⋆ ∩ �, one says thatf is analytically
continuableat z0 and thatf ⋆ is animmediate analytic continuationof f . Pictorially:

Analytic continuation:

*

( f )

Ω

( f* )

z0

Ωγ

f ⋆(z) = f (z) on�⋆ ∩�.

Consider for instance the quasi-inverse function,f (z) = 1/(1− z). Its power series
representationf (z) = ∑n≥0 zn initially converges in|z| < 1. However, the calcula-
tion of (8), p. 231, shows that it is representable locally bya convergent series near
any pointz0 6= 1. In particular, it is continuable at any point of the unit disc ex-
cept 1. (Alternatively, one may appeal to complex-differentiability to verify directly
that f (z), which is given by a “global” expression, is holomorphic, hence analytic, in
the punctured planeC \ {1}.)

In sharp contrast with real analysis, where a smooth function admits of uncount-
ably many extensions, analytic continuation is essentially unique: if f ⋆ (in �⋆) and
f ⋆⋆ (in �⋆⋆) continue f at z0, then one must havef ⋆(z) = f ⋆⋆(z) in the intersection
�⋆ ∩ �⋆⋆, which in particular includes a small disc aroundz0. Thus, the notion of
immediate analytic continuation at a boundary point is intrinsic. The process can be
iterated and we say thatg is ananalytic continuation4 of f along a path, even if the
domains of definition off andg do not overlap, provided a finite chain of interme-
diate function elements connectsf andg. This notion is once more intrinsic—this is
known as the principle ofunicity of analytic continuation(Rudin [523, Ch. 16] pro-
vides a thorough discussion). An analytic function is then much like a hologram: as
soon as it is specified in any tiny region, it is rigidly determined in any wider region
to which it can be continued.

Definition IV.4. Given a function f defined in the region interior to the simpleclosed
curveγ , a point z0 on the boundary (γ ) of the region is asingular pointor asingularity5

if f is notanalytically continuable at z0.

Granted the intrinsic character of analytic continuation,we can usually dispense with
a detailed description of the original domain� and the curveγ . In simple terms, a
function is singular atz0 if it cannot be continued as an analytic function beyondz0.
A point at which a function is analytic is also called by contrast aregular point.

The two functionsf (z) = 1/(1− z) andg(z) =
√

1− z may be taken as initially
defined over the open unit disc by their power series representation. Then, as we
already know, they can be analytically continued to larger regions, the punctured plane

4The collection of all function elements continuing a given function gives rise to the notion ofRiemann
surface, for which many good books exist, e.g., [201, 549]. We shall not need to appeal to this theory.

5For a detailed discussion, see [165, p. 229], [373, vol. 1, p.82], or [577].
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� = C \ {1} for f [e.g., by the calculation of (8), p. 231] and the complex plane
slit along(1,+∞) for g [e.g., by virtue of continuity and differentiability as in (9),
p. 232]. But both are singular at 1: forf , this results (say) from the fact thatf (z)→
∞ asz→ 1; for g this is due to the branching character of the square-root. Figure IV.4
displays a few types of singularities that are traceable by the way they deform a regular
grid near a boundary point.

A converging power series is analytic inside its disc of convergence; in other
words, it can have no singularity inside this disc. However,it musthave at least one
singularity on the boundary of the disc, as asserted by the theorem below. In addition, a
classical theorem, called Pringsheim’s theorem, providesa refinement of this property
in the case of functions with non-negative coefficients, which happens to include all
counting generating functions.

Theorem IV.5 (Boundary singularities). A function f(z) analytic at the origin, whose
expansion at the origin has a finite radius of convergence R, necessarily has a singu-
larity on the boundary of its disc of convergence,|z| = R.

Proof. Consider the expansion

(15) f (z) =
∑

n≥0

fnzn,

assumed to have radius of convergence exactlyR. We already know that there can
be no singularity off within the disc|z| < R. To prove that there is a singularity
on |z| = R, supposea contrario that f (z) is analytic in the disc|z| < ρ for some
ρ satisfyingρ > R. By Cauchy’s coefficient formula (Theorem IV.4, p. 237), upon
integrating along the circle of radiusr = (R+ ρ)/2, and by trivial bounds, it is seen
that the coefficient [zn] f (z) is O(r−n). But then, the series expansion off would
have to converge in the disc of radiusr > R, a contradiction. �

Pringsheim’s Theorem stated and proved now is a refinement ofTheorem IV.5
that applies toall series having non-negative coefficients, in particular, generating
functions. It is central to asymptotic enumeration, as the remainder of this section will
amply demonstrate.

Theorem IV.6 (Pringsheim’s Theorem). If f (z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then
the point z= R is a singularity of f(z).

� IV.13. Proof of Pringsheim’s Theorem.(See also [577, Sec. 7.21].) In a nutshell, the idea
of the proof is that iff has positive coefficients and is analytic atR, then its expansion slightly
to the left ofR has positive coefficients. Then, the power series off would converge in a disc
larger than the postulated disc of convergence—a clear contradiction.

Suppose thena contrariothat f (z) is analytic atR, implying that it is analytic in a disc of
radiusr centred atR. We choose a numberh such that 0< h < 1

3r and consider the expansion
of f (z) aroundz0 = R− h:

(16) f (z) =
∑

m≥0

gm(z− z0)
m.



IV. 3. SINGULARITIES AND EXPONENTIAL GROWTH OF COEFFICIENTS 241
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Figure IV.4 . The images of a grid on the unit square (with corners±1± i ) by various
functions singular atz = 1 reflect the nature of the singularities involved. Singulari-
ties are apparent near the right of each diagram where small grid squares get folded
or unfolded in various ways. (In the case of functionsf0, f1, f4 that become infinite
at z= 1, the grid has been slightly truncated to the right.)
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By Taylor’s formula and the representability off (z) together with its derivatives atz0 by means
of (15), we have

gm =
∑

n≥0

(
n

m

)
fnzn−m

0 ,

and in particular,gm ≥ 0.
Given the wayh was chosen, the series (16) converges atz= R+ h (so thatz− z0 = 2h)

as illustrated by the following diagram:

z0 = R− h
R
R+ h

R 2h r

Consequently, one has

f (R+ h) =
∑

m≥0


∑

n≥0

(
n

m

)
fnzm−n

0


 (2h)m.

This is a converging double sum of positive terms, so that the sum can be reorganized in any
way we like. In particular, one has convergence of all the series involved in

f (R+ h) =
∑

m,n≥0

(
n

m

)
fn(R− h)m−n(2h)m

=
∑

n≥0

fn [(R− h)+ (2h)]n

=
∑

n≥0

fn(R+ h)n.

This establishes the fact thatfn = o((R+ h)−n), thereby reaching a contradiction with the as-
sumption that the series representation off has radius of convergence exactlyR. Pringsheim’s
theorem is proved. �

Singularities of a function analytic at 0, which lie on the boundary of the disc of
convergence, are calleddominant singularities. Pringsheim’s theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions
since these have non-negative coefficients—it is sufficient to investigate analyticity
along the positive real line and detect the first place at which it ceases to hold.

ExampleIV.1. Some combinatorial singularities.The derangement and the surjection EGFs,

D(z) = e−z

1− z
, R(z) = (2− ez)−1

are analytic, except for a simple pole atz = 1 in the case ofD(z), and for pointsχk =
log 2+ 2ikπ that are simple poles in the case ofR(z). Thus the dominant singularities for
derangements and surjections are at 1 and log 2, respectively.
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It is known that
√

Z cannot be unambiguously defined as an analytic function in a neigh-
bourhood ofZ = 0. As a consequence, the function

G(z) = 1−
√

1− 4z

2
,

which is the generating function of general Catalan trees, is an analytic function in regions that
must exclude 1/4; for instance, one may take the complex plane slit along the ray(1/4,+∞).
The OGF of Catalan numbersC(z) = G(z)/z is, asG(z), a priori analytic in the slit plane,
except perhaps atz = 0, where it has the indeterminate form 0/0. However, afterC(z) is
extended by continuity toC(0) = 1, it becomes an analytic function at 0, where its Taylor
series converges in|z| < 1

4 . In this case, we say that thatC(z) has anapparentor removable
singularity at 0. (See also Morera’s Theorem, Note B.6, p. 743.)

Similarly, the EGF of cyclic permutations

L(z) = log
1

1− z
is analytic in the complex plane slit along(1,+∞).

A function having no singularity at a finite distance is calledentire; its Taylor series then
converges everywhere in the complex plane. The EGFs,

ez+z2/2 and eez−1,

associated, respectively, with involutions and set partitions, are entire. .. . . . . . . . . . . . . . . . . .�

IV. 3.2. The Exponential Growth Formula. We say that a number sequence
{an} is of exponential order Kn, which we abbreviate as (the symbol⊲⊳ is a “bowtie”)

an ⊲⊳ K n iff lim sup |an|1/n = K .

The relation “an ⊲⊳ K n” reads as “an is of exponential order Kn”. It expresses both
an upper bound and a lower bound, and one has, for anyǫ > 0:

(i ) |an| >i.o (K − ǫ)n; that is to say,|an| exceeds(K − ǫ)n infinitely often(for
infinitely many values ofn);

(i i ) |an| <a.e. (K + ǫ)n; that is to say,|an| is dominated by(K + ǫ)n almost
everywhere(except for possibly finitely many values ofn).

This relation can be rephrased asan = K nθ(n), whereθ is asubexponential factor:

lim sup|θ(n)|1/n = 1;
such a factor’s modulus is thus bounded from above almost everywhere by any in-
creasing exponential (of the form(1+ ǫ)n) and bounded from below infinitely often
by any decaying exponential (of the form(1− ǫ)n). Typical subexponential factors
are

1, n3, (logn)2,
√

n,
1

3
√

logn
, n−3/2, (−1)n, log logn.

(Functions such ase
√

n and exp(log2 n) are also to be treated as subexponential factors
for the purpose of this discussion.) The lim sup definition also allows in principle for
factors that are infinitely often very small or 0, such asn2 sinnπ2 , logn cos

√
nπ2 , and

so on. In this and the next chapters, we shall develop systematic methods that enable
one to extract such subexponential factors from generatingfunctions.
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It is an elementary observation that the radius of convergence of the series rep-
resentation off (z) at 0 is related to the exponential growth rate of the coefficients
fn = [zn] f (z). To wit, if Rconv( f ; 0) = R, then we claim that

(17) fn ⊲⊳
(

1

R

)n

, i.e., fn = R−nθ(n) with lim sup|θ(n)|1/n = 1.

� IV.14. Radius of convergence and exponential growth.This only requires the basic definition
of a power series.(i ) By definition of the radius of convergence, we have for any smallǫ > 0,
fn(R− ǫ)n→ 0. In particular,| fn|(R− ǫ)n < 1 for all sufficiently largen, so that| fn|1/n <

(R− ǫ)−1 “almost everywhere”.(i i ) In the other direction, for anyǫ > 0, | fn|(R+ ǫ)n cannot
be a bounded sequence, since otherwise,

∑
n | fn|(R + ǫ/2)n would be a convergent series.

Thus,| fn|1/n > (R+ ǫ)−1 “infinitely often”. �

A global approach to the determination of growth rates is desirable. This is made
possible by Theorem IV.5, p. 240, as shown by the following statement.

Theorem IV.7 (Exponential Growth Formula). If f (z) is analytic at0 and R is the
modulus of a singularity nearest to the origin in the sense that6

R := sup
{

r ≥ 0
∣∣ f is analytic in|z| < r

}
,

then the coefficient fn = [zn] f (z) satisfies

fn ⊲⊳
(

1

R

)n

.

For functions with non-negative coefficients, including all combinatorial generating
functions, one can also adopt

R := sup
{

r ≥ 0
∣∣ f is analytic at all points of0≤ z< r

}
.

Proof. Let Rbe as stated. We cannot haveR< Rconv( f ; 0) since a function is analytic
everywhere in the interior of the disc of convergence of its series representation. We
cannot haveR > Rconv( f ; 0) by the Boundary Singularity Theorem. ThusR =
Rconv( f ; 0). The statement then follows from (17). The adaptation to non-negative
coefficients results from Pringsheim’s theorem. �

The exponential growth formula thus directly relates the exponential growth of
coefficients of a function to thelocationof its singularities nearest to the origin. This
is precisely expressed by theFirst Principle of Coefficient Asymptotics(p. 227), which,
given its importance, we repeat here:

First Principle of Coefficient Asymptotics. The locationof a function’s
singularities dictates theexponential growth(An) of its coefficient.

ExampleIV.2. Exponential growth and combinatorial enumeration. Here are a few immediate
applications of exponential bounds.

Surjections.The function

R(z) = (2− ez)−1

6One should think of the process definingR as follows: take discs of increasing radiir and stop as
soon as a singularity is encountered on the boundary. (The dual process that would start from a large disc
and restrict its radius is in general ill-defined—think of

√
1− z.)
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n 1
n logrn

1
n logr ∗n

10 0.33385 −0.22508

20 0.35018 −0.18144

50 0.35998 −0.154449

100 0.36325 −0.145447

∞ 0.36651 −0.13644

(log 1/ρ) (log(1/ρ∗)

Figure IV.5 . The growth rate of simple and double surjections.

is the EGF of surjections. The denominator is an entire function, so that singularities may
only arise from its zeros, to be found at the pointsχk = log 2+ 2ikπ , k ∈ Z. The dominant
singularity ofR is then atρ = χ0 = log 2. Thus, withrn = [zn]R(z),

rn ⊲⊳
(

1

log 2

)n
.

Similarly, if “double” surjections are considered (each value in the rangeof the surjection
is taken at least twice), the corresponding EGF is

R∗(z) = 1

2+ z− ez ,

with the counts starting as 1,0,1,1,7,21,141 (EIS A032032). The dominant singularity is at
ρ∗ defined as the positive root of equationeρ

∗ − ρ∗ = 2, and the coefficientr ∗n satisfies:
r ∗n ⊲⊳ (1/ρ∗)n Numerically, this gives

rn ⊲⊳ 1.44269n and r ∗n ⊲⊳ 0.87245n,

with the actual figures for the corresponding logarithms being given in Figure IV.5.
These estimates constitute a weak form of a more precise result to be established later in

this chapter (p. 260): If random surjections of sizen are considered equally likely, the probabil-
ity of a surjection being a double surjection is exponentially small.

Derangements.For the casesd1,n = [zn]e−z(1−z)−1 andd2,n = [zn]e−z−z2/2(1−z)−1,
we have, from the poles atz= 1,

d1,n ⊲⊳ 1n and d2,n ⊲⊳ 1n.

The implied upper bound is combinatorially trivial. The lower bound expresses that the prob-
ability for a random permutation to be a derangement isnot exponentially small. Ford1,n, we
have already proved (p. 225) by an elementary argument the stronger resultd1,n→ e−1; in the
case ofd2,n, we shall establish later (p. 261) the precise asymptotic estimated2,n→ e−3/2.

Unary–binary trees.The expression

U (z) = 1− z−
√

1− 2z− 3z2

2z
= z+ z2+ 2z3+ 4z4+ 9z5+ · · · ,

represents the OGF of (plane unlabelled) unary–binary trees. From theequivalent form,

U (z) = 1− z−√(1− 3z)(1+ z)

2z
,
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it follows thatU (z) is analytic in the complex plane slit along(1
3,+∞) and(−∞,−1) and is

singular atz= −1 andz= 1/3 where it has branch points. The closest singularity to the origin
being at13 , one has

Un ⊲⊳ 3n.

In this case, the stronger upper boundUn ≤ 3n results directly from the possibility of encoding
such trees by words over a ternary alphabet using Łukasiewicz codes(Chapter I, p. 74). A
complete asymptotic expansion will be obtained, as one of the first applications of singularity
analysis, in Chapter VI (p. 396). . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

� IV.15. Coding theory bounds and singularities.Let C be a combinatorial class. We say that
it can be encoded with f(n) bits if, for all sufficiently large values ofn, elements ofCn can be
encoded as words off (n) bits. (An interesting example occurs in Note I.23, p. 53.) Assume
thatC has OGFC(z) with radius of convergenceR satisfying 0< R < 1. Then, for anyǫ,
C can be encoded with(1 + ǫ)κn bits whereκ = − log2 R, but C cannot be encoded with
(1− ǫ)κn bits.

Similarly, if C has EGF̂C(z) with radius of convergenceR satisfying 0< R<∞, thenC
can be encoded withn log(n/e)+ (1+ ǫ)κn bits whereκ = − log2 R, butC cannot be encoded
with n log(n/e)+ (1− ǫ)κn bits. Since the radius of convergence is determined by the distance
to singularities nearest to the origin, we have the following interesting fact:singularities convey
information on optimal codes. �

Saddle-point bounds.The exponential growth formula (Theorem IV.7, p. 244)
can be supplemented by effective upper bounds which are veryeasy to derive and
often turn out to be surprisingly accurate. We state:

Proposition IV.1 (Saddle-point bounds). Let f(z) be analytic in the disc|z| < R with
0 < R ≤ ∞. Define M( f ; r ) for r ∈ (0, R) by M( f ; r ) := sup|z|=r | f (z)|. Then,
one has, foranyr in (0, R), the family ofsaddle-point upper bounds

(18) [zn] f (z) ≤ M( f ; r )
r n

implying [zn] f (z) ≤ inf
r∈(0,R)

M( f ; r )
r n

.

If in addition f(z) has non-negative coefficients at0, then

(19) [zn] f (z) ≤ f (r )

r n
implying [zn] f (z) ≤ inf

r∈(0,R)
f (r )

r n
.

Proof. In the general case of (18), the first inequality results from trivial bounds ap-
plied to the Cauchy coefficient formula, when integration isperformed along a circle:

[zn] f (z) = 1

2iπ

∫

|z|=r
f (z)

dz

zn+1
.

It is consequently valid for anyr smaller than the radius of convergence off at 0. The
second inequality in (18) plainly represents the best possible bound of this type.

In the positive case of (19), the bounds can be viewed as a direct specialization
of (18). (Alternatively, they can be obtained in a straightforward manner, since

fn ≤
f0
r n
+ · · · + fn−1

r
+ fn +

fn+1

r n+1
+ · · · ,

whenever thefk are non-negative.) �
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Note that the values that provides the best bound in (19) can be determined by
setting a derivative to zero,

(20) s
f ′(s)
f (s)

= n.

Thanks to the universal character of the first bound,anyapproximate solution of this
last equation will in fact provide a valid upper bound.

We shall see in Chapter VIII another way to conceive of these bounds as a first
step in an important method of asymptotic analysis; namely,thesaddle-point method,
which explains where the term “saddle-point bound” originates from (Theorem VIII.2,
p. 547). For reasons that are well developed there, the bounds usually capture the
actual asymptotic behaviour up to a polynomial factor. A typical instance is the weak
form of Stirling’s formula,

1

n!
≡ [zn]ez ≤ en

nn
,

which only overestimates the true asymptotic value by a factor of
√

2πn.
� IV.16. A suboptimal but easy saddle-point bound.Let f (z) be analytic in|z| < 1 with
non-negative coefficients. Assume thatf (x) ≤ (1− x)−β for someβ ≥ 0 and allx ∈ (0,1).
Then

[zn] f (z) = O(nβ ).

(Better bounds of the formO(nβ−1) are usually obtained by the method of singularity analysis
expounded in Chapter VI.) �

Example IV.3. Combinatorial examples of saddle-point bounds.Here are applications to
fragmented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations.First, fragmented permutations (Chapter II, p. 125) are labelled
structures defined byF = SET(SEQ≥1(Z)). The EGF isez/(1−z); we claim that

(21)
1

n!
Fn ≡ [zn]ez/(1−z) ≤ e2

√
n− 1

2+O(n−1/2).

Indeed, the minimizing radius of the saddle-point bound (19) iss such that

0= d

ds

(
s

1− s
− n logs

)
= 1

(1− s)2
− n

s
.

The equation is solved bys= (2n+1−
√

4n+ 1)/(2n). One can either use this exact value and
compute an asymptotic approximation off (s)/sn, or adopt right away the approximate value
s1 = 1− 1/

√
n, which leads to simpler calculations. The estimate (21) results. It is off from

the actual asymptotic value only by a factor of ordern−3/4 (cf Example VIII.7, p. 562).

Bell numbers and set partitions.Another immediate application is an upper bound on
Bell numbers enumerating set partitions,S = SET(SET≥1(Z)), with EGFeez−1. According
to (20), the best saddle-point bound is obtained fors such thatses = n. Thus,

(22)
1

n!
Sn ≤ ees−1−n logs where s : ses = n;

additionally, one hass = logn − log logn + o(log logn). See Chapter VIII, p. 561 for the
complete saddle-point analysis.



248 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

n Ĩn In
100 0.106579· 1085 0.240533· 1083

200 0.231809· 10195 0.367247· 10193

300 0.383502· 10316 0.494575· 10314

400 0.869362· 10444 0.968454· 10442

500 0.425391· 10578 0.423108· 10576 0 1 2 3

−2

−1

Figure IV.6 . A comparison of the exact number of involutionsIn to its approxi-
mation Ĩn = n!e

√
n+n/2n−n/2: [left] a table; [right] a plot of log10(In/ Ĩn) against

log10n suggesting that the ratio satisfiesIn/ Ĩn ∼ K · n−1/2, the slope of the curve
being≈ −1

2 .

Involutions. Involutions are specified byI = SET(CYC1,2(Z)) and have EGFI (z) =
exp(z+ 1

2z2). One determines, by choosings= √n as an approximate solution to (20):

(23)
1

n!
In ≤

e
√

n+n/2

nn/2
.

(See Figure IV.6 for numerical data and Example VIII.5, p. 558 fora full analysis.) Similar
bounds hold for permutations with all cycle lengths≤ k and permutationsσ such thatσ k = I d.

Integer partitions.The function

(24) P(z) =
∞∏

k=1

1

1− zk
= exp



∞∑

ℓ=1

1

ℓ

zℓ

1− zℓ




is the OGF of integer partitions, an unlabelled analogue of set partitions. Its radius of con-
vergence isa priori bounded from above by 1, since the setP is infinite and the second form
of P(z) shows that it is exactly equal to 1. ThereforePn ⊲⊳ 1n. A finer upper bound results
from the estimate (see also p. 576)

(25) L(t) := log P(e−t ) ∼ π2

6t
+ log

√
t

2π
− 1

24
t + O(t2),

which is obtained from Euler–Maclaurin summation or, better, from a Mellin analysis follow-
ing Appendix B.7: Mellin transform, p. 762. Indeed, the Mellin transform ofL is, by the
harmonic sum rule,

L⋆(s) = ζ(s)ζ(s+ 1)Ŵ(s), s ∈ 〈1,+∞〉,
and the successive left-most poles ats = 1 (simple pole),s = 0 (double pole), ands = −1
(simple pole) translate into the asymptotic expansion (25). Whenz→ 1−, we have

(26) P(z) ∼ e−π
2/12
√

2π

√
1− zexp

(
π2

6(1− z)

)
,

from which we derive (chooses= D
√

n as an approximate solution to (20))

Pn ≤ Cn−1/4eπ
√

2n/3,

for someC > 0. This last bound is once more only off by a polynomial factor, as we shall
prove when studying the saddle-point method (Proposition VIII.6, p. 578). . . . . . . . . . . . . . . .�
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� IV.17. A natural boundary.One hasP(rei θ ) → ∞ asr → 1−, for any angleθ that is a
rational multiple of 2π . The pointse2iπp/q being dense on the unit circle, the functionP(z)
admits the unit circle as anatural boundary; that is, it cannot be analytically continued beyond
this circle. �

IV. 4. Closure properties and computable bounds

Analytic functions are robust: they satisfy a rich set of closure properties. This
fact makes possible the determination of exponential growth constants for coefficients
of a wide range of classes of functions. Theorem IV.8 below expresses computability
of growth rate for all specifications associated with iterative specifications. It is the
first result of several that relate symbolic methods of Part Awith analytic methods
developed here.

Closure properties of analytic functions.The functions analytic at a pointz= a
are closed under sum and product, and hence form a ring. Iff (z) andg(z) are ana-
lytic at z = a, then so is their quotientf (z)/g(z) providedg(a) 6= 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such prop-
erties are proved most easily using complex-differentiability and extending the usual
relations from real analysis, for instance,( f + g)′ = f ′ + g′, ( f g)′ = f g′ + f ′g.

Analytic functions are also closed under composition: iff (z) is analytic atz= a
andg(w) is analytic atb = f (a), theng ◦ f (z) is analytic atz= a. Graphically:

a
f g

b=f(a) c=g(b)

The proof based on complex-differentiability closely mimicks the real case. Inverse
functions exist conditionally: iff ′(a) 6= 0, then f (z) is locally linear neara, hence
invertible, so that there exists ag satisfying f ◦ g = g ◦ f = I d, where I d is
the identity function,I d(z) ≡ z. The inverse function is itself locally linear, hence
complex-differentiable, hence analytic. In short:the inverse of an analytic function f
at a place where the derivative does not vanish is an analyticfunction. We shall return
to this important property later in this chapter (Subsection IV. 7.1, p. 275), then put it
to full use in Chapter VI (p. 402) and VII (p. 452) in order to derive strong asymptotic
properties of simple varieties of trees.
� IV.18. A Mean Value Theorem for analytic functions.Let f be analytic in� and assume the
existence ofM := supz∈� | f ′(z)|. Then, for alla, b in �, one has

| f (b)− f (a)| ≤ 2M |b− a|.
(Hint: a simple consequence of the Mean Value Theorem applied toℜ( f ), ℑ( f ).) �

� IV.19. The analytic inversion lemma.Let f be analytic on� ∋ z0 and satisfyf ′(z0) 6= 0.
Then, there exists a small region�1 ⊆ � containingz0 and aC > 0 such that| f (z)− f (z′)| >
C|z− z′|, for all z, z′ ∈ �1, z 6= z′. Consequently,f maps bijectively�1 on f (�1). (See also
Subsection IV. 6.2, p. 269, for a proof based on integration.) �

One way to establish closure properties, as suggested above, is to deduce analyt-
icity criteria from complex differentiability by way of theBasic Equivalence Theorem
(Theorem IV.1, p. 232). An alternative approach, closer to the original notion of ana-
lyticity, can be based on a two-step process:(i ) closure properties are shown to hold



250 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

true for formal power series;(i i ) the resulting formal power series are proved to be
locally convergent by means of suitable majorizations on their coefficients. This is the
basis of the classical method ofmajorant seriesoriginating with Cauchy.

� IV.20. The majorant series technique.Given two power series, definef (z) � g(z) if∣∣[zn] f (z)
∣∣ ≤ [zn]g(z) for all n ≥ 0. The following two conditions are equivalent:(i ) f (z)

is analytic in the disc|z| < ρ; (i i ) for anyr > ρ−1 there exists ac such that

f (z) � c

1− rz
.

If f, g are majorized byc/(1−rz),d/(1−rz), respectively, thenf +g and f ·g are majorized,

f (z)+ g(z) � c+ d

1− rz
, f (z) · g(z) � e

1− sz
,

for anys> r and for somee dependent ons. Similarly, the compositionf ◦ g is majorized:

f ◦ g(z) � c

1− r (1+ d)z
.

Constructions for 1/ f and for the functional inverse off can be similarly developed. See
Cartan’s book [104] and van der Hoeven’s study [587] for a systematic treatment. �

As a consequence of closure properties, for functions defined by analytic expres-
sions, singularities can be determined inductively in an intuitively transparent manner.
If Sing( f ) and Zero( f ) are, respectively, the set of singularities and zeros of thefunc-
tion f , then, due to closure properties of analytic functions, thefollowing informally
stated guidelines apply.





Sing( f ± g) ⊆ Sing( f ) ∪ Sing(g)
Sing( f × g) ⊆ Sing( f ) ∪ Sing(g)
Sing( f/g) ⊆ Sing( f ) ∪ Sing(g) ∪ Zero(g)
Sing( f ◦ g) ⊆ Sing(g) ∪ g(−1)(Sing( f ))
Sing(

√
f ) ⊆ Sing( f ) ∪ Zero( f )

Sing(log( f )) ⊆ Sing( f ) ∪ Zero( f )
Sing( f (−1)) ⊆ f (Sing( f )) ∪ f (Zero( f ′)).

A mathematically rigorous treatment would require considering multivalued func-
tions and Riemann surfaces, so that we do not state detailed validity conditions and
keep for these formulae the status of useful heuristics. In fact, because of Pringsheim’s
theorem, the search of dominant singularities of combinatorial generating function can
normally avoid considering the complete multivalued structure of functions, since only
some initial segment of the positive real half-line needs tobe considered. This in turn
implies a powerful and easy way of determining the exponential order of coefficients
of a wide variety of generating functions, as we explain next.

Computability of exponential growth constants.As defined in Chapters I and II,
a combinatorial class isconstructibleor specifiableif it can be specified by a finite set
of equations involving only the basic constructors. A specification isiterativeor non-
recursiveif in addition the dependency graph (p. 33) of the specification is acyclic.
In that case, no recursion is involved and a single functional term (written with sums,
products, sequences, sets, and cycles) describes the specification.
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Our interest here is in effective computability issues. We recall that a real number
α is computable iff there exists a program5α, which, on inputm, outputs a rational
numberαm guaranteed to be within±10−m of α. We state:

Theorem IV.8 (Computability of growth). Let C be aconstructibleunlabelled class
that admits aniterative specification in terms of(SEQ,PSET,MSET,CYC; +,×)
starting with (1,Z). Then, the radius of convergenceρC of the OGF C(z) of C is
either+∞ or a (strictly) positive computable real number.

Let D be aconstructiblelabelled class that admits aniterativespecification in
terms of(SEQ,SET,CYC; +, ⋆) starting with(1,Z). Then, the radius of convergence
ρD of the EGF D(z) ofD is either+∞ or a (strictly) positive computable real number.

Accordingly, if finite, the constantsρC, ρD in the exponential growth estimates,

[zn]C(z) ≡ Cn ⊲⊳
(

1

ρC

)n

, [zn]D(z) ≡ 1

n!
Dn ⊲⊳

(
1

ρD

)n

,

are computable numbers.

Proof. In both cases, the proof proceeds by induction on the structural specification of
the class. For each classF , with generating functionF(z), we associate asignature,
which is an ordered pair〈ρF , τF 〉, whereρF is the radius of convergence ofF andτF

is the value ofF atρF , precisely,

τF := lim
x→ρ−F

F(x).

(The valueτF is well defined as an element ofR ∪ {+∞} sinceF , being a counting
generating function, is necessarily increasing on(0, ρF ).)

Unlabelled case.An unlabelled classG is either finite, in which case its OGF
G(z) is a polynomial, or infinite, in which case it diverges atz= 1, so thatρG ≤ 1. It
is clearly decidable, given the specification, whether a class is finite or not: a necessary
and sufficient condition for a class to be infinite is that one of the unary constructors
(SEQ,MSET,CYC) intervenes in the specification. We prove (by induction) the as-
sertion of the theorem together with the stronger property thatτF = ∞ as soon as the
class is infinite.

First, the signatures of the neutral class 1 and the atomic classZ, with OGF 1 and
z, are〈+∞,1〉 and〈+∞,+∞〉. Any non-constant polynomial which is the OGF of
a finite set has the signature〈+∞,+∞〉. The assertion is thus easily verified in these
cases.

Next, letF = SEQ(G). The OGFG(z) must be non-constant and satisfyG(0) =
0, in order for the sequence construction to be properly defined. Thus, by the induc-
tion hypothesis, one has 0< ρG ≤ +∞ andτG = +∞. Now, the functionG being
increasing and continuous along the positive axis, there must exist a valueβ such that
0 < β < ρG with G(β) = 1. Forz ∈ (0, β), the quasi-inverseF(z) = (1− G(z))−1

is well defined and analytic; asz approachesβ from the left, F(z) increases un-
boundedly. Thus, the smallest singularity ofF along the positive axis is atβ, and
by Pringsheim’s theorem, one hasρF = β. The argument shows at the same time that
τF = +∞. There only remains to check thatβ is computable. The coefficients of
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G form a computable sequence of integers, so thatG(x), which can be well approxi-
mated via a truncated Taylor series, is an effectively computable number7 if x is itself
a positive computable number less thanρG. Then, binary search provides an effective
procedure for determiningβ.

Next, we consider the multiset construction,F = MSET(G), whose translation
into OGFs necessitates the Pólya exponential of Chapter I (p. 34):

F(z) = Exp(G(z)) where Exp(h(z)) := exp

(
h(z)+ 1

2
h(z2)+ 1

3
h(z3)+ · · ·

)
.

Once more, the induction hypothesis is assumed forG. If G is a polynomial, thenF
is a rational function with poles at roots of unity only. Thus, ρF = 1 andτF = ∞
in that particular case. In the general case ofF = MSET(G) with G infinite, we start
by fixing arbitrarily a numberr such that 0< r < ρG ≤ 1 and examineF(z) for
z ∈ (0, r ). The expression forF rewrites as

Exp(G(z)) = eG(z) · exp

(
1

2
G(z2)+ 1

3
G(z3)+ · · ·

)
.

The first factor is analytic forz on(0, ρG) since, the exponential function being entire,
eG has the singularities ofG. As to the second factor, one hasG(0) = 0 (in order
for the set construction to be well-defined), whileG(x) is convex forx ∈ [0, r ] (since
its second derivative is positive). Thus, there exists a positive constantK such that
G(x) ≤ K x whenx ∈ [0, r ]. Then, the series12G(z2) + 1

3G(z3) + · · · has its terms
dominated by those of the convergent series

K

2
r 2+ K

3
r 3+ · · · = K log(1− r )−1− Kr.

By a well-known theorem of analytic function theory, a uniformly convergent sum of
analytic functions is itself analytic; consequently,1

2G(z2)+ 1
3G(z3)+ · · · is analytic

at all z of (0, r ). Analyticity is then preserved by the exponential, so thatF(z), being
analytic atz ∈ (0, r ) for anyr < ρG has a radius of convergence that satisfiesρF ≥
ρG. On the other hand, sinceF(z) dominates termwiseG(z), one hasρF ≤ ρG. Thus
finally one hasρF = ρG. Also, τG = +∞ impliesτF = +∞.

A parallel discussion covers the case of the powerset construction (PSET) whose
associated functionalExp is a minor modification of the Ṕolya exponential Exp. The
cycle construction can be treated by similar arguments based on consideration of
“Pólya’s logarithm” asF = CYC(G) corresponds to

F(z) = Log
1

1− G(z)
, where Logh(z) = logh(z)+ 1

2
logh(z2)+ · · · .

In order to conclude with the unlabelled case, it only remains to discuss the binary
constructors+,×, which give rise toF = G+H , F = G ·H . It is easily verified that

7The present argument only establishes non-constructively theexistenceof a program, based on the
fact that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence.
Making explict this program and the involved parameters fromthe specification itself however represents a
much harder problem (that of “uniformity” with respect to specifications) that is not addressed here.
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ρF = min(ρG, ρH ). Computability is granted since the minimum of two computable
numbers is computable. ThatτF = +∞ in each case is immediate.

Labelled case.The labelled case is covered by the same type of argument as
above, the discussion being even simpler, since the ordinary exponential and logarithm
replace the Ṕolya operators Exp and Log. It is still a fact that all the EGFsof infinite
non-recursive classes are infinite at their dominant positive singularity, though the
radii of convergence can now be of any magnitude (compared to1). �

� IV.21. Restricted constructions.This is an exercise in induction. Theorem IV.8 is stated for
specifications involving the basic constructors. Show that the conclusion still holds if the corres-
ponding restricted constructions (K=r ,K<r ,K>r , with K being any of the basic constructors)
are also allowed. �

� IV.22. Syntactically decidable properties.For unlabelled classesF , the propertyρF = 1 is
decidable. For labelled and unlabelled classes, the propertyρF = +∞ is decidable. �

� IV.23. Pólya–Carlson and a curious property of OGFs.Here is a statement first conjectured
by Pólya, then proved by Carlson in 1921 (see [164, p. 323]):If a function is represented by
a power series with integer coefficients that converges inside the unit disc, then either it is a
rational function or it admits the unit circle as a natural boundary.This theorem applies in
particular to the OGF of any combinatorial class. �

� IV.24. Trees are recursive structures only!General and binary trees cannot receive an iter-
ative specification since their OGFs assume a finite value at their Pringsheimsingularity. [The
same is true of most simple families of trees; cf Proposition VI.6, p. 404]. �

� IV.25. Non-constructibility of permutations and graphs.The classP of all permutations
cannot be specified as a constructible unlabelled class since the OGFP(z) = ∑

n n!zn has
radius of convergence 0. (It is of course constructible as a labelled class.) Graphs, whether
labelled or unlabelled, are too numerous to form a constructible class. �

Theorem IV.8 establishes a link between analytic combinatorics, computability
theory, and symbolic manipulation systems. It is based on anarticle of Flajolet, Salvy,
and Zimmermann [255] devoted to such computability issues in exact and asymptotic
enumeration. Recursive specifications are not discussed now since they tend to give
rise to branch points, themselves amenable to singularity analysis techniques to be
fully developed in Chapters VI and VII. The inductive process, implied by the proof of
Theorem IV.8, that decorates a specification with the radiusof convergence of each of
its subexpressions, provides a practical basis for determining the exponential growth
rate of counts associated to a non-recursive specification.

ExampleIV.4. Combinatorial trains.This purposely artificial example from [219] (see Fig-
ure IV.7) serves to illustrate the scope of Theorem IV.8 and demonstrate its inner mechanisms
at work. Define the class of alllabelled trainsby the following specification,

(27)





T r = Wa ⋆ SEQ(Wa ⋆ SET(Pa)),
Wa = SEQ≥1(Pℓ),

Pℓ = Z ⋆Z ⋆ (1+ CYC(Z)),

Pa = CYC(Z) ⋆ CYC(Z).

In figurative terms, a train (T r ) is composed of a first wagon (Wa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers (Pa).
A wagon is itself composed of “planks” (Pℓ) conventionally identified by their two end points
(Z ⋆ Z) and to which a circular wheel (CYC(Z)) may optionally be attached. A passenger is
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T r

⋆

Wa

Seq≥1

⋆

Z Z +

1 Cyc

Z

Seq

⋆

(Wa) Set

⋆

Cyc

Z

Cyc

Z

0.48512

0.68245

1

∞ ∞ 1

∞ 1

∞

0.48512

0.68245

0.68245 1

1

1

∞

1

∞

Figure IV.7 . The inductive determination of the radius of convergence of the EGF of
trains: (left) a hierarchical view of the specification ofT r ; (right) the corresponding
radii of convergence for each subspecification.

composed of a head and a belly that are each circular arrangements ofatoms. Here is a depiction
of a random train:

The translation into a set of EGF equations is immediate and a symbolic manipulation system
readily provides the form of the EGF of trains as

Tr(z) =
z2
(
1+ log((1− z)−1)

)

(
1− z2

(
1+ log((1− z)−1)

))


1−

z2
(
1+ log((1− z)−1)

)
e

(
log((1−z)−1)

)2

1− z2
(
1+ log((1− z)−1)

)




−1

,

together with the expansion

Tr(z) = 2
z2

2!
+ 6

z3

3!
+ 60

z4

4!
+ 520

z5

5!
+ 6660

z6

6!
+ 93408

z7

7!
+ · · · .

The specification (27) has a hierarchical structure, as suggested by the top representation of
Figure IV.7, and this structure is itself directly reflected by the form of the expression tree of the
GFTr(z). Then, each node in the expression tree ofTr(z) can be tagged with the corresponding
value of the radius of convergence. This is done according to the principles of Theorem IV.8;
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see the right diagram of Figure IV.7. For instance, the quantity 0.68245 associated toWa(z) is
given by the sequence rule and is determined as the smallest positive solution of the equation

z2
(
1− log(1− z)−1

)
= 1.

The tagging process works upwards till the root of the tree is reached; here the radius of con-
vergence ofTr is determined to beρ

.= 0.48512· · · , a quantity that happens to coincide with
the ratio [z49]Tr(z)/[z50]Tr(z) to more than 15 decimal places. . . . . . . . . . . . . . . . . . . . . . . . .�

IV. 5. Rational and meromorphic functions

The last section has fully justified theFirst Principle of Coefficient Asymptotics
leading to the exponential growth formulafn ⊲⊳ An for the coefficients of an analytic
function f (z). Indeed, as we saw, one hasA = 1/ρ, whereρ equals both the radius of
convergence of the series representingf and the distance of the origin to the dominant,
i.e., closest, singularities. We are going to start examining here theSecond Principle,
already given on p. 227 and relative to the form

fn = Anθ(n),

with θ(n) the subexponential factor:

Second Principle of Coefficient Asymptotics.Thenatureof a function’s
singularities determines the associatesubexponential factor(θ(n)).

In this section, we develop a complete theory in the case of rational functions (that is,
quotients of polynomials) and, more generally, meromorphic functions. The net result
is that, for such functions, the subexponential factors areessentially polynomials:

Polar singularities ; subexponential factorsθ(n) of polynomial growth.

A distinguishing feature is the extremely good quality of the asymptotic approxima-
tions obtained; for naturally occurring combinatorial problems, 15 digits of accuracy
is not uncommon in coefficients of index as low as 50 (see Figure IV.8, p. 260 below
for a striking example).

IV. 5.1. Rational functions. A function f (z) is arational functioniff it is of the
form f (z) = N(z)/D(z), with N(z) and D(z) being polynomials, which we may,
without loss of generality, assume to be relatively prime. For rational functions that
are analytic at the origin (e.g., generating functions), wehaveD(0) 6= 0.

Sequences{ fn}n≥0 that are coefficients of rational functions satisfy linear re-
currence relations with constant coefficients. This fact iseasy to establish: com-
pute [zn] f (z) · D(z); then, with D(z) = d0 + d1z + · · · + dmzm, one has, for all
n > deg(N(z)),

m∑

j=0

d j fn− j = 0.

The main theorem we prove now provides anexactfinite expression for coeffi-
cients of f (z) in terms of the poles off (z). Individual terms in these expressions are
sometimes calledexponential–polynomials.
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Theorem IV.9 (Expansion of rational functions). If f (z) is a rational function that is
analytic at zero and has poles at pointsα1, α2, . . . , αm, then its coefficients are a sum
of exponential–polynomials: there exist m polynomials{5 j (x)}mj=1 such that, for n
larger than some fixed n0,

(28) fn ≡ [zn] f (z) =
m∑

j=1

5 j (n)α
−n
j .

Furthermore the degree of5 j is equal to the order of the pole of f atα j minus one.

Proof. Since f (z) is rational it admits a partial fraction expansion. To wit:

f (z) = Q(z)+
∑

(α,r )

cα,r
(z− α)r ,

whereQ(z) is a polynomial of degreen0 := deg(N)− deg(D) if f = N/D. Hereα
ranges over the poles off (z) andr is bounded from above by the multiplicity ofα as
a pole of f . Coefficient extraction in this expression results from Newton’s expansion,

[zn]
1

(z− α)r =
(−1)r

αr
[zn]

1(
1− z

α

)r =
(−1)r

αr

(
n+ r − 1

r − 1

)
α−n.

The binomial coefficient is a polynomial of degreer − 1 in n, and collecting terms
associated with a givenα yields the statement of the theorem. �

Notice that the expansion (28) is also an asymptotic expansion in disguise: when
grouping terms according to theα’s of increasing modulus, each group appears to be
exponentially smallerthan the previous one. In particular, if there is a unique dominant
pole,|α1| < |α2| ≤ |α3| ≤ · · · , then

fn ∼ α−n
1 51(n),

and the error term is exponentially small as it isO(α−n
2 nr ) for somer . A classical

instance is the OGF of Fibonacci numbers,

F(z) = z

1− z− z2
,

with poles at
−1+

√
5

2
.= 0.61803 and

−1−
√

5

2
.= −1.61803, so that

[zn]F(z) ≡ Fn =
1√
5
ϕn − 1√

5
ϕ̄n = ϕn

√
5
+ O(

1

ϕn
),

with ϕ = (1+
√

5)/2 the golden ratio, and̄ϕ its conjugate.
� IV.26. A simple exercise.Let f (z) be as in Theorem IV.9, assuming additionally a single
dominant poleα1, with multiplicity r . Then, by inspection of the proof of Theorem IV.9:

fn =
C

(r − 1)!
α−n+r

1 nr−1
(

1+ O

(
1

n

))
with C = lim

z→α1
(z− α1)

r f (z).

This is certainly the most direct illustration of the Second Principle: under theassumptions, a
one-term asymptotic expansion of the function at its dominant singularity suffices to determine
the asymptotic form of the coefficients. �
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Example IV.5. Qualitative analysis of a rational function.This is an artificial example de-
signed to demonstrate that all the details of the full decomposition are usuallynot required. The
rational function

f (z) = 1

(1− z3)2(1− z2)3(1− z2

2 )

has a pole of order 5 atz= 1, poles of order 2 atz= ω,ω2 (ω = e2iπ/3 a cubic root of unity),
a pole of order 3 atz= −1, and simple poles atz= ±

√
2. Therefore,

fn = P1(n)+ P2(n)ω
−n + P3(n)ω

−2n + P4(n)(−1)n+
+P5(n)2

−n/2+ P6(n)(−1)n2−n/2

where the degrees ofP1, . . . , P6 are 4, 1, 1, 2, 0, 0. For an asymptotic equivalent offn, only
the poles at roots of unity need to be considered since they correspond tothe fastest exponential
growth; in addition, onlyz = 1 needs to be considered for first-order asymptotics; finally, at
z = 1, only the term of fastest growth needs to be taken into account. In this way, we find the
correspondence

f (z) ∼ 1

32 · 23 · (1
2)

1

(1− z)5
H⇒ fn ∼

1

32 · 23 · (1
2)

(
n+ 4

4

)
∼ n4

864
.

The way the analysis can be developedwithout computing detailsof partial fraction expansion
is typical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

Theorem IV.9 applies to any specification leading to a GF thatis a rational func-
tion8. Combined with the qualitative approach to rational coefficient asymptotics, it
gives access to a large number of effective asymptotic estimates for combinatorial
counting sequences.

Example IV.6. Asymptotics of denumerants.Denumerants are integer partitions with sum-
mands restricted to be from afixedfinite set (Chapter I, p. 43). We letPT be the class relative
to setT ⊂ Z>0, with the known OGF,

PT (z) =
∏

ω∈T

1

1− zω
.

Without loss of generality, we assume that gcd(T ) = 1; that is, the coin denomination arenot
all multiples of a numberd > 1.

A particular case is the one of integer partitions whose summands are in{1, 2, . . . , r },

P{1,...,r }(z) =
r∏

m=1

1

1− zm .

The GF has all its poles being roots of unity. Atz= 1, the order of the pole isr , and one has

P{1,...,r }(z) ∼ 1

r !

1

(1− z)r
,

asz→ 1. Other poles have strictly smaller multiplicity. For instance the multiplicity ofz= −1
is equal to the number of factors(1− z2 j )−1 in P{1,...,r }, which is the same as the number of
coin denominations that are even; this last number is at mostr −1 since, by the gcd assumption
gcd(T ) = 1, at least one is odd. Similarly, a primitiveqth root of unity is found to have

8In Part A, we have been occasionally led to discuss coefficients of some simple enough rational
functions, thereby anticipating the statement of the theorem: see for instance the discussion of parts in
compositions (p. 168) and of records in sequences (p. 190).
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multiplicity at mostr − 1. It follows that the polez = 1 contributes a term of the formnr−1

to the coefficient of indexn, while each of the other poles contributes a term of order at most
nr−2. We thus find

P{1,...,r }n ∼ cr nr−1 with cr =
1

r !(r − 1)!
.

The same argument provides the asymptotic form ofPT
n , since, to first order asymptotics,

only the pole atz= 1 counts.

Proposition IV.2. Let T be a finite set of integers without a common divisor(gcd(T ) = 1).
The number of partitions with summands restricted toT satisfies

PT
n ∼

1

τ

nr−1

(r − 1)!
, with τ :=

∏

ω∈T
ω, r := card(T ).

For instance, in a strange country that would have pennies (1 cent), nickels (5 cents), dimes
(10 cents), and quarters (25 cents), the number of ways to make change for a total ofn cents is

[zn]
1

(1− z)(1− z5)(1− z10)(1− z25)
∼ 1

1 · 5 · 10 · 25

n3

3!
≡ n3

7500
,

asymptotically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�

IV. 5.2. Meromorphic functions. An expansion similar to that of Theorem IV.9
(p. 256) holds true for coefficients of a much larger class; namely, meromorphic func-
tions.

Theorem IV.10 (Expansion of meromorphic functions). Let f(z) be a function mero-
morphic at all points of the closed disc|z| ≤ R, with poles at pointsα1, α2, . . . , αm.
Assume that f(z) is analytic at all points of|z| = R and at z= 0. Then there exist m
polynomials{5 j (x)}mj=1 such that:

(29) fn ≡ [zn] f (z) =
m∑

j=1

5 j (n)α
−n
j + O(R−n).

Furthermore the degree of5 j is equal to the order of the pole of f atα j minus one.

Proof. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(i ) Subtracted singularities.Around any poleα, f (z) can be expanded locally:

f (z) =
∑

k≥−M

cα,k(z− α)k(30)

= Sα(z)+ Hα(z)(31)

where the “singular part”Sα(z) is obtained by collecting all the terms with index in
[−M . . − 1] (that is, formingSα(z) = Nα(z)/(z− α)M with Nα(z) a polynomial
of degree less thanM) and Hα(z) is analytic atα. Thus settingS(z) := ∑

j Sα j (z),
we observe thatf (z) − S(z) is analytic for|z| ≤ R. In other words, by collecting
the singular parts of the expansions and subtracting them, we have “removed” the sin-
gularities of f (z), whence the name ofmethod of subtracted singularitiessometimes
given to the method [329, vol. 2, p. 448].
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Taking coefficients, we get:

[zn] f (z) = [zn]S(z)+ [zn]( f (z)− S(z)).

The coefficient of [zn] in the rational functionS(z) is obtained from Theorem IV.9.
It suffices to prove that the coefficient ofzn in f (z) − S(z), a function analytic for
|z| ≤ R, is O(R−n). This fact follows from trivial bounds applied to Cauchy’s integral
formula with the contour of integration beingλ = {z : |z| = R}, as in the proof of
Proposition IV.1, p 246 (saddle-point bounds):

∣∣∣∣[z
n]( f (z)− S(z))

∣∣∣∣ =
1

2π

∣∣∣∣
∫

|z|=R
( f (z)− S(z))

dz

zn+1

∣∣∣∣ ≤
1

2π

O(1)

Rn+1
2πR.

(i i ) Contour integration.There is another line of proof for Theorem IV.10 which
we briefly sketch as it provides an insight which is useful forapplications to other
types of singularities treated in Chapter VI. It consists inusing Cauchy’s coefficient
formula and “pushing” the contour of integration past singularities. In other words,
one computes directly the integral

In =
1

2iπ

∫

|z|=R
f (z)

dz

zn+1

by residues. There is a pole atz= 0 with residuefn and poles at theα j with residues
corresponding to the terms in the expansion stated in Theorem IV.10; for instance, if
f (z) ∼ c/(z− a) asz→ a, then

Res( f (z)z−n−1; z= a) = Res

(
c

(z− a)
z−n−1; z= a

)
= c

an+1
.

Finally, by the same trivial bounds as before,In is O(R−n). �

� IV.27. Effective error bounds.The error termO(R−n) in (29), call itεn, satisfies

|εn| ≤ R−n · sup
|z|=R

| f (z)|.

This results immediately from the second proof. This bound may be useful, even in the case of
rational functions to which it is clearly applicable. �

As a consequence of Theorem IV.10, all GFs whose dominant singularities are
poles can be easily analysed. Prime candidates from Part A are specifications that
are “driven” by a sequence construction, since the translation of sequences involves a
quasi-inverse, itself conducive to polar singularities. This covers in particular surjec-
tions, alignments, derangements, and constrained compositions, which we treat now.

ExampleIV.7. Surjections.These are defined as sequences of sets (R = SEQ(SET≥1(Z)))
with EGF R(z) = (2− ez)−1 (see p. 106). We have already determined the poles in Exam-
ple IV.2 (p. 244), the one of smallest modulus being at log 2

.= 0.69314. At this dominant
pole, one findsR(z) ∼ −1

2(z− log 2)−1. This implies an approximation for the number of
surjections:

Rn ≡ n![zn]R(z) ∼ ξ(n), with ξ(n) := n!

2
·
(

1

log 2

)n+1
.
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Figure IV.8 . The surjection numbers pyramid: forn = 2, 4, . . . , 32, the exact values
of the numbersRn (left) compared to the approximation⌈ξ(n)⌋ with discrepant digits
in boldface (right).

Figure IV.8 gives, forn = 2, 4, . . . , 32, a table of the values of the surjection numbers (left)
compared with the asymptotic approximation rounded9 to the nearest integer,⌈ξ(n)⌋: It is
piquant to see that⌈ξ(n)⌋ provides the exact value ofRn for all values ofn = 1, . . . , 15, and
it starts losing one digit forn = 17, after which point a few “wrong” digits gradually appear,
but in very limited number; see Figure IV.8. (A similar situation prevails fortangent numbers
discussed in ourInvitation, p. 5.) The explanation of such a faithful asymptotic representation
owes to the fact that the error terms provided by meromorphic asymptotics are exponentially
small. In effect, there is no other pole in|z| ≤ 6, the next ones being at log 2± 2iπ with
modulus of about 6.32. Thus, forrn = [zn]R(z), there holds

(32)
Rn

n!
∼ 1

2
·
(

1

log 2

)n+1
+ O(6−n).

For the double surjection problem,R∗(z) = (2+ z− ez), we get similarly

[zn]R∗(z) ∼ 1

eρ∗ − 1
(ρ∗)−n−1,

with ρ∗ = 1.14619 the smallest positive root ofeρ
∗ − ρ∗ = 2. . . . . . . . . . . . . . . . . . . . . . . . . .�

It is worth reflecting on this example as it is representativeof a “production chain”
based on the two successive implications which are characteristic of Part A and Part B
of the book:





R = SEQ(SET≥1(Z)) H⇒ R(z) = 1

2− ez

R(z) ∼
z→log 2

−1

2

1

(z− log 2)
−→ 1

n!
Rn ∼

1

2
(log 2)−n−1.

9The notation⌈x⌋ representsx rounded to the nearest integer:⌈x⌋ := ⌊x + 1
2⌋.
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The first implication (written “H⇒”, as usual) is providedautomaticallyby the sym-
bolic method. The second one (written here “−→”) is a direct translation from the ex-
pansion of the GF at its dominant singularity to the asymptotic form of coefficients; it
is validconditionallyupon complex analytic conditions, here those of Theorem IV.10.

ExampleIV.8. Alignments.These are sequences of cycles (O = SEQ(CYC(Z)), p. 119) with
EGF

O(z) = 1

1− log 1
1−z

.

There is a singularity when log(1− z)−1 = 1, which is atρ = 1−e−1 and which arises before
z= 1, where the logarithm becomes singular. Then, the computation of the asymptotic form of
[zn]O(z) only requires a local expansion nearρ,

O(z) ∼ −e−1

z− 1+ e−1
−→ [zn]O(z) ∼ e−1

(1− e−1)n+1
,

and the coefficient estimates result from Theorem IV.10. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

� IV.28. Some “supernecklaces”.One estimates

[zn] log

(
1

1− log 1
1−z

)
∼ 1

n
(1− e−1)−n,

where the EGF enumerates labelled cycles of cycles (supernecklaces,p. 125). [Hint: Take
derivatives.] �

ExampleIV.9. Generalized derangements.The probability that the shortest cycle in a random
permutation of sizen has length larger thank is

[zn]D(k)(z), where D(k)(z) = 1

1− z
e−

z
1− z2

2 −···− zk
k ,

as results from the specificationD(k) = SET(CYC>k(Z)). For anyfixed k, one has (easily)
D(k)(z) ∼ e−Hk/(1− z) asz→ 1, with 1 being a simple pole. Accordingly the coefficients
[zn]D(k)(z) tend toe−Hk asn→∞. In summary, due to meromorphy, we have the character-
istic implication

D(k)(z) ∼ e−Hk

1− z
−→ [zn]D(k)(z) ∼ e−Hk .

Since there is no other singularity at a finite distance, the error in the approximation is (at least)
exponentially small,

(33) [zn]
1

1− z
e−

z
1− z2

2 −···− zk
k = e−Hk + O(R−n),

for any R> 1. The casesk = 1, 2 in particular justify the estimates mentioned at the beginning
of this chapter, on p. 228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�

This example is also worth reflecting upon. In prohibiting cycles of length< k,
we modify the EGF of all permutations,(1 − z)−1 by a factore−z/1−···−zk/k. The
resulting EGF is meromorphic at 1; thus only the value of the modifying factor at
z = 1 matters, so that this value, namelye−Hk , provides the asymptotic proportion
of k–derangements. We shall encounter more and more shortcuts of this sort as we
progress into the book.
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� IV.29. Shortest cycles of permutations are not too long.Let Sn be the random variable
denoting the length of the shortest cycle in a random permutation of sizen. Using the circle
|z| = 2 to estimate the error in the approximatione−Hk above, one finds that, fork ≤ logn,

∣∣∣P(Sn > k)− e−Hk
∣∣∣ ≤ 1

2n e2k+1
,

which is exponentially small in this range ofk-values. Thus, the approximatione−Hk remains
usable whenk is allowed to tend sufficiently slowly to∞ with n. One can also explore the
possibility of better bounds and larger regions of validity of the main approximation. (See
Panario and Richmond’s study [470] for a general theory of smallestcomponents in sets.)�

� IV.30. Expected length of the shortest cycle.The classical approximation of the harmonic
numbers, Hk ≈ logk+ γ , suggestse−γ /k as a possible approximation to (33) forboth largen
and largek in suitable regions. In agreement with this heuristic argument, the expectedlength
of the shortest cycle in a random permutation of sizen is effectively asymptotic to

n∑

k=1

e−γ

k
∼ e−γ logn,

a property first discovered by Shepp and Lloyd [540]. �

The next example illustrates the analysis of a collection ofrational generating
functions (Smirnov words) paralleling nicely the enumeration of a special type of
integer composition (Carlitz compositions), which belongs to meromorphic asymp-
totics.

ExampleIV.10. Smirnov words and Carlitz compositions.Bernoulli trials have been discussed
in Chapter III (p. 204), in relation to weighted word models. Take the classW of all words over
an r –ary alphabet, where letterj is assigned probabilityp j and letters of words are drawn
independently. With this weighting, the GF of all words isW(z) = 1/(1−∑ p j z) = (1−
z)−1. Consider the problem of determining the probability that a random word oflengthn is of
Smirnov type, that is, all blocks of length 2 are formed with unequal letters. In order to avoid
degeneracies, we imposer ≥ 3 (since forr = 2, the only Smirnov words areababa . . . and
babab . . . ).

By our discussion in Example III.24 (p. 204), the GF of Smirnov words(again with the
probabilistic weighting) is

S(z) = 1

1−∑ p j z
1+p j z

.

By monotonicity of the denominator, this rational function has a dominant singularity at the
unique positive solution of the equation

(34)
r∑

j=1

p j ρ

1+ p j ρ
= 1,

and the pointρ is a simple pole. Consequently,ρ is a well-characterized algebraic number
defined implicitly by a polynomial equation of degree≤ r . One can furthermore check, by
studying the variations of the denominator, that the other roots are all realand negative; thus,
ρ is the unique dominant singularity. (Alternatively, appeal to the Perron–Frobenius argument
of Example V.11, p. 349) It follows that the probability for a word to be Smirnov is, not too
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surprisingly, exponentially small, the precise formula being

[zn]S(z) ∼ C · ρ−n, C =




r∑

j=1

p j ρ

(1+ p j ρ)
2



−1

.

A similar analysis, using bivariate generating functions, shows that in a random word of lengthn
conditioned to be Smirnov, the letterj appears with asymptotic frequency

(35) q j =
1

Q

p j

(1+ p j ρ)
2
, Q :=

r∑

j=1

p j

(1+ p j ρ)
2
,

in the sense that the mean number of occurrences of letterj is asymptotic toq j n. All these
results are seen to be consistent with the equiprobable letter casep j = 1/r , for which ρ =
r/(r − 1).

Carlitz compositionsillustrate a limit situation, in which the alphabet is infinite, while
letters have different sizes. Recall that a Carlitz composition of the integern is a composition
of n such that no two adjacent summands have equal value. By Note III.32, p. 201, such
compositions can be obtained by substitution from Smirnov words, to the effect that

(36) K (z) =


1−

∞∑

j=1

z j

1+ z j



−1

.

The asymptotic form of the coefficients then results from an analysis of dominant poles. The
OGF has a simple pole atρ, which is the smallest positive root of the equation

(37)
∞∑

j=1

ρ j

1+ ρ j
= 1.

(Note the analogy with (34) due to commonality of the combinatorial argument.) Thus:

Kn ∼ C · βn, C
.= 0.45636 34740, β

.= 1.75024 12917.

There,β = 1/ρ with ρ as in (37). In a way analogous to Smirnov words, the asymptotic
frequency of summandk appears to be proportional tokρk/(1+ρk)2; see [369, 421] for further
properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

IV. 6. Localization of singularities

There are situations where a function possesses several dominant singularities,
that is, several singularities are present on the boundary of the disc of convergence.
We examine here the induced effect on coefficients and discuss ways to locate such
dominant singularities.

IV. 6.1. Multiple singularities. In the case when there exists more than one
dominant singularity, several geometric terms of the formβn sharing the same mod-
ulus (and each carrying its own subexponential factor) mustbe combined. In simpler
situations, such terms globally induce a pure periodic behaviour for coefficients that is
easy to describe. In the general case, irregular fluctuations of a somewhat arithmetic
nature may prevail.
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Figure IV.9 . The coefficients [zn] f (z) of the rational function f (z) =(
1+ 1.02z4

)−3 (
1− 1.05z5

)−1
illustrate a periodic superposition of regimes, de-

pending on the residue class ofn modulo 40.

Pure periodicities.When several dominant singularities off (z) have the same
modulus and are regularly spaced on the boundary of the disc of convergence, they
may induce complete cancellations of the main exponential terms in the asymptotic
expansion of the coefficientfn. In that case, different regimes will be present in the
coefficientsfn based on congruence properties ofn. For instance, the functions

1

1+ z2
= 1− z2+ z4− z6+ z8− · · · , 1

1− z3
= 1+ z3+ z6+ z9+ · · · ,

exhibit patterns of periods 4 and 3, respectively, this corresponding to poles that are
roots of unity or order 4(±i ), and 3 (ω : ω3 = 1). Then, the function

φ(z) = 1

1+ z2
+ 1

1− z3
= 2− z2+ z3+ z4+ z8+ z9− z10

1− z12

has coefficients that obey a pattern of period 12 (for example, the coefficientsφn such
thatn ≡ 1,5,6,7,11 modulo 12 are zero). Accordingly, the coefficients of

[zn]ψ(z) where ψ(z) = φ(z)+ 1

1− z/2
,

manifest a different exponential growth whenn is congruent to 1,5,6,7,11 mod 12.
See Figure IV.9 for such a superposition of pure periodicities. In many combinatorial
applications, generating functions involving periodicities can be decomposed at sight,
and the corresponding asymptotic subproblems generated are then solved separately.
� IV.31. Decidability of polynomial properties.Given a polynomialp(z) ∈ Q[z], the following
properties are decidable:(i ) whether one of the zeros ofp is a root of unity;(i i ) whether one
of the zeros ofp has an argument that is commensurate withπ . [One can use resultants. An
algorithmic discussion of this and related issues is given in [306].] �

Nonperiodic fluctuations.As a representative example, consider the polynomial
D(z) = 1− 6

5z+ z2, whose roots are

α = 3

5
+ i

4

5
, ᾱ = 3

5
− i

4

5
,
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Figure IV.10. The coefficients off (z) = 1/(1 − 6
5z + z2) exhibit an apparently

chaotic behaviour (left) which in fact corresponds to a discrete samplingof a sine
function (right), reflecting the presence of two conjugate complex poles.

both of modulus 1 (the numbers 3,4,5 form a Pythagorean triple), with argument
±θ0 whereθ0 = arctan(4

3)
.= 0.92729. The expansion of the functionf (z) = 1/D(z)

starts as
1

1− 6
5z+ z2

= 1+ 6

5
z+ 11

25
z2− 84

125
z3− 779

625
z4− 2574

3125
z5+ · · · ,

the sign sequence being

+++−−−++++−−−+++−−−−+++−−−−+++−−− ,
which indicates a somewhat irregular oscillating behaviour, where blocks of three or
four pluses follow blocks of three or four minuses.

The exact form of the coefficients off results from a partial fraction expansion:

f (z) = a

1− z/α
+ b

1− z/ᾱ
with a = 1

2
+ 3

8
i, b = 1

2
− 3

8
i,

whereα = ei θ0, α = e−i θ0 Accordingly,

(38) fn = ae−inθ0 + beinθ0 = sin((n+ 1)θ0)

sin(θ0)
.

This explains the sign changes observed. Since the angleθ0 is not commensurate with
π , the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is
present in the sign patterns. See Figure IV.10 for a rendering and Figure V.3 (p. 299)
for a meromorphic case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur ifseveral such singu-
larities with non-commensurate arguments combine, and some open problem remain
even in the analysis of linear recurring sequences. (For instance no decision proce-
dure is known to determine whether such a sequence ever vanishes [200].) Fortunately,
such problems occur infrequently in combinatorial applications, where dominant poles
of rational functions (as well as many other functions) tendto have a simple geometry
as we explain next.
� IV.32. Irregular fluctuations and Pythagorean triples.The quantityθ0/π is an irrational
number, so that the sign fluctuations of (38) are “irregular” (i.e., non-purely periodic). [Proof:
a contrario. Indeed, otherwise,α = (3+ 4i )/5 would be a root of unity. But then the minimal
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polynomial ofα would be a cyclotomic polynomial with non-integral coefficients, a contradic-
tion; see [401, VIII.3] for the latter property.] �

� IV.33. Skolem-Mahler-Lech Theorem.Let fn be the sequence of coefficients of a rational
function, f (z) = A(z)/B(z), whereA, B ∈ Q[z]. The set of alln such that fn = 0 is the
union of a finite (possibly empty) set and a finite number (possibly zero) of infinite arithmetic
progressions. (The proof is based onp-adic analysis, but the argument is intrinsically non-
constructive; see [452] for an attractive introduction to the subject andreferences.) �

Periodicity conditions for positive generating functions. By the previous dis-
cussion, it is of interest to locate dominant singularitiesof combinatorial generating
functions, and, in particular, determine whether their arguments (the “dominant direc-
tions”) are commensurate to 2π . In the latter case, different asymptotic regimes of the
coefficients manifest themselves, depending on the congruence properties ofn.

Definition IV.5. For a sequence( fn)with GF f(z), thesupportof f , denotedSupp( f ),
is the set of all n such that fn 6= 0. The sequence( fn), as well as its GF f(z), is said
to admit aspand if for some r, there holds

Supp( f ) ⊆ r + dZ≥0 ≡ {r, r + d, r + 2d, . . .}.
The largest span, p, is theperiod, all other spans being divisors of p. If the period is
equal to1, the sequence and its GF are said to beaperiodic.

If f is analytic at 0, with spand, there exists a functiong analytic at 0 such
that f (z) = zr g(zd), for somer ∈ Z≥0. With E := Supp( f ), the maximal span
[the period] is determined asp = gcd(E − E) (pairwise differences) as well asp =
gcd(E − {r }) wherer := min(E). For instance sin(z) has period 2, cos(z)+ cosh(z)
has period 4,z3ez5

has period 5, and so on.
In the context of periodicities, a basic property is expressed by what we have

chosen to name figuratively the “Daffodil Lemma”. By virtue of this lemma, the span
of a function f with non-negative coefficients is related to the behaviour of | f (z)| as
z varies along circles centred at the origin (Figure IV.11).

Lemma IV.1 (“Daffodil Lemma”). Let f(z) be analytic in|z| < ρ and have non-
negative coefficients at 0. Assume that f does not reduce to a monomial and that for
somenon-zero non-positive z satisfying|z| < ρ, one has

| f (z)| = f (|z|).
Then, the following hold:(i ) the argument of z must be commensurate to2π , i.e.,
z = Rei θ with θ/(2π) = r

p ∈ Q (an irreducible fraction) and0 < r < p; (i i ) f
admits p as a span.

Proof. This classical lemma is a simple consequence of the strong triangle inequality.
Indeed, for Part(i ) of the statement, withz = Rei θ , the equality| f (z)| = f (|z|)
implies that the complex numbersfn Rneinθ , for n ∈ Supp( f ), all lie on the same ray
(a half-line emanating from 0). This is impossible ifθ/(2π) is irrational, since, by as-
sumption, the expansion off contains at least two monomials (one cannot haven1θ ≡
n2θ (mod 2π)). Thus,θ/(2π) = r/p is a rational number. Regarding Part(i i ), con-
sider two distinct indicesn1 andn2 in Supp( f ) and letθ/(2π) = r/p. Then, by
the strong triangle inequality again, one must have(n1 − n2)θ ≡ 0 (mod 2π); that
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Figure IV.11. Illustration of the “Daffodil Lemma”: the images of circlesz= Rei θ

(R = 0.4 . .0.8) rendered by a polar plot of| f (z)| in the case off (z) = z7ez25 +
z2/(1− z10)), which has span 5.

is, (ni − n j )r/p = (k1 − k2), for somek1, k2 ∈ Z ≥ 0. This is only possible ifp
dividesn1− n2. Hence,p is a span. �

Berstel [53] first realized that rational generating functions arising from regular
languages can only have dominant singularities of the formρω j , whereω is a certain
root of unity. This property in fact extends to many non-recursive specifications, as
shown by Flajolet, Salvy, and Zimmermann in [255].

Proposition IV.3 (Commensurability of dominant directions). LetS be a constructible
labelled class that is non-recursive, in the sense of Theorem IV.8. Assume that the
EGF S(z) has a finite radius of convergenceρ. Then there exists a computable inte-
ger d ≥ 1 such that the set of dominant singularities of S(z) is contained in the set
{ρω j }, whereωd = 1.

Proof. (Sketch; see [53, 255]) By definition, a non-recursive classS is obtained from
1 andZ by means of a finite number of union, product, sequence, set, and cycle
constructions. We have seen earlier, in Section IV. 4 (p. 249), an inductive algorithm
that determines radii of convergence. It is then easy to enrich that algorithm and
determine simultaneously (by induction on the specification) the period of its GF and
the set of dominant directions.

The period is determined by simple rules. For instance, ifS = T ⋆U (S= T ·U )
andT,U are infinite series with respective periodsp,q, one has the implication

Supp(T) ⊆ a+ pZ, Supp(U ) ⊆ b+ qZ H⇒ Supp(S) ⊆ a+ b+ ξZ,
with ξ = gcd(p,q). Similarly, forS = SEQ(T ),

Supp(T) ⊆ a+ pZ H⇒ Supp(S) ⊆ δZ,
where nowδ = gcd(a, p).

Regarding dominant singularities, the case of a sequence construction is typical.
It corresponds tog(z) = (1− f (z))−1. Assume thatf (z) = zah(zp), with p the
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maximal period, and letρ > 0 be such thatf (ρ) = 1. The equations determining
any dominant singularityζ are f (ζ ) = 1, |ζ | = ρ. In particular, the equations imply
| f (ζ )| = f (|ζ |), so that, by the Daffodil Lemma, the argument ofζ must be of the
form 2πr/s. An easy refinement of the argument shows that, forδ = gcd(a, p), all the
dominant directions coincide with the multiples of 2π/δ. The discussion of cycles is
entirely similar since log(1− f )−1 has the same dominant singularities as(1− f )−1.
Finally, for exponentials, it suffices to observe thate f does not modify the singularity
pattern of f , since exp(z) is an entire function. �

� IV.34. Daffodil lemma and unlabelled classes.Proposition IV.3 applies to any unlabelled
classS that admits a non-recursive specification, provided its radius of convergenceρ satisfies
ρ < 1. (Whenρ = 1, there is a possibility of having the unit circle as a natural boundary, a
property that is otherwise decidable from the specification.) The case ofregular specifications
will be investigated in detail in Section V. 3, p. 300. �

Exact formulae. The error terms appearing in the asymptotic expansion of coef-
ficients of meromorphic functions are already exponentially small. By peeling off the
singularities of a meromorphic function layer by layer, in order of increasing modulus,
one is led to extremely precise, sometimes even exact, expansions for the coefficients.
Such exact representations are found for Bernoulli numbersBn, surjection numbers
Rn, as well as Secant numbersE2n and Tangent numbersE2n+1, defined by

(39)





∞∑

n=0

Bn
zn

n!
= z

ez− 1
(Bernoulli numbers)

∞∑

n=0

Rn
zn

n!
= 1

2− ez
(Surjection numbers)

∞∑

n=0

E2n
z2n

(2n)!
= 1

cos(z)
(Secant numbers)

∞∑

n=0

E2n+1
z2n+1

(2n+ 1)!
= tan(z) (Tangent numbers).

Bernoulli numbers.These numbers traditionally writtenBn can be defined by their
EGF B(z) = z/(ez− 1), and they are central to Euler–Maclaurin expansions (p. 726).
The functionB(z) has poles at the pointsχk = 2ikπ , with k ∈ Z\{0}, and the residue
atχk is equal toχk,

z

ez− 1
∼ χk

z− χk
(z→ χk).

The expansion theorem for meromorphic functions is applicable here: start with the
Cauchy integral formula, and proceed as in the proof of Theorem IV.10, using as
external contours a large circle of radiusR that passes half-way between poles. AsR
tends to infinity, the integrand tends to 0 (as soon asn ≥ 2) because the Cauchy kernel
z−n−1 decreases as an inverse power ofR while the EGF remainsO(R). In the limit,
corresponding to an infinitely large contour, the coefficient integral becomes equal to
the sum of all residues of the meromorphic function over the whole of the complex
plane.
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From this argument, we get the representationBn = −n!
∑

k∈Z\{0} χ
−n
k . This

verifies thatBn = 0 if n is odd andn ≥ 3. If n is even, then grouping terms two by
two, we get the exact representation (which also serves as anasymptotic expansion):

(40)
B2n

(2n)!
= (−1)n−121−2nπ−2n

∞∑

k=1

1

k2n
.

Reverting the equality, we have also established that

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
, with ζ(s) =

∞∑

k=1

1

ks
, Bn = n![zn]

z

ez− 1
,

a well-known identity that provides values of the Riemann zeta functionζ(s) at even
integers as rational multiples of powers ofπ .

Surjection numbers.In the same vein, the surjection numbers have EGFR(z) =
(2− ez)−1 with simple poles at

χk = log 2+ 2ikπ where R(z) ∼ 1

2

1

χk − z
.

SinceR(z) stays bounded on circles passing half-way in between poles,we find the
exact formula,Rn = 1

2n!
∑

k∈Z χ
−n−1
k . An equivalent real formulation is

(41)
Rn

n!
= 1

2

(
1

log 2

)n+1

+
∞∑

k=1

cos((n+ 1)θk)

(log2 2+ 4k2π2)(n+1)/2
, θk := arctan(

2kπ

log 2
),

which exhibits infinitely many harmonics of fast decaying amplitude.
� IV.35. Alternating permutations, tangent and secant numbers.The relation (40) also provides
a representation of thetangent numberssinceE2n−1 = (−1)n−1B2n4n(4n − 1)/(2n). The
secant numbersE2n satisfy

∞∑

k=1

(−1)k

(2k+ 1)2n+1
= (π/2)2n+1

2(2n)!
E2n,

which can be read either as providing an asymptotic expansion ofE2n or as an evaluation of the
sums on the left (the values of a DirichletL-function) in terms ofπ . The asymptotic number of
alternating permutations (pp. 5 and 143) is consequently known to great accuracy. �

� IV.36. Solutions to the equationtan(x) = x. Let xn be thenth positive root of the equation
tan(x) = x. For any integerr ≥ 1, the sumS(r ) :=∑n x−2r

n is a computable rational number.
For instance:S2 = 1/10, S4 = 1/350,S6 = 1/7875. [From mathematical folklore.] �

IV. 6.2. Localization of zeros and poles.We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of
poles of meromorphic functions. A detailed treatment of this topic may be found in
Henrici’s book [329, §4.10].

Let f (z) be an analytic function in a region� and letγ be a simple closed curve
interior to�, and on whichf is assumed to have no zeros. We claim that the quantity

(42) N( f ; γ ) = 1

2iπ

∫

γ

f ′(z)
f (z)

dz
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exactly equals the number of zeros off insideγ counted with multiplicity. [Proof:
the function f ′/ f has its poles exactly at the zeros off , and the residue at each poleα
equals the multiplicity ofα as a root off ; the assertion then results from the residue
theorem.]

Since a primitive function (antiderivative) off ′/ f is log f , the integral also
represents the variation of logf along γ , which is written [logf ]γ . This varia-
tion itself reduces to 2iπ times the variation of the argument off along γ , since
log(rei θ ) = logr + i θ and the modulusr has variation equal to 0 along a closed
contour ([logr ]γ = 0). The quantity [θ ]γ is, by its definition, 2π multiplied by
the number of times the transformed contourf (γ ) winds about the origin, a number
known as thewinding number. This observation is known as theArgument Principle:

Argument Principle. The number of zeros of f(z) (counted with multiplic-
ities) inside the simple loopγ equals the winding number of the transformed
contour f(γ ) around the origin.

By the same argument, iff is meromorphic in� ∋ γ , thenN( f ; γ ) equals the differ-
ence between the number of zeros and the number of poles off insideγ , multiplicities
being taken into account. Figure IV.12 exemplifies the use ofthe argument principle
in localizing zeros of a polynomial.

By similar devices, we get Rouché’s theorem:

Rouché’s theorem.Let the functions f(z) and g(z) be analytic in a region
containing in its interior the closed simple curveγ . Assume that f and g
satisfy|g(z)| < | f (z)| on the curveγ . Then f(z) and f(z)+ g(z) have the
same number of zerosinsidethe interior domain delimited byγ .

An intuitive way to visualize Rouch́e’s Theorem is as follows: since|g| < | f |, then
f (γ ) and( f + g)(γ ) must have the same winding number.
� IV.37. Proof of Rouch́e’s theorem.Under the hypothesis of Rouché’s theorem, for 0≤ t ≤ 1,
the functionh(z) = f (z)+ tg(z) is such thatN(h; γ ) is both an integer and an analytic, hence
continuous, function oft in the given range. The conclusion of the theorem follows. �

� IV.38. The Fundamental Theorem of Algebra.Every complex polynomialp(z) of degreen
has exactlyn roots. A proof follows by Rouch́e’s theorem from the fact that, for large enough
|z| = R, the polynomial assumed to be monic is a “perturbation” of its leading term,zn. [Other
proofs can be based on Liouville’s Theorem (Note IV.7, p. 237) or onthe Maximum Modulus
Principle (Theorem VIII.1, p. 545).] �

� IV.39. Symmetric function of the zeros.Let Sk( f ; γ ) be the sum of thekth powers of the
roots of equationf (z) = 0 insideγ . One has

Sk( f ; γ ) = 1

2iπ

∫
f ′(z)
f (z)

zk dz,

by a variant of the proof of the Argument Principle. �

These principles form the basis of numerical algorithms forlocating zeros of an-
alytic functions, in particular the ones closest to the origin, which are of most interest
to us. One can start from an initially large domain and recursively subdivide it until
roots have been isolated with enough precision—the number ofroots in a subdomain
being at each stage determined by numerical integration; see Figure IV.12 and refer
for instance to [151] for a discussion. Such algorithms evenacquire the status of full
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Figure IV.12. The transforms ofγ j = {|z| = 4 j
10} by P4(z) = 1− 2z+ z4, for j =

1, 2, 3, 4, demonstrate, via winding numbers, thatP4(z) has no zero inside|z| < 0.4,
one zero inside|z| < 0.8, two zeros inside|z| < 1.2 and four zeros inside|z| < 1.6.
The actual zeros are atρ4 = 0.54368, 1 and 1.11514± 0.77184i .

proofs if one operates with guaranteed precision routines (using, for instance, careful
implementations of interval arithmetics).

IV. 6.3. Patterns in words: a case study.Analysing the coefficients of a sin-
gle generating function that is rational is a simple task, often even bordering on the
trivial, granted the exponential–polynomial formula for coefficients (Theorem IV.9,
p. 256). However, in analytic combinatorics, we are often confronted with problems
that involve aninfinite familyof functions. In that case, Rouché’s Theorem and the
Argument Principle provide decisive tools for localizing poles, while Theorems IV.3
(Residue Theorem, p. 234) and IV.10 (Expansion of meromorphic functions, p. 258)
serve to determine effective error terms. An illustration of this situation is the analysis
of patterns in words for which GFs have been derived in Chapters I (p. 60) and III
(p. 212).

ExampleIV.11. Patterns in words: asymptotics.All patterns are not born equal. Surprisingly,
in a random sequence of coin tossings, the patternHTT is likely to occur much sooner (after
8 tosses on average) than the patternHHH(needing 14 tosses on average); see the preliminary
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Length(k) types c(z) ρ

k = 3 aab, abb, bba, baa 1 0.61803
aba, bab 1+ z2 0.56984
aaa, bbb 1+ z+ z2 0.54368

k = 4 aaab, aabb, abbb,
bbba, bbaa, baaa 1 0.54368

aaba, abba, abaa,
bbab, baab, babb 1+ z3 0.53568

abab, baba 1+ z2 0.53101
aaaa, bbbb 1+ z+ z2+ z3 0.51879

Figure IV.13. Patterns of length 3, 4: autocorrelation polynomial and dominant
poles ofS(z).

discussion in Example I.12 (p. 59). Questions of this sort are of obvious interest in the statistical
analysis of genetic sequences [414, 603]. Say you discover that a sequence of length 100,000 on
the four lettersA,G,C,T contains the patternTACTACtwice. Can this be assigned to chance
or is this likely to be a meaningful signal of some yet unknown structure? The difficulty here
lies in quantifying precisely where the asymptotic regime starts, since, by Borges’s Theorem
(Note I.35, p. 61), sufficiently long texts will almost certainly contain any fixed pattern. The
analysis of rational generating functions supplemented by Rouché’s theorem provides definite
answers to such questions, under Bernoulli models at least.

We consider here the classW of words over an alphabetA of cardinality m ≥ 2. A
patternp of some lengthk is given. As seen in Chapters I and III, its autocorrelation polynomial
is central to enumeration. This polynomial is defined asc(z) = ∑k−1

j=0 c j z
j , wherec j is 1 if

p coincides with itsj th shifted version and 0 otherwise. We consider here the enumeration of
words containing the patternp at least once, and dually of words excluding the patternp. In
other words, we look at problems such as: What is the probability that a random text of lengthn
does (or does not) contain your name as a block of consecutive letters?

The OGF of the class of words excludingp is, we recall,

(43) S(z) = c(z)

zk + (1−mz)c(z)
.

(Proposition I.4, p. 61), and we shall start with the casem = 2 of a binary alphabet. The func-
tion S(z) is simply a rational function, but the location and nature of its poles is yet unknown.
We only knowa priori that it should have a pole in the positive interval somewhere between1

2
and 1 (by Pringsheim’s Theorem and since its coefficients are in the interval [1, 2n], for n large
enough). Figure IV.13 gives a small list, for patterns of lengthk = 3, 4, of the poleρ of S(z)
that is nearest to the origin. Inspection of the figure suggestsρ to be close to1

2 as soon as the
pattern is long enough. We are going to prove this fact, based on Rouché’s Theorem applied to
the denominator of (43).

As regards termwise domination of coefficients, the autocorrelation polynomial lies be-
tween 1 (for less correlated patterns likeaaa . . .ab) and 1+ z+ · · · + zk−1 (for the special
caseaaa . . .aa). We set aside the special case ofp having only equal letters, i.e., a “maxi-
mal” autocorrelation polynomial—this case is discussed at length in the next chapter. Thus, in
this scenario, the autocorrelation polynomial starts as 1+ zℓ + · · · for someℓ ≥ 2. Fix the
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Figure IV.14. Complex zeros ofz31+ (1− 2z)c(z) represented as joined by a poly-
gonal line: (left) correlated patterna(ba)15; (right) uncorrelated patterna(ab)15.

numberA = 0.6, which proves suitable for our subsequent analysis. On|z| = A, we have

(44) |c(z)| ≥
∣∣∣1− (A2+ A3+ · · · )

∣∣∣ =
∣∣∣∣∣1−

A2

1− A

∣∣∣∣∣ =
1

10
.

In addition, the quantity(1−2z) ranges over the circle of diameter [−0.2, 1.2] asz varies along
|z| = A, so that|1− 2z| ≥ 0.2. All in all, we have found that, for|z| = A,

|(1− 2z)c(z)| ≥ 0.02.

On the other hand, fork > 7, we have|zk| < 0.017 on the circle|z| = A. Then, among
the two terms composing the denominator of (43), the first is strictly dominated by the second
along|z| = A. By virtue of Rouch́e’s Theorem, the number of roots of the denominator inside
|z| ≤ A is then same as the number of roots of(1− 2z)c(z). The latter number is 1 (due to the
root 1

2) sincec(z) cannot be 0 by the argument of (44). Figure IV.14 exemplifies the extremely
well-behaved characters of the complex zeros.

In summary, we have found that for all patterns with at least two different letters (ℓ ≥ 2)
and lengthk ≥ 8, the denominator has a unique root in|z| ≤ A = 0.6. The same property
for lengthsk satisfying 4≤ k ≤ 7 is then easily verified directly. The caseℓ = 1 where we
are dealing with long runs of identical letters can be subjected to an entirely similar argument
(see also Example V.4, p. 308, for details). Therefore, unicity of a simple poleρ of S(z) in the
interval(0.5, 0.6) is granted, for a binary alphabet.

It is then a simple matter to determine the local expansion ofS(z) nearz= ρ,

S(z) ∼
z→ρ

3̃

ρ − z
, 3̃ := c(ρ)

2c(ρ)− (1− 2ρ)c′(ρ)− kρk−1
,

from which a precise estimate for coefficients results from Theorems IV.9 (p. 256) and IV.10
(p. 258).

The computation finally extends almost verbatim to non-binary alphabets, with ρ being
now close to 1/m. It suffices to use the disc of radiusA = 1.2/m. The Rouch́e part of the
argument grants us unicity of the dominant pole in the interval(1/m, A) for k ≥ 5 when
m= 3, and fork ≥ 4 and anym≥ 4. (The remaining cases are easily checked individually.)
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Proposition IV.4. Consider an m–ary alphabet. Letp be a fixed pattern of length k≥ 4, with
autocorrelation polynomial c(z). Then the probability that a random word of length n does not
containp as a pattern (a block of consecutive letters) satisfies

(45) PWn(p does not occur) = 3p(mρ)
−n−1+ O

((
5

6

)n)
,

whereρ ≡ ρp is the unique root in( 1
m,

6
5m) of the equation zk + (1 − mz)c(z) = 0 and

3p := mc(ρ)/(mc(ρ)− c′(ρ)(1−mρ)− kρk−1).

Despite their austere appearance, these formulae have indeed a fairly concrete content.
First, the equation satisfied byρ can be put under the formmz = 1 + zk/c(z), and, since
ρ is close to 1/m, we may expect the approximation (remember the use of “≈” as meaning
“numerically approximately equal”, butnot implying strict asymptotic equivalence)

mρ ≈ 1+ 1

γmk
,

whereγ := c(m−1) satisfies 1≤ γ < m/(m− 1). By similar principles, the probabilities
in (45) are approximately

PWn(p does not occur) ≈
(

1+ 1

γmk

)−n
≈ e−n/(γmk).

For a binary alphabet, this tells us that the occurrence of a pattern of lengthk starts becoming
likely whenn is of the order of 2k, that is, whenk is of the order of log2 n. The more precise
moment when this happens must depend (viaγ ) on the autocorrelation of the pattern, with
strongly correlated patterns having a tendency to occur a little late. (This vastly generalizes our
empirical observations of Chapter I.) However, the mean number of occurrences of a pattern in
a text of lengthn does not depend on the shape of the pattern. The apparent paradox iseasily
resolved, as we already observed in Chapter I: correlated patterns tend to occur late, while
being prone to appear in clusters. For instance, the “late” patternaaa , when it occurs, still has
probability 1

2 to occur at the next position as well and cash in another occurrence; in contrast no
such possibility is available to the “early” uncorrelated patternaab , whose occurrences must
be somewhat spread out.

Such analyses are important as they can be used to develop a precise understanding of
the behaviour of data compression algorithms (the Lempel–Ziv scheme); see Julien Fayolle’s
contribution [204] for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

� IV.40. Multiple pattern occurrences.A similar analysis applies to the generating func-
tion S〈s〉(z) of words containing a fixed numbers of occurrences of a patternp. The OGF
is obtained by expanding (with respect tou) the BGFW(z,u) obtained in Chapter III, p. 212,
by means of an inclusion–exclusion argument. Fors ≥ 1, one finds

S〈s〉(z) = zk N(z)s−1

D(z)s+1
, D(z) = zk + (1−mz)c(z), N(z) = zk + (1−mz)(c(z)− 1)),

which now has a pole of multiplicitys+ 1 atz= ρ. �

� IV.41. Patterns in Bernoulli sequences—asymptotics.Similar results hold when letters are
assigned non-uniform probabilities,p j = P(a j ), for a j ∈ A. The weighted autocorrelation
polynomial is then defined by protrusions, as in Note III.39 (p. 213). Multiple pattern occur-
rences can be also analysed. �
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IV. 7. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have
been dealing with functions that are given by explicit expressions. Such situations
essentially cover non-recursive structures as well as the very simplest recursive ones,
such as Catalan or Motzkin trees, whose generating functions are expressible in terms
of radicals. In fact, as we shall see extensively in this book, complex analytic methods
are instrumental in analysing coefficients of functionsimplicitly specified by func-
tional equations. In other words:the nature of a functional equation can often provide
information regarding the singularities of its solution. Chapter V will illustrate this
philosophy in the case of rational functions defined by systems of positive equations;
a very large number of examples will then be given in ChaptersVI and VII, where
singularities that are much more general than poles are treated.

In this section, we discuss three representative functional equations,

f (z) = zef (z), f (z) = z+ f (z2+ z3), f (z) = 1

1− z f(z2)
,

associated, respectively, to Cayley trees, balanced 2–3 trees, and Ṕolya’s alcohols.
These illustrate the use of fundamental inversion or iteration properties for locating
dominant singularities and derive exponential growth estimates of coefficients.

IV. 7.1. Inverse functions. We start with a generic problem already introduced
on p. 249: given a functionψ analytic at a pointy0 with z0 = ψ(y0) what can be said
about its inverse, namely the solution(s) to the equationψ(y) = z whenz is nearz0
andy neary0?

Let us examine what happens whenψ ′(y0) 6= 0, first without paying attention to
analytic rigour. One has locally (“≈” means as usual “approximately equal”)

(46) ψ(y) ≈ ψ(y0)+ ψ ′(y0)(y− y0),

so that the equationψ(y) = z should admit, forz nearz0, a solution satisfying

(47) y ≈ y0+
1

ψ ′(y0)
(z− z0).

If this is granted, the solution being locally linear, it is differentiable, hence analytic.
The Analytic Inversion Lemma10 provides a firm foundation for such calculations.

Lemma IV.2 (Analytic Inversion). Let ψ(z) be analytic at y0, with ψ(y0) = z0.
Assume thatψ ′(y0) 6= 0. Then, for z in some small neighbourhood�0 of z0, there
exists an analytic function y(z) that solves the equationψ(y) = z and is such that
y(z0) = y0.

Proof. (Sketch) The proof involves ideas analogous to those used to establish Rouch́e’s
Theorem and the Argument Principle (see especially the argument justifying Equa-
tion (42), p. 269). As a preliminary step, define the integrals (j ∈ Z≥0)

(48) σ j (z) := 1

2iπ

∫

γ

ψ ′(y)
ψ(y)− z

y j dy,

10A more general statement and several proof techniques are alsodiscussed in Appendix B.5:Implicit
Function Theorem, p. 753.
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whereγ is a small enough circle centred aty0 in the y-plane.
First considerσ0. This function satisfiesσ0(z0) = 1 [by the Residue Theorem]

and is a continuous function ofz whose value can only be an integer, this value being
the number of roots of the equationψ(y) = z. Thus, forz close enough toz0, one
must haveσ0(z) ≡ 1. In other words, the equationψ(y) = z has exactly one solution,
the functionψ is locally invertible and a solutiony = y(z) that satisfiesy(z0) = y0 is
well-defined.

Next examineσ1. By the Residue Theorem once more, the integral definingσ1(z)
is the sum of the roots of the equationψ(y) = z that lie insideγ , that is, in our case,
the value ofy(z) itself. (This is also a particular case of Note IV.39, p. 270.) Thus,
one hasσ1(z) ≡ y(z). Since the integral definingσ1(z) depends analytically onz for
z close enough toz0, analyticity ofy(z) results. �

� IV.42. Details. Let ψ be analytic in an open discD centred aty0. Then, there exists a
small circleγ centred aty0 and contained inD such thatψ(y) 6= y0 on γ . [Zeros of analytic
functions are isolated, a fact that results from the definition of an analytic expansion]. The
integralsσ j (z) are thus well defined forz restricted to be close enough toz0, which ensures
that there exists aδ > 0 such that|ψ(y) − z| > δ for all y ∈ γ . One can then expand the
integrand as a power series in(z− z0), integrate the expansion termwise, and form in this way
the analytic expansions ofσ0, σ1 at z0. (This line of proof follows [334, I, §9.4].) �

� IV.43. Inversion and majorant series.The process corresponding to (46) and (47) can be
transformed into a sound proof: first derive a formal power seriessolution, then verify that the
formal solution is locally convergent using the method of majorant series(p. 250). �

The Analytic Inversion Lemma states the following:An analytic function locally
admits an analytic inverse near any point where its first derivative is non-zero.How-
ever, as we see next, a function cannot be analytically inverted in a neighbourhood of
a point where its first derivative vanishes.

Consider now a functionψ(y) such thatψ ′(y0) = 0 butψ ′′(y0) 6= 0, then, by the
Taylor expansion ofψ , one expects

(49) ψ(y) ≈ ψ(y0)+
1

2
(y− y0)

2ψ ′′(y0).

Solving formally fory now indicates alocally quadraticdependency

(y− y0)
2 ≈ 2

ψ ′′(y0)
(z− z0),

and the inversion problem admitstwo solutions satisfying

(50) y ≈ y0±
√

2

ψ ′′(y0)

√
z− z0.

What this informal argument suggests is that the solutions have a singularity atz0, and,
in order for them to be suitably specified, one must somehow restrict their domain of
definition: the case of

√
z (the root(s) ofy2− z= 0) discussed on p. 230 is typical.

Given some pointz0 and a neighbourhood� of z0, theslit neighbourhoodalong
directionθ is the set

�\θ :=
{
z ∈ �

∣∣ arg(z− z0) 6≡ θ mod 2π, z 6= z0
}
.

We state:
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Lemma IV.3 (Singular Inversion). Let ψ(y) be analytic at y0, with ψ(y0) = z0.
Assume thatψ ′(y0) = 0 andψ ′′(y0) 6= 0. There exists a small neighbourhood�0
of z0 such that the following holds: for any fixed directionθ , there exist two functions,
y1(z) and y2(z) defined on�\θ0 that satisfyψ(y(z)) = z; each is analytic in�\θ0 , has
a singularity at the point z0, and satisfieslimz→z0 y(z) = y0.

Proof. (Sketch) Define the functionsσ j (z) as in the proof of the previous lemma,
Equation (48). One now hasσ0(z) = 2, that is, the equationψ(y) = z possessestwo
roots neary0, whenz is nearz0. In other wordsψ effects a double covering of a small
neighbourhood� of y0 onto the image neighbourhood�0 = ψ(�) ∋ z0. By possibly
restricting�, we may furthermore assume thatψ ′(y) only vanishes aty0 in � (zeros
of analytic functions are isolated) and that� is simply connected.

Fix any directionθ and consider the slit neighbourhood�\θ0 . Fix a pointζ in
this slit domain; it has two preimages,η1, η2 ∈ �. Pick up the one namedη1. Since
ψ ′(η1) is non-zero, the Analytic Inversion Lemma applies: there isa local analytic
inversey1(z) of ψ . This y1(z) can then be uniquely continued11 to the whole of�\θ0 ,
and similarly fory2(z). We have thus obtained twodistinctanalytic inverses.

Assumea contrario that y1(z) can be analytically continued atz0. It would then
admit a local expansion

y1(z) =
∑

n≥0

cn(z− z0)
n,

while satisfyingψ(y1(z)) = z. But then, composing the expansions ofψ andy would
entail

ψ(y1(z)) = z0+ O
(
(z− z0)

2
)

(z→ z0),

which cannot coincide with the identity function (z). A contradiction has been reached.
The pointz0 is thus a singular point fory1 (as well as fory2). �

� IV.44. Singular inversion and majorant series.In a way that parallels Note IV.43, the process
summarized by Equations (49) and (50) can be justified by the method of majorant series, which
leads to an alternative proof of the Singular Inversion Lemma. �

� IV.45. Higher order branch points.If all derivatives ofψ till order r − 1 inclusive vanish
at y0, there arer inverses,y1(z), . . . , yr (z), defined over a slit neighbourhood ofz0. �

Tree enumeration.We can now consider the problem of obtaining information
on the coefficients of a functiony(z) defined by an implicit equation

(51) y(z) = zφ(y(z)),

whenφ(u) is analytic atu = 0. In order for the problem to be well-posed (i.e.,
algebraically, in terms of formal power series, as well as analytically, near the origin,
there should be a unique solution fory(z)), we assume thatφ(0) 6= 0. Equation (51)
may then be rephrased as

(52) ψ(y(z)) = z where ψ(u) = u

φ(u)
,

11The fact of slitting�0 makes the resulting domain simply connected, so that analytic continuation
becomes uniquely defined. In contrast, the punctured domain�0 \ {z0} is not simply connected, so that the
argument cannot be applied to it. As a matter of fact,y1(z) gets continued toy2(z), when the ray of angleθ
is crossed: the pointz0 where two determinations meet is abranch point.
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Figure IV.15. Singularities of inverse functions:φ(u) = eu (left); ψ(u) = u/φ(u)
(centre);y = Inv(ψ) (right).

so that it is in fact an instance of the inversion problem for analytic functions.
Equation (51) occurs in the counting of various types of trees, as seen in Subsec-

tions I. 5.1 (p. 65), II. 5.1 (p. 126), and III. 6.2 (p. 193). A typical case isφ(u) = eu,
which corresponds to labelled non-plane trees (Cayley trees). The functionφ(u) =
(1+u)2 is associated to unlabelled plane binary trees andφ(u) = 1+u+u2 to unary–
binary trees (Motzkin trees). A full analysis was developedby Meir and Moon [435],
themselves elaborating on earlier ideas of Pólya [488, 491] and Otter [466]. In all
these cases, the exponential growth rate of the number of trees can be automatically
determined.

Proposition IV.5. Let φ be a function analytic at 0, having non-negative Taylor co-
efficients, and such thatφ(0) 6= 0. Let R≤ +∞ be the radius of convergence of the
series representingφ at 0. Under the condition,

(53) lim
x→R−

xφ′(x)
φ(x)

> 1,

there exists a unique solutionτ ∈ (0, R) of thecharacteristic equation,

(54)
τφ′(τ )
φ(τ)

= 1.

Then, the formal solution y(z) of the equation y(z) = zφ(y(z)) is analytic at 0 and
its coefficients satisfy the exponential growth formula:

[zn] y(z) ⊲⊳
(

1

ρ

)n

where ρ = τ

φ(τ)
= 1

φ′(τ )
.

Note that condition (53) is automatically realized as soon as φ(R−) = +∞, which
covers our earlier examples as well as all the cases whereφ is an entire function (e.g.,
a polynomial). Figure IV.15 displays graphs of functions onthe real line associated to
a typical inversion problem, that of Cayley trees, whereφ(u) = eu.

Proof. By Note IV.46 below, the functionxφ′(x)/φ(x) is an increasing function ofx
for x ∈ (0, R). Condition (53) thus guarantees the existence and unicity of a solution
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Type φ(u) (R) τ ρ yn ⊲⊳ ρ−n

binary tree (1+ u)2 (∞) 1 1
4 yn ⊲⊳ 4n (p. 67)

Motzkin tree 1+ u+ u2 (∞) 1 1
3 yn ⊲⊳ 3n (p. 68)

gen. Catalan tree
1

1− u
(1) 1

2
1
4 yn ⊲⊳ 4n (p. 65)

Cayley tree eu (∞) 1 e−1 yn ⊲⊳ en (p. 128)

Figure IV.16. Exponential growth for classical tree families.

of the characteristic equation. (Alternatively, rewrite the characteristic equation as
φ0 = φ2τ

2+ 2φ3τ
3+ · · · , where the right side is clearly an increasing function.)

Next, we observe that the equationy = zφ(y) admits a unique formal power se-
ries solution, which furthermore has non-negative coefficients. (This solution can for
instance be built by the method of indeterminate coefficients.) The Analytic Inversion
Lemma (Lemma IV.2) then implies that this formal solution represents a function,
y(z), that is analytic at 0, where it satisfiesy(0) = 0.

Now comes the hunt for singularities and, by Pringsheim’s Theorem, one may
restrict attention to the positive real axis. Letr ≤ +∞ be the radius of convergence
of y(z) at 0 and sety(r ) := limx→r− y(x), which is well defined (although possibly
infinite), given positivity of coefficients. Our goal is to prove thaty(r ) = τ .

— Assumea contrario that y(r ) < τ . One would then haveψ ′(y(r )) 6= 0. By
the Analytic Inversion Lemma,y(z) would be analytic atr , a contradiction.

— Assumea contrario that y(r ) > τ . There would then existr ∗ ∈ (0, r ) such
thatψ ′(y(r ∗)) = 0. But theny would be singular atr ∗, by the Singular
Inversion Lemma, also a contradiction.

Thus, one hasy(r ) = τ , which is finite. Finally, sincey andψ are inverse functions,
one must have

r = ψ(τ) = τ/φ(τ) = ρ,
by continuity asx→ r−, which completes the proof. �

Proposition IV.5 thus yields analgorithm that produces the exponential growth
rate associated to tree functions. This rate is itself invariably a computable number
as soon asφ is computable (i.e., its sequence of coefficients is computable). This
computability result complements Theorem IV.8 (p. 251), which is relative to non-
recursive structures only.

As an example of application of Proposition IV.5, general Catalan trees corres-
pond toφ(y) = (1− y)−1, whose radius of convergence isR= 1. The characteristic
equation isτ/(1− τ) = 1, which impliesτ = 1/2 andρ = 1/4. We obtain (not a
surprise!) yn ⊲⊳ 4n, a weak asymptotic formula for the Catalan numbers. Similarly,
for Cayley trees,φ(u) = eu and R = +∞. The characteristic equation reduces to
(τ − 1)eτ = 0, so thatτ = 1 andρ = e−1, giving a weak form of Stirling’s formula:
[zn]y(z) = nn−1/n! ⊲⊳ en. Figure IV.16 summarizes the application of the method to
a few already encountered tree families.
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As our previous discussion suggests, the dominant singularity of tree generating
functions is, under mild conditions, of the square-root type. Such a singular behaviour
can then be analysed by the methods of Chapter VI: the coefficients admit an asymp-
totic form

[zn] y(z) ∼ C · ρ−nn−3/2,

with a subexponential factor of the formn−3/2; see Section VI. 7, p. 402.

� IV.46. Convexity of GFs, Boltzmann models, and the Variance Lemma.Let φ(z) be a
non-constant analytic function with non-negative coefficients and a non-zero radius of con-
vergenceR, such thatφ(0) 6= 0. For x ∈ (0, R) a parameter, define theBoltzmann random
variable4 (of parameterx) by the property

(55) P(4 = n) = φnxn

φ(x)
, with E(s4) = φ(sx)

φ(x)

the probability generating function of4. By differentiation, the first two moments of4 are

E(4) = xφ′(x)
φ(x)

, E(42) = x2φ′′(x)
φ(x)

+ xφ′(x)
φ(x)

.

There results, for any non-constant GFφ, the general convexity inequality valid for 0< x < R:

(56)
d

dx

(
xφ′(x)
φ(x)

)
> 0,

due to the fact that the variance of a non-degenerate random variable isalways positive. Equiv-
alently, the function log(φ(et )) is convex fort ∈ (−∞, log R). (In statistical physics, a Boltz-
mann model (of parameterx) corresponds to a class8 (with OGF φ) from which elements
are drawn according to the size distribution (55). An alternative derivation of (56) is given in
Note VIII.4, p. 550.) �

� IV.47. A variant form of the inversion problem.Consider the equationy = z+φ(y), whereφ
is assumed to have non-negative coefficients and be entire, withφ(u) = O(u2) at u = 0. This
corresponds to a simple variety of trees in which trees are counted by the number of their leaves
only. For instance, we have already encountered labelled hierarchies (phylogenetic trees in
Section II. 5, p. 128) corresponding toφ(u) = eu−1−u, which gives rise to one of “Schröder’s
problems”. Letτ be the root ofφ′(τ ) = 1 and setρ = τ − φ(τ). Then, [zn]y(z) ⊲⊳ ρ−n. For
the EGFL of labelled hierarchies (L = z+ eL − 1− L), this givesLn/n! ⊲⊳ (2 log 2− 1)−n.
(Observe that Lagrange inversion also provides [zn]y(z) = 1

n [wn−1](1− y−1φ(y))−n.) �

IV. 7.2. Iteration. The study of iteration of analytic functions was launched by
Fatou and Julia in the first half of the twentieth century. Ourreader is certainly aware
of the beautiful images associated with the name of Mandelbrot whose works have
triggered renewed interest in these questions, now classified as belonging to the field
of “complex dynamics” [31, 156, 443, 473]. In particular, the sets that appear in this
context are often of a fractal nature. Mathematical objectsof this sort are occasionally
encountered in analytic combinatorics. We present here thefirst steps of a classic
analysis of balanced trees published by Odlyzko [459] in 1982.

ExampleIV.12. Balanced trees.Consider the classE of balanced 2–3 treesdefined as trees
whose node degrees are restricted to the set{0, 2, 3}, with the additional property that all leaves
are at the same distance from the root (Note I.67, p. 91). We adopt asnotion of size the number
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Figure IV.17. The iterates of a pointx0 ∈ (0, 1
ϕ ), herex0 = 0.6, byσ(z) = z2+ z3

converge fast to 0.

of leaves (also called external nodes), the list of all 4 trees of size 8 being:

Given an existing tree, a new tree is obtained by substituting in all possible ways to each external
node (2) either a pair(2,2) or a triple(2,2,2), and symbolically, one has

E [2] = 2+ E

[
2→ (22+222)

]
.

In accordance with the specification, the OGF ofE satisfies the functional equation

(57) E(z) = z+ E(z2+ z3),

corresponding to the seemingly innocuous recurrence

En =
n∑

k=0

(
k

n− 2k

)
Ek with E0 = 0, E1 = 1.

Let σ(z) = z2 + z3. Equation (57) can be expanded by iteration in the ring of formal
power series,

(58) E(z) = z+ σ(z)+ σ [2](z)+ σ [3](z)+ · · · ,
whereσ [ j ](z) denotes thej th iterate of the polynomialσ : σ [0](z) = z, σ [h+1](z) = σ [h](σ (z)) =
σ(σ [h](z)). Thus,E(z) is nothing but the sum of all iterates ofσ . The problem is to determine
the radius of convergence ofE(z), and, by Pringsheim’s theorem, the quest for dominant sin-
gularities can be limited to the positive real line.

For z> 0, the polynomialσ(z) has a unique fixed point,ρ = σ(ρ), at

ρ = 1

ϕ
where ϕ = 1+

√
5

2

is the golden ratio. Also, for any positivex satisfyingx < ρ, the iteratesσ [ j ](x) do converge
to 0; see Figure IV.17. Furthermore, sinceσ(z) ∼ z2 near 0, these iterates converge to 0 doubly
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Figure IV.18. Left: the fractal domain of analyticity ofE(z) (inner domain in white
and gray, with lighter areas representing slower convergence of the iterates ofσ )
and its circle of convergence. Right: the ratioEn/(ϕ

nn−1) plotted against logn for
n = 1 . .500 confirms thatEn ⊲⊳ ϕn and illustrates the periodic fluctuations of (60).

exponentially fast (Note IV.48). By the triangle inequality, we have|σ(z)| ≤ σ(|z|), so that the
sum in (58) is a normally converging sum of analytic functions, and is thus itself analytic for
|z| < ρ. Consequently,E(z) is analytic in the whole of the open disc|z| < ρ.

It remains to prove that the radius of convergence ofE(z) is exactly equal toρ. To that
purpose it suffices to observe thatE(z), as given by (58), satisfies

E(x)→+∞ as x→ ρ−.

Let N be an arbitrarily large but fixed integer. It is possible to select a positivexN sufficiently
close toρ with xN < ρ, such that theNth iterateσ [N](xN) is larger than1

2 (the function

σ [N](x) admitsρ as a fixed point and it is continuous and increasing atρ). Given the sum
expression (58), this entails the lower boundE(xN) >

N
2 for such anxN < ρ. ThusE(x) is

unbounded asx→ ρ− andρ is a singularity.
The dominant positive real singularity ofE(z) is thusρ = ϕ−1, and the Exponential

Growth Formula gives the following estimate.

Proposition IV.6. The number of balanced 2–3 trees satisfies:

(59) [zn] E(z) ⊲⊳
(

1+
√

5

2

)n

.

It is notable that this estimate could be established so simply by a purely qualitative exam-
ination of the basic functional equation and of a fixed point of the associated iteration scheme.

The complete asymptotic analysis of theEn requires the full power of singularity analysis
methods to be developed in Chapter VI. Equation (60) below states the end result, which in-
volves fluctuations that are clearly visible on Figure IV.18 (right). Thereis overconvergence of
the representation (58), that is, convergence in certain domains beyond the disc of convergence
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of E(z). Figure IV.18 (left) displays the domain of analyticity ofE(z) and reveals its fractal
nature (compare with Figure VII.23, p. 536). . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� IV.48. Quadratic convergence.First, for x ∈ [0, 1
2 ], one hasσ(x) ≤ 3

2x2, so thatσ [ j ](x) ≤
(3/2)2

j−1 x2 j
. Second, forx ∈ [0, A], whereA is any number< ρ, there is a numberkA such

that σ [kA](x) < 1
2 , so thatσ [k](x) ≤ (3/2) (3/4)2

k−kA
. Thus, for anyA < ρ, the series of

iterates ofσ is quadratically convergent whenz ∈ [0, A]. �

� IV.49. The asymptotic number of 2–3 trees.This analysis is from [459, 461]. The number of
2–3 trees satisfies asymptotically

(60) En =
ϕn

n
�(logn)+ O

(
ϕn

n2

)
,

where� is a periodic function with mean value(ϕ log(4−ϕ))−1 .= 0.71208 and period log(4−
ϕ)

.= 0.86792. Thus oscillations are inherent inEn; see Figure IV.18 (right). �

IV. 7.3. Complete asymptotics of a functional equation.George Ṕolya (1887–
1985) is mostly remembered by combinatorialists for being at the origin of Ṕolya
theory, a branch of combinatorics that deals with the enumeration of objects invariant
under symmetry groups. However, in his classic article [488, 491] which founded
this theory, Ṕolya discovered at the same time a number of startling applications of
complex analysis to asymptotic enumeration12. We detail one of these now.

ExampleIV.13. Pólya’s alcohols.The combinatorial problem of interest here is the determi-
nation of the numberMn of chemical isomeres of alcoholsCnH2n+1O H without asymmetric
carbon atoms. The OGFM(z) =∑n Mnzn that starts as (EISA000621)

(61) M(z) = 1+ z+ z2+ 2z3+ 3z4+ 5z5+ 8z6+ 14z7+ 23z8+ 39z9+ · · · ,
is accessible through a functional equation,

(62) M(z) = 1

1− zM(z2)
.

which we adopt as our starting point. Iteration of the functional equation leads to a continued
fraction representation,

M(z) = 1

1− z

1− z2

1− z4

. . .

,

from which Ṕolya found:

Proposition IV.7. Let M(z) be the solution analytic around 0 of the functional equation

M(z) = 1

1− zM(z2)
.

Then, there exist constants K ,β, and B> 1, such that

Mn = K · βn (1+ O(B−n)
)
, β

.= 1.68136 75244, K
.= 0.36071 40971.

12In many ways, Ṕolya can be regarded as the grandfather of the field of analytic combinatorics.
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We offer two proofs. The first one is based on direct consideration ofthe functional equa-
tion and is of a fair degree of applicability. The second one, following Pólya, makes explicit a
special linear structure present in the problem. As suggested by the mainestimate, the dominant
singularity ofM(z) is a simple pole.

First proof. By positivity of the functional equation,M(z) dominates coefficientwise any
GF (1− zM<m(z2))−1, whereM<m(z) :=∑0≤ j<m Mnzn is themth truncation ofM(z). In

particular, one has the domination relation (useM<2(z) = 1+ z)

M(z) � 1

1− z− z3
.

Since the rational fraction has its dominant pole atz
.= 0.68232, this implies that the radiusρ

of convergence ofM(z) satisfiesρ < 0.69. In the other direction, sinceM(z2) < M(z)
for z ∈ (0, ρ), then, one has the numerical inequality

M(z) ≤ 1

1− zM(z)
, 0≤ z< ρ.

This can be used to show (Note IV.50) that the Catalan generating functionC(z) = (1 −√
1− 4z)/(2z) is a majorant ofM(z) on the interval(0, 1

4), which implies thatM(z) is well

defined and analytic forz ∈ (0, 1
4). In other words, one has14 ≤ ρ < 0.69. Altogether, the

radius of convergence ofM lies strictly between 0 and 1.

� IV.50. Alcohols, trees, and bootstrapping.SinceM(z) starts as 1+ z+ z2 + · · · while
C(z) starts as 1+ z+ 2z2 + · · · , there is a small interval(0, ǫ) such thatM(z) ≤ C(z). By
the functional equation ofM(z), one hasM(z) ≤ C(z) for z in the larger interval(0,

√
ǫ).

Bootstrapping then shows thatM(z) ≤ C(z) for z ∈ (0, 1
4). �

Next, asz→ ρ−, one must havezM(z2)→ 1. (Indeed, if this was not the case, we would
havezM(z2) < A < 1 for someA. But then, sinceρ2 < ρ, the quantity(1−zM(z2))−1 would
be analytic atz= ρ, a clear contradiction.) Thus,ρ is determined implicitly by the equation

ρM(ρ2) = 1, 0< ρ < 1.

One can then estimateρ numerically (Note IV.51), and the stated value ofβ = 1/ρ follows.
(Pólya determinedρ to five decimals by hand!)

The previous discussion also implies thatρ is a pole ofM(z), which must be simple (since

∂z(zM(z2)
∣∣∣
z=ρ

> 0). Thus

(63) M(z) ∼
z→ρ K

1

1− z/ρ
, K := 1

ρM(ρ2)+ 2ρ3M ′(ρ2)
.

The argument shows at the same time thatM(z) is meromorphic in|z| < √ρ .= 0.77. That
ρ is the only pole ofM(z) on |z| = ρ results from the fact thatzM(z2) = z+ z3 + · · · can
be subjected to the type of argument encountered in the context of the Daffodil Lemma (see
the discussion of quasi-inverses in the proof of Proposition IV.3, p. 267). The translation of the
singular expansion (63) then yields the statement.

� IV.51. The growth constant of molecules.The quantityρ can be obtained as the limit of
the ρm satisfying

∑m
n=0 Mnρ

2n+1
m = 1, together withρ ∈ [ 1

4,0.69]. In each case, only a
few of the Mn (provided by the functional equation) are needed. One obtains:ρ10

.= 0.595,
ρ20

.= 0.594756,ρ30
.= 0.59475397,ρ40

.= 0.594753964. This algorithms constitutes a
geometrically convergent scheme with limitρ

.= 0.59475 39639. �
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Second proof.First, a sequence of formal approximants follows from (62) starting with

1,
1

1− z
,

1

1− z

1− z2

= 1− z2

1− z− z2
,

1

1− z

1− z2

1− z4

= 1− z2− z4

1− z− z2− z4+ z5
,

which permits us to compute any number of terms of the seriesM(z). Closer examination
of (62) suggests to set

M(z) = ψ(z2)

ψ(z)
,

whereψ(z) = 1− z− z2− z4+ z5− z8+ z9+ z10− z16+ · · · . Back substitution into (62)
yields

ψ(z2)

ψ(z)
= 1

1− zψ(z
4)

ψ(z2)

or
ψ(z2)

ψ(z)
= ψ(z2)

ψ(z2)− zψ(z4)
,

which showsψ(z) to be a solution of the functional equation

ψ(z) = ψ(z2)− zψ(z4), ψ(0) = 1.

The coefficients ofψ satisfy the recurrence

ψ4n = ψ2n, ψ4n+1 = −ψn, ψ4n+2 = ψ2n+1, ψ4n+3 = 0,

which implies that their values are all contained in the set{0,−1,+1}.
Thus,M(z) appears to be the quotient of two function,ψ(z2)/ψ(z), each analytic in the

unit disc, andM(z) is meromorphic in the unit disc. A numerical evaluation then shows that
ψ(z) has its smallest positive real zero atρ

.= 0.59475, which is a simple root. The quantityρ
is thus a pole ofM(z) (since, numerically,ψ(ρ2) 6= 0). Thus

M(z) ∼ ψ(ρ2)

(z− ρ)ψ ′(ρ) H⇒ Mn ∼ −
ψ(ρ2)

ρψ ′(ρ)

(
1

ρ

)n
.

Numerical computations then yield Pólya’s estimate. Et voilà! . . . . . . . . . . . . . . . . . . . . . . . . . .�

The example of Ṕolya’s alcohols is exemplary, both from a historical point of
view and from a methodological perspective. As the first proof of Proposition IV.7
demonstrates, quite a lot of information can be pulled out ofa functional equation
without solving it. (A similar situation will be encountered in relation to coin foun-
tains, Example V.9, p. 330.) Here, we have made great use of the fact that if f (z) is
analytic in|z| < r and somea priori bounds imply the strict inequalities 0< r < 1,
then one can regard functions likef (z2), f (z3), and so on, as “known” since they are
analytic in the disc of convergence off and even beyond, a situation also evocative of
our earlier discussion of Ṕolya operators in Section IV. 4, p. 249. Globally, the lesson
is that functional equations, even complicated ones, can beused to bootstrap the local
singular behaviour of solutions, and one can often do so evenin the absence of any
explicit generating function solution. The transition from singularities to coefficient
asymptotics is then a simple jump.
� IV.52. An arithmetic exercise.The coefficientsψn = [zn]ψ(z) can be characterized simply
in terms of the binary representation ofn. Find the asymptotic proportion of theψn for n ∈
[1 . .2N ] that assume each of the values 0,+1, and−1. �
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IV. 8. Perspective

In this chapter, we have started examining generating functions under a new light.
Instead of being merelyformal algebraicobjects—power series—that encodeex-
actly counting sequences, generating functions can be regarded as analyticobjects—
transformations of the complex plane—whose singularities provide a wealth of infor-
mation concerningasymptoticproperties of structures.

Singularities provide a royal road to coefficient asymptotics. We could treat here,
with a relatively simple apparatus, singularities that arepoles. In this perspective, the
two main statements of this chapter are the theorems relative to the expansion of ra-
tional and meromorphic functions, (Theorems IV.9, p. 256, and IV.10, p. 258). These
are classical results of analysis. Issai Schur (1875–1941)is to be counted among the
very first mathematicians who recognized their rôle in combinatorial enumerations
(denumerants, Example IV.6, p. 257). The complex analytic thread was developed
much further by George Ṕolya in his famous paper of 1937 (see [488, 491]), which
Read in [491, p. 96] describes as a “landmark in the history ofcombinatorial analy-
sis”. There, Ṕolya laid the groundwork of combinatorial chemistry, the enumeration
of objects under group actions, and, last but not least, the complex asymptotic theory
of graphs and trees. Thanks to complex analytic methods, many combinatorial classes
amenable to symbolic descriptions can be thoroughly analysed, with regard to their
asymptotic properties, by means of a selected collection ofbasic theorems of complex
analysis. The case of structures such as balanced trees and molecules, where only a
functional equation of sorts is available, is exemplary.

The present chapter then serves as the foundation stone of a rich theory to be de-
veloped in future chapters. Chapter V will elaborate on the analysis of rational and
meromorphic functions, and present a coherent theory of paths in graphs, automata,
and transfer matrices in the perspective of analytic combinatorics. Next, the method
of singularity analysis developed in Chapter VI considerably extends the range of ap-
plicability of the Second Principle to functions having singularities appreciably more
complicated that poles (e.g., those involving fractional powers, logarithms, iterated
logarithms, and so on). Applications will be given to recursive structures, including
many types of trees, in Chapter VII. Chapter VIII, dedicatedto saddle-point methods
will then complete the picture of univariate asymptotics byproviding a unified treat-
ment of counting GFs that are either entire functions (hence, have no singularity at a
finite distance) or manifest a violent growth at their singularities (hence, fall outside
of the scope of meromorphic or singularity-analysis asymptotics). Finally, in Chap-
ter IX, the corresponding perturbative methods will be put to use in order to distil limit
laws for parameters of combinatorial structures.

Bibliographic notes. This chapter has been designed to serve as a refresher of basic com-
plex analysis, with special emphasis on methods relevant for analytic combinatorics. See Fig-
ure IV.19 for a concise summary of results. References most useful for the discussion given
here include the books of Titchmarsh [577] (oriented towards classicalanalysis), Whittaker and
Watson [604] (stressing special functions), Dieudonné [165], Hille [334], and Knopp [373].
Henrici [329] presents complex analysis under the perspective of constructive and numerical
methods, a highly valuable point of view for this book.
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Basics. The theory of analytic functions benefits from the equivalence between two no-
tions, analyticity and differentiability. It is the basis of a powerful integral calculus, much
different from its real variable counterpart. The following two results can serve as “axioms” of
the theory.

THEOREM IV.1 [Basic Equivalence Theorem] (p. 232): Two fundamental notions are equiv-
alent, namely, analyticity (defined by convergent power series) and holomorphy (defined by
differentiability). Combinatorial generating functions,a priori determined by their expansions
at 0 thus satisfy the rich set of properties associated with these two equivalent notions.
THEOREM IV.2 [Null Integral Property] (p. 234): The integral of an analytic function along a
simple loop (closed path that can be contracted to a single point) is 0. Consequently, integrals
are largely independent of particular details of the integration contour.

Residues.For meromorphic functions (functions with poles), residues are essential. Co-
efficients of a function can be evaluated by means of integrals. The following two theorems
provide connections between local properties of a function (e.g., coefficients at one point) and
global properties of the function elsewhere (e.g., an integral along a distant curve).

THEOREM IV.3 [Cauchy’s residue theorem] (p. 234): In the realm of meromorphic functions,
integrals of a function can be evaluated based on local properties of the function at a few specific
points, its poles.

THEOREM IV.4 [Cauchy’s Coefficient Formula] (p. 237): This is an almost immediate conse-
quence of Cauchy’s residue theorem: The coefficients of an analytic function admit of a repre-
sentation by a contour integral. Coefficients can then be evaluated or estimated using properties
of the function at points away from the origin.

Singularities and growth.Singularities (places where analyticity stops), provide essential
information on the growth rate of a function’s coefficients. The “First Principle” relates the
exponential growth rate of coefficients to the location of singularities.

THEOREM IV.5 [Boundary singularities] (p. 240): A function (given by its seriesexpansion
at 0) always has a singularity on the boundary of its disc of convergence.

THEOREM IV.6 [Pringsheim’s Theorem] (p. 240): This theorem refines the previous one for
functions with non-negative coefficients. It implies that, in the case of combinatorial generating
functions, the search for a dominant singularity can be restricted to the positive real axis.

THEOREM IV.7 [Exponential Growth Formula] (p. 244): The exponential growthrate of co-
efficients is dictated by thelocation of the singularities nearest to the origin—thedominant
singularities.

THEOREM IV.8 [Computability of growth] (p. 251): For any combinatorial class that is non-
recursive (iterative), the exponential growth rate of coefficients is invariably a computable num-
ber. This statement can be regarded as the first general theorem of analytic combinatorics.

Coefficient asymptotics.The “Second Principle” relates subexponential factors of coef-
ficients to the nature of singularities. For rational and meromorphic functions, everything is
simple.

THEOREM IV.9 [Expansion of rational functions] (p. 256): Coefficients of rational functions
are explicitly expressible in terms of the poles, given their location (values)and nature (multi-
plicity).

THEOREM IV.10 [Expansion of meromorphic functions] (p. 258): Coefficientsof meromorphic
functions admit of a precise asymptotic form with exponentially small errorterms, given the
location and nature of the dominant poles.

Figure IV.19. A summary of the main results of Chapter IV.
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De Bruijn’s classic booklet [143] is a wonderfully concrete introduction toeffective asymp-
totic theory, and it contains many examples from discrete mathematics thoroughly worked out
using a complex analytic approach. The use of such analytic methods in combinatorics was pi-
oneered in modern times by Bender and Odlyzko, whose first publications in this area go back
to the 1970s. The state of affairs in 1995 regarding analytic methods in combinatorial enumer-
ation is superbly summarized in Odlyzko’s scholarly chapter [461]. Wilf devotes Chapter 5 of
hisGeneratingfunctionology[608] to this question. The books by Hofri [335], Mahmoud [429],
and Szpankowski [564] contain useful accounts in the perspective of analysis of algorithms. See
also our book [538] for a light introduction and the chapter by Vitter and Flajolet [598] for more
on this specific topic.

Despite all appearances they [generating functions] belong to algebra and not to analysis.

Combinatorialists use recurrence, generating functions, and such transformations as the
Vandermonde convolution; others to my horror, use contour integrals,

differential equations, and other resources of mathematical analysis.

— JOHN RIORDAN [513, p. viii] and [512, Pref.]



V

Applications of Rational and
Meromorphic Asymptotics

Analytic methods are extremely powerful and when they apply,
they often yield estimates of unparalleled precision.

— ANDREW ODLYZKO [461]

V. 1. A roadmap to rational and meromorphic asymptotics 290
V. 2. The supercritical sequence schema 293
V. 3. Regular specifications and languages 300
V. 4. Nested sequences, lattice paths, and continued fractions 318
V. 5. Paths in graphs and automata 336
V. 6. Transfer matrix models 356
V. 7. Perspective 373

The primary goal of this chapter is to provide combinatorialillustrations of the power
of complex analytic methods, and specifically of the rational–meromorphic frame-
work developed in the previous chapter. At the same time, we shift gears and envisage
counting problems at anew level of generality. Precisely, we organize combinatorial
problems into widefamiliesof combinatorial types amenable to a common treatment
and associated with a common collection of asymptotic properties. Without attempt-
ing a formal definition, we callschemaany such family determined by combinatorial
and analytic conditions that covers an infinity of combinatorial classes.

First, we discuss a general schema of analytic combinatorics known as thesu-
percritical sequenceschema, which provides a neat illustration of the power of mero-
morphic asymptotics (Theorem IV.10, p. 258), while being ofwide applicability. This
schema unifies the analysis of compositions, surjections, and alignments; it applies to
any class which is defined as a sequence, provided componentssatisfy a simple ana-
lytic condition (“supercriticality”). For instance, one can predict very precisely (and
easily) the number of ways in which an integer can be decomposed additively as a
sum of primes (or twin primes), this even though many detailsof the distribution of
primes are still surrounded in mystery.

The next schema comprisesregular specificationsand languages, whicha priori
lead to rational generating functions and are thus systematically amenable to Theo-
rem IV.9 (p. 256), to the effect that coefficients are described as exponential poly-
nomials. In the case of regular specifications, much additional structure is present,
especially positivity. Accordingly, counting sequences are of a simple exponential–
polynomial form and fluctuations can be systematically circumvented. Applications
presented in this chapter include the analysis of longest runs, attached to maximal

289
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sequences of good (or bad) luck in games of chance, pure birthprocesses, and the
occurrence of hidden patterns (subsequences) in random texts.

We then consider an important subset of regular specifications, corresponding to
nested sequences, that combinatorially describe a variety of lattice paths.Such nested
sequences naturally lead to nested quasi-inverses, which are none other thancontinued
fractions. A wealth of combinatorial, algebraic, and analytic properties then surround
such constructions. A prime illustration is the complete analysis of height in Dyck
paths and general Catalan trees; other interesting applications relate to coin fountain
and interconnection networks.

Finally, the last two sections examinepositive linear systems of generating func-
tions, starting with the simplest case of finite graphs and automata, and concluding
with the general framework of transfer matrices. Although the resulting generating
functions are once more bound to be rational, there is benefitin examining them as
defined implicitly (rather than solving explicitly) and work out singularities directly.
The spectrum of matrices (the set of eigenvalues) then playsa central r̂ole. An im-
portant case is theirreducible linear systemschema, which is closely related to the
Perron–Frobenius theory of non-negative matrices, whose importance has been long
recognized in the theory of finite Markov chains. A general discussion of singularities
can then be conducted, leading to valuable consequences on avariety of models—
paths in graphs, finite automata, and transfer matrices. Thelast example discussed
in this chapter treats locally constrained permutations, where rational functions com-
bined with inclusion–exclusion provide an entry to the world of value-constrained
permutations.

In the various combinatorial examples encountered in this chapter, the generating
functions are meromorphic in some domain extending beyond their disc of conver-
gence at 0. As a consequence, the asymptotic estimates of coefficients involve main
terms that are explicit exponential–polynomials and errorterms that are exponentially
smaller. This is a situation well summarized by Odlyzko’s aphorism quoted on p. 289:
“Analytic methods [. . . ] often yield estimates of unparalleled precision”.

V. 1. A roadmap to rational and meromorphic asymptotics

The key character in this chapter is the combinatorial sequence construction SEQ.
Since its translation into generating functions involves aquasi-inverse, (1− f )−1, the
construction should in many cases be expected to induce polar singularities. Also,
linear systems of equations, of which the simplest case isX = 1+ AX, are solvable
by means of inverses: the solution isX = (1− A)−1 in the scalar case, and it is oth-
erwise expressible as a quotient of determinants (by Cramer’s rule) in the matrix case.
Consequently, linear systems of equations are also conducive to polar singularities.

This chapter accordingly develops along two main lines. First, we study non-
recursive families of combinatorial problems that are, in asuitable sense, driven by a
sequence construction (Sections V. 2–V. 4). Second, we examine families of recursive
problems that are naturally described by linear systems of equations (Sections V. 5–
V. 6). Clearly, the general theorems giving the asymptotic forms of coefficients of
rational and meromorphic functions apply. As we shall see, the additional positivity
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structure arising from combinatorics entails notable simplifications in the asymptotic
form of counting sequences.

The supercritical sequence schema.This schema, fully described in Section V. 2
(p. 293) corresponds to the general formF = SEQ(G), together with a simple an-
alytic condition, “supercriticality” , attached to the generating functionG(z) of G.
Under this condition, the sequence(Fn) happens to be predictable and an asymptotic
estimate,

(1) Fn = cβn + O(Bn), 0≤ B < β, c ∈ R>0,

applies withβ such thatG(1/β) = 1. Integer compositions, surjections, and align-
ments presented in Chapters I and II can then be treated in a unified manner. The
supercritical sequence schema even covers situations whereG is not necessarily con-
structible: this includes compositions into summands thatare prime numbers or twin
primes. Parameters, like the number of components and more generally profiles, are
under these circumstances governed by laws that hold with a high probability.

Regular specification and languages.This topic is treated in Section V. 3 (p. 300).
Regular specifications are non-recursive specifications that only involve the construc-
tions(+,×,SEQ). In the unlabelled case, they can always be interpreted as describing
a regular language in the sense of Section I. 4, p. 49. The mainresult here is the fol-
lowing: given a regular specificationR, it is possible to determine constructively a
numberD, so that an asymptotic estimate of the form

(2) Rn = P(n)βn + O(Bn), 0≤ B < β, P a polynomial,

holds, once the indexn is restricted to a fixed congruence class moduloD. (Naturally,
the quantitiesP, β, B may depend on the particular congruence class considered.)In
other words, a“pure” exponential polynomial formholds for each of theD “sections”
[subsequences defined on p. 302] of the counting sequence(Rn)n≥0. In particular, ir-
regular fluctuations, which might otherwise arise from the existence of several domi-
nant poles sharing the same modulus but having incommensurable arguments (see the
discussion in Subsection IV. 6.1, p. 263 dedicated to multiple singularities), are simply
not present in regular specifications and languages. Similar estimates hold forprofiles
of regular specifications, where the profile of an object is understood to be the number
of times any fixed construction is employed.

Nested sequences, lattice paths, and continued fractions.The material consid-
ered in Section V. 4 (p. 318) could be termed the SEQ◦ · · · ◦SEQ schema, correspond-
ing to nested sequences. The associated GFs are chains of quasi-inverses; that is,
continued fractions. Although the general theory of regular specifications applies, the
additional structure resulting from nested sequences implies, in essence, uniqueness
and simplicity of the dominant pole, resulting directly in an estimate of the form

(3) Sn = cβn + O(Bn), 0≤ B < β, c ∈ R>0,

for objects enumerated by nested sequences. This schema covers lattice paths of
bounded height, their weighted versions, as well as severalother bijectively equivalent
classes, like interconnection networks. In each case, profiles can be fully character-
ized, the estimates being of a simple form.
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Paths in graphs and automata.The framework of paths in directed graphs ex-
pounded in Section V. 5 (p. 336) is of considerable generality. In particular, it covers
the case of finite automata introduced in Subsection I. 4.2, p. 56. Although, in the
abstract, the descriptive power of this framework is formally equivalent to the one of
regular specifications (Appendix A.7:Regular languages, p. 733), there is great ad-
vantage in considering directly problems whose natural formulation is recursive and
phrased in terms of graphs or automata. (The reduction of automata to regular ex-
pressions is non-trivial so that it does not tend to preservethe original combinatorial
structure.) The algebraic theory is that of matrices of the form (I − zT)−1, whereT
is a matrix with non-negative entries. The analytic theory behind the scene is now that
of positive matrices and the companionPerron–Frobenius theory. Uniqueness and
simplicity of dominant poles of generating functions can beguaranteed under easily
testable structural conditions—principally, the condition of irreducibility that corres-
ponds to a strong connectedness of the system. Then a pure exponential polynomial
form holds,

(4) Cn ∼ cλn
1 + O(3n), 0≤ 3 < λ1, c ∈ R>0,

whereλ1 is the (unique) dominant eigenvalue of the transition matrix T . Applications
include walks over various types of graphs (the interval graph, the devil’s staircase)
and words excluding one or several patterns (walks on the De Bruijn graph).

Transfer matrices.This framework, whose origins lie in statistical physics, is an
extension of automata and paths in graphs. What is retained isthe notion of a finite
state system, but transitions can now take place at different speeds. Algebraically, one
is dealing with matrices of the form(I − T(z))−1, whereT is a matrix whose entries
are polynomials (inz) with non-negative coefficients. Perron–Frobenius theorycan
be adapted to cover such cases, that, to a probabilist, look like a mixture of Markov
chain and renewal theory. The consequence, for this category of models, is once more
an estimate of the type (4), under irreducibility conditions; namely

(5) Dn ∼ cµn
1 + O(Mn), 0≤ M < µ1, c ∈ R>0,

whereµ1 = 1/σ andσ is the smallest positive value ofz such thatT(z) has dominant
eigenvalue 1. A striking application of transfer matrices is a study, with an experi-
mental mathematics flavour, of self-avoiding walks and polygons in the plane: it turns
out to be possible to predict, with a high degree of confidence(but no mathemati-
cal certainty, yet), what the number of polygons is and whichdistribution of area is
to be expected. A combination of the transfer matrix approach with a suitable use
of inclusion–exclusion (Subsection V. 6.4, p. 367) finally provides a solution to the
classicménage problemof combinatorial theory as well as to many related questions
regarding value-constrained permutations.

Browsing notes.We, authors, recommend that our gentle reader first gets a bird’s
eye view of this chapter, by skimming through sections, before descending to ground
level and studying examples in detail—some of the latter are indeed somewhat tech-
nically advanced (e.g., they make use of Mellin transforms and/or develop limit laws).
The contents of this chapter are not needed for Chapters VI–VIII, so that the reader
who is impatient to penetrate further the logic of analytic combinatorics can at any
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time have a peek at Chapters VI–VIII. We shall see in Chapter IX (specifically,
Section IX. 6, p. 650) that all the schemas considered here are, under simple non-
degeneracy conditions, associated to Gaussian limit laws.

Sections V. 2 to V. 6 are organized following a common pattern: first, we discuss
“combinatorial aspects”, then “analytic aspects”, and finally “applications”. Each of
Sections V. 2 to V. 5 is furthermore centred around two analytic–combinatorial theo-
rems, one describingasymptotic enumeration, the other quantifying theasymptotic
profiles of combinatorial structures. We examine in this way the supercritical se-
quence schema (Section V. 2), general regular specifications (Section V. 3), nested
sequences (Section V. 4), and path-in-graphs models (Section V. 5). The last section
(Section V. 6) departs slightly from this general pattern, since transfer matrices are
reducible rather simply to the framework of paths in graphs and automata, so that we
do not need specifically new statements.

V. 2. The supercritical sequence schema

This schema is combinatorially the simplest treated in thischapter, since it plainly
deals with the sequence construction. An auxiliary analytic condition, named “super-
criticality” ensures that meromorphic asymptotics applies and entails strong statistical
regularities. The paradigm of supercritical sequences unifies the asymptotic properties
of a number of seemingly different combinatorial types, including integer composi-
tions, surjections, and alignments.

V. 2.1. Combinatorial aspects.We consider a sequence construction, which may
be taken in either the unlabelled or the labelled universe. In either case, we have

F = SEQ(G) H⇒ F(z) = 1

1− G(z)
,

with G(0) = 0. It will prove convenient to set

fn = [zn]F(z), gn = [zn]G(z),

so that the number ofFn structures isfn in the unlabelled case andn! fn otherwise.
From Chapter III, the BGF ofF–structures withu marking the number ofG–

components is

(6) F = SEQ(uG) H⇒ F(z,u) = 1

1− uG(z)
.

We also have access to the BGF ofF with u marking the number ofGk–components:

(7) F 〈k〉 = SEQ(uGk + (G \ Gk)) H⇒ F 〈k〉(z,u) = 1

1−
(
G(z)+ (u− 1)gkzk

) .

V. 2.2. Analytic aspects.We restrict attention to the case where the radius of
convergenceρ of G(z) is non-zero, in which case, the radius of convergence ofF(z)
is also non-zero by virtue of closure properties of analyticfunctions. Here is the basic
concept of this section.
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Definition V.1. Let F,G be generating functions with non-negative coefficients that
are analytic at 0, with G(0) = 0. The analytic relation F(z) = (1 − G(z))−1 is
said to besupercriticalif G(ρ) > 1, whereρ = ρG is the radius of convergence
of G. A combinatorial schemaF = SEQ(G) is said to be supercritical if the relation
F(z) = (1−G(z))−1 between the corresponding generating functions is supercritical.

Note thatG(ρ) is well defined inR∪{+∞} as the limit limx→ρ− G(x) sinceG(x)
increases along the positive real axis, forx ∈ (0, ρ). (The valueG(ρ) corresponds
to what has been denoted earlier byτG when discussing “signatures” in Section IV. 4,
p. 249.) From now on we assume thatG(z) is strongly aperiodicin the sense that there
does not exist an integerd ≥ 2 such thatG(z) = h(zd) for someh analytic at 0. (Put
otherwise, the span of 1+ G(z), as defined on p. 266, is equal to 1.) This condition
entails no loss of analytic generality.

Theorem V.1 (Asymptotics of supercritical sequence). Let the schemaF = SEQ(G)

be supercritical and assume that G(z) is strongly aperiodic. Then, one has

[zn]F(z) = 1

σG′(σ )
· σ−n (1+ O(An)

)
,

whereσ is the root in(0, ρG) of G(σ ) = 1 and A is a number less than 1. The
number X ofG–components in a randomF–structure of size n has mean and variance
satisfying

En(X) =
1

σG′(σ )
· (n+ 1)− 1+ G′′(σ )

G′(σ )2
+ O(An)

Vn(X) =
σG′′(σ )+ G′(σ )− σG′(σ )2

σ 2G′(σ )3
· n+ O(1).

In particular, the distribution of X onFn is concentrated.

Proof. See also [260, 547]. The basic observation is thatG increases continuously
from G(0) = 0 to G(ρG) = τG (with τG > 1 by assumption) whenx increases from
0 toρG. Therefore, the positive numberσ , which satisfiesG(σ ) = 1 is well defined.
Then,F is analytic at all points of the interval(0, σ ). The functionG being analytic
atσ , satisfies, in a neighbourhood ofσ

G(z) = 1+ G′(σ )(z− σ)+ 1

2!
G′′(σ )(z− σ)2+ · · · .

so thatF(z) has a pole atz = σ ; also, this pole is simple sinceG′(σ ) > 0, by
positivity of the coefficients ofG. Thus, we have

F(z) ∼
z→ρ−

1

G′(σ )(z− σ) ≡
1

σG′(σ )
1

1− z/σ
.

Pringsheim’s theorem (Theorem IV.6, p. 240) then implies that the radius of conver-
gence ofF must coincide withσ .

There remains to show thatF(z) is meromorphic in a disc of some radiusR> σ

with the pointσ as the only singularity inside the disc. This results from the assump-
tion thatG is strongly aperiodic. In effect, as a consequence of the Daffodil Lemma
(Lemma IV.3, p. 267), one hasG(σei θ ) 6= 1, for all θ 6≡ 0 (mod 2π) . Thus, by
compactness, there exists a closed disc of radiusR> σ in which F is analytic except
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for a unique pole atσ . We can now apply the main theorem of meromorphic function
asymptotics (Theorem IV.10, p. 258) to deduce the stated formula with A = σ/R.

Next, the number ofG–components in a randomF structure of sizen has BGF
given by (6), and by differentiation, we get

En(X) =
1

fn
[zn]

∂

∂u

1

1− uG(z)

∣∣∣∣
u=1
= 1

fn
[zn]

G(z)

(1− G(z))2
.

The problem is now reduced to extracting coefficients in a univariate generating func-
tion with a double pole atz= σ , and it suffices to expand the GF locally atσ :

G(z)

(1− G(z))2
∼

z→ρ
1

G′(σ )2(z− σ)2 ≡
1

σ 2G′(σ )2
1

(1− z/σ)2
.

The variance calculation is similar, with a triple pole being involved. �

When a sequence construction is supercritical, the number ofcomponents is in
the mean of ordern while its standard deviation isO(

√
n). Thus, the distribution is

concentrated (in the sense of Section III. 2.2, p. 161). In fact, there results from a
general theorem of Bender [35] that the distribution of the number of components is
asymptotically Gaussian, a property to be established in Section IX. 6, p. 650.

Profiles of supercritical sequences.We have seen in Chapter III that integer
compositions and integer partitions, when sampled at random, tend to assume rather
different aspects. Given a sequence construction,F = SEQ(G), the profile of an
elementα ∈ F is the vector(X〈1〉, X〈2〉, . . .) where X〈 j 〉(α) is the number ofG–
components inα that have sizej . In the case of (unrestricted) integer compositions,
it could be proved elementarily (Example III.6, p. 167) that, on average, for sizen,
the number of 1-summands is∼ n/2, the number of 2-summands is∼ n/4, and so
on. Now that meromorphic asymptotics is available, such a property can be placed in
a much wider perspective.

Theorem V.2(Profiles of supercritical sequences). Consider a supercritical sequence
construction,F = SEQ(G), with G(z) strongly aperiodic, as in Theorem V.1. The
number ofG–components of any fixed size k in a randomF–object of size n satisfies

(8) En(X
〈k〉) = gkσ

k

σG′(σ )
n+ O(1), Vn(X

〈k〉) = O(n),

whereσ in (0, σG) is such that G(σ ) = 1, and gk = [zk]G(z).

Proof. The BGF withu marking the number ofG–components of sizek is given in (7).
The mean value is then obtained as a quotient,

En(X
〈k〉) = 1

fn
[zn]

∂

∂u
F(z,u)

∣∣∣∣
u=1
= 1

fn
[zn]

gkzk

(1− G(z))2
.

The GF of cumulated values has a double pole atz= σ , and the estimate of the mean
value follows. The variance is estimated similarly, after two successive differentiations
and the analysis of a triple pole. �

The total number of componentsX satisfiesX = ∑ X〈k〉, and, by Theorem V.1,
its mean is asymptotic ton/(σG′(σ )). Thus, Equation (8) indicates that, at least
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in some average-value sense, the “proportion” of components of sizek among all
components is given bygkσ

k.
� V.1.Proportion of k–components and convergence in probability.For any fixedk, the random

variableX〈k〉n /Xn converges in probability to the valuegkσ
k,

X〈k〉n

Xn

P−→ gkσ
k, i.e., lim

n→∞P

{
gkσ

k(1− ǫ) ≤ X〈k〉n

Xn
≤ gkσ

k(1+ ǫ)
}
= 1,

for anyǫ > 0. The proof is an easy consequence of the Chebyshev inequalities (thedistributions

of Xn andX〈k〉n are both concentrated). �

V. 2.3. Applications. We examine here two types of applications of the super-
critical sequence schema. Example V.1 makes explicit the asymptotic enumeration
and the analysis of profiles of compositions, surjections and alignments. What stands
out is the way the mean profile of a structure reflects the underlying inner construc-
tion K in schemas of the form SEQ(K(Z)). Example V.2 discusses compositions into
restricted summands, including the striking case of compositions into primes.

ExampleV.1. Compositions, surjections, and alignments. The three classes of interest here
are integer compositions (C), surjections (R) and alignments (O), which are specified as

C = SEQ(SEQ≥1(Z)), R = SEQ(SET≥1(Z)), O = SEQ(CYC(Z))

and belong to either the labelled universe (C) or to the labelled universe (R andO). The
generating functions (of type OGF, EGF, and EGF, respectively) are

C(z) = 1

1− z
1−z

, R(z) = 1

1− (ez− 1)
, O(z) = 1

1− log(1− z)−1
.

A direct application of Theorem V.1 (p. 294) gives us back the known results

Cn = 2n−1,
1

n!
Rn ∼

1

2
(log 2)−n−1,

1

n!
On = e−1(1− e−1)−n−1,

corresponding toσ equal to1
2 , log 2, and 1− e−1, respectively.

Similarly, the expected number of summands in a random composition of theintegern
is ∼ n/2; the expected cardinality of the range of a random surjection whose domain has
cardinalityn is asymptotic toβn with β = 1/(2 log 2); the expected number of components in
a random alignment of sizen is asymptotic ton/(e− 1).

Theorem V.2 also applies, providing the mean number of components ofsizek in each
case. The following table summarizes the conclusions.

Structures specification law (gkσ
k) type σ

Compositions SEQ(SEQ≥1(Z))
1

2k
Geometric

1

2

Surjections SEQ(SET≥1(Z))
1

k!
(log 2)k Poisson log 2

Alignments SEQ(CYC(Z))
1

k
(1− e−1)k Logarithmic 1− e−1

Note that the stated laws necessitatek ≥ 1. The geometric and Poisson law are classical; the
logarithmic distribution(also called “logarithmic-series distribution”) of a parameterλ > 0 is
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Figure V.1. Profile of structures drawn at random represented by the sizes of their
components in sorted order: (from left to right) a random composition, surjection,
and alignment of sizen = 100.

by definition the law of a discrete random variableY such that

P(Y = k) = 1

log(1− λ)−1

λk

k
, k ≥ 1.

The way the internal constructionK in the schema SEQ(K(Z)) determines the asymptotic pro-
portion of component of each size,

Sequence7→ Geometric; Set7→ Poisson; Cycle7→ Logarithmic,

stands out. Figure V.1 exemplifies the phenomenon by displaying components sorted by size
and represented by vertical segments of corresponding lengths for three randomly drawn objects
of sizen = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .�

Example V.2. Compositions with restricted summands, compositions into primes.Unre-
stricted integer compositions are well understood as regards enumeration: their number is ex-
actly Cn = 2n−1, their OGF isC(z) = (1− z)/(1− 2z), and compositions withk summands
are enumerated by binomial coefficients. Such simple exact formulae disappear when restricted
compositions are considered, but, as we now show, asymptotics is much more robust to changes
in specifications.

Let S be a subset of the integersZ≥1 such that gcd(S) = 1, i.e., not all members ofS are
multiples of a common divisord ≥ 2. In order to avoid trivialities, we also assume thatShas at
least two elements. The classCS of compositions with summands constrained to the setS then
satisfies:

CS= SEQ(SEQS(Z)) H⇒ CS(z) = 1

1− S(z)
, S(z) =

∑

s∈S

zs.

By assumption,S(z) is strongly aperiodic, so that Theorem V.1 (p. 294) applies directly. There
is a well-defined numberσ such that

S(σ ) = 1, 0< σ < 1,

and the number ofS–restricted compositions satisfies

(9) CS
n := [zn]CS(z) = 1

σS′(σ )
· σ−n (1+ O(An)

)
.

Among the already discussed cases,S= {1,2} gives rise to Fibonacci numbers Fn and, more
generally,S= {1, . . . , r } corresponds to partitions with summands at mostr . In this case, the
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10 16 15
20 732 734
30 3603936057
40 17722071772261
50 8710926387109248
60 42815500474281549331
70 210444532770210444530095
80 1034366226718710343662265182
90 508406414757253508406414781706

100 2498893292949083824988932929612479

Figure V.2. The pyramid relative to compositions into prime summands forn =
10. .100: (left: exact values; right: asymptotic formula rounded).

OGF,

C{1,...,r }(z) = 1

1− z1−zr

1−z

= 1− z

1− 2z+ zr+1

is a simple variant of the OGF associated to longest runs in strings, which is studied at length
in Example V.4, p. 308. The treatment of the latter can be copied almost verbatim to the effect
that the largest component in a random composition ofn is found to be log2 n+ O(1), both on
average and with high probability.

Compositions into primes.Here is a surprising application of the general theory. Consider
the case whereS is taken to be the set of prime numbers, Prime= {2,3, 5, 7, 11, . . .}, thereby
defining the class ofcompositions into prime summands. The sequence starts as

1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105,

corresponding toG(z) = z2+z3+z5+· · · , and isEISA023360in Sloane’sEncyclopedia. The
formula (9) provides the asymptotic shape of the number of such compositions (Figure V.2). It
is also worth noting that the constants appearing in (9) are easily determinedto great accuracy,
as we now explain.

By (9) and the preceding equation, the dominant singularity of the OGF of compositions
into primes is the positive rootσ < 1 of the characteristic equation

S(z) ≡
∑

p Prime

zp = 1.

Fix a threshold valuem0 (for instancem0 = 10 or 100) and introduce the two series

S−(z) :=
∑

s∈S, s<m0

zs, S+(z) :=


 ∑

s∈S, s<m0

zs


+ zm0

1− z
.

Clearly, forx ∈ (0, 1), one hasS−(x) < S(x) < S+(x). Define then two constantsσ−, σ+ by
the conditions

S−(σ−) = 1, S+(σ+) = 1, 0< σ−, σ+ < 1.

These constants are algebraic numbers that are accessible to computation. At the same time,
they satisfyσ+ < σ < σ−. As the order of truncation,m0, increases, the values ofσ+, σ−
provide better and better approximations toσ , together with an interval in whichσ provably
lies. For instance,m0 = 10 is enough to determine that 0.66 < σ < 0.69, and the choice
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Figure V.3. Errors in the approximation of the number of compositions into primes
for n = 70. .100: left, the values ofCPrime

n − g(n); right, the correction arising
from the next two poles, which are complex conjugate, and its continuous extrapola-
tion g2(n), for n ∈ [70,100].

m0 = 100 givesσ to 15 guaranteed digits of accuracy, namely,σ
.= 0.67740 17761 30660.

Then, the asymptotic formula (9) instantiates as

(10) CPrime
n ∼ g(n), g(n) := λ · βn, λ

.= 0.30365 52633, β
.= 1.47622 87836.

(The constantβ ≡ σ−1 .= 1.47622 is akin to the family of Backhouse constants described
in [211].)

Once more, the asymptotic approximation is very good, as is exemplified bythe “pyramid”
of Figure V.2. The difference betweenCPrime

n and its approximationg(n) from Equation (10) is
plotted on the left-hand part of Figure V.3. The seemingly haphazard oscillations that manifest
themselves are well explained by the principles discussed in Section IV. 6.1 (p. 263). It appears
that the next poles of the OGF are complex conjugate and lie near−0.76± 0.44i , having
modulus about 0.88. The corresponding residues then jointly contribute a quantity of the form

g2(n) = c · An sin(ωn+ ω0), A
.= 1.13290,

for some constantsc, ω, ω0. Comparing the left-hand and right-hand parts of Figure V.3, we
see that this next layer of poles explains quite well the residual errorCPrime

n − g(n).
Here is finally a variant of compositions into primes that demonstrates in a striking way

the scope of the method. Define the set Prime2 of “twinned primes” as the set of primes that
belong to a twin prime pair, that is,p ∈ Prime2 if one of p− 2, p+ 2 is prime. The set Prime2
starts as 3, 5, 7, 11, 13, 17, 19, 29, 31, . . . (prime numbers like 23 or 37 are thus excluded). The
asymptotic formula for the number of compositions of the integern into summands that are
twinned primes is

CPrime2
n ∼ 0.18937· 1.29799n,

where the constants are found by methods analogous to the case of all primes. It is quite
remarkable that the constants involved are still computable real numbers(and of low complexity,
even), this despite the fact that it is not known whether the set of twinned primes is finite or
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infinite. Incidentally, a sequence that starts likeCPrime2
n ,

1, 0,0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, . . .

and coincides till index 22 included (!), but not beyond, was encountered by MacMahon1, as the
authors discovered, much to their astonishment, from scanning Sloane’s Encyclopedia, where
it appears asEISA002124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . �

� V.2. Random generation of supercritical sequences.Let F = SEQ(G) be a supercritical
sequence scheme. Consider a sequence of i.i.d. (independently identically distributed) random
variablesY1,Y2, . . . each of them obeying the discrete law

P(Y = k) = gkσ
k, k ≥ 1.

A sequence is said to be hittingn if Y1+· · ·+Yr = n for somer ≥ 1. The vector(Y1, . . . ,Yr )
for a sequence conditioned to hitn has the same distribution as the sequence of the lengths of
components in a randomF–object of sizen.

For probabilists, this explains the shape of the formulae in Theorem V.1, which resemble
renewal relations [205, Sec. XIII.10]. It also implies that, given a uniform random generator for
G–objects, one can generate a randomF–object of sizen in O(n) steps on average [177]. This
applies to surjections, alignments, and compositions in particular. �

� V.3. Largest components in supercritical sequences.Let F = SEQ(G) be a supercritical
sequence. Assume thatgk = [zk]G(z) satisfies the asymptotic “smoothness” condition

gk ∼
k→∞

cρ−kkβ , c, ρ ∈ R>0, β ∈ R.

Then the sizeL of the largestG component in a randomF–object satisfies, for sizen,

EFn(L) =
1

log(ρ/σ)
(logn+ β log logn)+ o(log logn).

This covers integer compositions (ρ = 1, β = 0) and alignments (ρ = 1, β = −1). [The
analysis generalizes the case of longest runs in Example V.4 (p. 308) and is based on similar

principles. The GF ofF objects withL ≤ m is F〈m〉(z) =
(
1−∑k≤m gkzk

)−1
, according to

Section III.7. Form large enough, this has a dominant singularity which is a simple pole atσm
such thatσm − σ ∼ c1(σ/ρ)

mmβ . There follows a double-exponential approximation

PFn(L ≤ m) ≈ exp
(
−c2nmβ (σ/ρ)m

)

in the “central” region. See Example V.4 (p. 308) for a particular instance and Gourdon’s
study [305] for a general theory.] �

V. 3. Regular specifications and languages

The purpose of this section is the general study of the(+,×,SEQ) schema, which
covers all regular specifications. As we show now, “pure” exponential–polynomial
forms (ones with a single dominating exponential) can always be extracted. Theo-
rems V.3 and V.4 below provide a universal framework for the asymptotic analysis
of regular classes. Additional structural conditions to beintroduced in later sections
(nested sequences, irreducibility of the dependency graphand of transfer matrices)
will then be seen to induce further simplifications in asymptotic formulae.

1See “Properties of prime numbers deduced from the calculus of symmetric functions”,Proc. London
Math. Soc., 23 (1923), 290-316). MacMahon’s sequence corresponds to compositions into arbitraryodd
primes, and 23 is the first such prime that is not twinned.
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V. 3.1. Combinatorial aspects.For convenience and without loss of analytic
generality, we consider here unlabelled structures. According to Chapter I (Defini-
tion I.10, p. 51, and the companion Proposition I.2, p. 52), acombinatorial specifica-
tion is regular if it is non-recursive (“iterative”) and it involves only the constructions
of Atom, Union, Product, and Sequence. A languageL is S–regular if it is com-
binatorially isomorphic to a classM described by a regular specification. Alterna-
tively, a language isS–regular if all the operations involved in its description (unions,
catenation products and star operations) are unambiguous.The dictionary translating
constructions into OGFs is

(11) F + G 7→ F + G, F × G 7→ F × G, SEQ(F) 7→ (1− F)−1,

and for languages, under the essential condition ofnon-ambiguity(Appendix A.7:
Regular languages, p. 733),

(12) L ∪M 7→ L + M, L ·M 7→ L × M, L⋆ 7→ (1− L)−1.

The rules (11) and (12) then give rise to generating functions that are invariablyra-
tional functions. Consequently, given a regular classC, the exponential–polynomial
form of coefficients expressed by Theorem IV.9 (p. 256) systematically applies, and
one has

(13) Cn ≡ [zn]C(z) =
m∑

j=1

5 j (n)α
−n
j ,

for a family of algebraic numbersα j (the poles ofC(z)) and a family of polynomi-
als5 j .

As we know from the discussion of periodicities in Section IV. 6.1 (p. 263), the
collective behaviour of the sum in (13) depends on whether ornot a singleα domi-
nates. In the case where several dominant singularities coexist, fluctuations of sorts
(either periodic or irregular) may manifest themselves. Incontrast, if a singleα dom-
inates, then the exponential–polynomial formula acquiresa transparent asymptotic
meaning. Accordingly, we set:

Definition V.2. An exponential–polynomial form
∑m

j=15 j (n)α
−n
j is said to bepureif

|α1| < |α j |, for all j ≥ 2. In that case, a single exponential dominates asymptotically
all the other ones.

As we see next for regular languages and specifications, the corresponding count-
ing coefficients can always be described by afinite collectionof pure exponential–
polynomial forms. The fundamental reason is that we are dealing with a special subset
of rational functions, one that enjoys strong positivity properties.

� V.4. Positive rational functions.Define the class Rat+ of positive rational functionsas
the smallest class containing polynomials with positive coefficients (R≥0[z]) and closed under
sum, product, and quasi-inverse, whereQ( f ) = (1− f )−1 is applied to elementsf such that
f (0) = 0. The OGF of any regular class with positive weights attached to neutral structures
and atoms is in Rat+. Conversely, any function in Rat+ is the OGF of a positively weighted
regular class. The notion of a Rat+ function is for instance relevant to the analysis of weighted
word models and Bernoulli trials (Section III. 6.1, p. 189). �
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V. 3.2. Analytic aspects.First we need the notion of sections of a sequence.

Definition V.3. Let ( fn) be a sequence of numbers. Itssectionof parameters D, r ,
where D∈ Z>0 and r ∈ Z≥0 is the subsequence( fnD+r ). The numbers D and r are
referred to as the modulus and the base, respectively.

The main theorem describing the asymptotic behaviour of regular classes is a
consequence of Proposition IV.3 (p. 267) and is originally due to Berstel. (See Soit-
tola’s article [546] as well as the books by Eilenberg [189, Ch VII] and Berstel–
Reutenauer [56] for context.)

Theorem V.3(Asymptotics of regular classes). LetS be a class described by a regular
specification. Then there exists an integer D such that each section of modulus D of
Sn that is not eventually 0 admits a pure exponential–polynomial form: for n larger
than some n0, and any such section of base r, one has

Sn = 5(n)βn +
m∑

j=1

Pj (n)β
n
j n ≡ r mod D,

where the quantitiesβ, β j , withβ > |β j |, and the polynomials5, Pj , with5(x) 6≡ 0,
depend on the base r.

Proof. (Sketch.) Letα1 be the dominant pole ofS(z) that is positive. Proposition IV.3
(p. 267) asserts that any dominant pole,α is such thatα/|α| is a root of unity. LetD0

be such that the dominant singularities are all contained inthe set{α1ω
j−1}D0

j=1, where
ω = exp(2iπ/D0). By collecting all contributions arising from dominant poles in the
general expansion (13) and by restrictingn to a fixed congruence class moduloD0,
namelyn = νD0+ r with 0≤ r < D0, one gets

(14) SνD0+r = 5[r ](n)α−D0ν
1 + O(A−n).

There5[r ] is a polynomial depending onr and the remainder term represents an ex-
ponential polynomial with growth at mostO(A−n) for someA > α1.

The sections with modulusD0 that are not eventually 0 can then be categorized
into two classes.

— Let R6=0 be the set of those values ofr such that5[r ] is not identically 0.
The setR6=0 is non-empty (else the radius of convergence ofS(z) would be
larger thanα1.) For any baser ∈ R6=0, the assertion of the theorem is then
established withβ = 1/α1.

— Let R0 be the set of those values ofr such that5[r ](x) ≡ 0, with5[r ] as
given by (14). Then one needs to examine the next layer of poles of S(z), as
detailed below.

Consider a numberr such thatr ∈ R0, so that the polynomial5[r ] is identically 0.
First, we isolate in the expansion ofS(z) those indices that are congruent tor modulo
D0. This is achieved by means of a Hadamard product, which, given two power series
a(z) =∑anzn andb(z) =∑ bnzn, is defined as the seriesc(z) =∑ cnzn such that
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cn = anbn and is writtenc = a⊙ b. In symbols:

(15)


∑

n≥0

anzn


⊙


∑

n≥0

bnzn


 =

∑

n≥0

anbnzn.

We have:

(16) g(z) = S(z)⊙
(

zr

1− zD0

)
.

A classical theorem [57, 189] from the theory of positive rational functions (in the
sense of Note V.4) asserts that such functions are closed under Hadamard product. (A
dedicated construction for (16) is also possible and is leftas an exercise to the reader.)
Then the resulting functionG(z) is of the form

g(z) = zr γ (zD0),

with the rational functionγ (z) being analytic at 0. Note that we have [zν ]γ (z) =
SνD0+r , so thatγ is exactly the generating function of the section of baser of S(z).
One verifies next thatγ (z), which is obtained by the substitutionz 7→ z1/D0 in
g(z)z−r , is itself a positive rational function. Then, by a fresh application of Bers-
tel’s Theorem (Proposition IV.3, p. 267), this function, ifnot a polynomial, has a
radius of convergenceρ with all its dominant polesσ being such thatσ/ρ is a root of
unity of orderD1, for someD1 ≥ 1. The argument originally applied toS(z) can thus
be repeated, withγ (z) replacingS(z). In particular, one finds at least one section (of
modulusD1) of the coefficients ofγ (z) that admits a pure exponential–polynomial
form. The other sections of modulusD1 can themselves be further refined, and so on

In other words, successive refinements of the sectioning process provide at each
stage at least one pure exponential–polynomial form, possibly leaving a few congru-
ence classes open for further refinements. Define thelayer indexof a rational function
f as the integerκ( f ), such that

κ( f ) = card
{
|ζ |

∣∣ f (ζ ) = ∞
}
.

(This index is thus the number of different moduli of poles off .) It is seen that each
successive refinement step decreases by at least 1 the layer index of the rational func-
tion involved, thereby ensuringterminationof the whole refinement process. Finally,
the collection of the iterated sectionings obtained can be reduced to a single section-
ing according to a common modulusD, which is the least common multiple of the
collection of all the finite productsD0D1 · · · that are generated by the algorithm.�

For instance the coefficients (Figure V.4) of the function

(17) L(z) = 1

(1− z)(1− z2− z4)
+ z

1− 3z3
,

associated to the regular languagea⋆(bb+ cccc)⋆+d(ddd+eee+ f f f )⋆, exhibit an
apparently irregular behaviour, with the expansion ofL(z) starting as

1+ 2z+ 2z2+ 2z3+ 7z4+ 4z5+ 7z6+ 16z7+ 12z8+ 12z9+ 47z10+ 20z11+ · · · .
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Figure V.4. Plots of logFn with Fn = [zn]F(z) andF(z) as in (17) display fluctua-
tions that disappear as soon as sections of modulus 6 are considered.

The first term in (17) has a periodicity modulo 2, while the second one has an obvious
periodicity modulo 3. In accordance with the theorem, the sections modulo 6 each
admit a pure exponential–polynomial form and, consequently, they become easy to
describe (Note V.5).

� V.5. Sections and asymptotic regimes.For the functionL(z) of (17), one finds, withϕ :=
(1+
√

5)/2 andc1, c2 ∈ R>0,

Ln = 3−1/3 · 3n/3+ O(ϕn/2) (n ≡ 1, 4 mod 6),
Ln = c1ϕ

n/2+ O(1) (n ≡ 0, 2 mod 6),
Ln = c2ϕ

n/2+ O(1) (n ≡ 3, 5 mod 6),

in accordance with the general form predicted by Theorem V.3. �

� V.6. Extension toRat+ functions. The conclusions of Theorem V.3 hold for any function
in Rat+ in the sense of Note V.4. �

� V.7. Soittola’s Theorem.This is a converse to Theorem V.3 proved in [546]. Assume that
coefficients of anarbitrary rational function f (z) are non-negative and that there exists a sec-
tioning such that each section admits a pure exponential–polynomial form.Then f (z) is in
Rat+ in the sense of Note V.4; in particular,f is the OGF of a (weighted) regular class. �

Theorem V.3 is useful for interpreting the enumeration of regular classes and
languages. It serves a similar purpose with regards to structural parameters of regular
classes. Indeed, consider a regular specificationC augmented with a marku that is, as
usual, a neutral object of size 0 (see Chapter III). We letC(z,u) be the corresponding
BGF ofC, so thatCn,k = [znuk]C(z,u) is the number ofC–objects of sizen that beark
marks. A suitable placement of marks makes it possible to record the number of times
any given construction enters an object. For instance, in the augmented specification
of binary words,

C = (SEQ<r (b)+ u SEQ≥r (b)) SEQ(a(SEQ<r (b)+ u SEQ≥r (b))),
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all maximal runs ofb having length at leastr are marked by au. There results the
following BGF for the corresponding parameter “number of runs ofbs of length≥ r ”,

(18) C(z,u) =
(

1− zr

1− z
+ uzr

1− z

)
· 1

1− z
(

1−zr

1−z + uzr

1−z

) ,

from which mean and variance can be determined. In general, marks make it possible
to analyse profile, with respect to constructions entering the specification, of a random
object.

Theorem V.4(Profile of regular classes). Consider a regular specification of a classC,
augmented with a mark and letχ be the parameter corresponding to the number of
occurrences of that mark. There exists a sectioning index d such that for any fixed
section of(Cn) of modulus d, the following holds: the moment of integral order s≥ 1
of χ satisfies an asymptotic formula

(19) ECn [χs] = Q(n)βn + O(Gn),

where the quantitiesβ, Q,G depend on the particular section considered, with0 <
β ≤ 1, Q(n) a rational fraction, and G< β.

(Only sections that are not eventually 0 are to be considered.)

Proof. The case of expectations suffices to indicate the lines of a general proof. One
possible approach2 is to build a derived specificationE such that

ECn [χ ] = En

Cn
,

which is also a regular specification. To this purpose, definea transformation on
specifications defined inductively by the rules

∂(A+ B) = ∂A+ ∂B, ∂(A× B) = ∂A× B+ A× ∂B,
∂ SEQ(A) = SEQ(A)× ∂A× SEQ(A),

together with the initial conditions∂u = 1 and∂Z = ∅. This is a form of combina-
torial differentiation: an objectγ ∈ C corresponds toχ(γ ) objects inE , namely, one
for each choice of an occurrence of the mark.

As a consequence,En is the cumulated value ofχ over Cn, so thatEn/Cn =
ECn [χ ]. On the other hand,E is a regular specification to which Theorem V.3 ap-
plies. The result follows upon considering (if necessary) asectioning that refines the
sectionings of bothC andE . The argument extends easily to higher moments. �

� V.8. A rational mean.Consider the regular languageC = a⋆(b+ c)⋆d(b+ c)⋆. Letχ be the
length of the initial run ofa’s. Then one finds

C(z) = z

(1− z)(1− 2z)2
, E(z) = z2

(1− z)2(1− 2z)2
.

Thus the mean ofχ satisfies

ECn [χ ] = En

Cn
= (n− 3)2n + (n+ 3)

(n− 1)2n + 1
= n− 3

n− 1
+ O

((
3

4

)n)
.

2Equivalently, one may operate at generating function level and observe that the derivative of a Rat+
function is Rat+; cf Notes V.4 and V.6.
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Class Asymptotics
Integer compositions 2n−1

— k summands ∼ nk−1

(k−1)! (§I. 3.1, p. 44)

— summands≤ r ∼ cβn
r (§I. 3.1, p. 42)

Integer partitions

— k summands ∼ nk−1

k! (k−1)! (§I. 3.1, p. 44)

— summands≤ r ∼ nr−1

r ! (r−1)! (§I. 3.1, p. 43)

Set partitions,k classes ∼ kn

k! (§I. 4.3, p. 62)
Words excluding a patternp ∼ cβn

p (§IV. 6.3, p. 271)

Figure V.5. A pot-pourri of regular classes and their asymptotics.

Generally, in the statement of Theorem V.4, letQ(n) = A(n)/B(n) with A, B polynomials and
a = deg(A),b = deg(B). The following combinations prove to be possible (for first moments):
β = 1 and(a,b) any pair such that 0≤ a ≤ b+ 1; also,β < 1 and(a,b) any pair of elements
≥ 0. �

� V.9. Shuffle products.Let L,M be two languages over two disjoint alphabets. Then, the
shuffle productS of L andM is such that̂S(z) = L̂(z) · M̂(z), whereŜ, L̂, M̂ are the expo-
nential generating functions ofS,L,M. Accordingly, if the OGFL(z) andM(z) are rational
then the OGFS(z) is also rational. (This technique may be used to analyse generalized birthday
paradox and coupon collector problems; see [231].) �

V. 3.3. Applications. This subsection details several examples that illustrate the
explicit determination of exponential–polynomial forms in regular specifications, in
accordance with Theorems V.3 and V.4. We start by recapitulating a collection, a
“pot-pourri”, of combinatorial problems already encountered in Part A, where rational
generating functions have been useden passant. We then examine longest runs in
words, walks of the pure-birth type, and subsequence (hidden pattern) statistics.

ExampleV.3. A pot-pourri of regular specifications.A few combinatorial problems, to be
found scattered across Chapters I–IV, are reducible to regular specifications: see Figure V.5 for
a summary.

Compositions of integers(Section I. 3, p. 39) are specified byC = SEQ(SEQ≥1(Z)),
whence the OGF(1− z)/(1− 2z) and the closed formCn = 2n−1, an especially transpar-
ent exponential–polynomial form. Polar singularities are also present for compositions intok
summands that are described by SEQk(SEQ≥1(Z)) and for compositions whose summands are
restricted to the interval [1. . r ] (i.e., SEQ(SEQ1 . . r (Z)), with corresponding generating func-
tions

zk

(1− z)k
,

1− z

1− 2z+ zr+1
.

In the first case, there is an explicit form for the coefficients,
(n−1
k−1

)
, which constitutes a partic-

ular exponential–polynomial form (with the basis of the exponential being 1). The second case
requires a dedicated analysis of the dominant polar singularity, which is recognizably a variant
of Example V.4 (p. 308 below) dedicated to longest runs in random binary words.
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Integer partitionsinvolve the multiset construction. However, when summands are re-
stricted to the interval [1. . r ], the specification and the OGF are given by

MSET(SEQ1 . . r (Z)) ∼= SEQ(Z)× SEQ(Z2)× · · ·SEQ(Zr ) H⇒
r∏

j=1

1

1− z j
.

This case, introduced in Section I. 3 (p. 39) also served as a leading example in our discussion
of denumerants in Example IV.6 (p. 257): the analysis of the pole at 1 furnishes the domi-
nant asymptotic behaviour,nr−1/(r !(r − 1)!), for such special partitions. The enumeration of
partitions by number of parts then follows, by duality, from the staircase representation.

Set partitionsare typically labelled objects. However, when suitably constrained, they can
be encoded by regular expressions; see Section I. 4.3 (p. 62) for partitions intok classes, where
the OGF found is

S(k)(z) = zk

(1− z)(1− 2z) · · · (1− kz)
implying S(k)n ∼ kn

k!
,

and the asymptotic estimate results from the partial fraction decomposition and the dominant
pole at 1/k.

Wordslead to many problems that are prototypical of the regular specification framework.
In Section I. 4 (p. 49), we saw that one could give a regular expression describing the set of
words containing the patternabb, from which the exact and asymptotic forms of counting
coefficients derive. For a general patternp, the generating functions of words constrained to
include (or dually exclude)p are rational. The corresponding asymptotic analysis has been
given in Section IV. 6.3 (p. 271).

Words can also be analysed under the Bernoulli model, where letteri is selected with
probability pi ; cf Section III. 6.1, p. 189, for a general discussion including the analysis of
records in random words (p. 190). . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� V.10. Partially commutative monoids.Let W = A⋆ be the set of all words over a finite
alphabetA. Consider a collection C of commutation rules between pairs of elements ofA. For
instance, ifA = {a,b, c}, then C= {ab = ba,ac = ca} means thata commutes with bothb
andc, but bc is not a commuting pair:bc 6= cb. Let M = W/[C] be the set of equivalent
classes of words (monomials) under the rules induced by C. The setM is said to be apartially
commutative monoidor a trace monoid [105].

If A = {a,b}, then the two possibilities for C are C= ∅ and C := {ab = ba}. Normal
forms forM are given by the regular expressions(a+b)⋆ anda⋆b⋆ corresponding to the OGFs

1

1− a− b
,

1

1− a− b+ ab
.

If A = {a,b, c}, the possibilities for C, the corresponding normal forms, and the OGFsM are
as follows. If C= ∅, thenM ∼= (a+ b+ c)⋆ with OGF(1− a− b− c)−1; the other cases are

ab= ba ab= ba, ac= ca ab= ba, ac= ca, bc= cb
(a⋆b⋆c)⋆a⋆b⋆ a⋆(b+ c)⋆ a⋆b⋆c⋆

1

1− a− b− c+ ab

1

1− a− b− c+ ab+ ac

1

1− a− b− c+ ab+ ac+ bc− abc
.

Cartier and Foata [105] have discovered the general form (based onextended M̈obius inversion),

M =
(∑

F

(−1)|F |F

)−1

,

where the sum is over all monomialsF composed of distinct letters that all commute pairwise.
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Viennot [597] has discovered an attractive geometric presentation of partially commutative
monoids in terms ofheaps of pieces, which has startling applications to several areas of combi-
natorial theory. (Example I.18, p. 80, relative to animals provides an example.) Goldwurm and
Santini [298] have shown that [zn]M(z) ∼ K · αn for K , α > 0. �

Longest runs. It is possible to develop a complete analysis of runs of consecutive
equal letters in random sequences: this is in theory a special case of the analysis
of patterns in random texts (Section IV. 6.3, p. 271), but theparticular nature of the
patterns makes it possible to derive much more explicit results, including asymptotic
distributions.

Example V.4. Longest runs in wordsLongest runs in words, introduced in Section I. 4.1
(p. 51), provide an illustration of the technique of localizing dominant singularities in rational
functions and of the corresponding coefficient extraction process. The probabilistic problem is
a famous one, discussed by Feller in [205]: it represents a basic question in the analysis of runs
of good (or bad) luck in a succession of independent events. Our presentation closely follows
an insightful note of Knuth [375] whose motivation was the analysis of carry propagation in
certain binary adders.

Start from the classW of all binary words over the alphabet{a, b}. Our interest lies in
the lengthL of the longest consecutive block ofa’s in a word. For the propertyL < k, the
specification and the corresponding OGF are

W〈k〉 = SEQ<k(a)SEQ(b SEQ<k(a)) H⇒ W〈k〉(z) = 1− zk

1− z
· 1

1− z1−zk

1−z

;

that is,

(20) W〈k〉(z) = 1− zk

1− 2z+ zk+1
.

This represents a collection of OGFs indexed byk, which contain all the information relative to
the distribution of longest runs in random words. We propose to prove:

Proposition V.1. The longest run parameter L taken over the set of binary words of length n
(endowed with the uniform distribution) satisfies the uniform estimate3

(21) Pn (L < ⌊lg n⌋ + h) = e−α(n)2
−h−1 + O

(
logn√

n

)
, α(n) := 2{lg n}.

In particular, the mean satisfies

En(L) = lg n+ γ

log 2
− 3

2
+ P(lg n)+ O

(
log2 n√

n

)
,

where P is a continuous periodic function whose Fourier expansion is givenby (29). The
variance satisfiesVn(L) = O(1) and the distribution is concentrated around its mean.

The probability distributions appearing in (21) are known asdouble exponential distributions
(Figure V.6, p. 311). The formula (21) does not represent a singlelimit distribution in the usual
sense of Chapter IX, but rather a wholefamily of distributionsindexed by the fractional part of
lg n, thus dictated by the wayn places itself with respect to powers of 2.

3The symbol lgx denotes the binary logarithm, lgx = log2 x, and{x} is the fractional part function
({π} = 0.14159· · · ,.
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Proof. The proof consists of the following steps: locate the dominant pole; estimate the cor-
responding contribution; separate the dominant pole from the other polesin order to derive
constructive error terms; finally approximate the main quantities of interest.

(i ) Location of the dominant pole.The OGFW〈k〉 has, by the first form of (20), a dominant
poleρk, which is a root of the equation 1= s(ρk), wheres(z) = z(1−zk)/(1−z). We consider
k ≥ 2. Sinces(z) is an increasing polynomial ands(0) = 0, s(1/2) < 1, s(1) = k, the rootρk
must lie in the open interval(1/2, 1). In fact, as one easily verifies, the conditionk ≥ 2
guarantees thats(0.6) > 1, hence the first estimate

(22)
1

2
< ρk <

3

5
(k ≥ 2).

It now becomes possible to derive precise estimates by bootstrapping. (This technique is a
form of iteration for approaching a fixed point—its use in the context of asymptotic expansions
is detailed in De Bruijn’s book [143].) Writing the defining equation forρk as a fixed point
equation,

z= 1

2
(1+ zk+1),

and making use of the rough estimates (22) yields next

(23)
1

2

(
1+

(
1

2

)k+1
)
< ρk <

1

2

(
1+

(
3

5

)k+1
)
.

Thus,ρk is exponentially close to12 , and further iteration from (23) shows

(24) ρk =
1

2
+ 1

2k+2
+ O

(
k

22k

)
,

(i i )Contribution from the dominant pole.A straightforward calculation provides the value
of the residue,

(25) Rn,k := −Res
[
W〈k〉(z)z−n−1; z= ρk

]
=

1− ρk
k

2− (k+ 1)ρk
k

ρ−n−1
k ,

which is expected to provide the main approximation to the coefficients ofW〈k〉 asn → ∞.

The quantity in (25) is of the rough form 2ne−n/2k+1
; we shall return to such approximations

shortly.

(i i i ) Separation of the subdominant poles.Consider the circle|z| = 3/4 and take the
second form of the denominator ofW〈k〉, namely, that of (20):

1− 2z+ zk+1.

In view of Rouch́e’s theorem (p. 270), we may regard this polynomial as the sumf (z)+ g(z),
where f (z) = 1− 2z andg(z) = zk+1. The term f (z) has on the circle|z| = 3/4 a modulus
that varies between 1/2 and 5/2; the termg(z) is at most 27/64 for anyk ≥ 2. Thus, on the
circle |z| = 3/4, one has|g(z)| < | f (z)|, so that f (z) and f (z) + g(z) have the same number
of zeros inside the circle. Sincef (z) admitsz = 1/2 as only zero there, the denominator must
also have a unique root in|z| ≤ 3/4, and that root must coincide withρk.

Similar arguments also give bounds on the error term when the number ofwordsw satisfy-
ing L(w) < k is estimated by the residue (25) at the dominant pole. On the circle|z| = 3/4, the
denominator ofW〈k〉 stays bounded away from 0 (its modulus is at least 5/64 whenk ≥ 2, by
previous considerations). Thus, the modulus of the remainder integralis O((4/3)n), and in fact



310 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

bounded from above by 35(4/3)n. In summary, lettingqn,k represent the probability that the
longest run in a random word of lengthn is less thank, one obtains the main estimate (k ≥ 2)

(26) qn,k := Pn(L < k) =
1− ρk

k

1− (k+ 1)ρk
k/2

(
1

2ρk

)n+1
+ O

((
2

3

)n)
,

which holdsuniformlywith respect tok. Here is a table of the numerical values of the quantities
appearing in the approximation ofqn,k, written under the formck · (2ρk)

−n:

k ck · (2ρk)
−n

2 1.17082· 0.80901n

3 1.13745· 0.91964n

4 1.09166· 0.96378n

5 1.05753· 0.98297n

10 1.00394· 0.99950n

(i v) Final approximations.There only remains to transform the main estimate (26) into
the limit form asserted in the statement. First, the “tail inequalities” (with lgx ≡ log2 x)

(27) Pn

(
L <

3

4
lg n

)
= O

(
e−

1
2

4√n
)
, Pn (L ≥ 2 lgn+ y) = O

(
e−2y

n

)

describe the tail of the probability distribution ofLn. They are derived from simple bounding
techniques applied to the main approximation (26) using (24). Thus, for asymptotic purposes,
only a relatively small region around lgn needs to be considered.

Regarding the central regime, fork = lg n + x andx in [−1
4 lg n, lg n], the approxima-

tion (24) ofρk and related quantities applies, and one finds

(2ρk)
−n = exp

(
− n

2k+1
+ O(kn2−2k)

)
= e−n/2k+1

(
1+ O

(
logn√

n

))
.

(This results from standard expansions of the form(1 − a)n = e−na exp(O(na2)).) At the
same time, the coefficient in (26) of the quantity(2ρk)

−n is

1+ O(kρk
k ) = 1+ O

(
logn√

n

)
.

Thus a double exponential approximation holds (Figure V.6): fork = lg n + x with x in
[−1

4 lg n, lg n], one has (uniformly)

(28) qn,k = e−n/2k+1
(

1+ O

(
logn√

n

))
.

In particular, upon settingk = ⌊lg n⌋ + h and making use of the tail inequalities (27), the first
part of the statement, namely Equation (21), follows. (The floor functiontakes into account the
fact thatk must be an integer.)

The mean and variance estimates are derived from the fact that the distribution quickly
decays at values away from lgn (by (27)) while it satisfies Equation (28) in the central region.
The mean satisfies

En(L) :=
∑

h≥1

[1− Pn(L < h)] = 8(n
2
)− 1+ O

(
log2 n

n

)
, 8(x) :=

∑

h≥0

[
1− e−x/2h

]
.

Consider the three casesh < h0, h ∈ [h0, h1], andh > h1 with h0 = lg x − log logx and
h1 = lg x + log logx, where the general term is (respectively) close to 1, between 0 and 1, and
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Figure V.6. The double exponential laws: Left, histograms forn at 2p (black),
2p+1/3 (dark gray), and 2p+2/3 (light gray), wherex = k − lg n. Right, empiri-
cal histograms for 1000 simulations withn = 100 (top) andn = 140 (bottom).

close to 0. By summing, one finds elementarily8(x) = lg x + O(log logx) asx → ∞. (An
elementary way of catching the nextO(1) term is discussed for instance in [538, p. 403].)

The method of choice for precise asymptotics is to treat8(x) as a harmonic sum and apply
Mellin transform techniques (Appendix B.7:Mellin transforms, p. 762). The Mellin transform
of 8(x) is

8⋆(s) :=
∫ ∞

0
8(x)xs−1 dx = Ŵ(s)

1− 2s ℜ(s) ∈ (−1, 0).

The double pole of8⋆ at 0 and the simple poles ats = 2ikπ
log 2 are reflected by an asymptotic

expansion that involves a Fourier series:
(29)

8(x) = lg x+ γ

log 2
+1

2
+P(lg x)+O(x−1), P(w) := − 1

log 2

∑

k∈Z\{0}
Ŵ

(
2ikπ

log 2

)
e−2ikπw.

The oscillating functionP(w) is found to have tiny fluctuations, of the order of 10−6; for
instance, the first Fourier coefficient has amplitude:|Ŵ(2iπ/ log 2)|/ log 2

.= 7.86 · 10−7. (See
also [234, 311, 375, 564] for more on this topic.) The variance is similarly analysed. This
concludes the proof of Proposition V.1. �

The double exponential approximation in (21) is typical of extremal statistics. What is
striking here is the existence of a family of distributions indexed by the fractional part of lgn.
This fact is then reflected by the presence of oscillating functions in moments of the random
variableL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

� V.11. Longest runs in Bernoulli sequences.Consider an alphabetA = {a j } with lettera j
independently chosen with probability{p j }. The OGF of words where each run of equal letters
has length at mostk is derived from the construction of Smirnov words (pp. 204 and 262),and
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it is found to be

W[k](z) =


1−

∑

i

pi z
1− (pi z)

k

1− (pi z)k+1



−1

.

Let pmax be the largest of thep j . Then the expected length of the longest run of any letter is
logn/ log pmax+ O(1), and precise quantitative information can be derived from the OGFs by
methods akin to Example IV.10 (Smirnov words and Carlitz compositions, p. 262). �

Walks of the pure-birth type.The next two examples develop the analysis of
walks in a special type of graphs. These examples serve two purposes: they illus-
trate further cases of modelling by means of regular specifications, and they provide
a bridge to the analysis of lattice paths in the next section.Furthermore, some spe-
cific walks of the pure-birth type turn out to have applications to the analysis of a
probabilistic algorithm (Approximate Counting).

ExampleV.5. Walks of the pure-birth type.Consider a walk on the non-negative integers that
starts at 0 and is only allowed either to stay at the same place or move by an increment of+1.
Our goal is to enumerate the walks that start from 0 and reach pointm in n steps. A step fromj
to j + 1 will be encoded by a lettera j ; a step fromj to j will be encoded byc j , in accordance
with the following state diagram:

(30)

a0 a1 a2

c0 c1 c2

The language encoding all legal walks from state 0 to statem can be described by a regular
expression:

H0,m = SEQ(c0)a0 SEQ(c1)a1 · · ·SEQ(cm−1)am−1 SEQ(cm).

Symbolicly using letters as variables, the corresponding ordinary multivariate generating func-
tion is then (witha= (a0, . . .) andc= (c0, . . .))

H0,m(a, c) =
a0a1 · · ·am−1

(1− c0)(1− c1) · · · (1− cm)
.

Assume now that the steps are assigned weights, withα j corresponding toa j andγ j to c j .
Weights of letters are extended multiplicatively to words in the usual way (cf Section III. 6.1,
p. 189). In addition, upon takingγ j = 1−α j , one obtains a probabilistic weighting: the walker
starts from position 0, and, if atj , at each clock tick, she either stays at the same place with
probability 1− α j or moves to the right with probabilityα j . The OGF of such weighted walks
then becomes

(31) H0,m(z) =
α0α1 · · ·αm−1zm

(1− (1− α0)z)(1− (1− α1)z) · · · (1− (1− αm)z)
,

and [zn]H0,m is the probability for the walker to be found at positionm at (discrete) timen.
This walk process can be alternatively interpreted as a (discrete-time)pure-birth process4 in
the usual sense of probability theory: There is a population of individualsand, at each discrete
epoch, a new birth may take place, the probability of a birth beingα j when the population is of
size j .

4The theory of pure-birth processes is discussed under a calculational and non measure-theoretic
angle in the book by Bharucha-Reid [62]. See also theCourseby Karlin and Taylor [363] for a concrete
presentation.
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Figure V.7. A simulation of 10 trajectories of the pure-birth process tilln = 1024,
with geometric probabilities corresponding toq = 1/2, compared to the curve log2 x.

The form (31) readily lends itself to a partial fraction decomposition. Assume for simplic-
ity that theα j are all distinct. The poles ofH0,m are at the points(1− α j )

−1 and one finds as

z→ (1− α j )
−1:

H0,m(z) ∼
r j,m

1− z(1− α j )
where r j,m := α0α1 · · ·αm−1∏

k∈[0,m], k 6= j
(αk − α j )

.

Thus, the probability of being in statem at timen is given by a sum:

(32) [zn]H0,m(z) =
m∑

j=0

r j,m(1− α j )
n.

An especially interesting case of the pure-birth walk is when the quantitiesαk are geomet-
ric: αk = qk for someq with 0< q < 1. In that case, the probability of being in statem aftern
transitions becomes (cf (32))

(33)
m∑

j=0

(−1) j q(
j
2)

(q) j (q)m− j
(1− qm− j )n, (q) j := (1− q)(1− q2) · · · (1− q j ).

This corresponds to a stochastic progression in a medium with exponentiallyincreasing hard-
ness or, equivalently, to the growth of a population whose size adverselyaffects fertility in an
exponential manner. On intuitive grounds, we expect an evolution of theprocess to stay reason-
ably close to the curvey = log1/q x; see Figure V.7 for a simulation confirming this fact, which
can be justified by means of formula (33). This particular analysis is borrowed from [218],
where it was initially developed in connection with the “approximate counting” algorithm to be
studied next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleV.6. Approximate Counting. Assume you need to keep a counter that is able to
record the number of certain events (say impulses) and should have thecapability of keeping
counts till a certain maximal valueN. A standard information-theoretic argument (withℓ bits,
one can only keep track of 2ℓ possibilities) implies that one needs⌈log2(N+1)⌉ bits to perform
the task—a standard binary counter will indeed do the job. However, in 1977, Robert Morris
has proposed a way to maintain counters that only requires of the order of log log N bits. What’s
the catch?

Morris’ elegant idea consists in relaxing the constraint of exactness in thecounting process
and, by playing with probabilities, tolerate a small error on the counts obtained. Precisely, his
solution maintains a random quantityQ which is initialized byQ = 0. Upon receiving an
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impulse, one updatesQ according to the following simple procedure (withq ∈ (0, 1) a design
parameter):

procedure Update(Q);
with probability qQ do Q := Q+ 1 (else keep Q unchanged).

When asked the number of impulses (number of times the update procedure was called) at any
moment, simply use the following procedure to return an estimate:

procedure Answer(Q);

output X = q−Q − 1

1− q
.

Let Qn be the value of the random quantityQ aftern executions of the update procedure
andXn the corresponding estimate output by the algorithm. It is easy to verify (byrecurrence
or by generating functions; see Note V.12 below for higher moments) that, for n ≥ 1,

(34) E(q−Qn) = n(1− q)+ 1, so that E(Xn) = n.

Thus the answer provided at any instant is anunbiased estimator(in a mean value sense) of
the actual countn. On the other hand, the analysis of the geometric pure-birth process in
the previous example applies. In particular, the exponential approximation (1− α)n ≈ e−nα

in conjunction with the basic formula (33) shows that for largen andm sufficiently near to
log1/q n, one has (asymptotically) thegeometric-birth distribution

(35) P (Qn = m) =
∞∑

j=0

(−1) j q(
j
2)

(q) j (q)∞
exp(−qx− j )+ o(1), x ≡ m− log1/q n.

(We refer to [218] for details.) Such calculations imply thatQn is with high probability (w.h.p.)
close to log1/q n. Thus, if n ≤ N, the value ofQn will be w.h.p. bounded from above by
(1+ ǫ) log1/q N, with ǫ a small constant. But this means that the integerQ, which can itself
be represented in binary, will only require

(36) log2 logn+ O(1)

bits for storage, for fixedq.
A closer examination of the formulae reveals that the accuracy of the estimate improves

considerably whenq becomes close to 1. Thestandard erroris defined as1
n
√

V(Xn) and it
measures, in a mean-quadratic sense, the relative error likely to be made. The variance ofQn
is, as for the mean, determined by recurrence or generating functions, and one finds

(37) V(q−Qn+1) =
(

n

2

)
(1− q)3

q
,

1

n

√
V(Xn) ∼

√
1− q

2q

(see also Note V.12 below). This means that accuracy increases asq approaches 1 and, by
suitably dimensioningq, one can make it asymptotically as small as desired. In summary,
(34), (37), and (36) express the following property:Approximate counting makes it possible to
count till N using only aboutlog logN bits of storage, while achieving a standard error that is
asymptotically a constant and can be set to any prescribed small value.Morris’ trick is now
fully understood.

For instance, withq = 2−1/16, it proves possible to count up to 216 = 65536 using only
8 bits (instead of 16), with an error likely not to exceed 20%. Naturally, there’s not too much
reason to appeal to the algorithm when asinglecounter needs to be managed (everybody can
afford a few bits!): Approximate Counting turns out to be useful when avery large number of
counts need to be keptsimultaneously. It constitutes one of the early examples of a probabilistic
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algorithm in the extraction of information from large volumes of data, an area also known as
data mining; see [224] for a review of connections with analytic combinatorics and references.

Functions akin to those of (35) also surface in other areas of probability theory. Guillemin,
Robert, and Zwart [314] have detected them in processes that combinean additive increase and
a multiplicative decrease (AIMD processes), in a context motivated by the adaptive transmis-
sion of “windows” of varying sizes in large communication networks (the TCP protocol of the
internet). Biane, Bertoin, and Yor [58] encountered a function identicalto (35) in their study of
exponential functionals of Poisson processes. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� V.12.Moments of q−Qn . It is a perhaps surprising fact that any integral moment ofq−Qn is
a polynomial inn, q, andq−1, as in (34), (37). To see it, define

8(w) ≡ 8(w, ξ,q) :=
∑

m≥0

qm(m+1)/2 ξmwm

(1+ ξq)(1+ ξq2) · · · (1+ ξqm+1)
.

By (31), one has
∑

m≥0

H0,m(z)w
m = 1

1− z
8

(
w; z

1− z
,q

)
.

On the other hand,8 satisfies8(w) = 1− qξ(1− w)8(qw), hence theq–identity,

8(w) =
∑

j≥0

(−qξ) j
[
(1− w)(1− qw) · · · (1− q j−1w)

]
,

which belongs to the area ofq–calculus5. Thus8(q−r ; ξ,q) is a polynomial for anyr ∈ Z≥0,
as the expansion terminates. See Prodinger’s study [498] for connections with basic hypergeo-
metric functions and Heine’s transformation. �

Hidden patterns: regular expression modelling and moments. We return here
to the analysis of the number of occurrences of a patternp as asubsequencein a ran-
dom text. The mean number of occurrences can be obtained by enumerating contexts
of occurrences: in a sense we are then enumerating the language of all words by means
of a dedicated regular expression where the ambiguity coefficient (the multiplicity) of
a word is precisely equal to the number of occurrences of the pattern. This technique,
which gives an easy access to expectations, also works for higher moments. It supple-
ments the fact that there is no easy way to get a BGF in such cases, and it appears to
be sufficient to derive a concentration of distribution property.

ExampleV.7. Occurrences of “hidden” patterns in Bernoulli texts.Fix an alphabetA =
{a1, . . . ,ar } of cardinalityr and assume a probability distribution onA to be given, withp j
the probability of lettera j . We consider the Bernoulli model onW = SEQ(A), where the
probability of a word is the product of the probabilities of its letters (cf Subsection III. 6.1,
p. 189). A wordp = y1 · · · yk called the pattern is fixed. The problem is to gather information
on the random variableX representing the number of occurrences ofp in the setWn, where
occurrences as a“hidden pattern”, i.e., as asubsequence, are counted (see Example I.11, p. 54,
for the case of equiprobable letters).

5By q–calculus is roughly meant the collection of special function identities relating power series of
the form

∑
an(q)zn, wherean(q) is a rational fraction whose degree is quadratic inn. See [15, Ch. 10] for

basics and [284] for more advanced (q–hypergeometric) material.
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Mean value analysis.The generating function associated toW endowed with its proba-
bilistic weighting is

W(z) = 1

1−∑ p j z
= 1

1− z
.

The regular specification

(38) O = SEQ(A)y1 SEQ(A) · · ·SEQ(A)yk−1 SEQ(A)yk SEQ(A)

describes allcontexts of occurrencesof p as a subsequence in all words. Graphically, this may
be rendered as follows, for a pattern of length 3 such asp = y1y2y3:

(39) y1 y2 y3

There the boxes indicate distinguished positions where letters of the pattern appear and the
horizontal lines represent arbitrary separating words (SEQ(A)). The corresponding OGF

(40) O(z) = π(p)zk

(1− z)k+1
, π(p) := py1 · · · pyk−1 pyk

counts elements ofW with multiplicity6, where the multiplicity coefficientλ(w) of a wordw ∈
W is precisely equal to the number of occurrences ofp as a subsequence inw:

O(z) ≡
∑

w∈A⋆

λ(w)π(w)z|w|.

This shows that the mean value of the numberX of hidden occurrences ofp in a random word
of lengthn satisfies

(41) EWn(X) = [zn]O(z) = π(p)
(

n

k

)
,

which is consistent with what a direct probabilistic reasoning would give.

Variance analysis.In order to determine the variance ofX overWn, we need contexts in
whichpairsof occurrences appear. LetQ denote the set of all words inW with twooccurrences
(i.e., an ordered pair of occurrences) ofp as a subsequence being distinguished. Then clearly
[zn]Q(z) representsEWn(X

2). There are several cases to be considered. Graphically, a pair of
occurrences may share no common position, like in what follows:

(42)

{
y1 y2 y3

y1 y2 y3

But they may also have one or several overlapping positions, like in

(43)

{
y1 y2 y3

y1 y2 y3

(44)

{
y1 y2 y3

y1 y2 y3

(This last situation necessitatesy2 = y3, typical patterns beingabbandaaa.)

6 In language-theoretic terms, we make use of the regular expressionO = A⋆y1A
⋆ · · · yk−1A

⋆ykA
⋆

that describes a subset ofA⋆ in an ambiguous manner and takes into account theambiguity coefficients.
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In the first case corresponding to (42), where there are no overlapping positions, the con-
figurations of interest have OGF

(45) Q[0](z) =
(

2k

k

)
π(p)2z2k

(1− z)2k+1
.

There, the binomial coefficient
(2k

k
)

counts the total number of ways of freely interleaving two

copies ofp; the quantityπ(p)2z2k takes into account the 2k distinct positions where the letters
of the two copies appear; the factor(1− z)−2k−1 corresponds to all the possible 2k+ 1 fillings
of the gaps between letters.

In the second case, let us start by considering pairs where exactly oneposition is overlap-
ping, like in (43). Say this position corresponds to ther th andsth letters ofp (r ands may be
unequal). Obviously, we needyr = ys for this to be possible. The OGF of the configurations is
now (

r + s− 2

r − 1

)(
2k− r − s

k− r

)
π(p)2(pyr )

−1z2k−1

(1− z)2k
.

There, the first binomial coefficient
(r+s−2

r−1
)

counts the total number of ways of interleaving

y1 · · · yr−1 andy1 · · · ys−1; the second binomial
(2k−r−s

k−r
)

is similarly associated to the inter-
leavings ofyr+1 · · · yk and ys+1 · · · yk; the numerator takes into account the fact that 2k − 1
positions are now occupied by predetermined letters; finally the factor(1− z)−2k corresponds
to all the 2k fillings of the gaps between letters. Summing over all possibilities forr, s gives the
OGF of pairs with one overlapping position as

(46) Q[1](z) =


 ∑

1≤r,s≤k

(
r + s− 2

r − 1

)(
2k− r − s

k− r

)
[[ yr = ys]]

pyr


 π(p)2z2k−1

(1− z)2k
.

Similar arguments show that the OGF of pairs of occurrences with at leasttwo shared
positions (see, e.g., (44)) is of the form, withP a polynomial,

(47) Q[≥2](z) = P(z)

(1− z)2k−1
,

for the essential reason that, in the finitely many remaining situations, there are at most(2k−1)
possible gaps.

We can now examine (45), (46), (47) in the light of singularities. The coefficient [zn]Q[0](z)
is seen to cancel to first asymptotic order with the square of the mean as given in (41). The
contribution of the coefficient [zn]Q[≥2](z) appears to be negligible as it isO(n2k−2). The
coefficient [zn]Q[1](z), which is O(n2k−1), is seen to contribute to the asymptotic growth of
the variance. In summary, after a trite calculation, we obtain:

Proposition V.2. The number X of occurrences of a hidden patternp in a random text of size n
obeying a Bernoulli model satisfies

EWn(X) = π(p)
(

n

k

)
∼ π(p)

k!
nk, VWn(X) =

π(p)2κ(p)2

(2k− 1)!
n2k−1

(
1+ O(

1

n
)

)
,

where the “correlation coefficient”κ(p)2 is given by

κ(p)2 =
∑

1≤r,s≤k

(
r + s− 2

r − 1

)(
2k− r − s

k− r

)(
[[ yr = ys]]

pyr

− 1

)
.

In particular, the distribution of X is concentrated around its mean.
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This example is based on an article by Flajolet, Szpankowski, and Vallée [263]. There the
authors show further that the asymptotic behaviour of moments of higherorder can be worked
out. By the Moment Convergence Theorem (Theorem C.2, p. 778), this calculation entails that
the distribution of X overWn is asymptotically normal. The method also extends to a much
more general notion of “hidden” pattern; e.g., distances between letters ofp can be constrained
in various ways so as to determine a valid occurrence in the text [263]. Italso extends to the very
general framework of dynamical sources [81], which include Markov models as a special case.
The two references [81, 263] thus provide a set of analyses that interpolate between the two
extreme notions of pattern occurrence—as a block of consecutive symbols or as a subsequence
(“hidden pattern”). Such studies demonstrate that hidden patterns are with high probability
bound to occur an extremely large number of times in a long enough text—thismight cast some
doubts on numerological interpretations encountered in various cultures: see in particular the
critical discussion of the “Bible Codes” by McKayet al. in [433]. . . . . . . . . . . . . . . . . . . . . . . .�

� V.13. Hidden patterns and shuffle relations.To each pairsu, v of words overA associate
the weighted-shuffle polynomial in the indeterminatesA denoted by

((u
v

))
t and defined by the

properties 



((
xu

yv

))

t
= x

((
u

yv

))

t
+ y

((
xu

v

))

t
+ t [[x = y]]x

((
u

v

))

t((
1
u

))

t
=
((

u

1

))

t
= u

wheret is a parameter,x, y are elements ofA, and1 is the empty word. Then the OGF ofQ(z)
above is

Q(z) = σ
[((

p

p

))

(1−z)

]
1

(1− z)2k+1
,

whereσ is the substitutiona j 7→ p j z. �

V. 4. Nested sequences, lattice paths, and continued fractions

This section treats thenested sequenceschema, corresponding to a cascade of
sequences of the rough form SEQ◦SEQ◦ · · · ◦ SEQ. Such a schema covers Dyck
and Motzkin path, a particular type of Łukasiewicz paths already encountered in Sec-
tion I. 5.3 (p. 73). Equipped with probabilistic weights, these paths appear as trajec-
tories of birth-and-death processes (the case of pure-birth processes has already been
dealt with in Example V.5, p. 312). They also have great descriptive power since,
once endowed with integer weights, they can encode a large variety of combinatorial
classes, including trees, permutations, set partitions, and surjections.

Since a combinatorial sequence translates into a quasi-inverse,Q( f ) = (1 −
f )−1, a class described by nested sequences has its generating function expressed by
a cascade of fractions, that is, acontinued fraction7. Analytically, these GFs have
two dominant poles (the Dyck case) or a single pole (the Motzkin case) on their disc
of convergence, so that the implementation of the process underlying Theorem V.3
is easy: we encounter a pure polynomial form of the simplest type that describes all
counting sequences of interest. The profile of a nested sequence can also be easily
characterized.

7Characteristically, the German term for “continued fraction”, is “Kettenbruch”, literally “ chain-
fraction”.
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This section starts with a statement of the “Continued Fraction Theorem” (Propo-
sition V.3, p. 321) taken from an old study of Flajolet [214],which provides the general
set-up for the rest of the section. It then proceeds with the general analytic treatment of
nested sequences. A number of examples from various areas ofdiscrete mathematics
are then detailed, including the important analysis of height in Dyck paths and gen-
eral Catalan trees. Some of these examples make use of structures that are described
as infinitely nested sequences, that is, infinite continued fractions, to which the finite
theory often extends—the analysis of coin fountains below istypical.

V. 4.1. Combinatorial aspects.We discuss here a special type of lattice paths
connecting points of the discrete cartesian planeZ× Z.

Definition V.4 (Lattice path). A Motzkin pathυ = (U0,U1, . . . ,Un) is a sequence
of points in the discrete quarter-planeZ≥0 × Z≥0, such that Uj = ( j, y j ) and the
jump condition|y j+1− y j | ≤ 1 is satisfied. An edge〈U j ,U j+1〉 is called anascentif
y j+1 − y j = +1, a descentif y j+1 − y j = −1, and alevel stepif y j+1 − y j = 0. A
path that has no level steps is called aDyck path.

The quantity n is thelength of the path,ini(υ) := y0 is the initial altitude,
fin(υ) := yn is the final altitude. A path is called anexcursionif both its ini-
tial and final altitudes are zero. The extremal quantitiessup{υ} := maxj y j and
inf{υ} := min j y j are called theheightanddepthof the path.

A path can always be encoded by a word witha,b, c representing ascents, de-
scents, and level steps, respectively. What we call thestandard encodingis such a
word in which each stepa,b, c is (redundantly) subscripted by the value of they-
coordinate of its initial point. For instance,

w = c0 a0 a1 a2 b3 c2 c2 a2 b3 b2 b1 a0 c1

encodes a path that connects the initial point(0,0) to the point(13,1). Such a path
can also be regarded as the evolution in discrete time of a walk over the integer line
with jumps restricted to{−1,0,+1}, or equivalently as a path in the graph:

(48) a0 a1 a2

.

c0 c1 c2

b1 b2

Lattice paths can also be interpreted as trajectories of birth-and-death processes, where
a population can evolve at any discrete time by a birth or a death. (Compare with the
pure-birth case in (30), p. 312.)
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As a preparation for later developments, let us examine the description of the
class writtenH[<1]

0,0 of Motzkin excursions of height< 1. We have

H
[<1]
0,0
∼= SEQ(c0) H⇒ H [<1]

0,0 =
1

1− c0
.

The class of excursions of height< 2 is obtained from here by a substitution

c0 7→ c0+ a0 SEQ(c1)b1,

to the effect that

H
[<2]
0,0
∼= SEQ(c0+ a0 SEQ(c1)b1)

H⇒ H [<2]
0,0 =

1

1− c0−
a0b1

1− c1

= 1− c1

1− c0− c1+ c0c1− a0b1
.

Iteration of this simple mechanism lies at the heart of the calculations performed be-
low. Clearly, generating functions written in this way are nothing but a concise de-
scription of usual counting generating functions: for instance if individual weights8

α j , β j , γ j are assigned to the lettersa j ,b j , c j , respectively, then the OGF of multi-
plicatively weighted paths withz marking length is obtained by setting

(49) a j = α j z, b j = β j z, c j = γ j z.

The general class of paths of interest in this subsection is defined by arbitrary
combinations offlooring (by m) ceiling (by h), as well as fixing initial(k) and final
(l ) altitudes. Accordingly, we define the following subclasses of the classH of all
Motzkin paths:

H
[m≤•<h]
k,l := {w ∈ H : ini(w) = k, fin(w) = l , m≤ inf{w}, sup{w} < h}.

We shall also need the special cases:

H
[<h]
k,l = H

[0≤•<h]
k,l , H

[≥m]
k,l = H

[m≤•<∞]
k,l , Hk,l = H

[0≤•<∞]
k,l .

(Thus, the supercript indicates the condition that is to be satisfied byall abscissaeof
vertices of the path.) Three simple combinatorial decompositions of paths (Figure V.8)
then suffice to derive all the basic formulae.

(i ) Arch decomposition: An excursion from and to level 0 consists of a sequence
of “arches”, each made of either ac0 or ana0H

[≥1]
1,1 b1, so that

(50) H0,0 = SEQ
(
c0 ∪ a0H

[≥1]
1,1 b1

)
,

which relativizes to height< h.
(i i ) Last passages decomposition.Recording the times at which each level 0, . . . , k

is last traversed gives

(51) H0,k = H
[≥0]
0,0 a0H

[≥1]
1,1 a1 · · ·ak−1H

[≥k]
k,k .

8Throughout this chapter, all weights are assumed to benon-negative.
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Figure V.8. The three major decompositions of lattice paths: the arch decomposition
(top), the last passages decomposition (bottom left), and the first passage decomposi-
tion (bottom right).

(i i i ) First passage decomposition.The quantitiesHk,l with k ≤ l are implicitly
determined by the first passage throughk in a path connecting level 0 tol , so that

(52) H0,l = H
[<k]
0,k−1ak−1Hk,l (k ≤ l ),

(A dual decomposition holds whenk ≥ l .)

The basic results of the theory express the generating functions in terms of a fun-
damental continued fraction and its associated convergentpolynomials. They involve
the “numerator” and “denominator” polynomials, denoted byPh andQh that are de-
fined as solutions to the second-order (or “three-term”) linear recurrence equation

(53) Yh+1 = (1− ch)Yh − ah−1bhYh−1, h ≥ 0,

together with the initial conditions(P−1, Q−1) = (−1,0), (P0, Q0) = (0,1), and
with the conventiona−1b0 = 1. In other words, settingC j = 1−c j andA j = a j−1b j ,
we have:
(54)

P0 = 0, P1 = 1, P2 = C1, P3 = C1C2− A2
Q0 = 1, Q1 = C0, Q2 = C0C1− A1, Q3 = C0C1C2− C2A1− C0A2.

These polynomials are also known as continuant polynomials[379, 601].

� V.14. Combinatorics of continuant polynomials.The polynomialQh is obtained by the fol-
lowing process: start with the product5 := C0C1 · · ·Ch−1; then cross out in all possible ways
pairs of adjacent elementsC j−1C j , replacing each such crossed pair by−A j . For instance,
Q4 is obtained as

C0C1C2C3+
−A1︷ ︸︸ ︷

——C0C1 C2C3+ C0

−A2︷ ︸︸ ︷
——C1C2 C3+ C0C1

−A3︷ ︸︸ ︷
——C2C3+

−A1︷ ︸︸ ︷
——C0C1

−A3︷ ︸︸ ︷
——C2C3 .

The polynomialsPh are obtained similarly after a shift of indices. (These observations are due
to Euler; see [307, §6.7].) �
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Proposition V.3 (Continued Fraction Theorem [214]). (i ) The generating function
H0,0 of all excursions is represented by the fundamental continued fraction:

H0,0 = 1

1− c0−
a0b1

1− c1−
a1b2

1− c2−
a2b3

. . .

.(55)

(i i ) The generating function of ceiled excursion H[<h]
0,0 is given by a convergent of the

fundamental continued fraction(55), with Ph, Qh as in Equation(53):

H [<h]
0,0 = 1

1− c0−
a0b1

1− c1−
a1b2

. . .

1− ch−1

= Ph

Qh
.(56)

(i i i ) The generating function of floored excursions is given by a truncation of the
fundamental fraction:

H [≥h]
h,h = 1

1− ch −
ahbh+1

1− ch+1−
ah+1bh+2

. . .

(57)

= 1

ah−1bh

Qh H0,0− Ph

Qh−1H0,0− Ph−1
,(58)

Proof. Repeated use of the arch decomposition (50) provides a formof H [<h]
0,0 with

nested quasi-inverses(1− f )−1 that is the finite fraction representation (56); for in-
stance,

H
[<1]
00
∼= SEQ(c0), H

[<2]
00
∼= SEQ(c0+ a0 SEQ(c1)b1),

H
[<3]
00
∼= SEQ(c0+ a0 SEQ(c1+ a1 SEQ(c2)b2)b1).

The continued fraction representation for basic paths without height constraints (namely
H0,0) is then obtained by taking the limith→∞ in (56). Finally, the continued frac-
tion form (57) for ceiled excursions is nothing but the fundamental form (55), when
the indices are shifted. The three continued fraction expansions (55), (56), (57) are
hence established.

Finding explicit expressions for the fractionsH [<h]
0,0 andH [≥h]

h,h next requires de-
termining the polynomials that appear in the convergents ofthe basic fraction (55).
By definition, the convergent polynomialsPh andQh are the numerator and denomi-
nator of the fractionH [<h]

0,0 . For the computation ofH [<h]
0,0 andPh, Qh, one classically
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introduces the linear fractional transformations

g j (y) =
1

1− c j − a j b j+1y
,

so that

(59) H [<h]
0,0 = g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(0) andH0,0 = g0 ◦ g1 ◦ g2 ◦ · · · , .

Now, linear fractional transformations are representableby 2× 2 matrices

(60)
ay+ b

cy+ d
7→
(

a b
c d

)
,

in such a way that the composition corresponds to matrix product. By induction on
the compositions that build upH [<h]

0,0 , there follows the equality

(61) g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(y) =
Ph − Ph−1ah−1bhy

Qh − Qh−1ah−1bhy
,

where Ph and Qh are seen to satisfy the recurrence (53). Settingy = 0 in (61)
proves (56).

Finally, H [≥h]
h,h is determined implicitly as the rooty of the equationg0 ◦ · · · ◦

gh−1(y) = H0,0, an equation that, when solved using (61), yields the form (58). �

A large number of generating functions can be derived by similar techniques. We
refer to the article [214], where this theory was first systematically developed and to
the synthesis given in [303, Chapter 5]. Our presentation also draws upon [238] where
the theory was put to use in order to develop a formal algebraic theory of general birth-
and-death processes in continuous time.
� V.15.Transitions and crossings.The lattice pathsH0,l corresponding to the transitions from
altitude 0 tol andHk,0 (from k to 0) have OGFs

H0,l =
1

Bl

(
Ql H0,0− Pl

)
, Hk,0 =

1

Ak
(Qk H0,0− Pk).

The crossingsH[<h]
0,h−1 andH[<h]

h−1,0 have OGFs,

H [<h]
0,h−1 =

Ah−1

Qh
, H [<h]

h−1,0 =
Bh−1

Qh
.

(Abbreviations used here are:Am = a0 · · ·am−1, Bm = b1 · · ·bm.) These extensions pro-
vide combinatorial interpretations for fractions of the form 1/Q. They result from the basic
decompositions combined with Proposition V.3; see [214, 238] for details. �

� V.16. Denominator polynomials and orthogonality.Let Hn = [zn]H0,0(z) represent the
number of all excursions of lengthn equipped withnon-negativeweights. Define a linear
functionalL on the spaceC(z) of polynomials byL[zn] = Hn. Introduce the reciprocal poly-
nomials:Qh(z) = zhQ(1/z). The fact, deducible from Note V.15, thatQl H0,0− Pl = O(z2l )

corresponds to the propertyL[z j Ql ) = 0 for all 0 ≤ j < l . In other words, the polynomials
Ql are orthogonal with respect to the special scalar product〈 f, g〉 := L[ f g]. (Historically, the
theory of orthogonal polynomials evolved from the theory of continued fractions, before living
a life of its own; see [118, 343, 563] for its many facets.) �
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� V.17.Discrete time birth-and-death processes.Assume that, at discrete timesn = 0, 1, 2, . . .,
a population of sizej can grow by one element [a birth] with probabilityα j , decrease by one
element [a death] with probabilityβ j , and stay the same with probabilityγ j = 1− α j − β j .
Let ωn be the probability that an initially empty population is again empty at timen. Then the
GF of the sequence(ωn) is

∑

n≥0

ωnzn = 1

1− γ0z− α0β1z2

1− γ1z− α1β2z2

· · ·

.

This result was found by I. J. Good in 1958: see [302]. �

� V.18. Continuous time birth-and-death processes.Consider a continuous time birth-and-
death process, where a transition from statej to j + 1 takes place according to an exponential
distribution of rateλ j and a transition fromj to j − 1 has rateµ j . Let̟(t) be the probability
to be in state 0 at timet starting from state 0 at time 0. One has

∫ ∞

0
e−st̟(t)dt = 1

s+ λ0−
λ0µ1

s+ λ1+ µ1−
λ1µ2

· · ·

= 1

s+ λ0

1+ µ1

s+ λ1

· · ·

.

Thus, continued fractions and orthogonal polynomials may be used to analyse birth-and-death
processes. (This fact was originally discovered by Karlin and McGregor [362], with later ad-
ditions due to Jones and Magnus [358]. See [238] for a systematic discussion in relation to
combinatorial theory.) �

V. 4.2. Analytic aspects.We now consider the general asymptotic properties of
lattice paths of height bounded from above by a fixed integerh ≥ 1. Letters denoting
elementary steps are weighted, as previously indicated, with

a j = α j z, b j = β j z, c j = γ j z,

the weights being invariably non-negative. We shall limit the discussion to excursions,
which are often the most interesting objects from the combinatorial point of view.

As a preamble, in the Dyck case, where allγ j are 0 (level steps are disallowed),
the GFH [<h] is a function ofz2 only, since it takes an even number of steps to return
to altitude 0 when starting from altitude 0. In such a case, weshall systematically
assume that, when considering [zn]H [<h] , the indexn = 2ν is even. In order to
avoid trivialities, we also assume that none of the coefficients attached to ascents and
descents are 0.

Theorem V.5(Asymptotics of nested sequences). Consider the classH[<h]
0,0 of weighted

Motzkin excursions of height< h. In the non-Dyck case (at least oneγ j 6= 0), their
number satisfies a pure exponential–polynomial formula,

H [<h]
0,0,n = cBn + O(Cn),

where B > 0 and 0 ≤ C < B. In the Dyck case, the formula holds, assuming
furthermore that n≡ 0 (mod 2).



V. 4. NESTED SEQUENCES, LATTICE PATHS, AND CONTINUED FRACTIONS 325

Proof. The proof proceeds by induction according to the depth of nesting of the
sequence constructions, starting with the innermost construction. (The present dis-
cussion is similar to the analysis of the supercritical sequence schema in Section V. 2,
p. 293.) Write

f j (z) := H [h− j−1≤•<h]
h− j−1,h− j−1(z),

and letρ j denote the dominant singularity off j that is positive (existence is guaran-
teed by Pringsheim’s Theorem).

For ease of discussion, we first examine the case where allγ j are non-zero. The
function f0(z) is

f0(z) =
1

1− γh−1z
,

and one hasρ0 = 1/γh−1. The function f1 is given by

f1(z) =
1

1− γh−2z− αh−2βh−1z2 f0(z)
.

The quantityγh−2z + αh−2βh−1z2 f0(z) in its denominator increases continuously
from 0 to+∞ asz increases from 0 toρ0; consequently, it crosses the value 1 at some
point which must beρ1. In particular, one must haveρ1 < ρ0. Our assumption that
all the γ j are non-zero implies the absence of periodicities, so thatρ1 is the unique
dominant singularity. The argument can be repeated, implying that the sequence of
radii is decreasingρ0 > ρ1 > ρ2 > · · · , the corresponding poles are all simple, and
they are uniquely dominating. The statement is thus established in the case that all the
γ j are non-zero.

Dually, in the Dyck case where all theγ j are zero, one can reason in a similar
manner, operating with the collection of “condensed” series f j (

√
z), which are seen

to have a unique dominant singularity. This implies thatf j (z) itself has exactly two
dominant singularities, namelyρh and−ρh, both being simple poles.

In the mixed case, thef j are initially of the Dyck type, until a certainγh−1− j0 6= 0
is encountered. In that case the functionf j0 is aperiodic (its span in the sense of Def-
inition IV.5, p. 266, is equal to 1). The reasoning then continues in a similar manner
to the Motzkin case, with all the subsequentf j (for j ≥ j0) including fh−1(z) ≡
H [<h]

0,0 (z) having a unique dominant singularity. �

Similar devices yield a characterization of the profile of a random path, that is,
the number of times a given step appears in a random excursion.

Theorem V.6 (Profile of nested sequences). Let Xn be the random variable repre-
senting the number of times a given step (of type aj , bj , or cj ) with non-zero weight
appears in a random excursion of length n and height< h. The moments of Xn satisfy

E(Xn) = c1n+ d1+ O(Dn), V(Xn) = c2n+ d2+ O(Dn),

for constants c1, c2,d1,d2, D, with c1, c2 > 0 and 0 ≤ D < 1. In particular the
distribution of Xn is concentrated.

Proof. Introduce an auxiliary variableu marking the number of designated steps, and
form the corresponding BGFH(z,u). We only detail the case of expectations. The
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function H is a linear fractional transformation inu of the form

H(z,u) = A(z)+ 1

C(z)+ uD(z)
.

(The coefficientsA, B,C area priori in C(z); they are in fact computable from Propo-
sition V.3.) Then, one has

∂

∂u
H(z,u)

∣∣∣∣
u=1
= − D(z)

(C(z)+ D(z))2
.

This function resemblesH(z,1)2. An application of the chain rule permits us to verify
that indeed

∂

∂u
H(z,u)

∣∣∣∣
u=1
= E(z)H(z,1)2,

whereE(z) is analytic in a disc larger than the disc of analyticity ofH(z,1). The
analysis of the dominant double pole then yields the result.(The determination of the
second moment follows along similar lines: a triple pole is involved.) �

� V.19. All poles are real. Assume againα j β j+1 > 0 andγ j ≥ 0. By Note V.16, the
denominator polynomialsQh are reciprocals of a family of polynomialsQh that are formally
orthogonal with respect to a scalar product. Thus the zeros of any of the Qh are all real, and so

are the zeros ofQh. Consequently:The poles of the OGF of ceiled excursions H[<h]
0,0 are all

real. (See for instance [563, §3.3] for the basic argument.) �

V. 4.3. Applications. Lattice paths have quite a wide range of descriptive power,
especially when weights are allowed. We illustrate this fact by three types of exam-
ples.

Example V.8 provides a complete analysis of height in Dyck paths and general
plane rooted trees, as regards moments as well as distribution. This is the simplest
case of a continued fraction (one with constant coefficients) attached to the OGF of
Catalan numbers and involving Fibonacci-Chebyshev polynomials. Example V.9 dis-
cusses coin fountains. There, we are dealing with an infinitecontinued fraction to
which the techniques of the previous subsection can be extended. (The developments
take us close to the realm ofq–calculus and to the analysis of alcohols seen in Chap-
ter IV.) Example V.10 constitutes a typical application of the possibility of encoding
combinatorial structures—here, interconnection networks—by means of lattice paths
weighted by integers. The enumeration involves Hermite polynomials. (Other ex-
amples related to set partitions and permutations are described in the accompanying
notes.)

ExampleV.8. Height of Dyck paths and plane rooted trees.In order to count lattice paths of
the Dyck (D) or Motzkin (M) type, it suffices to effect one of the substitutions,

σM : a j 7→ z, b j 7→ z, c j 7→ z; σD : a j 7→ z, b j 7→ z, c j 7→ 0.

We henceforth restrict attention to the case of Dyck paths. See Figure V.9for three simulations
suggesting that the distribution of height is somewhat spread. Given the parenthesis system
representation (Note I.48, p.77), the height of a Dyck path automaticallytranslates into as height
of the corresponding plane rooted tree.
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Figure V.9. Three random Dyck paths of length 2n = 500 have heights, respectively,
20, 31, 24: the distribution is spread, see Proposition V.4.

Expressions of GFs.The continued fraction expressingH0,0 results immediately from
Proposition V.3 and is in this case periodic (here, in the sense that its stagesare all alike); it
represents a quadratic function,

H0,0(z) =
1

1− z2

1− z2

1− . . .

= 1

2z2

(
1−

√
1− 4z2

)
,

sinceH0,0 satisfiesy = (1−z2y)−1. The families of polynomialsPh, Qh are in this case deter-
mined by a recurrence with constant coefficients. Define classically the Fibonacci polynomials
by the recurrence

(62) Fh+2(z) = Fh+1(z)− zFh(z), F0(z) = 0, F1(z) = 1.

One findsQh = Fh+1(z
2) and Ph = Fh(z

2). (The Fibonacci polynomials are reciprocals of
Chebyshev polynomials; see Note V.20, p. 329.) By Proposition V.3, the GF of paths of height
< h is then

H [<h]
00 (z) = Fh(z

2)

Fh+1(z2)
.

(We get more and, for instance, the number of ways of crossing a stripof width h − 1 is
H [<h]

0,h−1(z) = zh−1/Fh+1(z
2).) The Fibonacci polynomials have an explicit form,

Fh(z) =
⌊(h−1)/2⌋∑

k=0

(
h− 1− k

k

)
(−z)k,

as follows from the generating function expression:
∑

h Fh(z)y
h = y/(1− y+ zy2).

The equivalence between Dyck paths and (general) plane tree traversals discussed in Chap-
ter I (p. 73) implies that trees of height at mosth and sizen + 1 are equinumerous with Dyck
paths of length 2n and height at mosth. Set for convenience

G[h](z) = zH[<h+1]
00 (z1/2) = z

Fh+1(z)

Fh+2(z)
,

which is precisely the OGF of general plane trees having height≤ h. (This is otherwise in
agreement with the continued fraction forms obtained directly in Chapter III: cf (53), p. 195
and (79), p. 216.) It is possible to go much further as first shown by De Bruijn, Knuth, and Rice
in a landmark paper [145], which also constitutes a historic application of Mellin transforms in
analytic combinatorics. (We refer to this paper for historical context andreferences.)
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First, solving the linear recurrence (62) withz treated as a parameter yields the alternative
closed form expression

(63) Fh(z) =
Gh − G

h

G− G
, G = 1−

√
1− 4z

2
, G = 1+

√
1− 4z

2
.

There,G(z) is the OGF of all trees, and an equivalent form ofG[h] is provided by

(64) G− G[h−2] =
√

1− 4z
uh

1− uh
, where u = 1−

√
1− 4z

1+
√

1− 4z
= G2

z
,

as is easily verified. ThusG[h] can be expressed in terms ofG(z) andz:

G− G[h−2] =
√

1− 4z
∑

j≥1

z− jhG(z)2 jh .

The Lagrange–B̈urmann inversion theorem (p. 732) then gives after a simple calculation

(65) Gn+1− G[h−2]
n+1 =

∑

j≥1

12
(

2n

n− jh

)
,

where

12
(

2n

n−m

)
:=
(

2n

n+ 1−m

)
− 2

(
2n

n−m

)
+
(

2n

n− 1−m

)
.

Consequently, the number of trees of height≥ h − 1 admits a closed form: it is a “sampled”
sum, by steps ofh, of the 2nth line of Pascal’s triangle (upon taking second-order differences).

Probability distribution of height.The relation (65) leads easily to the asymptotic distribu-
tion of height in random trees of sizen. Stirling’s formula yields the Gaussian approximation
of binomial numbers: fork = o(n3/4) and withw = k/

√
n, one finds

(66)

( 2n
n−k

)
(2n

n
) ∼ e−w

2

(
1− w

4− 3w2

6n
+ 5w8− 54w6+ 135w4− 60w2

360n2
+ · · ·

)
.

The use of the Gaussian approximation (66) inside the exact formula (65) then implies:The
probability that a tree of size n+ 1 has height at least h− 1 satisfies uniformly for h∈
[α
√

n, β
√

n] (for anyα, β such that0< α < β <∞) the estimate

(67)
Gn+1− G[h−2]

n+1

Gn+1
= 2

(
h√
n

)
+ O

(
1

n

)
, 2(x) :=

∑

j≥1

e− j 2x2
(4 j 2x2− 2).

The function2(x) is a “theta function” which classically arises in the theory of elliptic func-
tions [604]. Since binomial coefficients decay rapidly, away from the centre, simple bounds also
show that the probability of the height being at leastn1/2+ǫ decays as exp(−n2ǫ), so that it is
exponentially small. Note also that the probability distribution of heightH itself admits an exact
expression obtained by differencing (65), which is reflected asymptotically by differentiation of
the estimate of (67):
(68)

PGn+1

[
H = ⌊x√n⌋

]
= − 1√

n
2′ (x)+ O

(
1

n

)
, 2′(x) :=

∑

j≥1

e− j 2x2
(12j 2x − 8 j 4x3).

The forms (67) and (68) also give access to moments of the distribution of height. We find

EGn+1

[
H r ] ∼ 1√

n
Sr

(
1√
n

)
, where Sr (y) := −

∑

h≥1

hr2′(hy).
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Figure V.10. The limit density of the distribution of height−2′(x).

The quantityyr+1Sr (y) is a Riemann sum relative to the function−xr2′(x), and the step
y = n−1/2 decreases to 0 asn→∞. Approximating the sum by the integral, one gets:

EGn+1

[
H r ] ∼ nr/2µr where µr := −

∫ ∞

0
xr2′(x) dx.

The integral givingµr is a Mellin transform in disguise (sets = r + 1) to which the treatment
of harmonic sums applies. We then get upon replacingn+ 1 byn:

Proposition V.4. The expected height of a random plane rooted tree comprising n+ 1 nodes is

(69)
√
πn− 3

2
+ o(1).

More generally, the moment of order r of height is asymptotic to

(70) µr nr/2 where µr = r (r − 1)Ŵ(r/2)ζ(r ).

The random variable H/
√

n obeys asymptotically a Theta distribution, in the sense of both the
“central” estimate(67) and the “local” estimate(68). The same asymptotic estimates hold for
height of Dyck paths having length2n.

The improved estimate of the mean (69) is from [145]. The general form of moments
in (70) is in fact valid for any realr (not just integers). An alternative formula for the Theta
function appears in Note V.20 below. Figure V.10 plots the limit density−2′(x), which surfaces
again in the height of binary and other simple trees (Example VII.27, p. 535). . . . . . . . . . . . .�

� V.20. Height and Fibonacci–Chebyshev polynomials.The reciprocal polynomialsFh(z) =
Fh−1(z) = zh−1Fh(1/z

2) are related to the classical Chebyshev polynomials byFh(2z) =
Uh(z), whereUh(cos(θ)) = sin((h + 1)θ)/ sin(θ). (This is readily verified from the recur-
rence (62) and elementary trigonometry.) Then, the roots ofFh(z) are(4 cos2 jπ/(h + 1))−1

and the partial fraction expansion ofG[h](z) can be worked out explicitly [145]. Thus, for
n ≥ 1,

(71) G[h−2]
n+1 =

4n+1

h

∑

1≤ j<h/2

sin2 jπ

h
cos2n jπ

h
,

which provides in particular an asymptotic form for any fixedh. (This formula can also be
found directly from the sampled sum (65) by multisection of series.) Asymptotic analysis of
this last expression whenh = x

√
n yields the alternative expression

lim
n→∞PGn+1

[
H ≤ x

√
n
]
= 4π5/2x−3

∑

j≥0

j 2e− j 2π2/x2
( ≡ 1−2(x)),
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which, when compared with (67), reflects an important transformation formula of elliptic func-
tions [604]. See the study by Biane, Pitman, and Yor [64] for fascinatingconnections with
Brownian motion and the functional equation of the Riemann zeta function. Height in simple
varieties of trees also obeys a Theta law, but the proofs (Example VII.27, p. 535) require the
full power of singularity analysis. �

� V.21.Motzkin paths.The OGF of Motzkin paths of height< h is 1
1−z ·DH [<h]

0,0

(
z

1−z

)
, where

DH [<h]
0,0 refers to Dyck paths. Therefore, such paths can be enumerated exactly by formulae

derived from Equations(65) to (71). Accordingly, the mean height is∼
√

3πn. �

ExampleV.9. Area under Dyck path and coin fountains.Consider Dyck paths and the area
parameter:area under a lattice path is taken here as the sum of the indices (i.e., the starting
altitudes) of all the variables that enter the standard encoding of the path. Thus, the BGFD(z,q)
of Dyck paths withz marking half-length andq marking area is obtained by the substitution

a j 7→ q j z, b j 7→ q j , c j 7→ 0

inside the fundamental continued fraction (55). (We rederive here Equation (54) of Chapter III,
p. 196.) It proves convenient to operate with the continued fraction

(72) F(z,q) = 1

1− zq

1− zq2

. . .

,

so thatD(z,q) = F(q−1z,q2). SinceF satisfies a difference equation,

(73) F(z,q) = 1

1− zq F(qz,q)
,

moments of area can be determined by differentiating and settingq = 1 (see Chapter III, p. 184,
for a direct approach.

A general trick fromq–calculus is effective for deriving an alternative form ofF . Express
the continued fractionF of (72) as a quotientF(z,q) = A(z)/B(z). Then, the relation (73)
implies

A(z)

B(z)
= 1

1− qzA(qz)
B(qz)

,

and, by identifying numerators and denominators, we get

A(z) = B(qz), B(z) = B(qz)− qzB(q2z),

with q treated as a parameter. The difference equation satisfied byB(z) is then readily solved
by indeterminate coefficients. (This classical technique was introduced inthe theory of integer
partitions by Euler.) WithB(z) =∑bnzn, the coefficients satisfy the recurrence

b0 = 1, bn = qnbn − q2n−1bn−1.

This is a first-order recurrence onbn that unwinds to give

bn = (−1)n
qn2

(1− q)(1− q2) · · · (1− qn)
.
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In other words, introducing the “q–exponential function”,

(74) E(z,q) =
∞∑

n=0

(−z)nqn2

(q)n
, where (q)n = (1− q)(1− q2) · · · (1− qn),

one finds

(75) F(z,q) = E(qz,q)

E(z,q)
.

The exact distribution of area in Dyck paths can then be regarded as known, in the sense that
it is fully characterized by (74) and (75). (Example VII.26, p. 533, presents an analysis of the
corresponding limit distribution, based on “moment pumping”, to the effect that an Airy law
prevails.)

Given the importance of the functions under discussion in various branches of mathemat-
ics, we cannot resist a quick digression. The name of theq–exponential comes form the obvious
property thatE(z(1− q),q) reduces toe−z asq → 1−. The explicit form (74) constitutes in
fact the “easy half” of the proof of the celebrated Rogers–Ramanujanidentities, namely,

(76)

E(−1,q) =
∞∑

n=0

qn2

(q)n
=

∞∏

n=0

(1− q5n+1)−1(1− q5n+4)−1

E(−q,q) =
∞∑

n=0

qn(n+1)

(q)n
=

∞∏

n=0

(1− q5n+2)−1(1− q5n+3)−1,

that relate theq–exponential to modular forms. See Andrews’ book [14, Ch. 7] for context.
Coin fountains. Here is finally a cute application of these ideas to the asymptotic enu-

meration of some special polyominoes. Odlyzko and Wilf define in [461, 464] an(n,m) coin
fountain as an arrangement ofn coins in rows in such a way that there arem coins in the bottom
row, and that each coin in a higher row touches exactly two coins in the nextlower row. Let
Cn,m be the number of(n,m) fountains andC(z,q) be the corresponding BGF withq mark-
ing n andz markingm. SetC(q) = C(1,q). The question is to determine the total number of
coin fountains of arean, [qn]C(q). The series starts as (this isEISA005169)

C(q) = 1+ q + q2+ 2q3+ 3q4+ 5q5+ 9q6+ 15q7+ 26q8+ · · · ,
as results from inspection of the first few cases.

.

There is a clear bijection with Dyck paths (do a 135◦ scan) that takes area into account: a
coin fountain of sizen with m coins on its base is equivalent to a Dyck path of length 2m and
area 2n − m (with our earlier definition of area of Dyck paths). From this bijection, one has
C(z,q) = F(z,q) (with F as defined earlier) and, in particular,C(q) = F(1,q). Consequently,
by (72) and (75), we find

C(q) = 1

1− q

1− q2

1− q3

. . .

= E(q,q)

E(1,q)
.
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Objects weights(α j , β j γ j ) counting orthogonal pol.
Simple paths 1, 1, 0 Catalan # Chebyshev
Permutations j + 1, j, 2 j + 1 Factorial # Laguerre
Alternating perm. j + 1, j, 0 Secant # Meixner
Involutions 1, j, 0 Odd factorial # Hermite
Set partition 1, j, j + 1 Bell # Poisson–Charlier
Non-overlap. set part. 1, 1, j + 1 Bessel # Lommel

Figure V.11. Some special families of combinatorial objects together with cor-
responding weights, counting sequences, and orthogonal polynomials. (See also
Notes V.23— 25.)

The rest of the discussion is analogous to Section IV. 7.3 (p. 283) relative to alcohols. The
function C(q) is a priori meromorphic in|q| < 1. An exponential lower bound of the form
1.6n holds for [qn]C(q), since(1− q)/(1− q − q2) is dominated byC(q) for q > 0. At the
same time, the number [qn]C(q) is majorized by the number of compositions, which is 2n−1.
Thus, the radius of convergence ofC(q) has to lie somewhere between 0.5 and 0.61803. . . . It
is then easy to check by numerical analysis the existence of a simple zero of the denominator,
E(1,q), nearρ

.= 0.57614. Routine computations based on Rouché’s theorem then make it
possible to verify formally thatρ is the only pole in|q| ≤ 3/5 and that this pole is simple (the
process is detailed in [461]). Thus, singularity analysis of meromorphicfunctions applies.

Proposition V.5. The number of coin fountains made of n coins satisfies asymptotically

[qn]C(q) = cAn + O((5/3)n), c
.= 0.31236, A = ρ−1 .= 1.73566.

This example illustrates the power of modelling by continued fractions as wellas the
smooth articulation with meromorphic function asymptotics. . . . . . . . . . . . .. . . . . . . . . . . . . . .�

Lattice path encodings of classical structures.The systematic theory of lattice
path enumerations and continued fractions was developed initially because of the need
to count weighted lattice paths, notably in the context of the analysis of dynamic data
structures in computer science [226]. In this framework, a system of multiplicative
weightsα j , β j , γ j is associated with the stepsa j ,b j , c j , each weight being an in-
teger that represents a number of “possibilities” for the corresponding step type. A
system of weighted lattice paths has counting generating functions given by the usual
substitution from the corresponding multivariate expressions; namely,

(77) a j 7→ α j z, b j 7→ β j z, c j 7→ γ j z,

wherez marks the length of paths. One can then attempt to solve an enumeration
problem expressible in this way by reverse-engineering theknown collection of con-
tinued fractions as found in reference books such as those byPerron [479], Wall [601],
and Lorentzen–Waadeland [412]. Next, for general reasons,the polynomialsP, Q are
always elementary variants of a family of orthogonal polynomials that is determined
by the weights (see Note V.16, p. 323, and [118, 563]). When themultiplicities have
enough structural regularity, the weighted lattice paths are likely to correspond to
classical combinatorial objects and to classical familiesof orthogonal polynomials;
see [214, 226, 295, 303] and Figure V.11 for an outline. We illustrate this by a simple
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Figure V.12. An interconnection network on 2n = 12 points.

example due to Lagarias, Odlyzko, and Zagier [394], which isrelative to involutions
without fixed points.

ExampleV.10. Interconnection networks and involutions. The problem treated here is the
following [394]. There are2n points on a line, with n point-to-point connections between pairs
of points. What is the probable behaviour of thewidth of such an interconnection network?
Imagine the points to be 1, . . . , 2n, the connections as circular arcs between points, and let a
vertical line sweep from left to right; width is defined as the maximum numberof arcs met by
such a line. One may freely imagine a tunnel of fixed capacity (this corresponds to the width)
inside which wires can be placed to connect points pairwise (Figure V.12).

Let J2n be the class of all interconnection networks on 2n points, which is precisely the
collection of ways of grouping 2n elements inton pairs, or, equivalently, the class of all invo-
lutions without fixed points, i.e., permutations with cycles of length 2 only. The numberJ2n
equals the “odd factorial”,

J2n = 1 · 3 · 5 · · · (2n− 1),

whose EGF isez2/2 (see Chapter II, p. 122). The problem calls for determining the quantity
J[h]
2n that is the number of networks having width≤ h.

The relation to lattice paths is as follows. First, when sweeping a vertical line across a
network, define an active arc at an abscissa as one that straddles thatabscissa. Then build
the sequence of active arc counts at half-integer positions1

2,
3
2, . . . , 2n − 1

2, 2n + 1
2 . This

constitutes a sequence of integers in which each member is±1 the previous one; that is, a
lattice path without level steps. In other words, there is an ascent in the latticepath for each
element that is smaller in its cycle and a descent otherwise. One may view ascents as associated
to situations where a node “opens” a new cycle, while descents correspond to “closing” a cycle.

Involutions are much more numerous than lattice paths, so that the correspondence from
involutions to lattice paths has to be many-to-one. However, one can easily enrich lattice paths,
so that the enriched objects are in one-to-one correspondence with involutions. Consider again
a scanning position at a half-integer where the vertical line crossesℓ (active) arcs. If the next
node is of the closing type, there areℓ possibilities to choose from. If the next node is of
the opening type, then there is only one possibility, namely, to start a new cycle. A complete
encoding of a network is accordingly obtained by recording additionally thesequence of then
possible choices corresponding to descents in the lattice path (some canonical order is fixed, for
instance, oldest first). If we write these choices as superscripts, this means that the set of all
enriched encodings of networks is obtained from the set of standard lattice path encodings by
effecting the substitutions

b j 7→
j∑

k=1

b(k)j .
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Figure V.13. Three simulations of random networks with 2n = 1000 illustrate the
tendency of the profile to conform to a parabola with height close ton/2= 250.

The OGF of all involutions is obtained from the generic continued fraction ofProposi-
tion V.3 by the substitution

a j 7→ z, b j 7→ j · z,
wherez records the number of steps in the enriched lattice path, or equivalently, the number
of nodes in the network. In other words, we have obtained combinatoriallya formal continued
fraction representation,

∞∑

n=0

(1 · 3 · · · (2n− 1))z2n = 1

1− 1 · z2

1− 2 · z2

1− 3 · z2

. . .

,

which was originally discovered by Gauss [601]. Proposition V.3 also gives immediately the
OGF of involutions of width at mosth as a quotient of polynomials. Define

J[h](z) :=
∑

n≥0

J[h]
2n z2n.

One has

J[h](z) = 1

1− 1 · z2

1− 2 · z2

. . .

1− h · z2

= Ph+1(z)

Qh+1(z)

wherePh andQh satisfy the recurrence

Yh+1 = Yh − hz2Yh−1.

The polynomials are readily determined by their generating functions that satisfies a first-order
linear differential equation reflecting the recurrence. In this way, the denominator polynomials
are identified to be reciprocals of the Hermite polynomials,

Heh(z) = (2z)hQh

(
1

z
√

2

)
,
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themselves defined classically [3, Ch. 22] as orthogonal with respect tothe measuree−x2
dx

on (−∞,∞) and expressible via

Hem(x) =
⌊m/2⌋∑

m=0

(−1) j m!

j !(m− 2 j )!
(2x)m−2 j ,

∑

m≥0

Hem(x)
tm

m!
= e2xt−t2

.

In particular, one finds

J[0] = 1, J[1] = 1

1− z2
, J[2] = 1− 2z2

1− 3z2
, J[3] = 1− 5z2

1− 6z2+ 3z4
, &c.

The interesting analysis of the dominant poles of the rational GFs, for anyfixed h, is
discussed in the paper [394]. Furthermore, simulations strongly suggest that the width of a ran-
dom interconnection network on 2n nodes is tightly concentrated aroundn/2; see Figure V.13.
Louchard [418] (see also Janson’s study [353]) succeeded in proving this fact and a good deal
more. With high probability, the altitude (the altitude is defined here as the number of active
arcs as time evolves) of a random network conforms asymptotically to a deterministic parabola
2nx(1− x) (with x ∈ [0, 1]) to which are superimposed random fluctuations of a smaller am-
plitude,O(

√
n), well-characterized by a Gaussian process. In particular,the width of a random

network of2n nodes converges in probability to n/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� V.22.Bell numbers and continued fractions.With Sn = n![zn]eez−1 a Bell number:

∑

n≥0

Snzn = 1

1− 1z− 1z2

1− 2z− 2z2

· · ·

.

[Hint: Define an encoding like for networks, with level steps representingintermediate elements
of blocks [214].] Refinements include Stirling partition numbers and involution numbers. �

� V.23.Factorial numbers and continued fractions.One has

∑

n≥0

n!zn = 1

1− 1z− 12z2

1− 3z− 22z2

· · ·

.

Refinements include tangent and secant numbers, as well as Stirling cycle numbers and Euler-
ian numbers. (This continued fraction goes back to Euler [198]; see [214] for a proof based on
a bijection of Françon–Viennot [269] and Biane [63] for an alternative bijection.) �

� V.24.Surjection numbers and continued fractions.Let Rn = n![zn](2− ez)−1. Then

∞∑

n=0

Rnzn = 1

1− 1z− 2 · 12z2

1− 4z− 2 · 22z2

1− 7z− · · ·

.

This continued fraction is due to Flajolet [216]. �
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� V.25. The Ehrenfest2 two-chambers model.(See Note II.11, p. 118 for context.) The OGF
of the number of evolutions that lead to chamberA full satisfies

∑

n≥0

E[N]
n zn = 1

1− 1Nz2

1− 2(N − 1)z2

· · ·

= 1

2N

N∑

k=0

(N
k
)

1− (N − 2k)z
.

This results from the EGF of Note II.11 (p. 118), the Continued Fraction Theorem, and basic
properties of the Laplace transform. (This continued fraction expansion is originally due to
Stieltjes [562] and Rogers [516]. See also [304] for additional formulae.) �

V. 5. Paths in graphs and automata

In this section, we develop the framework ofpaths in graphs: given a graph,
a source node, and a destination node, the problem is to enumerate all paths from
the source to the destination in the graph. Non-negative weights acting multiplica-
tively (probabilities, multiplicities) may be attached toedges. Applications include
the analysis of walks in various types of graphs as well as languages described by
finite automata. Under a fundamental structural condition,known asirreducibility and
corresponding to strong-connectedness of the graph, generating functions of paths all
have the same dominant singularity, which is asimple pole. This essential property im-
plies simple exponential forms for the asymptotics of coefficients (possibly tempered
by explicit congruence conditions in the periodic case). The corresponding results can
equivalently be formulated in terms of the set ofeigenvalues(the spectrum) of the cor-
responding adjacency matrix and are related to the classical Perron–Frobenius theory
of non-negative matrices—under irreducibility, only the largest positive eigenvalue
matters asymptotically.

V. 5.1. Combinatorial aspects.A directed graphor digraphŴ is determined by
the pair(V, E) of its vertex setV and its edge setE ⊆ V × V . Here, self-loops
corresponding to edges of the form(v, v) are allowed. Given an edge,e = (a,b),
we denote its origin by orig(e) := a and its destination by destin(e) := b. ForŴ a
digraph with vertex set identified to the set{1, . . . ,m}, we allow each edge(a,b) to be
weighted by a quantityga,b, which we may take as a formal indeterminate for which
we allow the possibility of substituting positive weight values; the matrixG such that

(78) Ga,b = ga,b if the edge(a,b) ∈ Ŵ, Ga,b = 0 otherwise,

is called theweighted adjacency matrixof the (weighted) graphŴ (Figure V.14). The
usual adjacency matrix ofŴ is obtained by the substitutionga,b 7→ 1.

A path is a sequence of edges,̟ = (e1, . . . ,en), such that, for allj with 1 ≤
j < n, one has destin(ej ) = orig(ej+1). The parametern is called the length of the
path and we define: orig(̟) := orig(e1), destin(̟) := destin(en). A circuit is a
path whose origin and destination are the same vertex. Note that, with our definition,
a circuit has its origin that is distinguished. Wedo not identify here two circuits
such that one is obtained by circular permutation from the other: the circuits that we
consider, with such a distinguished root, arerooted circuits.
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Ŵ =

3

1 2

4

, G =




0 g1,2 0 g1,4
0 0 g2,3 0

g3,1 0 0 0
0 g4,2 0 0


 ,

F〈1,1〉(z) = 1+ g1,2g2,3g3,1z3+ g1,4g4,2g2,3g3,1z4+ · · · .

Figure V.14. A graphŴ, its formal adjacency matrixG, and the generating
function F 〈1,1〉(z) of paths from 1 to 1.

From the standard definition of matrix products, the powersGn have elements
that arepath polynomials. More precisely, one has the simple but essential relation,

(79) (G)ni, j =
∑

w∈F 〈i, j 〉n

w,

whereF 〈i, j 〉n is the set of paths inŴ that connecti to j and have lengthn, and a pathw
is identified with the monomial in indeterminates{gi, j } that represents multiplicatively
the succession of its edges; for instance:

(G)3i, j =
∑

ν1=i,ν2,ν3,ν4= j

gν1,ν2gν2,ν3gν3,ν4.

In other words: powers of the matrix associated to a graph generate all pathsin
graph, the weight of a path being theproductof the weights of the individual edges
it comprises. (This fact probably constitutes the most basic result of algebraic graph
theory [66, p. 9].) One may then treat simultaneously all lengths of paths (and all
powers of matrices) by introducing the variablez to record length.

Proposition V.6. (i ) Let Ŵ be a digraph and letG be the formal adjacency matrix
of Ŵ as given by(78). The OGF F〈i, j 〉(z) of the set of all paths from i to j inŴ, with
z marking length and ga,b the weight associated to edge(a,b), is the entry i, j of the
matrix (I − zG)−1; namely

(80) F 〈i, j 〉(z) =
(
(I − zG)−1

)
i, j
= (−1)i+ j 1

〈i, j 〉(z)
1(z)

,

where1(z) = det(I − zG) is the reciprocal polynomial of the characteristic polyno-
mial of G and1〈 j,i 〉(z) is the determinant of the minor of index j, i of I − zG.

(i i ) The generating function of (rooted) circuits is expressible in terms of a loga-
rithmic derivative:

(81)
∑

i

(F 〈i,i 〉(z)− 1) = −z
1′(z)
1(z)

.

In this algebraic statement, if one takes the{ga,b} as formal indeterminates, then
F 〈i, j 〉(z) is a multivariate GF of paths inz with the variable{ga,b} marking the num-
ber of occurrences of edge(a,b). The result applies, in particular, to the case where
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the ga,b are assigned numerical values, in which case [zn]F 〈i, j 〉(z) becomes the to-
tal weight of paths of lengthn, which we also refer to as “number of paths” in the
weighted graph.

Proof. For the proof, it is convenient to assume that the quantities ga,b are assigned
arbitrary real numbers, so that usual matrix operations (triangularization, diagonaliza-
tion, and so on) can be easily applied. As the properties expressed by the statement
are ultimately equivalent to a collection of multivariate polynomial identities, their
general validity is implied by the fact that they hold for allreal assignments of values.

Part(i ) is a consequence of the fundamental equivalence between paths and ma-
trix products (79), which implies

F 〈i, j 〉(z) =
∞∑

n=0

zn (Gn)
i, j =

(
(I − zG)−1

)
i, j
,

and from the cofactor formula of matrix inversion.
Part(i i ) results from elementary properties of the matrix trace9functional. Withm

the dimension ofG and{λ1, . . . , λm} the multiset of its eigenvalues, we have

(82)
m∑

i=1

F 〈i,i 〉n = Tr Gn =
m∑

j=1

λn
j ,

whereF 〈i, j 〉n = [zn]F 〈i, j 〉(z). Upon taking a generating function, there results that

(83)
m∑

i=1

∞∑

n=1

F 〈i,i 〉n zn =
m∑

j=1

λ j z

1− λ j z
,

which, up to a factor of−z, is none other than the logarithmic derivative of1(z). �

� V.26. Positivity of inverses of characteristic polynomials.Let G have non-negative coef-
ficients. Then, the rational functionZG(z) := 1/det(I − zG) has non-negative Taylor co-
efficients. More generally, ifG = (ga,b) is a matrix in the formal indeterminatesga,b, then
[zn]ZG(z) is a polynomial in thega,b with non-negative coefficients. (Hint: The proof proceeds
by integration from (81): we have, for 1/1(z), the equivalent expressions

1

1(z)
≡ exp

(
−
∫ z

0

1′(t)
1(t)

dt

)
= exp



∫ z

0

m∑

i=1

(F〈i,i 〉(t)− 1)
dt

t


= exp


∑

n≥1

zn

n
Tr Gn


,

which ensure positivity of the coefficients ofZG.) �

� V.27.MacMahon’s Master Theorem.Let J be the determinant

J(z1, . . . , zm) :=

∣∣∣∣∣∣∣∣

1− z1g11 −z2g12 · · · −zmg1m
−z1g21 1− z2g22 · · · −zmg2m

...
...

. . .
...

−zmgm1 −zmg2m · · · 1− zmgmm

∣∣∣∣∣∣∣∣
.

MacMahon’s “Master Theorem” asserts the identity of coefficients,

[zα1
1 · · · z

αm
m ]

1

J(z1, . . . , zm)
= [zα1

1 · · · z
αm
m ]Yα1

1 · · ·Y
αm
m , where Yj =

∑

i

gi j z j .

9If H is anm×m matrix with multiset of eigenvalues{µ1, . . . , µm}, the trace is defined by TrH :=∑m
i=1(H)i i and, by triangularization (Jordan form), it satisfies TrH =∑m

j=1µ j .
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This result can be obtained by a simple change of variables in a multivariateCauchy integral and
is related to multivariate Lagrange inversion [303, pp. 21–23]. Cartier and Foata [105] provide
a general combinatorial interpretation related to trace monoids of Note V.10, p. 307. �

� V.28.The Jacobi trace formula.this trace formula [303, p. 11] for square matrices is

(84) det◦exp(M) = exp◦Tr(M);
equivalently, with due care paid to determinations: log◦ det(M) = Tr ◦ log(M). It generalizes
the scalar identitieseaeb = ea+b and logab= loga+ logb. (Hint: recycle the computations
of Note V.26.) �

� V.29. Fast computation of the characteristic polynomial.The following algorithm is due
to Leverrier (1811–1877), the astronomer and mathematician who, together with Adams, first
predicted the position of the planet Neptune. Since, by (82) and (83), one has

∑

n≥1

zn Tr Gn =
m∑

j=1

λ j z

1− λ j z
,

it is possible to deduce an algorithm that determines the characteristic polynomial of a matrix
of dimensionm in O(m4) arithmetic operations. [Hint: computing the quantities TrG j for
j = 1, . . . ,m is sufficient and requires preciselym matrix multiplications.] �

� V.30. The Matrix Tree Theorem.Let Ŵ be a directed graph without loops and associated
matrixG, with ga,b the weight of edge(a,b). The Laplacian matrixL [G] is defined by

L [G]i, j = −gi, j + [[ i = j ]]δi , where δi :=
∑

k

gi,k.

Let L1[G] be the matrix obtained by deleting the first row and first column ofL [G]. Then, the
“tree polynomial”

T1[G] := detL1[G]

enumerates all (oriented) spanning trees ofŴ rooted at node 1. (This classic result belongs to a
circle of ideas initiated by Kirchhoff, Sylvester, Borchardt and others inthe nineteenth century.
See, for instance, the discussions by Knuth [377, p. 582–583] and Moon [445].) �

Weighted graphs, word models, and finite automata.The numeric substitution
σ : ga,b 7→ 1 transforms the formal adjacency matrixG of Ŵ into the usualadja-
cency matrix. In particular, the number of paths of lengthn is obtained, under this
substitution, as [zn](1− zG)−1. As already noted, it is possible to consider weighted
graphs, where thega,b are assignedpositive real-valued weights; with the weight of a
path being defined by the product of its edge weights. One findsthat [zn](I − zG)−1

equals the total weight of all paths of lengthn. If furthermore the assignment is made
in such a way that

∑
b ga,b = 1, for alla, then the matrixG, which is called astochas-

tic matrix, can be interpreted as the transition matrix of a Markov chain. Naturally,
the formulae of Proposition V.6 continue to hold in all thesecases.

Word problems corresponding to regular languages can be treated by the theory
of regular specifications whenever they have enough structure and an unambiguous
regular expression description is of tractable form. (Thisis the main theme of Sub-
section I. 4.1, p. 51, further pursued in Sections V. 3 and V. 4.) The dual point of view
of automata theory introduced in Subsection I. 4.2 (p. 56) proves useful whenever no
such direct description is in sight. Finite automata can be reduced to the theory of
paths in graphs, so that Proposition V.6 is applicable to them. Indeed, the languageL



340 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

accepted by a finite automatonA, with set of statesQ, initial stateq0, andQ f the set
of final states, decomposes as

L =
∑

q∈Q f

F 〈q0,q〉,

whereF 〈q0,q〉 is the set of paths from the initial stateq0 to the final state,q. (The
corresponding graphŴ is obtained fromA by collapsing multiple edges between any
two vertices,i and j , into a single edge equipped with a weight that is thesumof
the weights of all the letters leading fromi to j .) Proposition V.6 is then clearly
applicable.

Profiles. The term “profile of a set of paths”, as used here, means the collection
of the m2 statisticsN = (N1,1, . . . , Nm,m) where Ni, j is the number of times the
edge(i −→ j ) is traversed. This notion is, for instance, consistent withthe notion of
profile given earlier for lattice paths in Section V. 4. It also contains the information
regarding the letter composition of words in a regular language and is thus compatible
with the notion of profile introduced in Section V. 3.

LetŴ be a graph with edge(a,b) weighted byγa,b. Then, the BGF of paths with
u marking the number of times a particular edge(c,d) is traversed is in matrix form

(I − zG̃)−1, with G̃ = G
[
ga,b 7→ ga,bu[[(a,b)=(c,d)]]

]
.

The entry(i, j ) in this matrix gives the BGF of paths with origini and destinationj .
The GF of cumulated values (moments of order 1) is then obtained in the usual way,
by differentiation followed by the substitutionu = 1. Higher moments are similarly
attainable by successive differentiations.

V. 5.2. Analytic aspects.In full generality, the components of a linear system
of equations may exhibit the whole variety of behaviours obtained for the OGFs of
regular languages in Section V. 3, p. 300. However, positivity coupled with some
simple ancillary conditions (irreducibility and aperiodicity defined below) entails that
the GFs of interest closely resemble the extremely simple rational function,

1

1− z/ρ
≡ 1

1− λ1z
,

whereρ is the dominant positive singularity andλ1 = 1/ρ is a well-characterized
eigenvalue ofT . Accordingly, the asymptotic phenomena associated with such sys-
tems are highly predictable and coefficients involve the pure exponential formc ·ρ−n.
We propose first to expound the general theory, then treat classical applications to
statistics of paths in graphs and languages recognized by finite automata.

Irreducibility and aperiodicity of matrices and graphs.From this point on, we
only consider matrices with non-negative entries. Two notions are essential, irre-
ducibility and aperiodicity (the terms are borrowed from Markov chain theory and
matrix theory).

For A a scalar matrix of dimensionm×m (with non-negative entries), a crucial
rôle is played by thedependency graph(p. 33); this is the (directed) graph with vertex
setV = {1 . .m} and edge set containing the directed edge(a → b) iff Aa,b 6= 0.
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Figure V.15. Irreducibility conditions. Left: a strongly connected digraph. Right: a
weakly connected digraph that is not strongly connected decomposes as a collection
of strongly connected components linked by a directed acyclic graph.

The reason for this terminology is the following: LetA represent the linear transfor-

mation
{

y⋆i =
∑

j Ai, j y j

}
i
; then, the fact that an entryAi, j is non-zero means that

y⋆i depends effectively ony j and is translated by the directed edge(i → j ) in the
dependency graph.

Definition V.5. The non-negative matrix A is calledirreducible if its dependency
graph is strongly connected (i.e., any two vertices are connected by a directed path).

By considering only simple paths, it is then seen that irreducibility is equivalent to
the condition that(I + A)m has all its entries that are strictly positive. See Figure V.15
for a graphical rendering of irreducibility and for the general structure of a (weakly
connected) digraph.

Definition V.6. A strongly connected digraphŴ is said to beperiodicwith parameter
d iff the vertex set V can be partitioned into d classes, V= V0∪· · ·∪Vd−1, in such a
way that any edge whose source is an element of a Vj has its destination in Vj+1 modd.

The largest possible d is called theperiod. If no decomposition exists with d≥ 2,
so that the period has the trivial value 1, then the graph and all the matrices that admit
it as their dependency graph are calledaperiodic.

For instance, a directed 10–cycle is periodic with parameters d = 1,2,5,10
and the period is 10. Figure V.16 illustrates the notion. Periodicity implies that the
existence of paths of lengthn between any two given nodesi, j is constrained by the
congruence classn modd. Conversely, aperiodicity entails the existence, for alln
sufficiently large, of paths of lengthn connectingi, j .
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V0

V1

V2

V3

Figure V.16. Periodicity notions: the overall structure of a periodic graph withd = 4
(left), an aperiodic graph (middle) and a periodic graph of period 2 (right).

From the definition, a matrixA with periodd has, up to simultaneous permutation
of its rows and columns, a cyclic block structure




0 A0,1 0 · · · 0

0 0 A1,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ad−2,d−1

Ad−1,0 0 0 · · · 0




where the blocksAi,i+1 reflect the connectivity betweenVi andVi+1. In the case of a
periodd, the matrixAd admits a diagonal square block decomposition where each of
its diagonal block is aperiodic (and of a smaller dimension than the original matrix).
Then, the matricesAνd can be analysed block by block, and the analysis reduces to the
aperiodic case. Similarly for powersAνd+r for any fixedr asν varies. In other words,
the irreducible periodic case with period d≥ 2 can always be reduced to a collection
of d irreducible aperiodic subproblems.For this reason, we usually postulate in our
statements both an irreducibility conditionandan aperiodicity condition.
� V.31. Sufficient conditions for aperiodicity.Any one of the following conditions suffices to
guarantee aperiodicity of the non-negative matrixT :

(i ) T has (strictly) positive entries;
(i i ) some powerTs has (strictly) positive entries;
(i i i ) T is irreducible and at least one diagonal element ofT is non-zero;
(i v) T is irreducible and the dependency graph ofT is such that there exist two circuits

(closed paths) that are of relatively prime lengths.

(Any such condition implies in turn the existence of a unique dominant eigenvalue ofT , which
is simple, according to Theorem V.7 and Note V.34 below.) �

� V.32.Computability of the period.There exists a polynomial time algorithm that determines
the period of a matrix. (Hint: in order to verify thatŴ is periodic with parameterd, develop a
breadth-first search tree, label nodes by their level, and check that edges have endpoints satis-
fying suitable congruence conditions modulod.) �

Paths in strongly connected graphs.For analytic combinatorics, the importance
of irreducibility and aperiodicity conditions stems from the fact that they guarantee
uniqueness and simplicity of a dominant pole of path generating functions.
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Theorem V.7 (Asymptotics of paths in graphs). Consider the matrix

F(z) = (I − zT)−1,

where T is a scalar non-negative matrix, in particular, the adjacency matrix of a
graphŴ equipped with positive weights. Assume that T isirreducible. Then all entries
F 〈i, j 〉(z) of F(z) have the same radius of convergenceρ, which can be defined in two
equivalent ways:

(i ) asρ = λ−1
1 with λ1 the largest positive eigenvalue of T ;

(i i ) as the smallest positive root of the determinantal equation: det(I −zT) = 0.

Furthermore, the pointρ = λ−1
1 is a simple pole of each F〈i, j 〉(z).

If T is irreducibleandaperiodic, thenρ = λ−1
1 is the unique dominant singularity

of each F〈i, j 〉(z), and

[zn]F 〈i, j 〉(z) = ϕi . j λ
n
1 + O(3n), 0≤ 3 < λ1,

for computable constantsϕi, j > 0.

Proof. The proof proceeds by stages, building up properties of theF 〈i, j 〉 by means
of the relations that bind them, with suitable exploitationof Proposition V.6, p. 337 in
conjunction withPringsheim’s Theorem(p. 240). In parts(i )–(v), weassume that the
matrix T is aperiodic. Periodicity is finally examined in part(v i ).

(i ) All F 〈i, j 〉 have the same radius of convergence.Simple upper and lower
bounds show that eachF 〈i, j 〉 has a finite non-zero radius of convergenceρi, j . By
Pringsheim’s Theorem, thisρi, j is necessarily a singularity of the functionF 〈i, j 〉.
Since eachF 〈i, j 〉 is a rational function, it then has a pole atρi, j , hence becomes infi-
nite asz→ ρi, j . Now, the matrixF satisfies the identities

(85) F = I + zT F, and F = I + zFT.

Thus, given thatT is irreducible, eachF 〈i, j 〉 is positively (linearly) related to any
other F 〈k,ℓ〉. Then, theF 〈i, j 〉 must all become infinite as soon as one of them does.
Consequently, all theρi, j are equal—we letρ denote their common value.

(i i ) All poles are of the same multiplicity.By a similar argument, we see that all
the F 〈i, j 〉 must have the same multiplicityκ of their common poleρ, since otherwise,
one function would be of slower growth, and a contradiction would result with the
linear relations stemming from (85). We thus have, for someϕi, j > 0 andκ ≥ 1:

F 〈i, j 〉(z) ∼
z→ρ

ϕi, j

(1− z/ρ)κ
.

(i i i ) The common multiplicity of poles isκ = 1. This property results from
the expression of the GF of all rooted circuits (PropositionV.6, Part(i i )) in terms of a
logarithmic derivative, which has by construction only simple poles. Hence, a positive
linear combination of some of theF 〈i, j 〉 has only a simple pole, so thatκ = 1 and

(86) F 〈i, j 〉(z) ∼
z→ρ

ϕi, j

1− z/ρ
.
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Another consequence is that we haveρ = 1/λ1, whereλ1 is an eigenvalue of matrix
T , which then satisfies the property thatλ1 ≥ |λ| for any eigenvalueλ of T : in matrix
theory terminology, such an eigenvalue is calleddominant10.

(i v) There are positive dominant eigenvectors.From the relations (85) satisfied
by theF 〈i, j 〉(z) with j fixedand from (86), one finds asz→ ρ

(87)
ϕi, j

1− z/ρ
∼ ρ

∑

k

ti,kϕk, j

1− z/ρ
, where T = (Ti, j ).

This expresses the fact that the column vector(ϕ1, j , . . . , ϕm, j )
t is a right eigenvector

corresponding to the eigenvalueλ1 = ρ−1. Similarly, for each fixedi , the row vec-
tor (ϕi,1, . . . , ϕi,m) is found to be a left eigenvector. By part(i i ), these eigenvector
have all their components strictly positive.

(v) The eigenvalueλ1 is simple.This property is needed in order to identify the
ϕi, j coefficients. We base our proof on the Jordan normal form and simple inequalities.

Assume first that there are two different Jordan blocks corresponding to the eigen-
valueλ1. Then there exist two vectors,v = (v1, . . . , vm)

t andw = (w1, . . . , wm)
t ,

such that

Tv = λ1v, Tw = λ1w,

where we may assume that the eigenvectorv has positive coordinates, given part(i v).
Let j0 be an index such that

|w j0|
v j0
= max

j=1 . .m

|w j |
v j

.

By possibly changingw to −w and by rescaling, we may freely assume thatw j0 =
v j0. Also, sincev andw are not collinear, there must existj1 such that|w j1| < v j1.
In summary:

(88) w j0 = v j0, |w j1| < v j1, ∀ j : |w j | ≤ v j .

Consider finally the two relationsTmv = λm
1 v andTmw = λm

1 w, and examine con-
sequences for thej0 components. One has

(89) v j0 =
m∑

k=1

U j0,kvk, w j0 =
m∑

k=1

U j0,kwk,

where eachU j,k, the ( j, k) entry of Tm, is positive, by the irreducibility and aperi-
odicity assumptions. But then, by the triangle inequality,there is a contradiction be-
tween (89) and (88). Thus, there cannot be two distinct Jordan blocks corresponding
to λ1.

It only remains to exclude the existence of a Jordan block of dimension≥ 2
associated withλ1. If such a Jordan block were present, there would exists a vectorw

10In matrix theory, a dominant eigenvalue (λ1) is one that islargestin modulus, while, for an analytic
function, a dominant singularity (ρ) is one that issmallestin modulus. The two notions are reconciled by
the fact that singularities of generating functions areinversesof eigenvalues of matrices (ρ = 1/λ1).



V. 5. PATHS IN GRAPHS AND AUTOMATA 345

such that

(90)

{
Tv = λ1w

Tw = λ1w + v implying

{
Tνmv = λνm

1 w,

Tνmw = λνm
1 w + νmλνm−1

1 v.

By simple bounds obtained from comparingw to v componentwise, it is found that
the vectorTνmw must have all its coordinates that areO(λνm

1 ). Upon takingν →∞,
a contradiction is reached with the last relation of (90), where the growth of these
coordinates is of the formνλνm

1 . Thus, a Jordan block of dimension≥ 2 is also
excluded, and the eigenvalueλ1 is simple.

(v i ) Aperiodicity of T is equivalent to the existence of a unique dominant eigen-
value. If λ1 uniquely dominates, meaning thatλ1 > |λ| for all eigenvaluesλ 6= λ1,
then eachF 〈i, j 〉 has a simple pole atρ that is its unique dominant singularity. Hence
the coefficients [zn]F 〈i, j 〉(z) are non-zero forn large enough, since they are asymp-
totic toϕi, j ρ

−n by (86). This last property ensures aperiodicity.
Conversely, ifT is aperiodic, thenλ1 uniquely dominates. Indeed, suppose that

µ is an eigenvalue ofT such that|µ| = λ1, with w a corresponding eigenvector. We
would haveTmv = λm

1 v andTmw = µmw. But then, by an argument similar to the
one used in part(v), upon making use of inequalities (88), we would need to havew

andv collinear, which is absurd.
We leave it as an exercise to the reader to verify the strongerproperty that identi-

fies the period with the number of dominant eigenvalues: see Note V.33. �

Several of these arguments will inspire the discussion, in Chapter VII, of the
harder problem of analysing coefficients of algebraic functions defined by positive
polynomial systems (Subsection VII. 6.3, p. 488).

� V.33. Periodicities.If T has periodd, then the support of eachF〈 j, j 〉(z) is included indZ,
hence there are at leastd conjugate singularities, corresponding to eigenvalues of the form
λ1e2ikπ/d. There are no other eigenvalues sinceTd is built out of irreducible blocks, each with
the unique dominant eigenvalueλd

1. �

� V.34. The classical Perron–Frobenius Theorem.The proof of Theorem V.7 immediately
gives the following famous statement.

Theorem (Perron–Frobenius Theorem). Let A be a matrix withnon-negative elements
that is assumed to beirreducible. The eigenvalues of A can be ordered in such a way that

λ1 = |λ2| = · · · = |λd| > |λd+1| ≥ |λd+2| ≥ · · · ,
and all the eigenvalues of largest modulus are simple. Furthermore, thequantity d is precisely
equal to the period of the dependency graph. In particular, in theaperiodic cased = 1, there
is unicity of the dominant eigenvalue. In theperiodic cased ≥ 2, the whole spectrum has a
rotational symmetry: it is invariant under the set of transformations

λ 7→ λe2i j π/d, j = 0, 1, . . . ,d − 1.

The properties of positive and of non-negative matrices have been superbly elicited by Per-
ron [478] in 1907 and by Frobenius [271] in 1908–1912. The corresponding theory has far-
reaching implications: it lies at the basis of the theory of finite Markov chainsand it extends
to positive operators in infinite-dimensional spaces [390]. Excellent treatments of Perron–
Frobenius theory are to be found in the books of Bellman [34, Ch. 16], Gantmacher [276,
Ch. 13], as well as Karlin and Taylor [363, p. 536–551]. �
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� V.35. Unrooted circuits. Consider a strongly connected weighted graphŴ with adjacency
matrix G = (gi, j ). Let RC be the class of allrootedcircuits andPRC the subclass of those
that are primitive (i.e., they differ from all their cyclic shifts). Let alsoUC be the class of all
unrootedcircuits (no origin distinguished) andPUC the subclass of those that are primitive.
Define the adjacency matrixG⊙s :=

(
(gi, j )

s) obtained by raising each entry ofG to thesth
power. Set finally1G(z) := det(I − zG). We find




RC(z,G) =
∑

k≥1

P RC(zk,G⊙k), PUC(z,G) =
∫ z

0
P RC(t,G)

dt

t
,

UC(z,G) =
∑

k≥1

PUC(zk,G⊙k),

upon mimicking the reasoning of Appendix A.4:Cycle construction, p. 729. This results in

UC(z) =
∑

k≥1

ϕ(k)

k
log

(
1/1G⊙k (z)

)
,

[zn]UC(z) =
λn

1
n
+ O(3n), [zn] PUC(z) =

λn
1

n
+ O(3n),

where the two asymptotic estimates hold under irreducibility and aperiodicity conditions. These
estimates can be regarded as a Prime Number Theorem for walks in graphs. (See [555] for
related facts and zeta functions of graphs.) �

Profiles. The proof of Theorem V.7 additionally provides the form of a certain
“residue matrix”, from which several probabilistic properties of paths follow.

Lemma V.1 (Iteration of irreducible matrices). Let the non-negative matrix T be ir-
reducible and aperiodic, withλ1 its dominant eigenvalue. Then the residue matrix8

such that

(91) (I − zT)−1 = 8

1− zλ1
+ O(1) (z→ λ−1

1 )

has entries given by (〈x, y〉 represents the scalar product
∑

i xi yi )

ϕi, j =
r i ℓ j

〈r, ℓ〉 ,

where r andℓ are, respectively, right and left eigenvectors of T corresponding to the
eigenvalueλ1.

Proof. We have seen that the matrix8 = (ϕi, j ) has its rows and columns proportional,
respectively, to right and left eigenvectors belonging to the eigenvalueλ1. Thus, we
have

ϕi, j

ϕ1, j
= ϕi,1

ϕ1,1
,

while theϕ1, j (respectively,ϕi,1) are the coordinates of a left (respectively, right)
eigenvector. There results that there exists a normalization constantξ such that

ϕi, j = ξr i ℓ j .

That normalization constant is then determined by the fact that the GF of circuits has
residue equal toρ = λ−1

1 at z= ρ, so that
∑

i ϕ j, j = 1, leading to

1= ξ
∑

j

r j ℓ j ,
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which implies the statement. �

Equipped with the lemma, we can now state:

Theorem V.8 (Profiles of paths in graphs). Let G be a non-negative matrix associ-
ated to a weighted digraphŴ, assumed to be irreducible and aperiodic. Letℓ, r be,
respectively, the left and right eigenvectors corresponding to the dominant (Perron–
Frobenius) eigenvalueλ1. Consider the collectionF 〈a,b〉 of (weighted) paths inŴ with
fixed origin a and final destination b. Then, the number of traversals of edge(s, t) in
a random element ofF 〈a,b〉n has mean

(92) τs,tn+ O(1) where τs,t := ℓsgs,tr t

〈ℓ, r 〉 .

In other words, a long random path tends to spend asymptotically a fixed (non-zero)
fraction of its time traversing any given edge. Accordingly, the number of visits to
vertexs is also proportional ton and obtained by summing the expression of (92) over
all the possible values oft .

Proof. First, the total weight (“number”) of paths inFa,b satisfies

(93) [zn]
[
(I − zG)−1

]
a,b
∼ raℓb

〈ℓ, r 〉λ
n
1,

as follows from Lemma V.1. Next, introduce the modified matrix H = (hi, j ) defined
by

hi, j = gi, j u[[ i=s∧ j=t ]] .

In other words, we mark each traversal of edgei, j by the variableu. Then, the
quantity

(94) [zn]

[
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

]

a,b

represents the total number of traversals of edge(s, t), with weights taken into ac-
count. Simple algebra11 shows that

(95)
∂

∂u
(I − zH)−1

∣∣∣∣
u=1
= (I − zG)−1 (zH′) (I − zG),

whereH′ := (∂uH)u=1 has all its entries equal to 0, except for thes, t entry whose
value isgs,t . By the calculation of the residue matrix in Lemma V.1, the coefficient
of (94) is then asymptotic to

(96) [zn]
ϕa,s

1− λ1z
gs,t z

ϕt,b

1− λ1z
∼ υnλn

1, υ := raℓsgs,tr tℓb

〈ℓ, r 〉2 .

Comparison of (96) and (93) finally yields the result since the relative error terms are
O(n−1) in each case. �

11If A is an operator depending onu, one has∂u(A−1) = −A−1(∂u A)A−1, which is a non-
commutative generalization of the usual differentiation rule for inverses.
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Another consequence of this last proof and Equation (93) is that the numbers of
paths starting ata and ending at eitherb or c satisfy

(97) lim
n→∞

F 〈a,b〉n

F 〈a,c〉n

= ℓb

ℓc
.

In other words, the quantity
ℓb∑
j ℓ j

is the asymptotic probability that a random path with originfixed at some pointa but
otherwise unconstrained will end up at pointb after a large number of steps. Such
properties are strongly evocative of Markov chain theory discussed below in Exam-
ple V.13, p. 352.
� V.36. Residues and projections.Let E = Cm be the ambient space, wherem is the dimen-
sion of T , assumed to be irreducible and aperiodic. There exists a direct sum decomposition
E = F1 ⊕ F2 whereF1 is the one-dimensional eigenspace generated by the eigenvector (r )
corresponding to eigenvalueλ1 andF2 is the supplementary space which is the direct sum of
characteristic spaces corresponding to the other eigenvaluesλ2, . . . . (For the purposes of the
present discussion, one may freely think of the matrix as diagonalizable,with F2 the union of
eigenspaces associated toλ2, . . . .) ThenT as a linear operator acting onF admits the decom-
position

T = λ1P + S,

whereP is the projector onF1 andSacts onF2 with spectral radius|λ2|, as illustrated by the
diagram:

(98)

O

Ev
PEv
(r )

F2SEv
By standard properties of projections,P2 = P and PS= SP= 0 so thatTn = λn

1 P + Sn.
Consequently, there holds,

(99) (I − zT)−1 =
∑

n≥0

(
znλn

1 P + znSn) = P

1− λ1z
+ (I − zS)−1.

Thus, the residue matrix8 coincides with the projectorP.
From this, one finds also

(100) (I − zT)−1 = 8

1− λ1z
+
∑

k≥0

Rk

(
z− λ−1

1

)k
, Rk := Sk(I − λ−1

1 S)−k−1,

which provides a full expansion. �

� V.37. Algebraicity of the residues.One only needs to solve one polynomial equation in
order to determineλ1. Then the entries of8 and theRk in (100) are all obtained by rational
operations in the field generated by the entries ofT extended by the algebraic quantityλ1: for
instance, in order to get an eigenvector, it suffices to replace one of theequations of the system
Tr = λ1r by a normalization condition, liker1 + · · · + rm = 1. (Numerical procedures are
likely to be used instead for large matrices.) �
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Automata and words.By proposition V.6 (p. 337), the OGF of the language de-
fined by a deterministic finite automaton is expressible in terms of thequasi-inverse
(1− zT)−1, where the matrixT is a direct encoding of the automaton’s transitions.
Corollary V.7 and Lemma V.1 have been precisely custom-tailored for this situation.
We shall allow weights on letters of the alphabet, corresponding to a Bernoulli model
on words. We say that an automaton is irreducible (respectively, aperiodic) if the
underlying graph and the associated matrix are irreducible(respectively, aperiodic).

Proposition V.7 (Random words and automata). LetL be a language recognized by
a deterministic finite automaton A whose graph is irreducible and aperiodic. The
number of words ofL satisfies

Ln ∼ cλn
1 + O(3n),

whereλ1 is the dominant (Perron–Frobenius) eigenvalue of the transition matrix of A
and c,3 are real constants with c> 0 and0≤ 3 < λ1.

In a random word ofLn, the number of traversals of a designated vertex or edge
has a mean that is asymptotically linear in n, as given by Theorem V.8.

� V.38.Unambiguous automata.A non-deterministic finite state automaton is said to be unam-
biguous if the set of accepting paths for any given words comprises atmost one element. The
translation into a generating function as described above also applies to such automata, even
though they are non-deterministic. �

� V.39. Concentration of distribution for the number of passages.Under the conditions of
the theorem, the standard deviation of the number of traversals of a designated node or edge
is O(

√
n). Thus in a random long path, the distribution of the number of such traversals is

concentrated. [Compared to (95), the calculation of the second momentrequires taking a further
derivative, which leads to a triple pole. The second moment and the square of the mean, which
are eachO(n2), are then found to cancel to main asymptotic order.] �

V. 5.3. Applications. We now provide a few application of Theorems V.7 and V.8.
First, Example V.11 studies briefly the case of words that arelocally constrained in
the sense that certain transitions between letters are forbidden; Example V.12 revisits
walks on an interval and develops an alternative matrix viewof a problem otherwise
amenable to continued fraction theory. Next, Example V.13 makes explicit the way
the fundamental theorem of finite Markov chain theory can be derived effortlessly as a
consequence of the more general Theorem V.8, and Example V.14 compares on a sim-
ple problem, the devil’s staircase, the combinatorial and the Markovian approaches.
Example V.15 comes back to words and develops simple consequences of an impor-
tant combinatorial construction, that of De Bruijn graphs.This graph is invaluable in
predicting in many cases theshapeof the asymptotic results that are to be expected
when confronted with word problems; Finally, Example V.16 concludes this section
with a brief discussion of the special case of words with excluded patterns, thereby
leading to a quantitative version of Borges’ Theorem (Note I.35, p. 61).

In all these cases, the counting estimates are of the formcλn
1, whereas the expec-

tations of parameters of interest have a linear growth.

ExampleV.11. Locally constrained words.Consider a fixed alphabetA = {a1, . . . ,am} and a
setF ⊆ A2 of forbidden transitions between consecutive letters. The set of wordsoverA with
no such forbidden transition is denoted byL and is called a locally constrained language. (The
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1 1 0 0
1 0 1 1
1 0 0 0
0 0 1 1




a b
a

a

b

a

d c
d

c

c

d

Figure V.17. Locally constrained words: The transition matrix (T) associated to the
forbidden pairsF = {ac,ad, bb, cb, cc, cd, da, db}, the corresponding automaton,
and the graph with widths of vertices and edges drawn in proportion to their asymp-
totic frequencies.

particular case where exactly all pairs of equal letters are forbidden corresponds to Smirnov
words and has been discussed on p. 262.)

Clearly, the words ofL are recognized by an automaton whose state space is isomorphic
to A: stateq simply memorizes the fact that the last letter read was aq. The graph of the au-
tomaton is then obtained by the collection of allowed transitions(q, r ) 7→ a, with (q, r ) 6∈ F .
(In other words, the graph of the automaton is the complete graph in which all edges that corre-
spond to forbidden transitions are deleted.) Consequently, the OGF of any locally constrained
language is a rational function. Its OGF is given by

(1,1, . . . , 1)(I − zT)−1(1, 1, . . . , 1)t ,

whereTi j is 0 if (ai ,a j ) ∈ F and 1 otherwise. If each letter can occur later than any other letter
in an accepted word, the automaton is irreducible. Also, the graph is aperiodic except in a few
degenerate cases (e.g., in the case where the allowed transitions would be a → b, c; b → d;
c → d; d → a). Under irreducibility and aperiodicity, the number of words must be∼ cλn

1
and each letter has on average an asymptotically constant frequency. (See (34) and (35) of
Chapter IV, p. 262, for the case of Smirnov words.)

For the example of Figure V.17, the alphabet isA = {a,b, c, d}. There are eight forbidden
transitions and the characteristic polynomialχG(λ) := det(λI − G) is found to beλ3(λ − 2).
Thus, one hasλ1 = 2. The right and left eigenvectors are found to be

r = (2, 2, 1,1)t , ℓ = (2, 1, 1, 1).

Then, the matrixτ , whereτs,t represents the asymptotic frequency of transitions from letters
to lettert , is found in accordance with Theorem V.8:

τ =




1
4

1
4 0 0

1
8 0 1

16
1
16

1
8 0 0 0
0 0 1

16
1
16


 .

This means that a random path spends a proportion equal to 1/4 of its time on a transition
between ana and ab, but much less (1/16) on transitions between pairs of lettersbc, bd, cc, ca.
The letter frequencies in a random word ofL are(1/2, 1/4, 1/8, 1/8), so that ana is four times
more frequent than ac or ad, and so on. See Figure V.17 (right) for a rendering.
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Various specializations, including multivariate GFs and non-uniform letter models, are
readily treated by this method. Bertoniet al. [59] develop related variance and distribution
calculations for the number of occurrences of a symbol in an arbitraryregular language. . . .�

ExampleV.12. Walks on the interval.As a direct illustration, consider the walks associated
to the graphŴ(5) with vertex set 1, . . . , 5 and edges being formed of all pairs(i, j ) such that
|i − j | ≤ 1. The graphŴ(5) and its incidence matrixG(5) are

Ŵ(5) =
51 2 3 4

, G(5) =




1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1


.

The characteristic polynomialχG(5)(z) := det(z I −G(5)) factorizes as

χG(5)(z) = z(z− 1)(z− 2)(z2− 2z− 2),

and its dominant root isλ1 = 1+
√

3. From here, one finds a left eigenvector (which is also a
right eigenvector since the matrix is symmetric):

r = ℓt = (1,
√

3, 2,
√

3, 1).

Thus a random path (with the uniform distribution over all paths corresponding to the weights
being equal to 1) visits nodes 1, . . . , 5 with frequencies proportional to

1, 1.732, 2, 1.732, 1,

implying that the non-extremal nodes are visited more often—such nodeshave higher degrees
of freedom, so that there tend to be more paths that traverse them.

In fact, this example has structure. For instance, the graphŴ(11) defined by an interval of
length 10, leads to a matrix with a highly factorable characteristic polynomial

χG(11) = z(z− 1) (z− 2)
(

z2− 2z− 2
) (

z2− 2z− 1
) (

z4− 4z3+ 2z2+ 4z− 2
)
.

The reader may have recognized here a particular case of lattice paths,which is covered by the
theory presented in Section V. 4, p. 318. Indeed, according to Proposition V.3, the OGF of paths
from vertex 1 to vertex 1 in the graphŴ(k) with vertex set{1, . . . , k} is given by the continued
fraction

1

1− z− z2

1− z− z2

. . .

1− z− z2

1− z

.

(The number of fraction bars isk.) From this it can be shown that the characteristic polynomial
of G is an elementary variant of the Fibonacci–Chebyshev polynomial of Example V.8, p. 326.
The analysis based on Theorem V.8 is simpler, albeit more rudimentary,as it only provides a
first-order asymptotic solution to the problem.

This example is typical: whenever combinatorial problems have the appropriate amount of
regularity, all the resources of linear algebra are available, including thevast body of knowledge
gathered over years on calculations of structured determinants, which iswell summarized in
Krattenthaler’s survey [391] and the book by Vein and Dale [594]. . . .. . . . . . . . . . . . . . . . . . .�
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G =




1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0


 G̃ =




1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0
1
2 0 0 1

2 0 0
1
2 0 0 0 1

2 0
1
2 0 0 0 0 1

2
1 0 0 0 0 0




Figure V.18. The devil’s staircase (m= 6) and the two matrices that can model it.

ExampleV.13. Elementary theory of finite Markov chains.Consider the case where the row
sums of matrixG are all equal to 1, that is,

∑
j gi, j = 1. Such a matrix is called astochastic

matrix. The quantitygi, j can then be interpreted as the probability of leaving statei for statej ,
assuming one is in statei . Assume that the matrixG is irreducible and aperiodic. Clearly, the
matrix G admits the column vectorr = (1,1, . . . , 1)t as a right eigenvector corresponding to
the dominant eigenvalueλ1 = 1. The left eigenvectorℓ normalized so that its elements sum
to 1 is called the (row) vector of stationary probabilities. It must be calculated by linear algebra
and its determination involves finding an element of the kernel of matrixI − G, which can be
done in a standard way.

Theorem V.8 and Equation (93) immediately imply the following:

Proposition V.8 (Stationary probabilities of Markov chains). Consider a weighted graph cor-
responding to a stochastic matrixG which is irreducible and aperiodic. Letℓ be the normalized
left eigenvector corresponding to the eigenvalue 1. A random (weighted)path of length n with
fixed origin and destination visits node s a mean number of times asymptotic toℓsn and tra-
verses edge(s, t) a mean number of times asymptotic toℓsgs,t n. A random path of length n
with fixed origin ends at vertex s with probability asymptotic toℓs.

The vectorℓ is also known as the vector ofstationary probabilities. The first-order asymp-
totic property expressed by Proposition V.8 certainly constitutes the most fundamental result in
the theory of finite Markov chains. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

ExampleV.14. The devil’s staircase.This example illustrates an elementary technique often
employed in calculations of eigenvalues and eigenvectors. It presupposes that the matrix to be
analysed can be reduced to a sparse form and has a sufficiently regular structure.

You live in a house that has a staircase withm steps. You come back home a bit loaded
and at each second, you can either succeed in climbing a step or fall back all the way down. On
the last step, you always stumble and fall back down (Figure V.18). Where are you likely to be
found at timen?

Precisely, two slightly different models correspond to this informally statedproblem. The
probabilistic model views it as a Markov chain with equally likely possibilities at each step and
is reflected by matrix̃G in Figure V.18. The combinatorial model just assumes all possible
evolutions (“histories”) of the system as equally likely and it correspondsto matrixG. We opt
here for the latter, keeping in mind that the same method basically applies to both cases.

We first write down the constraints expressing the joint properties of an eigenvalueλ and
its right eigenvectorx = (x1, . . . , xm)

t . The equations corresponding to(λI − G)x = 0 are
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formed of a first batch ofm− 1 relations,

(101) (λ− 1)x1− x2 = 0, −x1+ λx2− x3 = 0, · · · ,−x1+ λxm−1− xm = 0,

together with the additional relation (one cannot go higher than the last step):

(102) −x1+ λxm = 0.

The solution to (101) is readily found by pulling out successivelyx2, . . . , xm as functions ofx1:

(103) x2 = (λ−1)x1, x3 = (λ2− λ− 1)x1, · · · , xm = (λm−1− λm−2− · · ·−1)x1.

Combined with the special relation (102), this last relation shows thatλmust satisfy the equation

(104) 1− 2λm + λm+1 = 0.

Let λ1 be the largest positive root of this equation, existence and dominance being guaranteed
by Perron–Frobenius properties. Note that the quantityρ := 1/λ1 satisfies the characteristic
equation

1− 2ρ + ρm+1 = 0,

already encountered when discussing longest runs in words; the discussion of Example V.4 then
grants us the existence of an isolatedρ near1

2 , hence the fact thatλ1 is slightly less than 2.
Similar devices yield the left eigenvectory = (y1, . . . , ym). It is found easily thaty j must

be proportional toλ− j
1 . We thus obtain from Theorem V.8 and Equation (97):The probability

of being in state j (i.e., being on step j of the stair) at time n tends to the limit

̟ j = γ λ− j
1

whereλ1 is the root near 2 of the polynomial(104)and the normalization constantγ is deter-
mined by

∑
j ̟ j = 1. In other words, the distribution of the altitude at timen is a truncated

geometric distribution with parameter 1/λ1. For instance,m = 6 leads toλ1 = 1.98358, and
the asymptotic probabilities of being in states 1, . . . ,6 are

(105) 0.50413, 0.25415, 0.12812, 0.06459, 0.03256, 0.01641,

exhibiting a clear geometric decay. Here is the simulation of a random trajectory for n = 100:

0 20 40 60 80 100

5

.

In this case, the frequencies observed are 0.44, 0.26, 0.17, 0.08, 0.04, 0.01, pretty much in
agreement with what is expected.

Finally, the similarity with the longest run problem in words is easily explained. Let u
andd be letters representing steps upwards and downwards, respectively.The set of paths from
state 1 to state 1 is described by the regular expression

P1,1 =
(
d + ud+ · · · + um−1d

)⋆
,

corresponding to the generating function

P1,1(z) =
1

1− z− z2− · · · − zm
,

a variant of the OGF of words withoutm–runs of the letteru, which also corresponds to the
enumeration of compositions with summands≤ m. (The case of the probabilistic transition
matrix G̃ is left as an exercise to the reader.) . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .�
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ExampleV.15. De Bruijn graphs. Two thieves want to break into a house whose entrance
is protected by a digital lock with an unknown four-digit code. As soon as the four digits of
the code are typed consecutively, the gate opens. The first thief proposes to try in order all the
four-digit sequences, resulting in as much as 40 000 key strokes in the worst-case. The second
thief, who is a mathematician, says he can tryall four-digit combinations with only 10 003 key
strokes. What is the mathematician’s trade secret?

Clearly certain optimizations are possible: for instance, for an alphabet of cardinality 2
and codes of two letters, the sequence00110 is better than the naı̈ve one,00 01 10 11, which
is redundant; a few more attempts will lead to an optimal solution for three-digit codes that has
length 10 (rather than 24), for instance,

0001110100.

The general question is then: How far can one go and how to construct such sequences?
Fix an alphabet of cardinalitym. A sequence that contains as factors (contiguous blocks)

all thek letter words is called ade Bruijn sequence. Clearly, its length must be at leastδ(m, k) =
mk + k − 1, as it must have at leastmk positions at distance at leastk − 1 from the end. A
sequence of smallest possible lengthδ(m, k) is called aminimal de Bruijn sequence. Such
sequences were discovered by N. G. de Bruijn [140] in 1946, in response to a question coming
from electrical engineering, where all possible reactions of a device presented as a black box
must be tested at minimal cost. We shall treat here the case of a binary alphabet,m = 2, the
generalization tom> 2 being obvious.

Let ℓ = k−1 and consider the automatonBℓ that memorizes the last block of lengthℓ read
when scanning the input text from left to right. A state is thus assimilated to a string of lengthℓ
and the total number of states is 2ℓ. The transitions are easily calculated: letq ∈ {0, 1}ℓ be
a state and letσ(w) be the function that shifts all letters of a wordw one position to the left,
dropping the first letter ofw in the process (thusσ maps{0,1}ℓ to {0, 1}ℓ−1); the transitions
are

q
07→ σ(q)0, q

17→ σ(q)1.

If one further interprets a stateq as the integer in the interval [0. .2ℓ−1] that it represents, then
the transition matrix assumes a remarkably simple form:

Ti, j = [[( j ≡ 2i mod 2ℓ) or ( j ≡ 2i + 1 mod 2ℓ)]] .

See Figure V.19 for a rendering borrowed from [263].
Combinatorially, the de Bruijn graph is such that each node has indegree 2and outdegree 2.

By a well known theorem going back to Euler:A necessary and sufficient condition for an
undirected connected graph to have an Eulerian circuit (that is, a closedpath that traverses
each vertex exactly once) is that every node has even degree. For a strongly connected digraph,
the condition is that each node has an outdegree equal to its indegree.This last condition is
obviously satisfied here. Take an Eulerian circuit starting and ending at node 0ℓ; its length is
2ℓ+1 = 2k. Then, clearly, the sequence of edge labels encountered when prefixed with the word
0k−1 = 0ℓ constitutes a minimal de Bruijn sequence. In general, the argument gives a de Brujin
sequence with minimal lengthmk+k−1. Et voilà! The trade secret of the thief-mathematician
is exposed.

Back to enumeration. The de Bruijn matrix is irreducible since a path labelled by suffi-
ciently many zeros always leads any state to the state 0ℓ, while a path ending with the letters
of w ∈ {0, 1}ℓ leads to statew. The matrix is aperiodic since it has a loop on states 0ℓ and 1ℓ.
Thus, by Perron–Frobenius properties, it has a unique dominant eigenvalue, and it is not hard to
check that its value isλ1 = 2, corresponding to the right eigenvector(1,1, . . . , 1)t . If one fixes
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Figure V.19. The de Bruijn graph: (left)ℓ = 3; (right)ℓ = 7.

a patternw ∈ {0,1}ℓ, Theorem V.8 yields back the known fact that a random word contains
on average∼ n

2ℓ
occurrences of patternw, while Note V.39, p. 349, further implies that the

distribution of the number of occurrences is concentrated around the mean, as the variance is
O(n). The de Bruijn graph may be used to quantify many properties of occurrences of patterns
in random words: see for instance [43, 240, 263]. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

ExampleV.16. Words with excluded patterns.Fix a finite set of patterns� = {w1, . . . , wr },
where eachw j is a word ofA⋆. The languageE ≡ E� of words that contain no factor in� is
described by the extended regular expression

E = A⋆ \
r⋃

j=1

(A⋆w j A⋆),

which constitutes a concise but highly ambiguous description. By closure properties of regular
languages,E is itself regular and there must exist a deterministic automaton that recognizes it.

An automaton recognizingE can be constructed starting from the de Bruijn automaton of
indexk = −1+max|w j | and deleting all the vertices and edges that correspond to a word of�.
Precisely, vertexq is deleted wheneverq contains a factor in�; the transition (edge) fromq
associated with letterα gets deleted whenever the wordqα contains a factor in�. The pruned
de Bruijn automaton, call itB◦k , accepts all words of0kE , when it is equipped with the initial

state 0k and all states are final. Thus, the OGFE(z) is in all cases a rational function.
The matrix ofB◦k is the matrix of the de Bruijn graphBk with some non-zero entries re-

placed by 0. Assume thatB◦k is irreducible. This assumption only eliminates a few pathological
cases (e.g.,� = {01} on the alphabet{0, 1}). Then, the matrix ofB◦k admits a simple Perron–
Frobenius eigenvalueλ1. By domination properties (� 6= ∅), we must haveλ1 < m, wherem
is the cardinality of the alphabet. Aperiodicity is automatically granted. We then get by a purely
qualitative argument:The number of words of length n excluding patterns from the finite set�

is, under the assumption of irreducibility, asymptotic to c(λ1/m)n, for some c> 0 andλ1 < m.
This gives us in a simple manner a strong version of what has been earlier nicknamed “Borges’s
Theorem” (Note V.35, p. 61):Almost every sufficiently long text containsall patterns of some
predetermined lengthℓ.

The construction of a pruned automaton is clearly a generalization of the case of words
obeying local constraints in Example V.11 above. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�
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Transfer matrix method.Let C be a combinatorial class to be enumerated.

(i ) Determine a collectionC1, C2, . . . , Cm of classes, withC1 ∼= C such that the following
system of equation holds:

(106) C j =
∑

k∈{1,2,...,m}
� j,kCk + I j , j = 1, 2, . . . ,m,

where each� j,k and eachI j is a finite class.
(i i ) The OGFC(z) = C1(z) is then given by the solution of the linear system

(107) C j (z) =
∑

j

� j,k(z)Ck(z)+ I j (z), j = 1, . . . ,m,

where� j,k(z) and I j (z) are the generating polynomials of� j,k andI j , respectively. Accord-

ingly, C(z) is aC[z]–linear combination of entries of the quasi-inverse matrix(I −�(z))−1.

Figure V.20. A summary of the basic transfer matrix method.

� V.40. Walks on undirected graphs.Consider an undirected graphŴ, where one moves by
following at each step a random edge of the graph, uniformly at randomfrom the current posi-
tion. Then, the transition matrixP = (pi j ) of the associated Markov chain is:pi, j = 1/deg(i )
if (i, j ) is an edge, where deg(i ) is the degree of vertexi . The stationary distribution is given
by πi = (deg(i ))/(2||E||), where||E|| is the number of edges ofŴ. In particular, if the graph
is regular, the stationary distribution is uniform. (See Aldous and Fill’s forthcoming book [11]
for (much) more.) �

� V.41. Words with excluded patterns and digital trees.Let S be a finite set of words. An
automaton recognizingS, considered as a finite language, can be constructed as a tree. The tree
obtained is akin to the classicaldigital treeor trie that serves as a data structure for maintaining
dictionaries [378]. A modification of the construction yields an automaton ofsize linear in the
total number of characters that appear in words ofS. [Hint. The construction can be based on
the Aho–Corasick automaton [5, 538]). �

V. 6. Transfer matrix models

There exists a cluster of applications of rational functions to problems that are nat-
urally described as paths in digraphs, but with edges that may be of differentsizes. In
physics, such models lie at the heart of what is known as the “transfer matrix method”.
Technically, the theory is a simple extension of the standard case of paths in graphs
developed in Section V. 5. Its main interest lies in its expressiveness as regards a num-
ber of combinatorial problems, including trees of bounded width, partial models of
self-avoiding walks, and certain constrained permutationproblems.

V. 6.1. Combinatorial aspects.The transfer matrix method constitutes a variant
of the modelling by deterministic automata and by paths in standard graphs. The
general framework is summarized in Figure V.20. The idea is to set up a system
of linear equations that relate a cleverly crafted collection of classes (“states”)C j ,
which are of the same nature as the original classC that is to be enumerated. The
combinatorial system (106) in Figure V.20 can then be visualized as a graph, with
the objects of the� j,k classes attached to edges (“transitions between states”) being
generally of different sizes.
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Definition V.7. Given a directed multigraphŴ with vertex set V and edge set E, a
size functionon Ŵ is any functionσ : E → Z≥1. A sized graphis a pair (G, σ ),
whereσ is a size function.

Paths are defined in the same way as in Section V. 5. Thelengthof a path is, as
usual, the number of edges it comprises; thesizeof a path is defined to be the sum of
the sizes of its edges. As in the basic case treated in the previous section, we also allow
edges to carry positive weights (multiplicities, probability coefficients), theweightof
a path being the product of the weights of its edges.

Definition V.8. A matrix T(z) is a transfer matrixif each of its entries is a polynomial
in z with non-negative coefficients. A transfer matrix T(z) is said to beproperif T (0)
is nilpotent, that is, T(0)r = 0 for some r≥ 1.

Examples of transfer matrices are

z

(
1
4

3
4

1
2

1
2

)
,

(
0 1
z3 z+ z2

)
,

and both are proper. For the graphs and automata considered in Section V. 5, all edges
were taken to be of unit size. In that case, the associated (weighted) adjacency matrices
are invariably of the formT(z) = zS, with S a scalar matrix having non-negative
entries, and thus are very particular cases of proper transfer matrices.

Given a sized graphŴ equipped with weight functionw : E → R>0 (with
w(e) ≡ 1 in the pure enumerative case), we can associate to it a transfer matrixT(z)
as follows:

(108) Ta,b(z) =
∑

e∈Edge(a,b)

w(e)z|e|.

There, Edge(a,b) represents the set of all edges connectinga to b; w(e) and |e| ≡
σ(e) represent, respectively, the weight and the size of edgee. The matrixT(z)whose
(a,b)–entry is the polynomialTa,b(z), as given in (108), is called thetransfer matrix
of the (weighted, sized) graph. By Definition V.7, the transfer matrix of a sized graph
is always proper. SinceT(z)m describes all paths in the graph withz marking size,
the proof techniques of Proposition V.6 (p. 337) immediately provide:

Proposition V.9. Given a sized graph with associated transfer matrix T(z), the OGF
F 〈i, j 〉(z) of the set of paths from i to j , where z marks size, is the entry i, j of the
matrix (I − T(z))−1:

F 〈i, j 〉(z) =
(
(I − T(z))−1

)
i, j
.

V. 6.2. Analytic aspects.In order to apply the general results from Section V. 5
to transfer matrices, we must first take note of an easy reduction of transfer matrices
to the standard case of paths in graphs where all edges have size 1.

Given a sized graphŴ, one can build as follows a standard graphĜ where all
edges of̂G have unit size. The set of vertices ofĜ is the set of vertices ofŴ augmented
by additional vertices calledrelay nodes. For each edgee of sizeσ(e) = m in Ŵ,
introducem− 1 additional relay nodes and connect these inĜ by a simple path from
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a to b, with edges all of size 1. Here is for instance the transcription of an edge of
length 4 inŴ by means of three relay nodes in̂G:

Clearly, the vertices ofŴ are a subset of the vertices ofĜ and all paths ofŴ correspond
to paths ofĜ. Let T̂ be the (scalar) adjacency matrix ofŴ. Then, the quasi-inverse
(I − zT̂)−1 describes all the paths inŴ, with size taken into account, in the sense that
the entry of index(i, j ) in this quasi-inverse is the OGF of paths from node numberedi
to node numberedj in the sized graphŴ.

This construction permits us to apply the main results of Section V. 5 to transfer
matrices and sized graphs. Let us say that the sized graphŴ and its transfer matrix
T(z) areirreducible(respectively,aperiodic) if Ĝ andT̂ are irreducible (respectively,
aperiodic). We can then immediately transcribe Theorems V.7 and V.8 as follows.

Corollary V.1. (i ) Consider a sized graphŴ that is irreducible and aperiodic. Then,
there exist a computable constantλ1 and numbersϕi, j such that the OGF of paths
from i to j in Ŵ satisfies

(109) [zn]F 〈i, j 〉(z) = ϕi, j λ
n
1 + O(3n), 0≤ 3 < λ1.

(i i ) In a random path from a to b of large size, the number of occurrences of a
designated edge(s, t) is asymptotically

(110) ̟s,tn+ O(1),

for a computable constant̟ s,t .

Thus, on general grounds, the behaviour of paths is predictable. The notes be-
low explore some further properties that make it possible tooperate directly with the
transfer matrix and the sized graph, without necessitatingthe explicit construction of
T̂ andĜ.
� V.42. Irreducibility for sized graphs.The sized graphŴ is irreducible if and only if the graph
G1 where all edges ofŴ are taken to be of size 1 is strongly connected. The transfer matrix
T(z) of Ŵ is irreducible (in the sense above) if and only ifT(1) is irreducible in the usual sense
of scalar transfer matrices. �

� V.43. Aperiodicity for sized graphs.A polynomial p(z) = ∑
j c j z

ej , with everyc j 6= 0,
is said to be primitive if the quantityδ = gcd({ej }) is equal to 1; it is imprimitive otherwise.

Equivalently,p(z) is imprimitive iff p(z) = q(zδ) for somebona fidepolynomialq and some
δ > 1. An irreducible sized graph is aperiodic (in the sense above) if and onlyif at least one
diagonal entry of some powerT(z)e is a primitive polynomial. Equivalently: there exist two
circuits of the same length, whose sizes,s1, s2, satisfy gcd(s1, s2) = 1. �

� V.44. Direct determination of the asymptotic growth constant.Let Ŵ be a sized graph as-
sumed to be irreducible and aperiodic. Then, one hasλ1 = 1/ρ, whereρ is the smallest
positive root of det(I − T(z)) = 0, with T(z) the transfer matrix ofŴ. �

V. 6.3. Applications. The quantitative properties summarized by (109) and (110)
apply with full strength to classes that are amenable to the transfer matrix method. We
shall first illustrate the situation by the width of trees following an early article by
Odlyzko and Wilf [463], then continue with an example that draws its inspiration
from the insightful exposition of domino tilings and generating functions in the book
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3

1

2

T [3](z) =




z z2 z3

2z 3z2 4z3

3z 6z2 10z3


 .

Figure V.21. The sized graph corresponding to general plane trees of width at most3
and its transfer matrix. (For readability, the transitions from a node to itself are omit-
ted.)

of Graham, Knuth, and Patashnik [307], and conclude with an exactly solvable poly-
omino model.

ExampleV.17. Width of trees.The width of a tree is defined as the maximal number of nodes
that can appear on any layer at a fixed distance from the root. If a tree isdrawn in the discrete
plane, then width and height can be seen as the horizontal and vertical dimensions of a bounding
rectangle. Also, width is an indicator of the complexity of traversing the tree inbreadth-first
search (by a queue), while height is associated to depth-first search (by a stack).

Transfer matrices are ideally suited to the problem of analysing the numberof trees of fixed
width. Consider a simple variety of treesY corresponding to the equationY(z) = zφ(Y(z)),
where the “generator”φ describes the basic formation of trees (Proposition I.5, p. 66). Let
C := Y [w] be the subclass of trees of width at mostw. Such trees are easily built layer by layer.
Indeed, with reference to our general description of the transfer matrix method at the begin-
ning of the section, let us introduce a collection of classesCk, where eachCk (k = 1, . . . , w)
comprises all trees of width≤ w having exactlyk nodes at the deepest level. We then have
C = ∑w

k=1 Ck (this is a trivial variant of the case considered in our general description). Thus
the states of the transfer matrix model, equivalently the nodes of the sized graph, correspond to
the number of nodes on the deepest layer of the tree. The transition between configurationsC j
corresponding to statej and configurationsCk corresponding to statek is effected by grafting in
all possible ways a forest ofj trees, of total height equal to 1, havingk leaves. See Figure V.21
for the case of widthw = 3.

The number ofj –forests of depth 1 havingk leaves is the quantity

t j,k = [uk]φ(y) j .

Let T be thew×w matrix with entryTj,k = zkt j,k. Then, clearly, the quantityzi (Th)i, j (with
1 ≤ i, j ≤ w) is the number ofi –forests of heighth and width at mostw, having j nodes on
level h. Thus, the GF ofY–trees having width at mostw is

Y[w](z) = (z, 0, 0, . . .)(I − T)−1(1,1, 1, . . .)t .
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For instance, in the case of general Catalan trees, the matrixT has the shape,

T [w](z) =




z
(1
0
)

z2(2
0
)

z3(3
0
)

z4(4
0
)

z
(2
1
)

z2(3
1
)

z3(4
1
)

z4(5
1
)

z
(3
2
)

z2(4
2
)

z3(5
2
)

z4(6
2
)

z
(4
3
)

z2(5
3
)

z3(6
3
)

z4(7
3
)



,

for width 4. The analysis of dominant poles provides asymptotic formulaefor [zn]Y[w](z):

w = 2 w = 3 w = 4 w = 5 w = 6
0.0085· 2.1701n 0.0026· 2.8050n 0.0012· 3.1638n 0.0006· 3.3829n 0.0004· 3.5259n .

Irreducibility is granted since all entries in the transfer matrix are non-zero. Aperiodicity derives
from aperiodicity of the generatorφ, as verified by a simple argument (e.g., using Note V.43).

Proposition V.10. The number of trees of width at mostw in a simple family of trees satisfies
an asymptotic estimate of the form

Y[w]
n = cwρ

−n
w + O(n),

for some computable positive constants cw, ρw.

In addition, the exact distribution of height in trees of sizen becomes computable in poly-
nomial time.

The character of these generating functions has not been investigated indetail since the
original work [463], so that, at the moment, complex analysis does not lead us any further. For-
tunately, probability theory takes over. Chassaing and Marckert [111]have shown, for Cayley
trees, that the width satisfies

En(W) =
√
πn

2
+ O

(
n1/4

√
logn

)
, Pn(

√
2W ≤ x)→ 1−2(x),

where2(x) is the Theta function defined in (67), p. 328. This answers very precisely an open
question of Odlyzko and Wilf [463]. The distributional results of [111] extend to trees in any
simple variety (under mild and natural analytic assumptions on the generator φ): see the paper
by Chassaing, Marckert, and Yor [112], which builds upon earlier results of Drmota and Gitten-
berger [173]. In essence, the conclusion of these works is that the breadth first search traversal
of a large tree in a simple variety gives rise to a queue whose size fluctuatesasymptotically
like a Brownian excursion, and is thus, in a strong sense, of a complexity comparable to depth-
first search: trees taken uniformly don’t have much of a preference as to the way they may be
traversed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� V.45. A question on width polynomials.It is unknown whether the following assertion is
true. The smallest positive rootρk of the denominator ofY[k](z) satisfies

ρk = ρ +
c

k2
+ o(k−2),

for somec > 0. If such an estimate were established, together with suitable companion bounds,
it would yield a purely analytic proof of the fact that the expected width ofn–trees is2(

√
n),

as well as detailed probability estimates. (The classical theory of Fredholmequations may be
useful in this context.) �

ExampleV.18. Monomer-dimer tilings of a rectangle.Suppose one is given pieces that may
be one of the three forms: monomers (m) that are 1× 1 squares, and dimers that are dominoes,
either vertically(v) oriented 1× 2, or horizontally (h) oriented 2× 1. In how many ways can
ann× 3 rectangle be covered completely and without overlap (‘tiled’) by such pieces?
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The pieces are thus of the following types,

m= , h = , v = ,

and here is a particular tiling of a 5× 3 rectangle:

In order to approach this counting problem, one first defines a suitable collection, generi-
cally denoted byC, of combinatorial classes called configurations, in accordance with the strat-
egy summarized in Figure V.20, p. 356. A configuration relative to ann×k rectangle is a partial
tiling, such that all the firstn−1 columns are entirely covered by dominoes while between zero
and three unit cells of the last column are covered. Here are for instance, configurations corre-
sponding to the example above.

These diagrams suggest the way configurations can be built by successive addition of
dominoes. Starting with the empty rectangle 0× 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa 1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be classified
into 8 classes that we may index in binary asC000, . . . , C111. For instanceC001 represent
configurations such that the first two cells (from top to bottom, by convention) are free, while
the third one is occupied. Then, a set of rules describes the new type of configuration obtained,
when the sweep line is moved one position to the right and dominoes are added. For instance,
we have

C010 ⊙ H⇒ C101.

In this way, one can set up a system of linear equations (resembling a grammar or a de-
terministic finite automaton) that expresses all the possible constructions oflonger rectangles
from shorter ones according to the last layer added. The system contains equations like

C000 = ǫ +mmmC000+mvC000+ vmC000
+ ·mmC100+m·mC010+mm·C001+ v·C001+ ·vC100
+m··C011+ ·m·C101+ ··mC110+ ···C111.

Here, a “letter” likemv represent the addition of dominoes, in top to bottom order, of types
m, v, respectively; the letterm·m means adding twom-dominoes on the top and on the bottom,
etc.
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The system transforms into a linear system of equations with polynomial coefficients, upon
performing the substitutions

m 7→ z, h 7→ z2, v 7→ z2.

Solving it gives the generating functions of configurations withz marking the area covered:

C000(z) =
(1− 2z3− z6)(1+ z3− z6)

(1+ z3)(1− 5z3− 9z6+ 9z9+ z12− z15)
.

In particular, the coefficient [z3n]C000(z) is the number of tilings of ann× 3 rectangle:

C000(z) = 1+ 3z3+ 22z6+ 131z9+ 823z12+ 5096z15+ · · · .
The sequence grows likecαn (for n ≡ 0 (mod 3)) whereα

.= 1.83828 (α is the cube root of
an algebraic number of degree 5). (See [109] for a computer algebra session.) On average, for
largen, there is a fixed proportion of monomers and the distribution of monomersin a random
tiling of a large rectangle is asymptotically normally distributed, a result that follows from the
developments of Section IX. 6, p. 650. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

The tiling example is a typical illustration of the transfermatrix method as de-
scribed in Figure V.20, p. 356. One seeks to enumerate a “special” set of configura-
tions: in the example above, this isC000 representing complete rectangle coverings.
One determines an extended set of configurationsC (the partial coverings, in the ex-
ample) such that:(i ) C is partitioned into finitely many classes;(i i ) there is a finite set
of “actions” that operate on the classes;(i i i ) size is affected in a well-defined additive
way by the actions. The similarity with finite automata is apparent: classes play the
rôle of states and actions the rôle of letters.

Often, the method of transfer matrices is used to approximate a hard combinato-
rial problem that is not known to decompose, the approximation being by means of a
family of models of increasing “widths”. For instance, the enumeration of the number
Tn of tilings of ann× n square by monomers and dimers remains a famous unsolved
problem of statistical physics. Here, transfer matrix methods may be used to solve the
n × w version of the monomer–dimer coverings, in principle at least, for any fixed
widthw: the result will always be a rational function, although itsdegree, dictated by
the dimension of the transfer matrix, will grow exponentially with w. (The “diagonal”
sequence of then × w rectangular models corresponds to the square model.) It has
been at least determined by computer search that the diagonal sequenceTn starts as
(this isEISA028420):

1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, . . . .

From this and other numerical data, one estimates numerically that (Tn)
1/n2

tends to
a constant, 1.94021. . ., for which no expression is known to exist. The difficulty of
coping with the finite-width models is that their complexity(as measured, e.g., by the
number of states) increases exponentially withw—such models are best treated by
computer algebra; see [627]—but no law allowing to take a diagonal is visible. At
least, the finite-width models have the merit of providing provable upper and lower
bounds on the exponential growth rate of the hard “diagonal problem”.

In contrast, for coverings by dimers only, a strong algebraic structure is available
and the number of covers of ann×n square by horizontal and vertical dimers satisfies
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a beautiful formula originally discovered by Kasteleyn (n even):

(111) Un = 2n2/2
n/2∏

j=1

n/2∏

k=1

(
cos2

jπ

n+ 1
+ cos2

kπ

n+ 1

)
.

This sequence isEISA004003,

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . . .

It is elementary to prove from (111) that

lim
n→+∞

(Un)
1/n2 = exp

(
1

π

∞∑

n=0

(−1)n

(2n+ 1)2

)
= eG/π .= 1.33851. . . ,

whereG is Catalan’s constant. This means in substance that each cell has a number
of degrees of freedom equivalent to 1.33851. See Percus’ monograph [477] for proofs
of this famous result and Finch’s book [211, Sec. 5.23] for context and references.
� V.46.Powers of Fibonacci numbers.Consider the OGFs

G(z) := 1

1− z− z2
=
∑

n≥0

Fn+1 zn, G[k](z) :=
∑

n≥0

(
Fn+1

)k zn,

where Fn is a Fibonacci number. The OGF of monomer–dimer placements on ak × n board
when only monomers (m) and horizontal dimers(h) are allowed is obviouslyG[k](z). On the
other hand, it is possible to set up a transfer matrix model with statei (0≤ i ≤ k) corresponding
to i positions of the current column occupied by a previous domino. Consequently,

G[k](z) = coeffk,k
(
(I − zT)−1

)
, where Ti, j =

(
i

i + j − k

)
,

for 0≤ i, j ≤ k. (The denominator ofG[k](z) is known exactly: see [377, Ex. 1.2.8.30].)�

� V.47.Tours on chessboards.The OGF of Hamiltonian tours on ann×w rectangle is rational
(one is allowed to move from any cell to any other vertically or horizontally adjacent cell). The
same holds for king’s tours and knight’s tours. �

� V.48. Cover time of graphs. Given a fixed digraphŴ assumed to be strongly connected,
and a designated start vertex, one travels at random, moving at each time to any neighbour
of the current vertex, making choices with equal likelihood. The expectation of the time to
visit all the vertices is a rational number that is effectively (though perhaps not efficiently!)
computable. [Hint: set up a transfer matrix, a state of which is a subset ofvertices representing
those vertices that have been already visited. For an interval [0, . .m], this can be treated by the
dedicated theory of walks on the integer interval, as in Section V. 4; for the complete graph, this
is equivalent to the coupon collector problem. Most other cases are “hard” to solve analytically
and one has to turn to probabilistic approximations; see Aldous and Fill’s forthcoming book [11]
for a probabilistic approach.] �

ExampleV.19. Self-avoiding walks and polygons.A long-standing open problem, shared by
statistical physics, combinatorics, and probability theory alike, is that of quantifying properties
of self-avoiding configurations on the square lattice (Figure V.22). Here we consider objects
that, starting from the origin (the “root”), follow a path, and are solely composed of horizontal
and vertical steps of amplitude±1. Theself-avoiding walkor SAWcan wander but is subject to
the condition that it never crosses nor touches itself. Theself-avoiding polygonsor SAPs, whose
class is denoted byP, are self-avoiding walks, with only an exception at the end, where the end-
point must coincide with the origin. We shall focus here on polygons. It proves convenient also
to considerunrooted polygons(also called simply-connectedpolyominoes), which are polygons
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Figure V.22. A self-avoiding polygon or SAP (left) and a self-avoiding walk or SAW (right).

in which the origin is discarded, so that they plainly represent the possible shapes of SAPs up to
translation. For length 2n, the numberpn of unrooted polygons satisfiespn = Pn/(4n) since
the origin (2n possibilities) and the starting vertex (2 possibilities) of the corresponding SAPs
are disregarded in that case. Here is a table, for small values ofn, listing polyominoes and the
corresponding counting sequencespn, Pn.

n: 2 3 4 5 6 7 8 9 10
pn (EISA002931): 1 2 7 28 124 588 2938 15268 81826
Pn (EISA010566): 8 24 112 560 2976 16464 94016 549648 3273040

Take the (widely open) problem of determiningexactlythe numberPn of SAPs of peri-
meter 2n. This (intractable) problem can be approached as a limit of the (tractable)problem12

that consists in enumerating the collectionP [w] of SAPs of widthw, for increasing values ofw.
The latter problem is amenable to the transfer matrix method, as first discovered by Enting in
1980; see [192]. Indeed, take a polygon and consider a vertical sweepline, that moves from
left to right. Once width is fixed, there are at most 22w+2 possibilities for the ways such a line
may intersect the polygon’s edges at half integer abscissae. (There are w + 1 edges and for
each of these, one should “remember” whether they connect with the upper or lower boundary.)
The transitions are then themselves finitely described. In this way, it becomes possible to set
up a transfer matrix for any fixed widthw. For fixedn, by computing values ofP[w]

n with
increasingw, one finally determines (in principle) the exact value of anyPn.

The program suggested above has been carried out to record valuesby the “Melbourne
School” under the impulse of Tony Guttmann. For instance, Jensen [356] found in 2003 that
the number of unrooted polygons of perimeter 100 is

p50 = 7545649677448506970646886033356862162.

12We limit ourselves here to a succinct description and refer tothe original papers [192, 356] for
details.
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Attaining such record values necessitates algorithms that are much more sophisticated than the
näıve approach we have just described, as well as a number of highly ingenious programming
optimizations.

It is an equally open problem to estimateasymptoticallythe number of SAPs of peri-
metern. Given the exact values up to perimeter 100 or more, a battery of fitting tests for
asymptotic formulae can be applied, leading to highlyconvincing(though still heuristic) for-
mulae. Thanks to several workers in this area, we can regard the finalanswer as “known”. From
the works of Jensen and his predecessors, it results that a reliable empirical estimate is of the
form 




pn = Bµ2n(2n)−β (1+ o(1)),

µ
.= 2.63815 85303, β = −5

2
± 3 · 10−7, B

.= 0.5623013.

Thus, the answer is almost certainly of the formpn ≍ µ2nn−5/2 for unrooted polygons and
Pn ≍ µ2nn−3/2 for rooted polygons. It is believed that the same connective constantµ dictates
the exponential growth rate of self-avoiding walks. See Finch’s book [211, Sec. 5.10] for a
perspective and numerous references.

There is also great interest in the numberpm,n of polyominoes with perimeter 2n and
aream, with area defined as the number of square cells composing the polyomino. Studies
conducted by the Melbourne school yield numerical data that are consistent to an amazing
degree (e.g., moments up to order ten and small-n corrections are considered) with the following
assumption:The distribution of area in a fixed-perimeter polyomino obeys in the asymptotic
limit an “Airy area distribution”. This distribution is defined as the limit distribution of the
area under Dyck paths, a problem that was introduced on p. 330 and to which we propose to
return in Chapter VII (p. 535) and IX (p. 706). See [356, 509, 510]and references therein for a
specific discussion of polyomino area. It is finally of great interest to note that the interpretation
of data was strongly guided by what is already known for exactly solvablemodels of the type
we are repeatedly considering in this book. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

ExampleV.20. Horizontally convex polyominoes.Pólya [490] and Temperley [574] inde-
pendently discovered an exactly solvable polyomino model. (See also the text by van Rens-
burg [592] for more.) Define as usual a polyomino as a collection of unit squares with vertices
in Z≥0× Z≥0 that forms a connected set without articulation points. Such a polyomino is said
to behorizontally convex(H.C.) if its intersection with any horizontal line is either empty or
an interval. An H.C. polyomino is thus a stack of a certain number of rows of squares, where
each row has a segment of length≥ 1 in common with the next row up. (We imagine H.C.
polyominoes growing from bottom to top.) The enumeration of such polyominoes, following
Temperley [574, p. 66] constitutes a nice extension of the transfer matrixmethod in the case
when the set of states isinfinite.

Let T [k] be the class of polyominoes with exactlyk square cells on their top row. The size
of a polyomino is its number of cells. We wish to enumerate the classT := ⋃k T

[k] . In order
to do so, according to the transfer matrix method, one needs to relate theT [k] to one another.
Let z be the variable marking size. The transition from oneT [k] to aT [ℓ] has a multiplicity
equal tok + ℓ − 1. Thus the generating functionstk := T [k](z) satisfy an infinite system of
equations, which starts as

(112)
t1 = z+ z(t1+ 2t2+ 3t3+ · · · )
t2 = z2+ z2 (2t1+ 3t2+ 4t3+ · · · )
t3 = z3+ z3 (3t1+ 4t2+ 5t3+ · · · ) .
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Figure V.23. Five horizontally convex polyominoes of sizen = 50 drawn uniformly
at random.

This corresponds to an infinite transfer matrix which is highly structured:

M(z)k,ℓ = (k+ ℓ− 1)zℓ,

and, as shown by Temperley [574, p. 66], the system can be solved byelementary manipula-
tions. We shall however prefer to take another route, more in line with the spirit of this book,

In a case like this, it is well worth trying a bivariate generating function. Define

T(z, u) =
∑

n,k

T [k](z)uk.

The action of “adding a slice” on the top row of a polyomino is reflected by a linear operator
L that transformsuk, representing the top row of the polyomino before addition, into a sum of
monomialsuℓzℓ, with the proper multiplicities:

L[uk] = k(uz)k + (k+ 1)(uz)k+1+ · · · = (k− 1)
uz

1− uz
+ uz

(1− uz)2
.

(An earlier instance of the technique of “adding a slice” appears in the context of constrained
compositions, Example III.22, p. 199.) A better formula results if one expresses more generally
the quantityL[ f (u)]:

(113) L[ f (u)] = uz

(1− uz)2
f (1)+ uz

1− uz

(
f ′(1)− f (1)

)
.

Treat now the BGFT(z, u) as a function ofu, keepingz as a parameter, and write for readability
τ(u) := T(z,u). A horizontally convex polyomino is obtained by starting from a bottom row
that can have any number of cells and repeatedly adding a slice. This construction is thus
reflected by the main functional equation

(114)
τ(u) = zu

1− zu
+ L[τ(u)]

= zu

1− zu
+ zu

1− zu
τ ′(1)+ z2u2

(1− zu)2
τ(1),

upon making use of (113). Instantiating atu = 1 provides the first relation

(115) τ(1) = z

1− z
+ z

1− z
τ ′(1)+ z2

(1− z)2
τ(1),
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while differentiation of (114) with respect tou followed by the specializationu = 1 provides
the second relation

(116) τ ′(1) = z

(1− z)2
+ z

(1− z)2
τ ′(1)+ 2

z

(1− z)3
τ(1).

We now have a linear system of two equations in two unknowns, resulting in anexpression
of τ(1) = T(z) = T(z, 1), which enumerates all horizontally convex polyominoes:

(117) T(z) = z(1− z)3

1− 5z+ 7z2− 4z3
.

(From (114) to (117), the whole calculation is barely three lines of code under a decent computer
algebra system.) Note that, the original system being infinite, it is far from obviousa priori that
the generating function should be rational—in the present context, rationalitydevolves from the
highly structured character of the transfer matrix.

The counting sequence obtained by expansion,

T(z) = z+ 2z2+ 6z3+ 19z4+ 61z5+ 196z6+ 629z7+ 2017z8+ · · ·
is EIS A001169(“Number of board-pile polyominoes with n cells”). The asymptotic form is
then easily obtained: we find

Tn ∼ C An, C
.= 0.18091, A

.= 3.20556,

with A a cubic irrational.
An alternative derivation, which is more sophisticated, is due to Klarner and is presented in

Stanley’s book [552, §4.7]. Hickerson [333] has found a direct construction, which explains the
rationality of the GF by means of a regular language encoding. (The drawings of Figure V.23
have been obtained by an application of the recursive method [264] to Hickerson’s specifica-
tion.) Louchard [420] has conducted an in-depth study of probabilistic properties of several
parameters of H.C. polyominoes, using generating functions. . . . . . .. . . . . . . . . . . . . . . . . . . . .�

� V.49. Height of H.C. polyominoes.Upon introducing an extra variablev to encode height,
one finds that height grows on average linearly withn and the variance isO(n), so that the
distribution is concentrated [420]. (This explains the skinny aspects of polyominoes drawn in
Figure V.23.) �

� V.50. A transfer matrix model for lattice paths.Consider the general context of weighted
lattice paths in Section V. 4. Letα j , β j , γ j be the weights of ascents, descents, and level steps,
respectively, when the starting altitude isj . The infinite transfer matrix,

T =




γ0 α0 0 0 0 · · ·
β1 γ1 α1 0 0 · · ·
0 β2 γ2 α2 0 · · ·
...

...
...

...
...

. . .


 ,

which has a tridiagonal form, “generates” all lattice paths via the quasi-inverse(I − zT)−1.
In particular, any exactly solvable weighted lattice path model is equivalentto an explicit struc-
tured matrix inversion. �

V. 6.4. Value-constrained permutations.We conclude this chapter with a dis-
cussion of a construction that combines transfer matrix methods with an inclusion–
exclusion argument. We treat a collection of constrained permutation problems whose
origin lies in nineteenth century recreational mathematics. For instance, theménage
problem solved and popularized byÉdouard Lucas in 1891, see [129], has the fol-
lowing quaint formulation:What is the number of possible ways one can arrange n
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married couples (“ménages”) around a table in such a way that men and women al-
ternate, but no woman sits next to her husband?

The ḿenage problem is equivalent to a permutation enumeration problem. Sit
first conventionally the men at places numbered 1,2, . . . ,n and the wives at positions
3
2,

5
2, . . . ,n+ 1

2. Let σi be such that thei th wife is placed atσi + 1
2. Then, a ḿenage

placement imposes the conditionsσi 6= i andσi 6= i − 1 for eachi . We consider here
a linearly arranged table (see remarks at the end for the other classical formulation
that considers a round table), so that the conditionσi 6= i − 1 becomes vacuous when
i = 1. Here is a ḿenage placement forn = 6 and its corresponding permutation

61 2 3 4 5

σ =
[

1 2 3 4 5 6
4 5 6 2 1 3

]

This is a generalization of the derangement problem (for which only the weaker con-
dition σi 6= i is imposed and the cycle decomposition of permutations suffices to
provide a direct solution; see Example II.14, p. 122).

Definition V.9. Given a permutationσ = σ1 · · · σn, any quantityσi − i is called an
exceedanceof σ . Given a finite set of integers� ⊂ Z≥0, a permutation is said to be
�–avoiding if none of its exceedances lies in�.

The original ḿenage problem is modelled by� = {−1,0}, or, up to a simple trans-
formation, by� = {0,1}.

Inclusion–exclusion. The set� being fixed, consider first for allj the class
of augmented permutationsPn, j that are permutations of sizen such that j of the
positions are distinguished and the corresponding exceedances lie in�, the remaining
positions having arbitrary values (but with the permutation property being satisfied).
Loosely speaking, the objects inPn, j can be regarded as permutations with “at least”
j exceedances in�. For instance, with� = {1} and

σ =
(

1 2 3 4 5 6 7 8 9
2 3 4 8 6 7 1 5 9

)
,

there are 5 exceedances that lie in� (at positions 1,2,3,5,6) and with 3 of these
distinguished (say by enclosing them in a box), one obtains an element counted by
P9,3, such as

2 3 4 8 6 7 1 5 9.

Let Pn, j be the cardinality ofPn, j . We claim that the numberQn = Q�
n of �–

avoiding permutations of sizen satisfies

(118) Qn =
n∑

j=0

(−1) j Pn, j .
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Figure V.24. A graphical rendering of the legal template20?02?11?relative to� = {0,1, 2}.

Equation (118) is typically aninclusion–exclusionrelation. To prove it formally13,
define the numberRn,k of permutations that have exactlyk exceedances in� and the
generating polynomials

Pn(w) =
∑

j

Pn, jw
j , Rn(w) =

∑

k

Rn,kw
k.

The GFs are related by

Pn(w) = Rn(w + 1) or Rn(w) = Pn(w − 1)..

(The relationPn(w) = Rn(w + 1) simply expresses symbolically the fact that each
�-exceedance inR may or may not be taken in when composing an element ofP.)
In particular, we havePn(−1) = Rn(0) = Rn,0 = Qn as was to be proved.

Transfer matrix model.The preceding discussion shows that everything relies on
the enumerationPn, j of permutations with distinguished exceedances in�. Introduce
the alphabetA = � ∪ {‘?’}, where the symbol ‘?’ is called the ‘don’t-care symbol’.
A word onA, an instance with� = {0,1,2} being 20?02?11?, is called atemplate.
To an augmented permutation, one associates a template as follows: each exceedance
that is not distinguished is represented by a don’t care symbol; each distinguished
exceedance (thereby an exceedance with value in�) is represented by its value. A
template is said to be legal if it arises from an augmented permutation. For instance a
template 2 1· · · cannot be legal since the corresponding constraints, namely σ1−1=
2, σ2 − 2 = 1, are incompatible with the permutation structure (one would have
σ1 = σ2 = 3). In contrast, the template 20?02?11? is seen to be legal. Figure V.24 is
a graphical rendering; there, letters of templates are represented by dominoes, with a
cross at the position of a numeric value in�, and with the domino being blank in the
case of a don’t-care symbol.

Let Tn, j be the set of legal templates relative to� that have lengthn and comprise
j don’t care symbols. Any such legal template is associated toexactly j ! permutations,
sincen − j position-value pairs are fixed in the permutation, while thej remaining

13See also the discussion in Subsection III. 7.4, p. 206.
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positions and values can be taken arbitrarily. There results that

(119) Pn,n− j = j ! Tn, j and Qn =
n∑

j=0

(−1)n− j j ! Tn, j ,

by (118). Thus, the enumeration of avoiding permutations rests entirely on the enu-
meration of legal templates.

The enumeration of legal templates is finally effected by means of a transfer ma-
trix method, or equivalently, by a finite automaton. If a templateτ = τ1 · · · τn is legal,
then the following condition is met,

(120) τ j + j 6= τi + i,

for all pairs(i, j ) such thati < j and neither ofτi , τ j is the don’t-care symbol. (There
are additional conditions to characterize templates fully, but these only concern a few
letters at the end of templates and we may ignore them in this discussion.) In other
words, aτi with a numerical value preempts the valueτi + i . Figure V.24 exempli-
fies the situation in the case� = {0,1,2}. The dominoes are shifted one position
each time (since it is the value ofσ − i that is represented) and the compatibility con-
straint (120) is that no two crosses should be vertically aligned. More precisely the
constraints (120) are recognized by a deterministic finite automaton whose states are
indexed by subsets of{0, . . . ,b− 1} where the “span”b is defined asb = maxω∈� ω.
The initial state is the one associated with the empty set (noconstraint is present ini-
tially), the transitions are of the form (j ∈ {0, . . . ,b}):

{
(qS, j ) 7→ qS′ whereS′ = ((S− 1) ∪ {j − 1}) ∩ {0, . . . ,b− 1}
(qS,?) 7→ qS′ whereS′ = (S− 1) ∩ {0, . . . ,b− 1}.

The initial state (isq{} and it is equal to the final state (this translates the fact that
no domino can protrude from the right, and is implied by the linear character of the
ménage problem under consideration). In essence, the automaton only needs a finite
memory since the dominoes slide along the diagonal and, accordingly, constraints
older than the span can be forgotten. Notice that the complexity of the automaton, as
measured by its number of states, is 2b.

Here are the automata corresponding to� = {0} (derangements) and to� =
{0,1} (ménages).

.

{ } { } {0}

For the ḿenage problem, there are two states depending on whether or not the cur-
rently examined value has been preempted at the preceding step.

From the automaton construction, the bivariate GFT�(z,u) of legal templates,
with u marking the position of don’t care symbols, is a rational function that can
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be determined in an automatic fashion from�. For the derangement and ménage
problems, one finds

T{0}(z,u) = 1

1− z(1+ u)
, T{0,1}(z,u) = 1− z

1− z(2+ u)+ z2
.

In general, this gives access to the OGF of the correspondingpermutations. Indeed,
the OGF of�–avoiding permutations is obtained fromT� by a transformation akin
to the Laplace transform: we have

(121) znu j 7→ (−z)n(−1) j j !, so that Q�(z) =
∫ ∞

0
e−uT�(−z,−u)du,

which transcribes (119) and constitutes a first closed-formsolution. In addition, con-
sider the partial expansion ofT�(z,u) with respect tou, taken as

(122) T�(z,u) =
∑

r

cr (z)

1− uur (z)
,

assuming for simplicity only simple poles. There, the sum isfinite and it involves
algebraic functionscr andur of the variablez. Define next the (divergent) OGF of all
permutations,

F(y) =
∞∑

n=0

n! yn = 2F0[1,1; y],

in the terminology of hypergeometric functions (Note B.15,p. 751). Then, by (121)
and (122), we find

(123) Q�(z) =
∑

r

cr (−z)F(−u j (−z)).

In other words: the OGF of�–avoiding permutations is expressible both as the
Laplace transform of a bivariate rational function(121)and as a composition(123)
of the OGF of the factorial series with algebraic functions.

The expressions (122) simplify much in the case of ménages and derangements
where the denominators ofT are of degree 1 inu. One finds

Q{0}(z) = 1

1+ z
F

(
z

1+ z

)
= 1+ z2+ 2z3+ 9z4+ 44z5+ 265z6+ 1854z7+ · · · ,

for derangements, whence a new derivation of the known formula,

Q{0}n =
n∑

k=0

(−1)k
(

n

k

)
(n− k)!.

Similarly, for (linear) ḿenage placements, one finds

Q{0,1}(z) = 1

1+ z
F

(
z

(1+ z)2

)
= 1+ z3+ 3z4+ 16z5+ 96z6+ 675z7+ · · · ,

which isEISA000027and corresponds to the formula

Q{0,1}n =
n∑

k=0

(−1)k
(

2n− k

k

)
(n− k)!.
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Finally, the same techniques adapts to constraints that “wrap around”, that is, con-
straints taken modulon. (This corresponds to a round table in the ménage problem.)
In that case, what should be considered is the circuits in theautomaton recognizing
templates (see also the discussion on p. 337). One obtains inthis way the OGF of the
circular (i.e., classical) ḿenage problem (EISA000179),

Q̂{0,1}(z) = 1− z

1+ z
F

(
z

(1+ z)2

)
+2z= 1+z+z3+2z4+13z5+80z6+579z7+· · · ,

which yields the classical solution of the (circular) ménage problem,

Q̂{0,1}n =
n∑

k=0

(−1)k
2n

2n− k

(
2n− k

k

)
(n− k)!.

This last formula is due to Touchard; see [129, p. 185] for pointers to the vast classical
literature on the subject. The algebraic part of the treatment above is close to the
inspiring discussion found in Stanley’s book [552]. An application to robustness of
interconnections in random graphs is presented in [239].

Asymptotic analysis.For asymptotic analysis purposes, the following property
proves useful.Let F be the OGF of factorial numbers and assume that y(z) is analytic
at the origin where it satisfies y(z) = z− λz2 + O(z3); then the following estimate
holds:

(124) [zn]F(y(z)) ∼ [zn]F(z(1− λz)) ∼ n!e−λ.

(The proof results from simple manipulations of divergent series in the style of [36,
§5].) This gives at sight the estimates

Q{0}n ∼ n!e−1, Q{0,1}n ∼ n!e−2.

Generally, one has:

Proposition V.11. For any set� containingλ elements, the number of permutations
without exceedances in� satisfies

Q{�}n ∼ n!e−λ.

Furthermore, the number R�n,k of permutations having exactly k occurrences (k fixed)
of an exceedance in� is asymptotic to

R{�}n,k ∼ n!e−λ
λk

k!
.

That is, the rare event that an exceedance belongs to� is asymptotically governed by
a Poisson distribution of rateλ = |�|.

This statement is established by means of elementary combinatorial manipula-
tions in Bender’s survey [36, §4.2] and by probabilistic techniques in the book of Bar-
bour, Holst, and Janson [29, Sec. 4.3].The relation(124)provides a way of arriving
at such estimates by purely analytic–combinatorial techniques.
� V.51.Other constrained permutations.Given a permutationσ = σ1 · · · σn, asuccession gap
is defined as any differenceσi+1− σi .
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In how many ways can a kangaroo jump through all points of the integer interval [1,n+1]
starting at 1 and ending atn+1, while making hops that are restricted to{−1, 1, 2}? (The OGF
is the rational function 1/(1− z− z3) corresponding toEISA000930.)

The numberRn of permutations of sizen, such thatσi+1−σi 6= 1 has OGFF(z/(1+ z)),
the coefficients beingEISA000255, with asymptoticsRn ∼ n!e−1. The numberSn of those,
such that|σi+1−σi | 6= 1 has OGFF(z(1−z)/(1+z)). Proof (forSn): Use inclusion–exclusion
based on configurations with distinguished sequences of±1 successions, like

←−
8 7 6 10 15

−→
2 3 4 5 9 1 13

←−
12 11 14 ∼=

←−
• • 4 6 10

−→
2 • • 3 5 1 8

←−
• 7 9,

which leads to the OGF
∑

m≥0

m!

(
z+ 2z2u

1− zu

)m



u=−1

=
∑

m≥0

m!

(
z

1− z

1+ z

)m

= 1+ z+ 2z4+ 14z5+ 90z6+ 646z7+ · · · ;
cf EIS A002464and [4]; this is the number of placements ofn kings on a chessboard, one
per line, one per column, and in non-attacking position. Asymptotically, onehasSn ∼ n!e−2,
see [572], in accordance with (124). In general, what about the counting of permutations whose
succession gaps are constrained to lie outside of a finite set�? �

� V.52. Superḿenage numbers.Let Tn be the number of permutations of sizen such that
(σi+1− σi ) /∈ {0,1, 2}. The OGF is

T(z) = 1

1− z2

(
−z+ F

(
z(1− z)

(1+ z)(1+ z− z3)

))
= 1+ z4+ 5z5+ 33z6+ 236z7+ · · · ;

see [222] andEISA001887. Asymptotically:Tn ∼ n!e−3. �

V. 7. Perspective

The theorems in this chapter demonstrate the power of the fundamental tech-
niques developed in Chapter IV, which exploit classical theorems in complex analysis
to develop coefficient asymptotics. As we start seeing it here, this approach applies
to many of the generating functions derived from the formal combinatorial techniques
of Part A of this book. By paying careful attention to the types of combinatorial con-
structions involved, we are able to identify abstract schemas that help us solve whole
classes of problems at once. Each schema connects a type of combinatorial construc-
tion to a complex asymptotic method. In this way, it becomes possible to discuss
properties shared by an infinite collection of combinatorial classes. In this chapter,
we have presented the method in detail for classes that involve a sequence construc-
tion and classes recursively defined by a linear system of equations (paths in graphs,
automata, transfer matrices).

In an ideal world, we might wish to have a direct correspondence between com-
binatorial constructions and analytic methods—a theory that would carry all the way
from combinatorial objects of any description to full analysis of all their properties.
The case of paths in graphs and automata, with its strong connectedness condition
leading to Perron–Frobenius theory, is an instance of this ideal situation. Reality is
however usually a bit more complex: theorems for deriving asymptotic results from
combinatorial specifications must often have some sort of analytic side conditions. A
typical example is the radius of convergence condition for supercritical sequences. As



374 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

soon as such side conditions are satisfied, the asymptotic properties of large structures
become highly predictable. This is the very essence of analytic combinatorics.

In the next two chapters, we investigate generating functions whose singularities
are no longer poles—fractional exponents and logarithmic factors become allowed.
This first necessitates investing in general methodology, atask undertaken in Chap-
ter VI where the method known as singularity analysis is developed. Then, a chapter
parallel to the present one, Chapter VII, will present a number of new schemas based
on the set and cycle constructions, as well as on recursion.

Bibliographic notes. Applications of rational functions in discrete and continuous mathemat-
ics are in abundance. Many examples are to be found in Goulden and Jackson’s book [303].
Stanley [552] even devotes a full chapter of his bookEnumerative Combinatorics, vol. I, to
rational generating functions. These two books push the theory furtherthan we can do here,
but the corresponding asymptotic aspects which we develop lie outside of their scope. The
analytic theory of positive rational functions starts with the works of Perron and Frobenius at
the beginning of the twentieth century and is explained in books on matrix theory likes those
of Bellman [34] and Gantmacher [276]. Its importance has been long recognized in the theory
of finite Markov chains, so that the basic theory of positive matrices is welldeveloped in many
elementary treatises on probability theory. For such aspects, we refer for instance to the classic
presentations by Feller [205] or Karlin and Taylor [363].

The supercritical sequence schema is the first in a list of abstract schemas that neatly exem-
plify the interplay between combinatorial, analytic, and probabilistic properties of large random
structures. The origins of this approach are to be traced to early works of Bender [35, 36] fol-
lowed by Soria and Flajolet [258, 260, 547].

Turning to more specific topics, we mention in relation to Section V. 4 the first global at-
tempt at a combinatorial theory of continued fractions by Flajolet in [214]together with related
works of Jackson of which an exposition is to be found in [303, Ch. 5] and a synthesis in [238],
in relation to birth and death processes. Walks on graphs from an algebraic standpoint are well
discussed in Godsil’s book [295]; for infinite graphs and groups, seeWoess [613]. The discus-
sion of local constraints in permutations based on [239] combines some of the combinatorial
elements bound in Stanley’s book [552] with the general philosophy of analytic combinatorics.
Our treatment of words and languages largely draws its inspiration from the line of research
started by Scḧutzenberger in the early 1960s and on the subsequent account to be found in
Lothaire’s book [413]. A nice review of transfer matrix methods (including a discussion of
limit distributions) is offered by Bender, Richmond, and Williamson in [46].

Applied mathematics is bad mathematics.

— PAUL HALMOS [317]

Good applied mathematics is like the unicorn:
something we can all recognize but seldom actually see.

— DAVID ALDOUS

(in Statistical Science, Vol. 5, No. 4 (Nov., 1990), pp. 446–447)
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Singularity Analysis of Generating
Functions

Es ist eine Tatsache, daß die genauere Kenntnis
des Verhaltens einer analytischen Funktion

in der N̈ahe ihrer singul̈aren Stellen
eine Quelle von arithmetischen Sätzen ist1.

— ERICH HECKE [326, Kap. VIII]

VI. 1. A glimpse of basic singularity analysis theory 376
VI. 2. Coefficient asymptotics for the standard scale 380
VI. 3. Transfers 389
VI. 4. The process of singularity analysis 392
VI. 5. Multiple singularities 398
VI. 6. Intermezzo: functions amenable to singularity analysis 401
VI. 7. Inverse functions 402
VI. 8. Polylogarithms 408
VI. 9. Functional composition 411
VI. 10. Closure properties 418
VI. 11. Tauberian theory and Darboux’s method 433
VI. 12. Perspective 437

A function’s singularities are reflected in the function’s coefficients. Chapters IV
and V have treated in detail rational fractions and meromorphic functions, where the
local analysis of polar singularities provides contributions to coefficients in the form of
exponential–polynomials (products of polynomials and exponentials). In this chapter,
we present a general approach to the analysis of coefficientsof generating functions
that is not restricted to polar singularities and extends toa large class of functions that
have moderate growth or decay at their dominant singularities. It includes a number
of functions coming from combinatorial constructions of Part A. The basic principle
behind the extension is the existence of ageneral correspondencebetween

the asymptotic expansion of a function near its dominant singularities
and

the asymptotic expansion of the function’s coefficients.

This mapping preserves orders of growth in the sense that larger functions tend to
have have larger coefficients. It extends considerably the analysis of meromorphic
functions in Chapters IV–V and further justifies thePrinciples of Coefficient Asymp-
toticsenunciated in Chapter IV, p. 227.

1“It is a fact that the precise knowledge of the behaviour of ananalytic function in the vicinity of its
singular points is a source of arithmetic properties.”

375
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Precisely, the method ofsingularity analysisapplies to functions whose singular
expansion involves fractional powers and logarithms—one sometimes refers to such
singularities as “algebraic–logarithmic”. It centrally relies on two ingredients.

(i ) A catalogueof asymptotic expansions for coefficients of the standard func-
tions that occur in such singular expansions.

(i i ) Transfer theorems, which allow us to extract the asymptotic order of coeffi-
cients of error terms in singular expansions.

The developments are based on Cauchy’s coefficient formula,used in conjunction with
special contours of integration known asHankel contours. The contours come very
close to the singularities then steer away: by design, they capture essential asymptotic
information contained in the functions’ singularities.

The method of singularity analysis is robust: functions amenable to it are closed
under a variety of operations, including sum, product, integration, differentiation, and
composition. Another important feature of the method is that it only necessitateslocal
asymptotic propertiesof the function to be analysed. In this way, it often proves instru-
mental in the case of functions that are only indirectly accessible through functional
equations.

This chapter is meant to develop the basic technology of singularity analysis and,
like Chapter IV, it is largely of a methodological nature. Weillustrate the approach
with a few combinatorial problems, including simple varieties of trees (e.g, unary–
binary trees), combinatorial sums, the supercritical cycle construction, supertrees,
Pólya’s drunkard walks, and tree recurrences. The next chapter, Chapter VII, will sys-
tematically explore combinatorial structures and schemasas well as functional equa-
tions that can be asymptotically analysed by means of singularity analysis in a way
that parallels the applications of rational and meromorphic asymptotics in Chapter V.

VI. 1. A glimpse of basic singularity analysis theory

Rational and meromorphic functions involve, locally near asingularity ζ , ele-
ments of the form(1 − z/ζ )−r , with r ∈ Z≥1. Accordingly their coefficients in-
volve asymptotically exponential–polynomials, that is, finite linear combinations of
elements of the typeζ−nnr−1, with r a positive integer. We examine here an ap-
proach that takes into account functions whose singularities are of a richer nature than
mere poles found in rational and meromorphic functions. Specifically, we consider
functions whose expansion at a singularityζ involves elements of the form

(
1− z

ζ

)−α (
log

1

1− z
ζ

)β
.

Under suitable conditions to be discussed in detail in this chapter, any such element
contributes a term of the form

ζ−nnα−1(logn)β .

Here,α andβ can be arbitrary complex numbers.
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Location of singularities and exponential factors.The exponential factorζ−n

present in earlier expansions is easily accounted for, since the location of the domi-
nant singularities always induces a multiplicative exponential factor for coefficients.
Indeed, if f (z) is singular atz= ζ , theng(z) ≡ f (zζ ) satisfies, by the scaling rule of
Taylor expansions,

[zn] f (z) = ζ−n[zn] f (zζ ) = ζ−n[zn] g(z),

whereg(z) now has a singularity atz = 1. Consequently, in the discussion that
follows, we shall examine functions that are singular at 1, acondition that entails no
loss of generality.

Basic scale.Consider the following table of commonly encountered functions
that are singular at 1, together with their coefficients:

(1)

Function coefficient (exact) coefficient (asympt.)

( f1) 1−
√

1− z
2

n4n

(
2n− 2

n− 1

)
∼ 1

2
√
πn3

( f2)
1√

1− z

1

4n

(
2n

n

)
∼ 1√

πn

( f3)
1

1− z
1 ∼ 1

( f4)
1

1− z
log

1

1− z
Hn ∼ logn

( f5)
1

(1− z)2
n+ 1 ∼ n.

Some structure is apparent in this table: a logarithmic factor in the function is reflected
by a similar factor in the coefficients, square-roots somehow induce square-roots, and
functions involving larger powersdohave larger coefficients.

It is easy to come up at least with a partial explanation of these observations.
Regarding basic functions such asf1, f2, f3, and f5, the Newton expansion

(1− z)−α =
∞∑

n=0

(
n+ α − 1

n

)
zn

when specialized to an integerα = r ∈ Z≥1 immediately gives the asymptotic form
of the coefficients involved,

(2) [zn](1− z)−r ≡ (n+ 1)(n+ 2) · · · (n+ r − 1)

(r − 1)!
= nr−1

(r − 1)!

(
1+ O

(
1

n

))
.

For generalα, it is therefore natural to expect

(3) [zn](1− z)−α ≡
(

n+ α − 1

α − 1

)
= nα−1

(α − 1)!

(
1+ O

(
1

n

))
.

It turns out that this asymptotic formula remains valid for real or complexα, provided
we interpret(α − 1)! suitably. We shall prove the estimate

(4) [zn](1− z)−α ∼ nα−1

Ŵ(α)

(
1+ α(α − 1)

2n
+ · · ·

)
,
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Figure VI.1 . The five functions from Equation (1) and a plot of their coefficient
sequences illustrate the tendency of coefficient extraction to be consistent with orders
of growth of functions.

whereŴ(α) is theEuler Gamma functiondefined as

(5) Ŵ(α) :=
∫ ∞

0
e−t tα−1 dt,

for ℜ(α) > 0, which coincides with(α− 1)! wheneverα is an integer. (Basic proper-
ties of this function are recalled in Appendix B.3:Gamma function, p. 743.)

We observe from the pair (2)–(3) that functions that are larger at the singularity
z = 1 have indeed larger coefficients (see Figure VI.1). The correspondence that
this observation suggests is general, as we are going to see repeatedly throughout this
chapter. Acatalogueof exact or asymptotic forms for coefficients of standard singular
functions is obtained in Section VI. 2 (see Theorem VI.1, p. 381).

Transfer of error terms.An asymptotic expansion of a functionf (z) that is sin-
gular atz= 1 is typically of the form

(6) f (z) = σ(z)+ O(τ (z)), where τ(z) = o(σ (z)) asz→ 1,

with σ andτ belonging to an asymptotic scale of standard functions suchas the col-
lection{(1− z)−α}α∈R, in simpler cases. Taking formally Taylor coefficients in the
expansion (6), we arrive at

(7) fn ≡ [zn] f (z) = [zn]σ(z)+ [zn]O(τ (z)).

The term [zn]σ(z) is described asymptotically by (4). Therefore, in order to extract
asymptotic informations on the coefficients off (z), one needs a way of extracting
coefficients of functions known only by their order of growtharound the singularity.
Such a translation of error terms from functions to coefficients is achieved bytransfer
theorems, which, under conditions of analytic continuation, guarantee that

[zn]O(τ (z)) = O([zn]τ(z));
see Section VI. 3 and Theorem VI.3, p. 390. This relation is much more profound than
its symbolic form would seem to imply.
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In summary, it is the goal of this chapter to expound the (favorable) conditions
under which we have available the correspondence

(8) f (z) = σ(z)+ O(τ (z)) −→ fn = σn + O(τn),

which defines the process known assingularity analysis: cf Section VI. 4 and Theo-
rem VI.4, p. 393. (This is seen to parallel the analysis of coefficients of rational and
meromorphic functions presented in Chapters IV and V.) We develop the method for
functions from the scale

(1− z)−α
(

log
1

1− z

)β
(z→ 1),

whose coefficients have subexponential factors of the form

nα−1(logn)β .

(The range of singular behaviours taken into account by singularity analysis is even
considerably larger: iterated logarithms (log log’s) as well as more exotic functions
can be encapsulated in the method.)

Example VI.1. First asymptotics of 2–regular graphs. As an illustration of themodus
operandiof singularity analysis, consider the classR of labelled 2–regular graphs (Note II.22,
p. 133):

R = SET(UCYC≥3(Z)) H⇒ R(z) = exp

(
1

2

(
log(1− z)−1− z− z2

2

))
,

where UCYC is the undirected cycle construction.
Singularity analysis permits us to reason as follows. The function

R(z) = e−z/2−z2/4
√

1− z

is only singular atz = 1 where it has a branch point. Expanding the numerator aroundz = 1,
we have

(9) R(z) = e−3/4
√

1− z
+ O((1− z)1/2).

Therefore(see Theorems VI.1 and VI.3, as well as the discussion in Example VI.2 below,
p. 395), upon translating formally term by term, one obtains

(10) [zn]R(z) = e−3/4
(

n− 1/2

n

)
+ O

(
n− 3/2

n

)
= e−3/4
√
πn
+ O(n−3/2).

Furthermore, a full asymptotic expansion into descending powers ofn can be derived in the

same way, from a complete expansion of the numeratore−z/2−z2/4 at z= 1. . . . . . . . . . . . . .�
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Plan of this chapter.The first part of this chapter, Sections VI. 2–VI. 5, is dedi-
cated to the basic technology of singularity analysis alongthe lines of our foregoing
discussion, and including the case of functions with finitely many singularities on the
boundary of their disc of convergence. An “Intermezzo”, Section VI. 6, serves a pre-
lude to the second part of the chapter, where we investigate operations on generating
functions whose effect on singularities is predictable. The most important of these
is inversion, which, under a broad set of conditions, leads to square-root singularity
and provides a unified asymptotic theory of simple varietiesof trees (Section VI. 7).
Polylogarithms are proved to be amenable to singularity analysis in Section VI. 8, a
fact that permits us to take into account weights such as

√
n or logn in combinato-

rial sums. Composition of functions is studied in Section VI. 9. Then Section VI. 10
presents several closure properties of functions of singularity analysis class, includ-
ing differentiation, integration, and Hadamard product. The chapter concludes with a
brief discussion of two classical alternatives to singularity analysis: Tauberian theory
and Darboux’s method (Section VI. 11).

VI. 2. Coefficient asymptotics for the standard scale

This section and the next two present the fundamentals ofsingularity analysis, a
theory which was developed by Flajolet and Odlyzko in [248].Technically the theory
relies on a systematic use of Hankel contours in Cauchy coefficient integrals. Such
Hankel contours classically serve to express the Gamma function: see Appendix B.3:
Gamma function, p. 743. Here they are first used to estimate coefficients of a standard
scale of functions, and then to prove transfer theorems for error terms (Section VI. 3).
With this basic process, an asymptotic expansion of a function near a singularity is
directly mapped to a matching asymptotic expansion of its coefficients.

Starting from the binomial expansion, we have for generalα,

[zn](1− z)−α = (−1)n
(−α

n

)
=
(

n+ α − 1

n

)
= α(α + 1) · · · (α + n− 1)

n!
.

This quantity is expressible in terms of Gamma factors, and

(11)

(
n+ α − 1

n

)
= Ŵ(n+ α)
Ŵ(α)Ŵ(n+ 1)

,

providedα is neither 0 nor a negative integer. (Whenα ∈ {0,−1, . . .}, the coefficients(n+α−1
n

)
eventually vanish, so that the asymptotic problem of estimating [zn](1−z)−α

becomes void.) The asymptotic analysis of the coefficients
(n+α−1

n

)
is straightforward,

by means of Stirling’s formula and real integral estimates:see Notes VI.1 and VI.2.

A method far more productive than elementary real analysis techniques consists
in estimating coefficients of a functionf (z) by means of Cauchy’s coefficient formula:

[zn] f (z) = 1

2iπ

∫

γ

f (z)
dz

zn+1
.

The basic principle is simple: it consists in choosing a contour of integrationγ that
comes at distance 1/n of the singularityz = 1. Under the change of variables
z = 1 + t/n, the kernelz−n−1 in the integral transforms (asymptotically) into an
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Figure VI.2 . The contoursC0, C1, andC2 ≡ H(n) used for estimating the coeffi-
cients of functions from the standard function scale.

exponential, and the function can be expanded locally, withthe differential coefficient
only introducing a rescaling factor of 1/n:

(12)
z 7→

(
1+ t

n

)
, dz 7→ 1

n
dt

1

zn+1
7→ e−t , (1− z)−α 7→ nα(−t)−α.

This gives us for instance (precise justification below):

[zn](1− z)−α ∼ gαnα−1, gα := 1

2iπ

∫
e−t (−t)−α dt.

The contour and the associated rescaling capture the behaviour of the function near its
singularity, thereby enabling coefficient estimation.

Theorem VI.1 (Standard function scale). Let α be an arbitrary complex number in
C \ Z≤0. The coefficient of zn in

f (z) = (1− z)−α

admits for large n a complete asymptotic expansion in descending powers of n,

[zn] f (z) ∼ na−1

Ŵ(α)

(
1+

∞∑

k=1

ek

nk

)
,

where ek is a polynomial inα of degree2k. In particular2:

(13)
[zn] f (z) ∼ nα−1

Ŵ(α)

(
1+ α (α − 1)

2n
+ α (α − 1) (α − 2) (3α − 1)

24n2

+α
2 (α − 1)2 (α − 2) (α − 3)

48n3
+ O

(
1

n4

))
.

2The quantityek is a polynomial inα that is divisible byα(α − 1) · · · (α − k), in accordance with the
fact that the asymptotic expansion terminates whenα ∈ Z≥0. The factor 1/Ŵ(α) vanishes identically when
α ∈ Z≤0, in accordance with the fact that coefficients are asymptotically 0 in that case.
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Proof. The first step is to express the coefficient [zn](1− z)−α as a complex integral
by means of Cauchy’s coefficient formula,

(14) fn =
1

2iπ

∫

C

(1− z)−α
dz

zn+1
,

whereC is a small enough contour that encircles the origin; see Figure VI.2. We can
start withC ≡ C0, whereC0 is the positively oriented circleC0 = {z, |z| = 1

2}. The
second step is to deformC0 into another simple closed curveC1 around the origin
that does not cross the half-lineℜ(z) ≥ 1: the contourC1 consists of a large circle
of radiusR > 1 with a notch that comes back near and to the left ofz = 1. Since
the integrand along large circles decreases asO(R−n), we can finally letR tend to
infinity and are left with an integral representation forfn whereC has been replaced
by a contourC2 that starts from+∞ in the lower half-plane, winds clockwise around
1, and ends at+∞ in the upper half-plane. The latter is a typical case of aHankel
contour. A judicious choice of its distance to the half-lineR≥1 yields the expansion.

To specify precisely the integration path, we particularize C2 to be the contour
H(n) that passes at a distance1

n from the half lineR≥1:

(15) H(n) = H−(n) ∪H+(n) ∪H◦(n)
where

(16)





H−(n) = {z= w − i
n , w ≥ 1}

H+(n) = {z= w + i
n , w ≥ 1}

H◦(n) = {z= 1− eiφ

n , φ ∈ [−π2 , π2 ]}.
Now, a change of variable

(17) z= 1+ t

n

in the integral (14) gives the form

(18) fn =
nα−1

2iπ

∫

H

(−t)−α
(

1+ t

n

)−n−1

dt.

(The Hankel contourH winds about 0, being at distance 1 from the positive real axis;
it is the same as the one in the proof of Theorem B.1, p. 745.)

We have the asymptotic expansion
(19)(

1+ t

n

)−n−1

= e−(n+1) log(1+t/n) = e−t

[
1+ t2− 2t

2n
+ 3t4− 20t3+ 24t2

24n2
+ · · ·

]
,

which tells us that the integrand in (18) converges pointwise (as well as uniformly
in any bounded domain of thet plane) to(−t)−αe−t . Substitution of the asymptotic
form (

1+ t

n

)−n−1

= e−t
(

1+ O

(
1

n

))
,



VI. 2. COEFFICIENT ASYMPTOTICS FOR THE STANDARD SCALE 383

asn→∞ inside the integral (18) suggests (formally) that

[zn](1− z)−α = nα−1

2iπ

∫

H

(−t)−αe−t dt

(
1+ O

(
1

n

))

= nα−1

Ŵ(α)

(
1+ O

(
1

n

))
,

when use is made of Hankel’s formula for the Gamma function (p. 745).
To justify this formal argument, we proceed as follows:

(i ) Split the contourH according toℜ(t) ≤ log2 n andℜ(t) ≥ log2 n, as in the
corresponding diagram:

(20) 0

log2 n

2.

(i i ) Verify that the part corresponding toℜ(t) ≥ log2 n is negligible in the scale
of the problem; for instance:

(
1+ t

n

)−n

= O(exp(− log2 n)) for ℜ(t) ≥ log2 n.

(i i i ) Use a terminating form of (19) to develop an expansion to any predeter-
mined order, with uniform error terms, for the part corresponding toℜ(t) ≤
log2 n. (This is possible becauset/n = O(log2 n/n) is small.)

These considerations validate term-by-term integration of expansion (19) within the
integral of (18), so that the full expansion offn is determined as follows: a term of
the formtr /ns in the expansion (19) induces, by Hankel’s formula, a term ofthe form
n−s/Ŵ(α− r ). (The expansion so obtained is non-degenerate providedα differs from
a negative integer or zero; see also Note VI.3 for details.) Since

1

Ŵ(α − k)
= 1

Ŵ(α)
(α − 1)(α − 2) · · · (α − k).

the expansion in the statement of the theorem eventually follows. �

The asymptotic approximations obtained from Theorem VI.2 differ from the ones
that are associated with meromorphic asymptotics (ChapterIV), where exponentially
small error terms could be derived. However, it is not uncommon to obtain results with
about 10−6 accuracy, already for values ofn in the range 101–102 with just a few terms
of the asymptotic expansion. Figure VI.3 exemplifies this situation by displaying the
approximations obtained for the Catalan numbers,

Cn =
4n

n+ 1
[zn](1− z)−1/2,

whenC10,C20,C50 are considered and up to eight asymptotic terms are taken into
account.
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n = 10 n = 20 n = 50

4n
√
πn3

(
1 18708 6935533866 2022877684829178931751713264

−9
8 n−1 16603 6545410086 1977362936920522405787299715

+145
128 n−2 16815 6565051735 1978279553371460627490749710

−1155
1024n−3 16794 6564073885 1978261300061101426696482732

+36939
32768n−4 16796 6564122750 1978261664919884629357813591

−295911
262144n−5 16796 6564120303 1978261657612856326190245636

+4735445
4194304n−6 16796 6564120426 1978261657759023715384519184

−37844235
33554432n

−7) 16796 6564120420 1978261657756103402179527600

Cn 16796 6564120420 1978261657756160653623774456

Figure VI.3 . Improved approximations to the Catalan numbers obtained by succes-
sive terms of their asymptotic expansion (with exact digits in boldface).

� VI.1. Stirling’s formula and asymptotics of binomial coefficients.The Gamma function
form (11) of the binomial coefficients yields

[zn](1− z)−α = nα−1

Ŵ(α)

(
1+ O(

1

n
)

)
,

when Stirling’s formula is applied to the Gamma factors. �

� VI.2. Beta integrals and asymptotics of binomial coefficients.A direct way of obtaining the
general asymptotic form of

(n+α−1
n

)
bases itself on the Eulerian Beta integral (see [604, p.254]

and Appendix B.3:Gamma function, p. 743). Consider the quantity (α > 0)

φ(n, α) =
∫ 1

0
tα−1(1− t)n−1 dt = (n− 1)!

α(α + 1) · · · (α + n− 1)
≡ 1

n
(n+α−1

n
) ,

where the second form results elementarily from successive integrations by parts. The change
of variablest = x/n yields

φ(n, α) = 1

nα

∫ n

0
xα−1(1− x/n)n−1 dt ∼

n→∞
1

nα

∫ ∞

0
xα−1e−x dx ≡ Ŵ(α)

nα
,

where the asymptotic form results from the standard limit formula of the exponential: exp(a) =
limn→∞(1+ a/n)n. �

� VI.3. Computability of full expansions.The coefficientsek of Theorem VI.1 satisfy

ek =
2k∑

ℓ=k

λk,ℓ(α − 1)(α − 2) · · · (α − ℓ),

whereλk,ℓ := [vktℓ]et (1+ vt)−1−1/v . �

� VI.4. Oscillations and complex exponents.Oscillations occur in the case of singular expan-
sions involving complex exponents. From the consideration of [zn](1− z)±i ≍ n∓i−1, one
finds

[zn] cos

(
log

1

1− z

)
= P(logn)

n
+ O(

1

n2
),
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whereP(u) is a continuous and 1–periodic function. In general, such oscillations arepresent in
[zn](1− z)−α for any non-realα. �

Logarithmic factors. The basic principle underlying the method of proof of The-
orem VI.1 (see also the summary Equation (12)) has the advantage of being easily
extended to a wide class of singular functions, most notablythe ones that involve
logarithmic terms.

Theorem VI.2 (Standard function scale, logarithms). Letα be an arbitrary complex
number inC \ Z≤0. The coefficient of zn in the function3

f (z) = (1− z)−α
(

1

z
log

1

1− z

)β

admits for large n a full asymptotic expansion in descendingpowers oflogn,

(21) fn ≡ [zn] f (z) ∼ nα−1

Ŵ(α)
(logn)β

[
1+ C1

logn
+ C2

log2 n
+ · · ·

]
,

where Ck =
(β

k

)
Ŵ(α) dk

dsk
1
Ŵ(s)

∣∣∣
s=α

.

Proof. The proof is a simple variant of that of Theorem VI.1 (see [248] for details).
The basic expansion used is now

f

(
1+ t

n

)(
1+ t

n

)−n−1

∼ e−t
(−n

t

)α (
log

(−n

t

))β

∼ e−t (−t)−αnα(logn)β
(

1− log(−t)

logn

)β

∼ e−t (−t)−αnα(logn)β
(

1− β log(−t)

logn
+ β(β − 1)

2!

(
log(−t)

logn

)2

+ · · ·
)
.

Again, we are justified in using this expansion inside Cauchy’s integral representa-
tion of coefficients. What comes out from term-by-term integration is a collection of
Hankel integrals of the form

1

2iπ

∫ (0)

+∞
(−t)−se−t (log(−t))k dt = (−1)k

dk

dsk

[
1

2iπ

∫ (0)

+∞
(−t)−se−t dt

]

= (−1)k
dk

dsk

1

Ŵ(s)
,

where the reduction to derivatives of 1/Ŵ(s) results from differentiation with respect
to s under the integral sign. �

A typical example of application of Theorem VI.2 is the estimate

[zn]
1√

1− z

1
1
z log 1

1−z

= 1√
πn logn

(
1− γ + 2 log 2

logn
+ O

(
1

log2 n

))
.

3A coefficient of 1/z is introduced in front of the logarithm since log(1− z)−1 = z+ O(z2): in this
way, f (z) is a bona fidepower series inz, even whenβ is not an integer. Such a factor does not affect
asymptotic expansions in a logarithmic scale nearz= 1.
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α 6∈ {0,−1,−2, . . .} (Eq.) α ∈ {0,−1,−2, . . .} (Eq.)

β 6∈ Z≥0
nα−1

Ŵ(α)
(logn)β

∞∑

j=0

C j

(logn) j
(21) fn ∼ nα−1(logn)β

∞∑

j=1

D j

(logn) j
(24)

β ∈ Z≥0
nα−1

Ŵ(α)

∞∑

j=0

E j (logn)

n j
(25) nα−1

∞∑

j=0

F j (logn)

n j
(27)

Figure VI.4 . The general and special cases offn ≡ [zn] f (z) when f (z) is as in
Theorem VI.2.

(Such singular functions do occur in combinatorics and analysis of algorithms [257].)
� VI.5. Singularity analysis of slowly varying functions.A function3(u) is said to beslowly
varying towards infinity (in the complex plane) if there exists aφ ∈ (0, π2 ) such that, for any
fixedc > 0 and allθ satisfying|θ | ≤ π − φ, there holds

(22) lim
u→+∞

3(cei θu)

3(u)
= 1.

(Powers of logarithms and iterated logarithms are typically slowly varying functions.) Under
uniformity assumptions on (22), the following estimate holds [248]:

(23) [zn](1− z)−α3
(

1

1− z

)
∼ nα−1

Ŵ(α)
3(n).

For instance, we have:

[zn]
exp

(√
1
z log 1

1−z

)

√
1− z

∼
exp

(√
logn

)

√
πn

.

See also the discussion of Tauberian theory, p. 435. �

� VI.6. Iterated logarithms.For a generalα 6∈ Z≤0, the relation (23) admits as a special case

[zn](1− z)−α
(

1

z
log

1

1− z

)β (1

z
log

(
1

z
log

1

1− z

))δ
∼ nα−1

Ŵ(α)
(logn)β (log logn)δ .

A full asymptotic expansion can be derived in this case. �

Special cases.The conditions of Theorems VI.1 and VI.2 exclude explicitlythe
case whenα is a negative integer: the formulae actually remain valid inthis case,
provided one interprets them as limit cases, making use of 1/Ŵ(0) = 1/Ŵ(−1) =
· · · = 0 . Also, whenβ is a positive integer, the expansion of Theorem VI.2 terminates:
in that situation, stronger forms are valid. Such cases are summarized in Figure VI.4
and discussed below.

The case of integralα ∈ Z≤0 and generalβ 6∈ Z≥0. Whenα is a negative
integer, the coefficients off (z) = (1− z)−α eventually reduce to zero, so that the
asymptotic coefficient expansion becomes trivial: this situation is implicitly covered
by the statement of Theorem VI.1 since, in that case, 1/Ŵ(α) = 0. When logarithms
are present (withα ∈ Z≤0 still), the expansion of Theorem VI.2 regarding

f (z) = (1− z)−α
(

1

z
log

1

1− z

)β



VI. 2. COEFFICIENT ASYMPTOTICS FOR THE STANDARD SCALE 387

remains valid provided we again take into account the equality 1/Ŵ(α) = 0 in for-
mula (21) after effecting simplifications by Gamma factors:it is only the first term
of (21) that vanishes, and one has

(24) [zn] f (z) ∼ nα−1 (logn)β
[

D1

logn
+ D2

log2 n
+ · · ·

]
,

whereDk is given byDk =
(
β

k

)
dk

dsk

1

Ŵ(s)

∣∣∣∣
s=α

. For instance, we find

[zn]
z

log(1− z)−1
= − 1

n log2 n
+ 2γ

n log3 n
+ O(

1

n log4 n
).

The case of generalα 6∈ Z≤0 and integralβ ∈ Z≥0. Whenβ = k is a non-
negative integer, the error terms can be further improved with respect to the ones
predicted by the general statement of Theorem VI.2. For instance, we have:

[zn]
1

1− z
log

1

1− z
= logn+ γ + 1

2n
− 1

12n2
+ O(

1

n4
)

[zn]
1√

1− z
log

1

1− z
∼ 1√

πn

(
logn+ γ + 2 log 2+ O(

logn

n
)

)
.

(In such a case, the expansion of Theorem VI.2 terminates since only its first(k + 1)
terms are non-zero.) In fact, in the general case of non-integral α, there exists an
expansion of the form

(25) [zn](1− z)−α logk 1

1− z
∼ nα−1

Ŵ(α)

[
E0(logn)+ E1(logn)

n
+ · · ·

]
,

where theE j are polynomials of degreek, as can be proved by adapting the argument
employed for generalα (Note VI.8).

The joint case of integralα ∈ Z≤0 and integralβ ∈ Z≥0. If α is a negative inte-
ger, the coefficients appear as finite differences of coefficients of logarithmic powers.
Explicit formulae are then available elementarily from thecalculus of finite differ-
ences whenβ is a positive integer. For instance, withα = −m for m ∈ Z≥0, one
has

(26) [zn](1− z)m log
1

1− z
= (−1)m

m!

n(n− 1) · · · (n−m)
.

The caseα = −m andβ = k (with m, k ∈ Z≥0) is covered by (28) in Note VI.7
below: there is a formula analogous to (25),

(27) [zn](1− z)m logk 1

1− z
∼ n−m−1

[
F0(logn)+ F1(logn)

n
+ · · ·

]
,

but now with deg(F j ) = k− 1.
Figure VI.5 provides the asymptotic form of coefficients of afew standard func-

tions illustrating Theorems VI.1 and VI.2 as well as some of the “special cases”.
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Function coefficients

(1− z)3/2
1√
πn5

(
3

4
+ 45

32n
+ 1155

512n2
+ O(

1

n3
))

(1− z) (0)

(1− z)1/2 − 1√
πn3

(
1

2
+ 3

16n
+ 25

256n2
+ O(

1

n3
))

(1− z)1/2 L(z) − 1√
πn3

(
1

2
logn+ γ + 2 log 2− 2

2
+ O(

logn

n
))

(1− z)1/3 − 1

3Ŵ(2
3)n

4/3
(1+ 2

9n
+ 7

81n2
+ O(

1

n3
))

z/ L(z)
1

n log2 n
(−1+ 2γ

logn
+ π

2− 6γ 2

2 log2 n
+ O(

1

log3 n
))

1 (0)

log(1− z)−1 1

n

log2(1− z)−1 1

n
(2 logn+ 2γ − 1

n
− 1

6n2
+ O(

1

n4
))

(1− z)−1/3 1

Ŵ(1
3)n

2/3
(1+ O(

1

n
))

(1− z)−1/2 1√
πn
(1− 1

8n
+ 1

128n2
+ 5

1024n3
+ O(

1

n4
))

(1− z)−1/2 L(z)
1√
πn
(logn+ γ + 2 log 2− logn+ γ + 2 log 2

8n
+ O(

logn

n2
))

(1− z)−1 1

(1− z)−1 L(z) logn+ γ + 1

2n
− 1

12n2
+ 1

120n4
+ O(

1

n6
))

(1− z)−1 L(z)2 log2 n+ 2γ logn+ γ 2− π
2

6
+ O(

logn

n
)

(1− z)−3/2
√

n

π
(2+ 3

4n
− 7

64n2
+ O(

1

n3
))

(1− z)−3/2 L(z)

√
n

π
(2 logn+ 2γ + 4 log 2− 4+ 3 logn

4n
+ O(

1

n
))

(1− z)−2 n+ 1

(1− z)−2 L(z) n logn+ (γ − 1)n+ logn+ 1

2
+ γ + O(

1

n
)

(1− z)−2 L(z)2 n(log2 n+ 2(γ − 1) logn+ γ 2− 2γ + 2− π
2

6
+ O(

logn

n
))

(1− z)−3 1
2n2+ 3

2n+ 1

Figure VI.5 . A table of some commonly encountered functions and the asymptotic
forms of their coefficients. The following abbreviation is used:

L(z) := log
1

1− z
.
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� VI.7. The method of Frobenius and Jungen.This is an alternative approach to the case
β ∈ Z≥0 (see [360]). Start from the observation that

(1− z)−α
(

log
1

1− z

)k
= ∂k

∂αk
(1− z)−α,

then let the operators of differentiation( ∂/∂α ) and coefficient extraction ( [zn] ) commute (this
can be justified by Cauchy’s coefficient formula upon differentiating under the integral sign).
This yields

(28) [zn](1− z)−α
(

log
1

1− z

)k
= ∂k

∂αk

Ŵ(n+ α)
Ŵ(α)Ŵ(n+ 1)

,

which leads to an “exact” formula (Note VI.8 below). �

� VI.8. Shifted harmonic numbers.Define theα-shifted harmonic number by

hn(α) :=
n−1∑

j=0

1

j + α .

With L(z) := − log(1− z), still, one has

[zn](1− z)−α L(z) =
(

n+ α − 1

n

)
hn(α)

[zn](1− z)−α L(z)2 =
(

n+ α − 1

n

)(
h′n(α)+ hn(α)

2
)
.

(Note: hn(α) = ψ(α + n)− ψ(α), whereψ(s) := ∂s logŴ(s).) In particular,

[zn]
1√

1− z
log

1

1− z
= 1

4n

(
2n

n

)
[2 H2n−Hn],

where Hn ≡ hn(1) is the usual harmonic number. �

VI. 3. Transfers

Our general objective is to translate anapproximation of a functionnear a sin-
gularity into an asymptoticapproximation of its coefficients. What is required at this
stage is a way to extract coefficients of error terms (known usually in O(·) or o(·)
form) in the expansion of a function near a singularity. Thistask is technically simple
as a fairly coarse analysis suffices. As in the previous section, it relies on contour inte-
gration by means of Hankel-type paths; see for instance the summary in Equation (12),
p. 381, above.

A natural extension of the approach of the previous section is to assume the error
terms to be valid in the complex plane slit along the real halfline R≥1. In fact, weaker
conditions suffice: any domain whose boundary makes an acuteangle with the half
line R≥1 appears to be suitable.

Definition VI.1. Given two numbersφ, R with R> 1 and 0 < φ < π
2 , the open

domain1(φ, R) is defined as

1(φ, R) = {z
∣∣ |z| < R, z 6= 1, |arg(z− 1)| > φ}.

A domain is a1–domain at 1if it is a 1(φ, R) for some R andφ. For a complex
numberζ 6= 0, a1–domain atζ is the image by the mapping z7→ ζz of a1–domain
at 1. A function is1–analyticif it is analytic in some1–domain.
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Figure VI.6 . A 1–domain and the contour used to establish Theorem VI.3.

Analyticity in a1–domain (Figure VI.6, left) is the basic condition fortransfer
to coefficients of error terms in asymptotic expansions.

Theorem VI.3 (Transfer, Big-Oh and little-oh). Let α, β be arbitrary real numbers,
α, β ∈ R and let f(z) be a function that is1–analytic.

(i ) Assume that f(z) satisfies in the intersection of a neighbourhood of1 with its
1–domain the condition

f (z) = O

(
(1− z)−α(log

1

1− z
)β
)
.

Then one has: [zn] f (z) = O(nα−1(logn)β).
(i i ) Assume that f(z) satisfies in the intersection of a neighbourhood of1 with

its1–domain the condition

f (z) = o

(
(1− z)−α(log

1

1− z
)β
)
.

Then one has: [zn] f (z) = o(nα−1(logn)β).

Proof. (i ) The starting point is Cauchy’s coefficient formula,

fn ≡ [zn] f (z) = 1

2iπ

∫

γ

f (z)
dz

zn+1
,

whereγ is any simple loop around the origin which is internal to the1–domain of f .
We choose the positively oriented contour (Figure VI.6, right) γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4,
with



γ1 =
{

z
∣∣ |z− 1| = 1

n
, |arg(z− 1)| ≥ θ ]

}
(inner circle)

γ2 =
{

z
∣∣ 1

n
≤ |z− 1|, |z| ≤ r, arg(z− 1) = θ

}
(top line segment)

γ3 =
{

z
∣∣ |z| = r, |arg(z− 1)| ≥ θ ]

}
(outer circle)

γ4 =
{

z
∣∣ 1

n
≤ |z− 1|, |z| ≤ r, arg(z− 1) = −θ

}
(bottom line segment).
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If the1 domain of f is1(φ, R), we assume that 1< r < R, andφ < θ < π
2 , so that

the contourγ lies entirely inside the domain of analyticity off .
For j = 1,2,3,4, let

f ( j )
n = 1

2iπ

∫

γ j

f (z)
dz

zn+1
.

The analysis proceeds by bounding the absolute value of the integral along each of
the four parts. In order to keep notations simple,we detail the proof in the case where
β = 0.

(1) Inner circle(γ1). From trivial bounds, the contribution fromγ1 satisfies

| f (1)n | = O(
1

n
) · O

((
1

n

)−α)
= O

(
nα−1

)
,

as the function isO(nα) (by assumption onf (z)), the contour has length
O(n−1), andz−n−1 remainsO(1) on this part of the contour.

(2) Rectilinear parts(γ2, γ4). Consider the contributionf (2)n arising from the
part γ2 of the contour. Settingω = ei θ , and performing the change of
variablez= 1+ ωt

n , we find

| f (2)n | ≤
1

2π

∫ ∞

1
K

(
t

n

)−α ∣∣∣∣1+
ωt

n

∣∣∣∣
−n−1

dt,

for some constantK > 0 such that| f (z)| < K (1−z)−α over the1–domain,
which is granted by the growth assumption onf . From the relation

∣∣∣∣1+
ωt

n

∣∣∣∣ ≥ 1+ℜ(ωt

n
) = 1+ t

n
cosθ,

there results the inequality

| f (2)n | ≤
K

2π
Jnnα−1, where Jn =

∫ ∞

1
t−α

(
1+ t cosθ

n

)−n

dt.

For a givenα, the integralsJn are all bounded above by some constant since
they admit a limit asn tends to infinity:

Jn→
∫ ∞

1
t−αe−t cosθ dt.

The condition onθ that 0< θ < π/2 precisely ensures convergence of the
integral. Thus, globally, on the partγ2 of the contour, we have

| f (2)n | = O(nα−1).

A similar bound holds forf (4)n relative toγ4.
(3) Outer circle(γ3). There, f (z) is bounded whilez−n is of the order ofr−n.

Thus, the integralf (3)n is exponentially small.
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In summary, each of the four integrals of the split contour contributesO(nα−1). The
statement of part(i ) of the theorem thus follows, whenβ = 0. Entirely similar
bounding techniques cover the case of logarithmic factors (β 6= 0).

(i i ) An adaptation of the proof shows thato(.) error terms may be translated
similarly. All that is required is a further break-up of the rectilinear part at a distance
log2 n/n from 1 (see the discussion surrounding Equation (20), p. 383or [248] for
details). �

An immediate corollary of Theorem VI.3 is the possibility oftransferringasymp-
totic equivalencefrom singular forms to coefficients:

Corollary VI.1 (sim–transfer). Assume that f(z) is1–analytic and

f (z) ∼ (1− z)−α, as z→ 1, z ∈ 1,
with α 6∈ {0,−1,−2, · · · }. Then, the coefficients of f satisfy

[zn] f (z) ∼ nα−1

Ŵ(α)
.

Proof. It suffices to observe that, withg(z) = (1− z)−α, one has

f (z) ∼ g(z) iff f (z) = g(z)+ o(g(z)),

then apply Theorem VI.1 to the first term, and Theorem VI.3 (little-oh transfer) to the
remainder. �

� VI.9. Transfer of nearly polynomial functions.Let f (z) be1–analytic and satisfy the sin-
gular expansionf (z) ∼ (1− z)r , wherer ∈ Z≥0. Then, fn = o(n−r−1). [This is a direct
consequence of the little-oh transfer.] �

� VI.10. Transfer of large negative exponents.The1–analyticity condition can be weakened
for functions that are large at their singularity. Assume thatf (z) is analytic in the open disc
|z| < 1, and that in the whole of the open disc it satisfies

f (z) = O((1− z)−α).
Then, providedα > 1, one has

[zn] f (z) = O(nα−1).

[Hint. Integrate on the circle of radius 1− 1
n ; see also [248].] �

VI. 4. The process of singularity analysis

In Sections VI. 2 and VI. 3, we have developed a collection of statements grant-
ing us the existence ofcorrespondencesbetween properties of a functionf (z) sin-
gular at an isolated point (z = 1) and the asymptotic behaviour of its coefficients
fn = [zn] f (z). Using the symbol ‘−→’ to represent such a correspondence4, we

4The symbol “H⇒” represents anunconditionallogical implication and is accordingly used in this
book to represent the systematic correspondence between combinatorial specifications and generating func-
tion equations. In contrast, the symbol ‘−→’ represents a mapping from functions to coefficients, under
suitableanalytic conditions, like those of Theorems VI.1–VI.3.
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can summarize some of our results relative to the scale{(1− z)−α, α ∈ C \ Z≤0} as
follows:




f (z) = (1− z)−α −→ fn =
nα−1

Ŵ(α)
+ · · · (Theorem VI.1)

f (z) = O((1− z)−α) −→ fn = O(nα−1) (Theorem VI.3(i ))

f (z) = o((1− z)−α) −→ fn = o(nα−1) (Theorem VI.3(i i ))

f (z) ∼ (1− z)−α −→ fn ∼
nα−1

Ŵ(α)
(Corollary VI.1).

The important requirement is that the function should have an isolated singularity (the
condition of1–analyticity) and that the asymptotic property of the function near its
singularity should be valid in an area of the complex plane extending beyond the disc
of convergence of the original series, (in a1–domain). Extensions to logarithmic
powers and special cases likeα ∈ Z≤0 are also, as we know, available. We letS

denote the set of such singular functions:

(29) S =
{
(1− z)−αλ(z)β

∣∣ α, β ∈ C
}
, λ(z) := 1

z
log

1

1− z
≡ 1

z
L(z).

At this stage, we thus have available tools by which, starting from the expansion
of a function at its singularity, also calledsingular expansion, one can justify the term-
by-term transfer from an approximation of the function to anasymptotic estimate of
the coefficients5. We state the following theorem.

Theorem VI.4 (Singularity analysis, single singularity). Let f(z) be function analytic
at 0 with a singularity atζ , such that f(z) can be continued to a domain of the form
ζ ·10, for a1–domain10, whereζ ·10 is the image of10 by the mapping z7→ ζz.
Assume that there exist two functionsσ, τ , whereσ is a (finite) linear combination of
functions inS andτ ∈ S, so that

f (z) = σ (z/ζ )+ O (τ (z/ζ )) as z→ ζ in ζ ·10.

Then, the coefficients of f(z) satisfy the asymptotic estimate

fn = ζ−nσn + O(ζ−nτ ⋆n),

whereσn = [zn]σ(z) has its coefficients determined by Theorems VI.1, VI.2 andτ ⋆n =
na−1(logn)b, if τ(z) = (1− z)−aλ(z)b.

We observe that the statement is equivalent toτ ⋆n = [zn]τ(z), except whena ∈ Z≤0,
where the 1/Ŵ(a) factor should be omitted. Also, generically, we haveτ ⋆n = o(σn),
so that orders of growth of functions at singularities are mapped to orders of growth
of coefficients.

Proof. The normalized functiong(z) = f (z/ζ ) is singular at 1. It is1–analytic and
satisfies the relationg(z) = σ(z)+ O(τ (z)) asz→ 1 within10. Theorem VI.3,(i )
(the big-Oh transfer) applies to theO-error term. The statement follows finally since
[zn] f (z) = ζ−n[zn]g(z). �

5Functions with a singularity of type(1 − z)−α , possibly with logarithmic factors, are sometimes
calledalgebraic–logarithmic.
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Let f (z) be a function analytic at 0 whose coefficients are to be asymptotically analysed.
1. Preparation. This consists in locating dominant singularities and checking analytic
continuation.

1a. Locate singularities.Determine the dominant singularities off (z) (assumed
not to be entire). Check thatf (z) has a single singularityζ on its circle of
convergence.

1b. Check continuation.Establish thatf (z) is analytic in some domain of the
form ζ10.

2. Singular expansion.Analyse the functionf (z) asz → ζ in the domainζ · 10 and
determine in that domain an expansion of the form

f (z) =
z→1

σ(z/ζ )+ O(τ (z/ζ )) with τ(z) = o(σ (z)).

For the method to succeed, the functionsσ andτ should belong to the standard scale of
functionsS = {(1− z)−αλ(z)β }, with λ(z) := z−1 log(1− z)−1.

3. Transfer Translate the main term termσ(z) using the catalogues provided by
TheoremsVI.1 and VI.2. Transfer the error term (Theorem VI.3)and conclude that

[zn] f (z) =
n→+∞

ζ−nσn + O
(
ζ−nτ ⋆n

)
,

whereσn = [zn]σ(z) andτ ⋆n = [zn]τ(z) provided the corresponding exponentα 6∈ Z≤0
(otherwise, the factor 1/Ŵ(α) = 0 should be dropped).

Figure VI.7 . A summary of the singularity analysis process (single dominant singularity).

The statement of Theorem VI.4 can be concisely expressed by the correspon-
dence:

(30) f (z) =
z→1

σ(z/ζ )+ O (τ (z/ζ )) −→ fn =
n→∞ ζ

−nσn + O(ζ−nτ ⋆n).

The conditions of analytic continuation and validity of theexpansion in a1–domain
are essential.Similarly, we have

(31) f (z) =
z→1

σ (z/ζ ))+ o (τ (z/ζ )) −→ fn =
n→∞ ζ

−nσn + o(ζ−nτ ⋆n),

as a simple consequence of Theorem VI.3, part(i i ) (little-oh transfer). The map-
pings (30) and (31) supplemented by the accompanying analysis constitute the heart
of thesingularity analysisprocess summarized in Figure VI.7.

Many of the functions commonly encountered in analysis are found to be1–
analytic. This fact results from the property of the elementary functions (such as√ ,
log, tan) to be continuable to larger regions than what theirexpansions at 0 imply, as
well as to the rich set of composition properties that analytic functions satisfy. Fur-
thermore, asymptotic expansions at a singularity initially determined along the real
axis by elementary real analysis often hold in much wider regions of the complex
plane. The singularity analysis process is then likely to beapplicable to a large num-
ber of generating functions that are provided by the symbolic method—most notably
the iterative structures described in Section IV. 4 (p. 249). In such cases, singularity
analysis greatly refines the exponential growth estimates obtained in Theorem IV.8
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(p. 251). The condition is that singular expansions should be of a suitably moderate6

growth. We illustrate this situation now by treating combinatorial generating functions
obtained by the symbolic methods of Chapters I and II, for which explicit expressions
are available.

ExampleVI.2. Asymptotics of 2–regular graphs.This example completes the discussion of
Example VI.1, p. 379 relative to the EGF

R(z) = e−z/2−z2/4
√

1− z
.

We follow step by step the singularity analysis process, as summarized in Figure VI.7.

1. Preparation. The functionR(z) being the product ofe−z/2−z2/4 (that is entire) and
of (1− z)−1/2 (that is analytic in the unit disc) is itself analytic in the unit disc. Also, since
(1− z)−1/2 is1–analytic (it is well-defined and analytic in the complex plane slit alongR≥1),
R(z) is itself1–analytic, with a singularity atz= 1.

2. Singular expansion. The asymptotic expansion ofR(z) nearz = 1 is obtained starting

from the standard (analytic) expansion ofe−z/2−z2/4 at z= 1,

e−z/2−z2/4 = e−3/4+ e−3/4(1− z)+ e−3/4

4
(1− z)2− e−3/4

12
(1− z)3+ · · · .

The factor(1− z)−1/2 is its own asymptotic expansion, clearly valid in any1–domain. Per-
forming themultiplicationyields a complete expansion,

(32) R(z) ∼ e−3/4
√

1− z
+ e−3/4√1− z+ e−3/4

4
(1− z)3/2− e−3/4

12
(1− z)5/2+ · · · ,

out of which terminating forms, with anO–error term, can be extracted.
3. Transfer. Take for instance the expansion of (32) limited to two terms plus an error

term. The singularity analysis process allows the transfer of (32) to coefficients, which we can
present in tabular form as follows:

R(z) cn ≡ [zn]R(z)

e−3/4 1√
1− z

e−3/4
(

n− 1/2

−1/2

)
∼ e−3/4
√
πn

[
1− 1

8n
+ 1

128n2
+ · · ·

]

+ e−3/4√1− z +e−3/4
(

n− 3/2

−3/2

)
∼ −e−3/4

2
√
πn3

[
1+ 3

8n
+ · · ·

]

+ O((1− z)3/2) +O

(
1

n5/2

)
.

Terms are then collected with expansions suitably truncated to the coarsesterror term, so that
here a three-term expansion results. In the sequel, we shall no longer need to detail such com-
putations and we shall content ourselves with putting in parallel the function’s expansion and
the coefficient’s expansion, as in the following correspondence:

R(z) = e−3/4
√

1− z
+e−3/4√1− z+O

(
(1− z)3/2

)
−→ cn =

e−3/4
√
πn
− 5e−3/4

8
√
πn3
+O

(
1

n5/2

)
.

6For functions with fast growth at a singularity, the saddle-point method developed in Chapter VIII
becomes effectual.
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Here is a numerical check. Setc(1)n := e−3/4/
√
πn and letc(2)n represent the sum of the first

two terms of the expansion ofcn. One finds:

n 5 50 500

n!c(1)n 14.30212 1.1462888618· 1063 1.4542120372· 101132

n!c(2)n 12.51435 1.1319602511· 1063 1.4523942721· 101132

n!cn 12 1.1319677968· 1063 1.4523943224· 101132

Clearly, a complete asymptotic expansion in descending powers ofn can be obtained in this
way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleVI.3. Asymptotics of unary–binary trees and Motzkin numbers.Unary–binary trees
are unlabelled plane trees that admit the specification and OGF:

U = Z(1+ U + U × U) H⇒ U (z) = 1− z−√(1+ z)(1− 3z)

2z
.

(See Note I.39 (p. 68) and Subsection V. 4 (p. 318) for the lattice path version.) The GFU (z)
is singular atz = −1 andz = 1/3, the dominant singularity being atz = 1/3. By branching
properties of the square-root function,U (z) is analytic in a1–domain like the one depicted
below:

0
−1 1

3

Around the point 1/3, a singular expansion is obtained by multiplying(1− 3z)1/2 and the
analytic expansion of the factor(1+ z)1/2/(2z). The singularity analysis process then applies
and yields automatically:

U (z) = 1− 31/2√1− 3z+ O((1− 3z)) −→ Un =
√

3

4πn3
3n + O(3nn−2).

Further terms in the singular expansion ofU (z) at z = 1/3 provide additional terms in the
asymptotic expression of the Motzkin numbersUn; for instance, the form

Un =
√

3

4πn3
3n
(

1− 15

16n
+ 505

512n2
− 8085

8192n3
+ 505659

524288n4
+ O

(
1

n5

))

results from an expansion ofU (z) till O((1−3z)11/2). The approximation provided by the first
three terms is quite good: forn = 10, it estimatesf10 = 835. with an error less than 1. . . . .�

� VI.11. The population of Noah’s Ark.The number of one-source directed lattice animals
(pyramids, Example I.18, p. 80) satisfies

Pn ≡ [zn]
1

2

(√
1+ z

1− 3z
− 1

)
= 3n
√

3πn

[
1− 1

16n
+ O

(
1

n2

)]
.
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The expected size of the base of a random animal inAn is ∼
√

4n
27π . What is the asymptotic

number of animals with a compact source of sizek? �

ExampleVI.4. Asymptotics of children’s rounds.Stanley [550] has introduced certain combi-
natorial configurations that he has nicknamed “children’s rounds”: around is a labelled set of
directed cycles, each of which has a centre attached. The specification and EGF are

R = SET(Z ⋆ CYC(Z)) H⇒ R(z) = exp

(
z log

1

1− z

)
= (1− z)−z.

The functionR(z) is analytic in theC-plane slit alongR≥1, as is seen by elementary properties
of thecompositionof analytic functions. The singular expansion atz= 1 is then mapped to an
expansion for the coefficients:

R(z) = 1

1− z
+ log(1− z)+ O((1− z)1/2) −→ [zn]R(z) = 1− 1

n
+ O(n−3/2).

A more detailed analysis yields

[zn]R(z) = 1− 1

n
− 1

n2
(logn+ γ − 1)+ O

(
log2 n

n3

)
,

and an expansion to any order can be easily obtained. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .�

� VI.12. The asymptotic shape of the rounds numbers.A complete asymptotic expansion has
the form

[zn]R(z) ∼ 1−
∑

j≥1

Pj (logn)

n j
,

wherePj is a polynomial of degreej − 1. (The coefficients ofPj are rational combinations of
powers ofγ, ζ(2), . . . , ζ( j −1).) The successive terms in this expansion are easily obtained by
a computer algebra program. �

Example VI.5. Asymptotics of coefficients of an elementary function.Our final example
is meant to show the way rather arbitrary compositions of basic functions can be treated by
singularity analysis, much in the spirit of Section IV. 4, p. 249. LetC = Z ⋆SEQ(C) be the class
of general labelled plane trees. Consider the labelled class defined by substitution

F = C ◦ CYC(CYC(Z)) H⇒ F(z) = C(L(L(z))).

There,C(z) = 1
2(1−

√
1− 4z) and L(z) = log 1

1−z. Combinatorially,F is the class of trees
in which nodes are replaced by cycles of cycles, a rather artificial combinatorial object, and

F(z) = 1

2

[
1−

√
1− 4 log

1

1− log 1
1−z

]
.

The problem is first to locate the dominant singularity ofF(z), then to determine its nature,
which can be done inductively on the structure ofF(z). The dominant positive singularityρ of
F(z) satisfies L(L(ρ)) = 1/4 and one has

ρ = 1− ee−1/4−1 .= 0.198443,

given thatC(z) is singular at 1/4 and L(z) has positive coefficients. Since L(L(z)) is analytic at
ρ, a local expansion ofF(z) is obtained next bycompositionof the singular expansion ofC(z)
at 1/4 with the standard Taylor expansion of L(L(z)) atρ. We find

F(z) = 1

2
−C1(ρ−z)1/2+O

(
(ρ − z)3/2

)
−→ [zn]F(z) = C1ρ

−n+1/2

2
√
πn3

[
1+ O

(
1

n

)]
,
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with C1 = e
5
8− 1

2e−1/4 .= 1.26566. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . �

� VI.13. The asymptotic number of trains.Combinatorial trains were introduced in Sec-
tion IV. 4 (p. 249) as a way to exemplify the power of complex asymptotic methods. One
finds that, at its dominant singularityρ, the EGFTr(z) is of the formTr(z) ∼ C/(1−z/ρ), and,
by singularity analysis,

[zn]Tr(z) ∼ 0.11768 31406 15497· 2.06131 73279 40138n.

(This asymptotic approximation is good to 15 significant digits forn = 50, in accordance with
the fact that the dominant singularity is a simple pole.) �

VI. 5. Multiple singularities

The previous section has described in detail the analysis offunctions with a single
dominant singularity. The extension to functions that havefinitely many(by necessity
isolated) singularities on their circle of convergence follows along entirely similar
lines. It parallels the situation of rational and meromorphic functions in Chapter IV
(p. 263) and is technically simple, the net result being:

In the case of multiple singularities, the separate contributions from each of
the singularities, as given by the basic singularity analysis process, are to
be added up.

As in (29), p. 393, we letS be the standard scale of functions singular at 1, namely

S =
{
(1− z)−αλ(z)β

∣∣ α, β ∈ C
}
, λ(z) := 1

z
log

1

1− z
.

Theorem VI.5 (Singularity analysis, multiple singularities). Let f(z) be analytic in
|z| < ρ and have a finite number of singularities on the circle|z| = ρ at points
ζ j = ρei θ j , for j = 1 . . r . Assume that there exists a1–domain10 such that f(z) is
analytic in the indented disc

D =
r⋂

j=1

(ζ j ·10),

with ζ ·10 the image of10 by the mapping z7→ ζz.
Assume that there exists r functionsσ1, . . . , σr , each a linear combination of

elements from the scaleS, and a functionτ ∈ S such that

f (z) = σ j (z/ζ j )+ O
(
τ(z/ζ j )

)
as z→ ζ j in D.

Then the coefficients of f(z) satisfy the asymptotic estimate

fn =
r∑

j=1

ζ−n
j σ j,n + O

(
ρ−nτ ⋆n

)
,

where eachσ j,n = [zn]σ j (z) has its coefficients determined by Theorems VI.1, VI.2
andτ ∗n = na−1(logn)b, if τ(z) = (1− z)−aλ(z)b.

A function analytic in a domain likeD is sometimes said to bestar-continuable, a
notion that naturally generalizes1–analyticity for functions with several dominant
singularities. Furthermore, a similar statement holds with o–error terms replacingOs.
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γ

0 0

D:

Figure VI.8 . Multiple singularities (r = 3): analyticity domain (D, left) and com-
posite integration contour (γ , right).

Proof. Just as in the case of a single singularity, the proof bases itself on Cauchy’s
coefficient formula

fn = [zn]
∫

γ

f (z)
dz

zn+1
,

where a composite contourγ depicted on Figure VI.8 is used. Estimates on each part
of the contour obey exactly the same principles as in the proofs of Theorems VI.1–
VI.3. Let γ ( j ) be the open loop aroundζ j that comes from the outer circle, winds
aboutζ j and joins again the outer circle; letr be the radius of the outer circle.

(i ) The contribution along the arcs of the outer circle isO(r−n), that is, expo-
nentially small.

(i i ) The contribution along the loopγ (1) (say) separates into

1

2iπ

∫

γ (1)
f (z)

dz

zn+1
= I ′ + I ′′

I ′ := 1

2iπ

∫

γ (1)
σ1(z/ζ1)

dz

zn+1
, I ′′ := 1

2iπ

∫

γ (1)
( f (z)− σ1(z/ζ1))

dz

zn+1
.

The quantityI ′ is estimated by extending the open loop to infinity by the
same method as in the proof of Theorems VI.1 and VI.2: it is found to equal
ζ−n

1 σ1,n plus an exponentially small term. The quantityI ′′, corresponding
to the error term, is estimated by the same bounding technique as in the
proof of Theorem VI.3 and is found to beO(ρ−nτ ⋆n).

Collecting the various contributions completes the proof of the statement. �

Theorem VI.5 expresses that, in the case of multiple singularities, each domi-
nant singularity can be analysed separately; the singular expansions are then each
transferred to coefficients, and the corresponding asymptotic contributions are finally
collected. Two examples illustrating the process follow.

ExampleVI.6. An artificial example.Let us demonstrate themodus operandion the simple
function

(33) g(z) = ez
√

1− z2
.
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There are two singularities atz= +1 andz= −1, with

g(z) ∼ e√
2
√

1− z
z→+1 and g(z) ∼ e−1

√
2
√

1+ z
z→−1.

The function is clearly star-continuable with the singular expansions being valid in an indented
disc. We have

[zn]
e√

2
√

1− z
∼ e√

2πn
and [zn]

e−1
√

2
√

1+ z
∼ e−1(−1)n√

2πn
.

To obtain the coefficient [zn]g(z), it suffices to add up these two contributions (by Theo-
rem VI.5), so that

[zn]g(z) ∼ 1√
2πn

[e+ (−1)ne−1].

If expansions at+1 (respectively−1) are written with an error term, which is of the form
O((z− 1)1/2) (respectively,O((z+ 1)1/2), there results an estimate of the coefficientsgn =
[zn]g(z), which can be put under the form

g2n =
cosh(1)√
πn
+ O

(
n−3/2

)
, g2n+1 =

sinh(1)√
πn
+ O

(
n−3/2

)
.

This makes explicit the dependency of the asymptotic form ofgn on the parity of the indexn.
Clearly a full asymptotic expansion can be obtained. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .�

ExampleVI.7. Permutations with cycles of odd length.Consider the specification and EGF

F = SET(CYCodd(Z)) H⇒ F(z) = exp

(
1

2
log

1+ z

1− z

)
=
√

1+ z

1− z
.

The singularities off are atz= +1 andz= −1, the function being obviously star-continuable.
By singularity analysis (Theorem VI.5), we have automatically:

F(z) =





21/2
√

1− z
+ O

(
(1− z)1/2

)
(z→ 1)

O
(
(1+ z)1/2

)
(z→−1)

−→ [zn]F(z) = 21/2
√
πn
+ O

(
n−3/2

)
.

For the next asymptotic order, the singular expansions

F(z) =





21/2
√

1− z
− 2−3/2√1− z+ O((1− z)3/2) (z→ 1)

2−1/2√1+ z+ O((1+ z)3/2) (z→−1)

yield

[zn]F(z) = 21/2
√
πn
− (−1)n2−3/2

√
πn3

+ O(n−5/2).

This example illustrates the occurrence of singularities that have different weights, in the sense
of being associated with different exponents. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

The discussion of multiple dominant singularities ties well with the earlier dis-
cussion of Subsection IV. 6.1, p. 263. In the periodic case where the dominant singu-
larities are at roots of unity, different regimes manifest themselves cyclically depend-
ing on congruence properties of the indexn, like in the two examples above. When
the dominant singularities have arguments that are not commensurate toπ (a com-
paratively rare situation), irregular fluctuations appear, in which case the situation is
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similar to what was already discussed, regarding rational and meromorphic functions,
in Subsection IV. 6.1.

VI. 6. Intermezzo: functions amenable to singularity analysis

Let us say that a function isamenable to singularity analysis, or SA for short,
if its satisfies the conditions of singularity analysis, as expressed by Theorem VI.4
(single dominant singularity) or Theorem VI.5 (multiple dominant singularities). The
property of being of SA is preserved by several basic operations of analysis: we have
already seen this feature in passing, when determining singular expansions of func-
tions obtained by sums, products, or compositions in Examples VI.2–VI.5.

As a starting example, it is easily recognized that the assumptions of1–analyticity
for two functions f (z), g(z) accompanied by the singular expansions

f (z) ∼
z→1

c(1− z)−α, g(z) ∼
z→1

d(1− z)−δ,

and the conditionα, δ 6∈ Z≤0 imply for the coefficients of the sum

[zn] ( f (z)+ g(z)) ∼





c
nα−1

Ŵ(α)
α > δ

(c+ d)
nα−1

Ŵ(α)
α = δ, c+ d 6= 0

d
nδ−1

Ŵ(δ)
α < δ.

Similarly, for products, we have

[zn] ( f (z)g(z)) ∼ cd
nα+δ−1

Ŵ(α + δ) ,

providedα + δ 6∈ Z≤0.
The simple considerations above illustrate the robustnessof singularity analysis.

They also indicate that properties are easy to state in the generic case where no nega-
tive integral exponents are present. However, if all cases are to be covered, there can
easily be an explosion of the number of particular situations, which may render some-
what clumsy the enunciation of complete statements. Accordingly, in what follows,
we shall largely confine ourselves to generic cases, as long as these suffice to develop
the important mathematical technique at stake for each particular problem.

In the remainder of this chapter, we proceed to enlarge the class of functions
recognized to be of SA, keeping in mind the needs of analytic combinatorics. The
following types of functions are treated in later sections.

(i ) Inverse functions(Section VI. 7). The inverse of an analytic function is, un-
der mild conditions, of SA type. In the case of functions attached to simple
varieties of trees (corresponding to the inversion ofy/φ(y)), the singular
expansion invariably has an exponent of1

2 attached to it (a square-root sin-
gularity). This applies in particular to the Cayley tree function, in terms of
which many combinatorial structures and parameters can be analysed.
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(i i ) Polylogarithms(Section VI. 8). These functions are the generating functions
of simple arithmetic sequences such as(nθ ) for an arbitraryθ ∈ C. The
fact that polylogarithms are SA opens the possibility of estimating a large
number of sums, which involve both combinatorial terms (e.g., binomial co-
efficients) and elements like

√
n and logn. Such sums appear recurrently in

the analysis of cost functionals of combinatorial structures and algorithms.
(i i i ) Composition(Section VI. 9). The composition of SA functions often proves

to be itself SA This fact has implications for the analysis ofcomposition
schemas and makes possible a broad extension of the supercritical sequence
schema treated in Section V. 2, (p. 293).

(i v) Differentiation, integration, and Hadamard products(Section VI. 10). These
are three operations on analytic functions that preserve the property for a
function to be SA. Applications are given to tree recurrences and to multi-
dimensional walk problems.

A main theme of this book is that elementary combinatorial classes tend to have
generating functions whose singularity structure is strongly constrained—in most cases,
singularities are isolated. The singularity analysis process is then a prime technique
for extracting asymptotic information from such generating functions.

VI. 7. Inverse functions

Recursively defined structures lead to functional equations whose solutions may
often be analysed locally near singularities. An importantcase is the one of func-
tions defined by inversion. It includes the Cayley tree function as well as all generat-
ing functions associated to simple varieties of trees (Subsections I. 5.1 (p. 65), II. 5.1
(p. 126), and III. 6.2 (p. 193)). A common pattern in this context is the appearance
of singularities of the square-root type, which proves to beuniversal among a broad
class of problems involving trees and tree-like structures. Accordingly, by singular-
ity analysis, the square-root singularity induces subexponential factors of the asymp-
totic formn−3/2 in expansions of coefficients—we shall further develop this theme in
Chapter VII, pp. 452–493.

Inverse functions.Singularities of functions defined by inversion have been lo-
cated in Subsection IV. 7.1 (p. 275) and our treatment will proceed from there. The
goal is to estimate the coefficients of a function defined implicitly by an equation of
the form

(34) y(z) = zφ(y(z)) or equivalently z= y(z)

φ(y(z))
.

The problem of solving (34) is one of functional inversion: we have seen (Lem-
mas IV.2 and IV.3, pp. 275–277) thatan analytic function admits locally an analytic
inverse if and only if its first derivative is non-zero. We operate here under the follow-
ing assumptions:

Condition (H1). The functionφ(u) is analytic atu = 0 and satisfies

(35) φ(0) 6= 0, [un]φ(u) ≥ 0, φ(u) 6≡ φ0+ φ1u.
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(As a consequence, the inversion problem is well defined around 0. The
nonlinearity ofφ only excludes the caseφ(u) = φ0 + φ1u, corresponding
to y(z) = φ0z/(1− φ1z).)
Condition (H2). Within theopendisc of convergence ofφ at 0, |z| < R,
there exists a (then necessarily unique) positive solutionto thecharacteristic
equation:

(36) ∃τ, 0< τ < R, φ(τ )− τφ′(τ ) = 0.

(Existence is granted as soon as limxφ′(x)/φ(x) > 1 asx → R−,with R
the radius of convergence ofφ at 0; see Proposition IV.5, p. 278.)

Then (by Proposition IV.5, p. 278), the radius of convergence of y(z) is the corres-
ponding positive valueρ of z such thaty(ρ) = τ , that is to say,

(37) ρ = τ

φ(τ)
= 1

φ′(τ )
.

We start with a calculation indicating in a plain context theoccurrence of a square-root
singularity.

ExampleVI.8. A simple analysis of the Cayley tree function.The situation corresponding
to the functionφ(u) = eu, so thaty(z) = zey(z) (defining the Cayley tree functionT(z)), is
typical of general analytic inversion. From (36), the radius of convergence ofy(z) is ρ = e−1

corresponding toτ = 1. The image of a circle in they–plane, centred at the origin and having
radiusr < 1, by the functionye−y is a curve of thez–plane that properly contains the circle
|z| = re−r (see Figure VI.9) asφ(y) = ey, which has non-negative coefficients, satisfies

∣∣∣φ(rei θ )
∣∣∣ ≤ φ(r ) for all θ ∈ [−π,+π ],

the inequality being strict for allθ 6= 0. The following observation is the key to analytic
continuation: Since the first derivative of y/φ(y) vanishes at 1, the mapping y7→ y/φ(y)
is angle-doubling, so that the image of the circle of radius1 is a curveC that has a cusp at
ρ = e−1. (See Figure VI.9; Notes VI.18 and 19 provide interesting generalizations.)

This geometry indicates that the solution ofz = ye−y is uniquely defined forz insideC,
so thaty(z) is 1–analytic (see the proof of Theorem VI.6 below). A singular expansionfor
y(z) is then derived from reversion of the power series expansion ofz= ye−y. We have

(38) ye−y = e−1− 1

2e
(y− 1)2 + 1

3e
(y− 1)3− e−1

8
(y− 1)4+ · · · .

Observe both the absence of a linear term and the presence of a quadratic term (boxed). Then,
solvingz= ye−y for y gives

y− 1=
√

2(1− ez)1/2+ 2

3
(1− ez)+ O((1− ez)3/2),

where the square root arises precisely from inversion of the quadraticterm. (A full expansion
can furthermore be obtained.) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .�
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y :

1

0

0.5

-0.5

10.5-1 0

-1

-0.5

−→ z :

-1

1

0.5

0

-0.5

10-1-1.5 0.5-0.5

Figure VI.9 . The images of concentric circles by the mappingy 7→ z= ye−y. It is
seen thaty 7→ z= ye−y is injective on|y| ≤ 1 with an image extending beyond the
circle |z| = e−1 [in grey], so that the inverse functiony(z) is analytically continuable
in a1–domain aroundz = e−1. Since the direct mappingye−y is quadratic at 1
(with valuee−1, see (38)), the inverse function has a square-root singularity ate−1

(with value 1).

Analysis of inverse functions.The calculation of Example VI.8 now needs to
be extended to the general case,y = zφ(y). This involves three steps:(i ) all the
dominant singularities are to be located;(i i ) analyticity of y(z) in a1–domain must
be established;(i i i ) the singular expansion, obtained formally so far and involving a
square-root singularity, needs to be determined. Step(i ) requires a special discussion
and is related to periodicities.

A basic example likeφ(u) = 1+ u2 (binary trees), for which

y(z) = 1−
√

1− 4z2

2z
,

shows thaty(z) may have several dominant singularities—here, two conjugate singu-
larities at−1

2 and+1
2. The conditions for this to happen are related to our discussion

of periodicities in Definition IV.5, p. 266. As a consequenceof this definition,φ(u),
which satisfiesφ(0) 6= 0, is p–periodicif φ(u) = g(up) for some power seriesg (see
p. 266) andp ≥ 2; it is aperiodic otherwise. An elementary argument developed in
Note VI.17, p. 407, shows that the aperiodicity assumption entails no loss of analytic
generality (periodicity does not occur fory(z) unlessφ(u) is itself periodic, a case
which, in addition, turns out to be reducible to the aperiodic situation).

Theorem VI.6 (Singular Inversion). Letφ be a nonlinear function satisfying the con-
ditions (H1) and (H2) of Equations(35) and (36), and let y(z) be the solution of
y = zφ(y) satisfying y(0) = 0. Then, the quantityρ = τ/φ(τ) is the radius of con-
vergence of y(z) at 0 (withτ the root of the characteristic equation), and the singular
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expansion of y(z) nearρ is of the form

y(z) = τ − d1
√

1− z/ρ +
∑

j≥2

(−1) j d j (1− z/ρ) j/2, d1 :=
√

2φ(τ)

φ′′(τ )
,

with the dj being some computable constants.
Assume that, in addition,φ is aperiodic7. Then, one has

[zn]y(z) ∼
√

φ(τ)

2φ′′(τ )
ρ−n

√
πn3

(
1+

∞∑

k=1

ek

nk

)
,

for a family ek of computable constants.

Proof. Proposition IV.5, p. 278, shows thatρ is indeed the radius of convergence
of y(z). The Singular Inversion Lemma (Lemma IV.3, p. 277) also shows thaty(z)
can be continued to a neighbourhood ofρ slit along the rayR≥ρ .

The singular expansion atρ is determined as in Example VI.8. Indeed, the rela-
tion betweenz andy, in the vicinity of(z, y) = (ρ, τ ), may be put under the form

(39) ρ − z= H(y), where H(y) :=
(

τ

φ(τ)
− y

φ(y)

)
,

the functionH(y) in the right-hand side being such thatH(τ ) = H ′(τ ) = 0. Thus,
the dependency betweeny andz is locally a quadratic one:

ρ − z= 1

2!
H ′′(τ )(y− τ)2+ 1

3!
H ′′′(τ )(y− τ)3+ · · · .

When this relation is locally inverted: a square-root appears:

−√ρ − z=
√

H ′′(τ )
2

(y− τ)
[
1+ c1(y− τ)+ c2(y− τ)2+ ...

]
.

The determination with a−√ should be chosen there asy(z) increases toτ− asz→
ρ−. This implies, by solving with respect toy− τ , the relation

y− τ ∼ −d⋆1(ρ − z)1/2+ d⋆2(ρ − z)− d⋆3(ρ − z)3/2+ · · · ,

whered⋆1 =
√

2/H ′′(τ ) with H ′′(τ ) = τφ′′(τ )/φ(τ)2. The singular expansion atρ
results.

It now remains to exclude the possibility fory(z) to have singularities other than
ρ on the circle|z| = ρ, in the aperiodic case. Observe thaty(ρ) is well defined (in
fact y(ρ) = τ ), so that the series representingy(z) converges atρ as well as on the
whole circle (given positivity of the coefficients). Ifφ(z) is aperiodic, then so isy(z).
Consider any pointζ such that|ζ | = ρ andζ 6= ρ and setη = y(ζ ). We then have
|η| < τ (by the Daffodil Lemma: Lemma IV.1, p. 266). The functiony(z) is analytic

7If φ has maximal periodp, then one must restrictn to n ≡ 1 mod p; in that case, there is an extra
factor of p in the estimate ofyn: see Note VI.17 and Equation (40).



406 VI. SINGULARITY ANALYSIS OF GENERATING FUNCTIONS

Type φ(u) singular expansion of y(z) coefficient[zn]y(z)

binary (1+ u)2 1− 4
√

1
4 − z+ · · · 4n

√
πn3
+ O(n−5/2)

unary–binary 1+ u+ u2 1− 3
√

1
3 − z+ · · · 3n+1/2

2
√
πn3
+ O(n−5/2)

general (1− u)−1 1
2 −

√
1
4 − z

4n−1
√
πn3
+ O(n−5/2)

Cayley eu 1−
√

2e
√

e−1− z+ · · · en
√

2πn3
+ O(n−5/2)

Figure VI.10. Singularity analysis of some simple varieties of trees.

atζ by virtue of the Analytic Inversion Lemma (Lemma IV.2, p. 275) and the property
that

d

dy

y

φ(y)

∣∣∣∣
y=η
6= 0.

(This last property is derived from the fact that the numerator of the quantity on the
left,

φ(η)− ηφ′(η) = φ0− φ2η
2− 2φ3η

3− 3φ4η
4− · · · ,

cannot vanish, by the triangle inequality since|η| < τ .) Thus, under the aperiodicity
assumption,y(z) is analytic on the circle|z| = ρ punctured atρ. The expansion of
the coefficients then results from basic singularity analysis. �

Figure VI.10 provides a table of the most basic varieties of simple trees and the
corresponding asymptotic estimates. With Theorem VI.6, wenow have available a
powerful method that permits us to analyse not only implicitly defined functions but
also expressions built upon them. This fact will be put to good use in Chapter VII,
when analysing a number of parameters associated to simple varieties of trees.
� VI.14. All kinds of graphs. In relation with the classes of graphs listed in Figure II.14,
p. 134, one has the following correspondence between an EGFf (z) and the asymptotic form
of n![zn] f (z):

function: eT−T2/2 log
1

1− T

1√
1− T

1

(1− T)m

coefficient: e1/2nn−2 1

2

√
2πnn−1/2 C1nn−1/4 C2nn+(m−1)/2

(m ∈ Z≥1; C1,C2 represent computable constants). In this way, the estimates of Subsec-
tion II. 5.3, p. 132, are justifiable by singularity analysis. �

� VI.15. Computability of singular expansions.Define

h(w) :=
√
τ/φ(τ)− w/φ(w)

(τ − w)2 ,
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so thaty(z) satisfies
√
ρ − z= (τ−y)h(y). The singular expansion ofy can then be deduced by

Lagrange inversion from the expansion of the negative powers ofh(w) atw = τ . This technique
yields for instance explicit forms for coefficients in the singular expansion of y = zey. �

� VI.16. Stirling’s formula via singularity analysis.The solution toT = zeT analytic at 0 is
the Cayley tree function. It satisfies [zn] = nn−1/n! (by Lagrange inversion) and, at the same
time, its singularity is known from Theorem VI.6 and Example VI.8. As a consequence:

nn−1

n!
∼ en
√

2πn3

(
1− 1

12n
+ 1

288n2
+ 139

51840n3
− · · ·

)
.

Thus Stirling’s formulaalsoresults from singularity analysis. �

� VI.17. Periodicities.Assume thatφ(u) = ψ(up)with ψ analytic at 0 andp ≥ 2. Let y =
y(z) be the root ofy = zφ(y). SetZ = zp and letY(Z) be the root ofY = Zψ(Y)p. One has
by constructiony(z) = Y(zp)1/p, given thatyp = zpφ(y)p. SinceY(Z) = Y1Z+Y2Z2+· · · ,
we verify that the non-zero coefficients ofy(z) are among those of index 1, 1+ p, 1+ 2p, . . . .

If p is chosen maximal, thenψ(u)p is aperiodic. Then Theorem VI.6 applies toY(Z):
the functionY(Z) is analytically continuable beyond its dominant singularity atZ = ρ p; it
has a square root singularity atρ p and no other singularity on|Z| = ρ p. Furthermore, since
Y = Zψ(Y)p, the functionY(Z) cannot vanish on|Z| ≤ ρ p, Z 6= 0. Thus,Y(Z)1/p is
analytic in|Z| ≤ ρ p, except atρ p where it has a√ branch point. All computations done, we
find that

(40) [zn]y(z) ∼ p · d1ρ
−n

2
√
πn3

when n ≡ 1 (mod p).

The argument also shows thaty(z) hasp conjugate roots on its circle of convergence. (This is
a kind of Perron–Frobenius property for periodic tree functions.) �

� VI.18. Boundary cases I.The case whenτ lies on the boundary of the disc of convergence
of φ may lead to asymptotic estimates differing from the usualρ−nn−3/2 prototype. Without
loss of generality, takeφ aperiodic to have radius of convergence equal to 1 and assume thatφ
is of the form

(41) φ(u) = u+ c(1− u)α + o((1− u)α), with 1< α ≤ 2,

asu tends to 1 within|u| < 1. (Thus, continuation ofφ(u) beyond|u| < 1 is not assumed.)
The solution of the characteristic equationφ(τ)− τφ′(τ ) = 0 is thenτ = 1. The functiony(z)
defined byy = zφ(y) is1–analytic (by a mapping argument similar to the one exemplified by
Figure VI.9 and related to the fact thatφ “multiplies” angles near 1). The singular expansion of
y(z) and the coefficients then satisfy

(42) y(z) = 1− c−1/α(1− z)1/α + o
(
(1− z)1/α

)
−→ yn ∼ c−1/α n−1/α−1

−Ŵ(−1/α)
.

[The caseα = 2 was first observed by Janson [350]. Trees withα ∈ (1,2) have been investi-
gated in connection with stable Lévy processes [180]. The singular exponentα = 3/2 occurs
for instance in planar maps (Subsection VII. 8.2, p. 513), so that GFswith coefficients of the
form ρ−nn−5/3 would arise, if considering trees whose nodes are themselves maps.]�

� VI.19. Boundary cases II.Let φ(u) be the probability generating function of a random vari-
ableX with mean equal to 1 and such thatφn ∼ λn−α−1, with 1< α < 2. Then, by a complex
version of an Abelian theorem (see, e.g., [69, §1.7] and [232]), the singular expansion (41) holds
whenu→ 1, |u| < 1, within a cone, so that the conclusions of (42) hold in that case. Similarly,
if φ′′(1) exists, meaning thatX has a second moment, then the estimate (42) holds withα = 2,
and then coincides with what Theorem VI.6 predicts [350]. (In probabilistic terms, the condi-
tion of Theorem VI.6 is equivalent to postulating the existence of exponential moments for the
one-generation offspring distribution.) �
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VI. 8. Polylogarithms

Generating functions involving sequences such as(
√

n) or (logn) can be sub-
jected to singularity analysis. The starting point is the definition of the generalized
polylogarithm, commonly denoted8 by Liα,r , whereα is an arbitrary complex number
andr a non-negative integer:

Liα,r (z) :=
∑

n≥1

(logn)r
zn

nα
,

The series converges for|z| < 1, so that the function Liα,r is a priori analytic in
the unit disc. The quantity Li1,0(z) is the usual logarithm, log(1− z)−1, hence the
established name, polylogarithm, assigned to these functions [406]. In what follows,
we make use of the abbreviation Liα,0(z) ≡ Liα(z), so that Li1(z) ≡ Li1,0(z) ≡
log(1−z)−1 is the GF of the sequence(1/n). Similarly, Li0,1 is the GF of the sequence
(logn) and Li−1/2(z) is the GF of the sequence(

√
n).

Polylogarithms are continuable to the whole of the complex plane slit along the
rayR≥1, a fact established early in the twentieth century by Ford [268], which results
from the integral representation (48), p. 409. They are amenable to singularity analy-
sis [223] and their singular expansions involve the Riemannzeta function defined by

ζ(s) =
∞∑

n=1

1

ns
,

for ℜ(s) > 1, and by analytic continuation elsewhere [578].

Theorem VI.7 (Singularities of polylogarithms). For all α ∈ Z and r ∈ Z≥0, the
functionLiα,r (z) is analytic in the slit planeC \ R≥1. For α 6∈ {1,2, . . .}, there exists
an infinite singular expansion (with logarithmic terms whenr > 0) given by the two
rules:

(43)





Liα(z) ∼ Ŵ(1− α)wα−1+
∑

j≥0

(−1) j

j !
ζ(α − j )w j , w :=

∞∑

ℓ=1

(1− z)ℓ

ℓ

Liα,r (z) = (−1)r
∂r

∂αr
Liα(z) (r ≥ 0).

The expansion of Liα is conveniently described by the composition of two expansions
(Figure VI.11, p. 410): the expansion ofw = logz at z = 1, namely,w = (1− z) +
1
2(1− z)2 + · · · , is to be substituted inside the formal power series involving powers
ofw. The exponents of(1−z) involved in the resulting expansion are{α−1, α, . . .}∪
{0,1, . . .}. Forα < 1, the main asymptotic term of Liα,r is, asz→ 1,

Liα,r (z) ∼ Ŵ(1− α)(1− z)α−1 L(z)r , L(z) := log
1

1− z
,

8The notation Liα(z) is nowadays well established. It is evocative of the fact that polylogarithms of
integer orderm ≥ 2 are expressible by a logarithmic integral:

Lim,0(x) =
(−1)m−1

(m− 1)!

∫ 1

0
log(1− xt) logm−2 t

dt

t

(not to be confused with the unrelated “logarithmic integralfunction” li(z) :=
∫ z
0

dt
log t ; see [3, p. 228]).
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while, for α > 1, we have Liα,r (z) ∼ (1−)r ζ (r )(α), since the sum defining Liα,r
converges at 1.

Proof. The analysis crucially relies on the Mellin transform (seeAppendix B.7:
Mellin transforms, p. 762). We start with the caser = 0 and consider several ways
in which z may approach the singularity 1. Step(i ) below describes the main ingre-
dient needed inobtainingthe expansion, the subsequent steps being only required for
justifying it in larger regions of the complex plane.

(i ) When z→ 1− along the real line. Setw = − logz and introduce

(44) 3(w) := Liα(e
−w) =

∑

n≥1

e−nw

nα
.

This is aharmonic sumin the sense of Mellin transform theory, so that the Mellin
transform of3 satisfies (ℜ(s) > max(0,1− α))

(45) 3⋆(s) ≡
∫ ∞

0
3(w)ws−1 dw = ζ(s+ α)Ŵ(s).

The function3(w) can be recovered from the inverse Mellin integral,

(46) 3(w) = 1

2iπ

∫ c+i∞

c−i∞
ζ(s+ α)Ŵ(s)w−s ds,

with c taken in the half-plane in which3⋆(s) is defined. There are poles ats =
0,−1,−2, . . . due to the Gamma factor and a pole ats = 1 − α due to the zeta
function. Taked to be of the form−m− 1

2 and smaller than 1− α. Then, a standard
residue calculation, taking into account poles to the left of c and based on

(47)

3(w) =
∑

s0∈{0,−1,...,−m}∪{1−α}
Res

(
ζ(s+ α)Ŵ(s)w−s)

s=s0

+ 1

2iπ

∫ d+i∞

d−i∞
ζ(s+ α)Ŵ(s)w−s ds,

then yields a finite form of the estimate (43) of Liα (asw → 0, corresponding to
z→ 1−).

(i i )When z→ 1− in a cone of angle less thanπ inside the unit disc. In that case,
we observe that the identity in (46) remains valid by analytic continuation, since the
integral there is still convergent (this property owes to the fast decay ofŴ(s) towards
±i∞). Then the residue calculation (47), on which the expansionof3(w) is based in
the real casew > 0, still makes sense. The extension of the asymptotic expansion of
Liα within the unit disc is thus granted.

(i i i ) When z tends to 1 vertically. Details of the proof are given in [223]. What
is needed is a justification of the validity of expansion (43), whenz is allowed to tend
to 1 from the exterior of the unit disc. The key to the analysisis a Lindel̈of integral
representation of the polylogarithm (Notes IV.8 and IV.9, p. 237), which provides
analytic continuation; namely,

(48) Liα(−z) = − 1

2iπ

∫ 1/2+i∞

1/2−i∞

zs

sα
π

sinπs
ds.
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Li−1/2(z) =
∑

n≥1

√
nzn =

√
π

2(1− z)3/2
− 3

√
π

8(1− z)1/2
+ ζ(−1

2
)+ O

(
(1− z)1/2

)

Li0(z) =
∑

n≥1

zn ≡ 1

1− z
− 1

Li0,1(z) =
∑

n≥1

logn zn = L(z)− γ
1− z

− 1

2
L(z)+ γ − 1

2
+ log

√
2π + O ((1− z) L(z))

Li1/2(z) =
∑

n≥1

zn
√

n
=
√

π

1− z
+ ζ(1

2
)− 1

4

√
π
√

1− z+ O
(
(1− z)3/2

)

Li1/2,1(z) =
∑

n≥1

logn√
n

zn = √π L(z)− γ − 2 log 2√
1− z

− ζ(1
2
)
(γ

2
+ π

4
+ log

√
8π
)
+ · · ·

Li1(z) =
∑

n≥1

zn

n
≡ L(z)

Li2(z) =
∑

n≥1

zn

n2
= π2

6
− (L(z)+ 1)(1− z)− (1

4
+ 1

2
L(z))(1− z)2+ · · ·

Figure VI.11. Sample expansions of polylogarithms (L(z) := log(1− z)−1).

The proof then proceeds with the analysis of the polylogarithm whenz= ei (w−π) and
s = 1/2+ i t , the integral (48) being estimated asymptotically as aharmonic integral
(a continuous analogue of harmonic sums [614]) by means of Mellin transforms. The
extension to a cone with vertex at 1, having a vertical symmetry and angle less thanπ ,
then follows by an analytic continuation argument. By unicity of asymptotic expan-
sions (the horizontal cone of parts(i ) and(i i ) and the vertical cone have a non-empty
intersection), the resulting expansion must coincide withthe one calculated explicitly
in part(i ), above.

To conclude, regarding the general caser ≥ 0, we may proceed along similar
lines, with each logn factor introducing a derivative of the Riemann zeta function,
hence a multiple pole ats = 1. It can then be checked that the resulting expansion
coincides with what is given by formally differentiating the expansion of Liα a number
of times equal tor . (See also Note VI.20 below.) �

Figure VI.11 provides a table of expansions relative to commonly encountered
polylogarithms (the function Li2 is also known as adilogarithm). Example VI.9 illus-
trates the use of polylogarithms for establishing a class ofasymptotic expansions of
which Stirling’s formula appears as a special case. Furtheruses of Theorem VI.7 will
appear in the following sections.

ExampleVI.9. Stirling’s formula, polylogarithms, and superfactorials.One has
∑

n≥1

logn! zn = (1− z)−1 Li0,1(z),
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to which singularity analysis is applicable. Theorem VI.7 then yields the singular expansion

1

1− z
Li0,1(z) ∼

L(z)− γ
(1− z)2

+ 1

2

−L(z)+ γ − 1+ log 2π

1− z
+ · · · ,

from which Stirling’s formula reads off:

logn! ∼ n logn− n+ 1

2
logn+ log

√
2π + · · · .

(Stirling’s constant log
√

2π comes out as neatly−ζ ′(0).) Similarly, define thesuperfactorial
function to be 1122 · · ·nn. One has

∑

n≥1

log(1222 · · ·nn)zn = 1

1− z
Li−1,1(z),

to which singularity analysis is mechanically applicable. The analogue of Stirling’s formula
then reads:

1122 · · ·nn ∼ An
1
2n2+ 1

2n+ 1
12e−

1
4n2
,

A = exp

(
1

12
− ζ ′(−1)

)
= exp

(
− ζ
′(2)

2π2
+ log(2π)+ γ

12

)
.

The constantA is known as the Glaisher–Kinkelin constant [211, p. 135]. Higher orderfactori-
als can be treated similarly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� VI.20. Polylogarithms of integral index and a general formula.Let α = m ∈ Z≥1. Then:

Lim(z) =
(−1)m

(m− 1)!
wm−1(logw − Hm−1)+

∑

j≥0, j 6=m−1

(−1) j

j !
ζ(m− j )w j ,

where Hm is the harmonic number andw = − logz. [The line of proof is the same as in
Theorem VI.7, only the residue calculation ats= 1 differs.] The general formula,

Liα,r (z) ∼
z→1

(−1)r
∂r

∂αr

∑

s∈Z≥0∪{1−α}
Res

[
ζ(s+ α)Ŵ(s)w−s], w := − logz,

holds for allα ∈ C andr ∈ Z≥0 and is amenable to symbolic manipulation. �

VI. 9. Functional composition

Let f andg be functions analytic at the origin that have non-negative coefficients.
We consider the composition

h = f ◦ g, h(z) = f (g(z)),

assumingg(0) = 0. Let ρ f , ρg, ρh be the corresponding radii of convergence, and
let τ f = f (ρ f ), and so on. We shall assume thatf and g are1–continuable and
that they admit singular expansions in the scale of powers. There are three cases to be
distinguished depending on the value ofτg in comparison withρ f .

— Supercritical case, whenτg > ρ f . In that case, whenz increases from 0,
there is a valuer strictly less thanρg such thatg(r ) attains the valueρ f ,
which triggers a singularity off ◦ g. In other wordsr ≡ ρh = g(−1)(ρ f ).
Around this point,g is analytic and a singular expansion off ◦g is obtained
by combining the singular expansion off with the regular expansion ofg
at r . The singularity type is that of the external function( f ).
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— Subcritical case, whenτg < ρ f . In this dual situation, the singularity of
f ◦g is driven by that of the inside functiong. We haveρh = ρg, τh = f (ρg)

and the singular expansion off ◦ g is obtained by combining the regular
expansion off with the singular expansion ofg atρg. The singularity type
is that of the internal function(g).

— Critical case, whenτg = ρ f . In this boundary case, there is a confluence
of singularities. We haveρh = ρg, τh = τ f , and the singular expansion
is obtained by applying the composition rules of the singular expansions in-
volved.The singularity type is a mix of the types of the internal and external
functions( f, g).

This classification extends the notion of a supercritical sequence schema in Section V. 2,
p. 293, for which the external function reduces tof (z) = (1− z)−1, with ρ f = 1. In
this chapter, we limit ourselves to discussing examples directly, based on the guide-
lines above supplemented by the plain algebra of generalized power series expansions.
Finer probabilistic properties of composition schemas arestudied at several places in
Chapter IX starting on p. 629.

ExampleVI.10. “Supertrees”.Let G be the class of general Catalan trees:

G = Z × SEQ(G) H⇒ G(z) = 1

2
(1−
√

1− 4z).

The radius of convergence ofG(z) is 1/4 and the singular value isG(1/4) = 1/2. The classZG

consists of planted trees, which are such that to the root is attached a stem and an extra node,
with OGF equal tozG(z). We then introduce two classes ofsupertreesdefined by substitution:

H = G[ZG] H⇒ H(z) = G(zG(z))
K = G[(Z +Z)G] H⇒ K (z) = G(2zG(z)).

These are “trees of trees”: the classH is formed of trees such that, on each node there is grafted
a planted tree (by the combinatorial substitution of Section I. 6, p. 83); the classK similarly
corresponds to the case when the stems can be of any two colours. Incidentally, combinatorial
sum expressions are available for the coefficients,

Hn =
⌊n/2⌋∑

k=1

1

n− k

(
2k− 2

k− 1

)(
2n− 3k− 1

n− k− 1

)
, Kn =

⌊n/2⌋∑

k=1

2k

n− k

(
2k− 2

k− 1

)(
2n− 3k− 1

n− k− 1

)
,

the initial values being given by

H(z) = z2+ z3+ 3z4+ 7z5+ 21z6+ · · · , K (z) = 2z2+ 2z3+ 8z4+ 18z5+ 64z6+ · · · .
SinceρG = 1/4 andτG = 1/2, the composition scheme is subcritical in the case ofH

and critical in the case ofK. In the first case, the singularity is of square-root type and one finds
easily:

H(z) ∼
z→ 1

4

2−
√

2

4
− 1√

8

√
1

4
− z, −→ Hn ∼

4n

8
√

2πn3/2
.

In the second case, the two square-roots combine to produce a fourth root:

K (z) ∼
z→ 1

4

1

2
− 1√

2

(
1

4
− z

)1/4
−→ Kn ∼

4n

8Ŵ(3
4)n

5/4
.
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Figure VI.12. A binary supertree is a “tree of trees”, with component trees all binary.
The number of binary supertrees with 2n nodes has the unusual asymptotic form
c4nn−5/4.

On a similar register, consider the classB of complete binary trees:

B = Z +Z × B × B H⇒ B(z) = 1−
√

1− 4z2

2z
,

and define the class ofbinary supertrees(Figure VI.12) by

S = B (Z × B) H⇒ S(z) =
1−

√
2
√

1− 4z2− 1+ 4z2

1−
√

1− 4z2
.

The composition is critical sincezB(z) = 1
2 at the dominant singularityz= 1

2 . It is enough to
consider the reduced function

S(z) = S(
√

z) = z+ z2+ 3z3+ 8z4+ 25z5+ 80z6+ 267z7+ 911z8+ · · · ,
whose coefficients constituteEISA101490and occur in Bousquet-Ḿelou’s study of integrated
superbrownian excursion [83]. We find

S(z) ∼ 1−
√

2(1−4z)1/4+(1−4z)1/2+· · · −→ Sn =
4n

n5/4

( √
2

4Ŵ(3
4)
− 1

2
√
πn1/4

+ · · ·
)
.

For instance, a seven-term expansion yields a relative accuracy betterthan 10−4 for n ≥ 100,
so that such approximations are quite usable in practice.

The occurrence of the exponent−5
4 in the enumeration of bicoloured and binary supertrees

is noteworthy. Related constructions have been considered by Kemp [364] who obtained more
generally exponents of the form−1−2−d by iterating the substitution construction (in connec-
tion with so-called “multidimensional trees”). It is significant that asymptoticterms of the form
np/q with q 6= 1,2 appear in elementary combinatorics, even in the context of simple algebraic
functions. Such exponents tend to be associated with non-standard limit laws, akin to the stable
distributions of probability theory: see our discussion in Section IX. 12, p.715. . . . . . . . . . . .�

� VI.21. Supersupertrees.Define supersupertrees by

S[2](z) = B(zB(zB(z))).

We find automatically (with the help of B. Salvy’s program)

[z2n+1]S[2](z) ∼ 2−13/4Ŵ

(
7

8

)−1
4nn−9/8,
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and further extensions involving an asymptotic termn−1−2−d
are possible [364]. �

� VI.22. Valuated trees. Consider the family of (rooted) general plane trees, whose vertices
are decorated by integers fromZ≥0 (called “values”) and such that the values of two adjacent
vertices differ by±1. Size is taken to be the number of edges. LetT j be the class of valuated
trees whose root has valuej andT = ∪T j . The OGFsTj (z) satisfy the system of equations

Tj = 1+ z(Tj−1+ Tj+1)Tj ,

so thatT(z) solvesT = 1+ 2zT2 and is a simple variant of the Catalan OGF:

T(z) = 1−
√

1− 8z

4z
.

Bouttier, Di Francesco, and Guitter [90, 91] found an amazing explicit form for theTj ; namely,

Tj = T
(1− Y j+1)(1− Y j+5)

(1− Y j+2)(1− Y j+4)
, with Y = z

(1+ Y)4

1+ Y2
.

In particular, eachTj is an algebraic function. The functionT0 counts maps (p. 513) that are
Eulerian triangulations, or dually bipartite trivalent maps. The coefficientsof theTj as well as
the distributions of labels in such trees can be analysed asymptotically: see Bousquet-Ḿelou’s
article [83] for a rich set of combinatorial connections. �

Schemas.Singularity analysis also enables us to discuss at a fair level of general-
ity the behaviour ofschemas, in a way that parallels the discussion of the supercritical
sequence schema, based on a meromorphic analysis (Section V. 2, p. 293). We illus-
trate this point here by means of thesupercritical cycle schema. Deeper examples
relative to recursively defined structures are developed inChapter VII.

ExampleVI.11. Supercritical cycle schema.The schemaH = CYC(G) forms labelled cycles
from basic components inG:

H = CYC(G) H⇒ H(z) = log
1

1− G(z)
.

Consider the case whereG attains the value 1 before becoming singular, that is,τG >

1. This corresponds to a supercritical composition schema, which can be discussed in a way
that closely parallels the supercritical sequence schema (Section V. 2, p. 293): a logarithmic
singularity replaces a polar singularity.

Let σ := ρH , which is determined byG(σ ) = 1. First, one finds:

H(z) ∼
z→σ log

1

1− z/σ
− log(σG′(σ ))+ A(z),

whereA(z) is analytic atz= σ . Thus:

[zn]H(z) ∼ σ−n

n
.

(The error term implicit in this estimate is exponentially small).
The BGFH(z,u) = log(1− uG(z))−1 has the variableu marking the number of com-

ponents inH–objects. In particular, the mean number of components in a randomH–object of
sizen is ∼ λn, whereλ = 1/(σG′(σ )), and the distribution is concentrated around its mean.
Similarly, the mean number of components with sizek in a randomHn object is found to be
asymptotic toλgkσ

k, wheregk = [zk]G(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�
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Weights

(49)
fk

1
k

1
4k

(2k
k
)

1 Hk k k2

f (z) log 1
1−z

1√
1−z

1
1−z

1
1−z log 1

1−z
z

(1−z)2
z+z2

(1−z)3
.

Triangular arrays

(50)
g(k)n

(n−1
k−1

) kn−k

(n−k)!

( k
n−k

) k
n
(2n−k−1

n−1
) k

n
( 2n
n−k

)
k nn−k−1

(n−k)!

g(z) z
1−z zez z(1+ z) 1−

√
1−4z
2

1−2z−
√

1−4z
2z T(z)

Figure VI.13. Typical weights (top) and triangular arrays (bottom) illustrating the

discussion of combinatorial sumsSn =
∑n

k=1 fkg(k)n .

Combinatorial sums.Singularity analysis permits us to discuss the asymptotic
behaviour of entire classes of combinatorial sums at a fair level of generality, with
asymptotic estimates coming out rather automatically. We examine here combinatorial
sums of the form

Sn =
n∑

k=0

fkg(k)n ,

where fk is a sequence of numbers, usually of a simple form and called theweights,
while theg(k)n are a triangular array of numbers, for instance Pascal’s triangle.

As weights fk we shall consider sequences such thatf (z) is 1–analytic with a
singular expansion involving functions of the standard scale of Theorems VI.1, VI.2,
VI.3. Typical examples9 for f (z) and ( fk) are displayed in Figure VI.13, Equa-
tion (49). The triangular arrays discussed here are taken tobe coefficients of the
powersof some fixed function, namely,

g(k)n = [zn](g(z))k where g(z) =
∞∑

n=1

gnzn,

with g(z) an analytic function at the origin having non-negative coefficients and sat-
isfying g(0) = 0. Examples are given in Figure VI.13, Equation (50). An interesting
class of such arrays arises from the Lagrange Inversion Theorem (p. 732). Indeed, if
g(z) is implicitly defined byg(z) = zG(g(z)), one hasgn,k = k

n [wn−k]G(w)n; the
last three cases of (50) are obtained in this way (by takingG(w) as 1/(1− w), (1+
w)2,ew).

By design, the generating function of theSn is simply

S(z) =
∞∑

n=0

Snzn = f (g(z)) with f (z) =
∞∑

k=0

fkzk.

Consequently, the asymptotic analysis ofSn results by inspection from the way singu-
larities of f (z) andg(z) get transformed by composition.

9Weights such as logk and
√

k, also satisfy these conditions, as seen in Section VI. 8.
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ExampleVI.12. Bernoulli sums.Let φ be a function fromZ≥0 to R and write fk := φ(k).
Consider the sums

Sn :=
n∑

k=0

φ(k)
1

2n

(
n

k

)
.

If Xn is a binomial random variable10, Xn ∈ Bin(n, 1
2), thenSn = E(φ(Xn)) is exactly the

expectation ofφ(Xn). Then, by the binomial theorem, the OGF of the sequence(Sn) is:

S(z) = 2

2− z
f

(
z

2− z

)
.

Considering weights whose generating function, as in (49), has radius of convergence 1, what
we have is a variant of the composition schema, with an additional prefactor. The composition
scheme is of thesupercritical typesince the functiong(z) = z/(2− z), which has radius of
convergence equal to 2, satisfiesτg = ∞. The singularities ofS(z) are then of the same type
as those of the weight generating functionf (z) and one verifies, in all cases of (49), that, to
first asymptotic order,Sn ∼ φ(n/2): this is in agreement with the fact that the binomial distri-
bution is concentrated near its meann/2. Singularity analysis furthermore provides complete
asymptotic expansions; for instance,

E

(
1

Xn

∣∣ Xn > 0

)
= 2

n
+ 2

n2
+ 6

n3
+ O(n−4)

E
(
HXn

)
= log

n

2
+ γ + 1

2n
− 1

12n2
+ O(n−3).

See [208, 223] for more along these lines. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleVI.13. Generalized Knuth–Ramanujan Q-functions.For reasons motivated by anal-
ysis of algorithms, Knuth has encountered repeatedly sums of the form

Qn({ fk}) = f0+ f1
n

n
+ f2

n(n− 1)

n2
+ f3

n(n− 1)(n− 2)

n3
+ · · · .

(See, e.g., [384, pp. 305–307].) There( fk) is a sequence of coefficients (usually of at most
polynomial growth). For instance, the casefk ≡ 1 yields the expected time until the first
collision in the birthday paradox problem (Section II. 3, p. 114).

A closer examination shows that the analysis of suchQn is reducible to singularity analy-
sis. Writing

Qn({ fk}) = f0+
n!

nn−1

∑

k≥1

fk
nn−k−1

(n− k)!

reveals the closeness with the last column of (50). Indeed, setting

F(z) =
∑

k≥1

fk
k

zk,

one has (n ≥ 1)

Qn = f0+
n!

nn−1
[zn]S(z) where S(z) = F(T(z)),

andT(z) is the Cayley tree function (T = zeT ).
For weights fk = φ(k) of polynomial growth, the schema iscritical. Then, the singular

expansion ofS is obtained by composing the singular expansion off with the expansion ofT ,

10A binomial random variable (p. 775) is a sum of Bernoulli variables: Xn =
∑n

j=1 Yj , where the

Yj are independent and distributed as a Bernoulli variableY, with P(Y = 1) = p, P(Y = 0) = q = 1− p.
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namely,T(z) ∼ 1−
√

2
√

1− ezasz→ e−1. For instance, ifφ(k) = kr for some integerr ≥ 1
thenF(z) has anr th order pole atz= 1. Then, the singularity type ofF(T(z)) is Z−r/2 where
Z = (1− ez), which is reflected bySn ≍ ennr/2−1 (we use ‘≍’ to represent order-of-growth
information, disregarding multiplicative constants). After the final normalization, we see that
Qn ≍ n(r+1)/2. Globally, for many weights of the formfk = φ(k), we expectQn to be of
the form

√
nφ(
√

n), in accordance with the fact that the expectation of the first collision in the
birthday problem is on average near

√
πn/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� VI.23. General Bernoulli sums.Let Xn ∈ Bin(n; p) be a binomial random variable with
general parametersp,q:

P(Xn = k) =
(

n

k

)
pkqn−k, q = 1− p.

Then with fk = φ(k), one has

E(φ(Xn)) = [zn]
1

1− qz
f

(
pz

1− qz

)
,

so that the analysis develops as in the case Bin(n; 1
2). �

� VI.24. Higher moments of the birthday problem.Take the model where there aren days
in the year and letB be the random variable representing the first birthday collision. Then
Pn(B > k) = k!n−k(n

k
)
, and

En(8(B)) = 8(1)+ Qn({18(k)}), where 18(k) := 8(k+ 1)−8(k).
For instanceEn(B) = 1+ Qn(〈1,1, . . .〉). We thus get moments of various functionals (here
stated to two asymptotic terms)

8(x) x x2+ x x3+ x2 x4+ x3

En(8(B))
√
πn
2 +

2
3 2n+ 2 3

√
πn3

2 − 2n 8n2− 7
√
πn3

2

via singularity analysis. �

� VI.25. How to weigh an urn? The “shake-and-paint” algorithm.You are given an urn
containing an unknown numberN of identical looking balls. How to estimate this number in
much fewer thanO(N) operations? A probabilistic solution due to Brassard and Bratley [92]
uses a brush and some paint. Shake the urn, pull out a ball, then mark it with paint and replace
it into the urn. Repeat until you find an already painted ball. LetX be the number of operations.
One hasE(X) ∼ √πN/2. Furthermore the quantityY := X2/2 constitutes, by the previous
note, an asymptotically unbiased estimator ofN, in the sense thatE(Y) ∼ N. In other words,
count the time till an already painted ball is first found, and return half of the square of this time.
One also has

√
V(Y) ∼ N. By performing the experimentm times (usingm different colours

of paint) and by taking the arithmetic average of them estimates, one obtains an unbiased
estimator whose typical relative accuracy is

√
1/m. For instance,m = 16 gives an accuracy

of 25%. (Similar principles are used in the design of data mining algorithms.) �

� VI.26. Catalan sums.These are defined by

Sn :=
∑

k≥0

fk

(
2n

n− k

)
, S(z) = 1√

1− 4z
f

(
1− 2z−

√
1− 4z

2z

)
.

The case whenρ f = 1 corresponds to a critical composition, which can be discussed much in
the same way as Ramanujan sums. �
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VI. 10. Closure properties

At this stage11, we have available composition rules for singular expansions under
operations such as±, ×, ÷: these are induced by corresponding rules for extended
formal power series, where generalized exponents and logarithmic factors are allowed.
Also, from Section VI. 7, inversion of analytic functions normally gives rise to square-
root singularities, and, from Section VI. 9, functions amenable to singularity analysis
are essentially closed under composition.

In this section we show that functions amenable to singularity analysis (SA func-
tions) satisfy explicit closure properties under differentiation, integration, and Hada-
mard product. (The contents are liberally borrowed from an article of Fill, Flajolet,
and Kapur [208], to which we refer for details.) In order to keep the developments
simple, we shall mostly restrict attention to functions that are1–analytic and admit a
simplesingular expansion of the form

(51) f (z) =
J∑

j=0

c j (1− z)α j + O((1− z)A),

or asimplesingular expansionwith logarithmic terms

(52) f (z) =
J∑

j=0

c j (L(z)) (1− z)α j + O((1− z)A), L(z) := log
1

1− z
,

where eachc j is a polynomial. These are the cases most frequently occurring in
applications (the proof techniques are easily extended to more general situations).

Subsection VI. 10.1 treats differentiation and integration; Subsection VI. 10.2 pre-
sents the closure of functions that admit simple expansionsunder Hadamard prod-
uct. Finally, Subsection VI. 10.3 concludes with an examination of several interesting
classes of tree recurrences, where all the closure properties previously established are
put to use in order to quantify precisely the asymptotic behaviour of recurrences that
are attached to tree models.

VI. 10.1. Differentiation and integration. Functions that are SA happen to be
closed under differentiation, this is in sharp contrast with real analysis. In the sim-
ple cases12 of (51) and (52), closure under integration is also granted.The general
principle (Theorems VI.8 and VI.9 below) is the following:Derivatives and primi-
tives of functions that are amenable to singularity analysis admit singular expansions
obtained term by term, via formal differentiation and integration.

The following statement is a version, tuned to our needs, of well-known differ-
entiability properties of complex asymptotic expansions (see, e.g., Olver’s book [465,
p. 9]).

11This section represents supplementary material not needed elsewhere in the book, so that it may be
omitted on first reading.

12It is possible but unwieldy to treat a larger class, which then needs to include arbitrarily nested
logarithms, since, for instance,

∫
dx/x = logx,

∫
dx/(x logx) = log logx, and so on.



VI. 10. CLOSURE PROPERTIES 419

1

φ′
φ

z

radius:
κ |1− z|

Figure VI.14. The geometry of the contourγ (z) used in the proof of the differenti-
ation theorem.

Theorem VI.8 (Singular differentiation). Let f(z) be1–analytic with a singular
expansion near its singularity of the simple form

f (z) =
J∑

j=0

c j (1− z)α j + O((1− z)A).

Then, for each integer r> 0, the derivativedr

dzr f (z) is1–analytic. The expansion of
the derivative at the singularity is obtained through term-by-term differentiation:

dr

dzr
f (z) = (−1)r

J∑

j=0

c j
Ŵ(α j + 1)

Ŵ(α j + 1− r )
(1− z)α j−r + O((1− z)A−r ).

Proof. All that is required is to establish the effect of differentiation on error terms,
which is expressed symbolically as

d

dz
O((1− z)A) = O((1− z)A−1).

By bootstrapping, only the case of a single differentiation(r = 1) needs to be consid-
ered.

Let g(z) be a function that is regular in a domain1(φ, η) where it is assumed to
satisfyg(z) = O((1− z)A) for z ∈ 1. Choose a subdomain1′ := 1(φ′, η′), where
φ < φ′ < π

2 and 0< η′ < η. By elementary geometry, for a sufficiently smallκ > 0,
the disc of radiusκ|z−1| centred at a valuez ∈ 1′ lies entirely in1; see Figure VI.14.
We fix such a small valueκ and letγ (z) represent the boundary of that disc oriented
positively.

The starting point is Cauchy’s integral formula

(53) g′(z) = 1

2π i

∫

C
g(w)

dw

(w − z)2
,

a direct consequence of the residue theorem. HereC should encirclez while lying
inside the domain of regularity ofg, and we opt for the choiceC ≡ γ (z). Then trivial
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bounds applied to (53) give

|g′(z)| = O
(
||γ (z)|| · (1− z)A|1− z|−2

)

= O
(
|1− z|A−1

)
.

The estimate involves the length of the contour,||γ (z)||, which is O(1− z) by con-
struction, as well as the bound ong itself, which isO((1− z)A) since all points of the
contour are themselves at a distance exactly of the order of|1− z| from 1. �

� VI.27. Differentiation and logarithms.Let g(z) satisfy

g(z) = O
(
(1− z)A L(z)k

)
, L(z) = log

1

1− z
,

for k ∈ Z≥0. Then, one has

dr

dzr
g(z) = O

(
(1− z)A−r L(z)k

)
.

(The proof is similar to that of Theorem VI.8.) �

It is well known that integration of asymptotic expansions is usually easier than
differentiation. Here is a statement custom-tailored to our needs.

Theorem VI.9 (Singular integration). Let f(z) be1–analytic and admit an expansion
near its singularity of the form

f (z) =
J∑

j=0

c j (1− z)α j + O((1− z)A).

Then
∫ z

0 f (t)dt is1–analytic. Assume further that none of the quantitiesα j and A
equal−1.

(i ) If A < −1, then the singular expansion of
∫

f is

(54)
∫ z

0
f (t)dt = −

J∑

j=0

c j

α j + 1
(1− z)α j+1+ O

(
(1− z)A+1

)
.

(i i ) If A > −1, then the singular expansion of
∫

f is

(55)
∫ z

0
f (t)dt = −

J∑

j=0

c j

α j + 1
(1− z)α j+1+ L0+ O

(
(1− z)A+1

)
,

where the “integration constant” L0 has the value

L0 :=
∑

α j<−1

c j

α j + 1
+
∫ 1

0

[
f (t)−

∑

α j<−1

c j (1− t)α j
]

dt.

Proof. The basic technique consists in integrating term by term the singular expansion
of f . We letr (z) be the remainder term in the expansion off , that is,

r (z) := f (z)−
J∑

j=0

c j (1− z)α j .
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0 1

1 + η

φ

z

γ1

γ2

Figure VI.15. The contour used in the proof of the integration theorem.

By assumption, throughout the1–domain one has, for some positive constantK ,

|r (z)| ≤ K |1− z|A.
(i ) Case A< −1. Straight-line integration between 0 andz, provides (54), as

soon as it has been established that
∫ z

0
r (t)dt = O

(
|1− z|A+1

)
.

By Cauchy’s integral formula, we can choose any path of integration that stays within
the region of analyticity ofr . We choose the contourγ := γ1 ∪ γ2, shown in Fig-
ure VI.15. Then, one has

∣∣∣∣
∫

γ

r (t)dt

∣∣∣∣ ≤
∣∣∣∣
∫

γ1

r (t)dt

∣∣∣∣+
∣∣∣∣
∫

γ2

r (t)dt

∣∣∣∣

≤ K
∫

γ1

|1− t |A |dt| + K
∫

γ2

|1− t |A| |dt|

= O(|1− z|A+1),

where the symbol|dt| designates the differential line-length element in the corres-
ponding curvilinear integral. Both integrals areO(|1−z|A+1): for the integral alongγ1,
this results from explicitly carrying out the integration;for the integral alongγ2, this
results from the trivial boundO(||γ2||(1− z)A).

(i i ) Case A> −1. We let f−(z) represent the “divergence part” off that gives
rise to non-integrability:

f−(z) :=
∑

α j<−1

c j (1− z)α j .
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Then with the decompositionf = [ f − f−] + f−, integrations can be performed
separately. First, one finds

∫ z

0
f−(t)dt = −

∑

α j<−1

c j

α j + 1
(1− z)α j+1+

∑

α j<−1

c j

α j + 1
.

Next, observe that the asymptotic condition guarantees theexistence of
∫ 1

0 applied to
[ f − f−], so that

∫ z

0

[
f (t)− f−(t)

]
dt =

∫ 1

0

[
f (t)− f−(t)

]
dt +

∫ z

1

[
f (t)− f−(t)

]
dt.

The first of these two integrals is a constant that contributes to L0. As to the second
integral, term-by-term integration yields

∫ z

1

[
f (t)− f−(t)

]
dt = −

∑

α j>−1

c j

α j + 1
(1− z)α j+1+

∫ z

1
r (t)dt.

The remainder integral is finite, given the growth conditionon the remainder term,
and, upon carrying out the integration along the rectilinear segment joining 1 toz,
trivial bounds show that it is indeedO(|1− z|A+1). �

� VI.28. Logarithmic cases.The case in which either someα j or A is−1 is easily treated by
the additional rules∫ z

0
(1− t)−1 dt = L(z),

∫ z

0
O((1− t)−1) dt = O(L(z)).

that are consistent with elementary integration, and similar rules are easily derived for powers
of logarithms. Furthermore, the correspondingO–transfers hold true. (The proofs are simple
modifications of the one given above for the basic case.) �

VI. 10.2. Hadamard Products. The Hadamard productof two functions f (z)
andg(z) analytic at the origin is defined as their term-by-term product,

(56) f (z)⊙ g(z) =
∑

n≥0

fngnzn, where f (z) =
∑

n≥0

fnzn, g(z) =
∑

n≥0

gnzn.

As we are going to see, following Fill, Flajolet, and Kapur [208], functions amenable
to singularity analysis are closed under Hadamard product.Establishing such a closure
property requires methods for composing functions from thebasic scale, namely(1−
z)a, as well as error terms of the formO((1− z)A). We address each problem in turn.

Theorem VI.10 (Hadamard Composition). When neither of a, b, a+ b is an integer,
the Hadamard product(1− z)a ⊙ (1− z)b has an infinite expansion, valid in a1–
domain, with exponent scale{0,1,2, . . .} ∪ {a+ b+ 1,a+ b+ 2, . . .}; namely,

(1− z)a ⊙ (1− z)b ∼
∑

k≥0

λ
(a,b)
k

(1− z)k

k!
+
∑

k≥0

µ
(a,b)
k

(1− z)a+b+1+k

k!
,

where the coefficientsλ andµ are given by

λ
(a,b)
k = Ŵ(1+ a+ b)

Ŵ(1+ a)Ŵ(1+ b)

(−a)k(−b)k

(−a− b)k
, µ

(a,b)
k = Ŵ(−a− b− 1)

Ŵ(−a)Ŵ(−b)

(1+ a)k(1+ b)k

(2+ a+ b)k
.
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Here xk is defined for k∈ Z≥0 by xk := x(x + 1) · · · (x + k− 1).

Proof. The expansion around the origin,

(57) (1− z)a = 1+ −a

1
z+ (−a)(−a+ 1)

2!
z2+ · · · ,

gives through term-by-term multiplication

(58) (1− z)a ⊙ (1− z)b = 2F1[−a,−b; 1; z].

Here2F1 represents the classicalhypergeometric functionof Gauss (p. 751) defined
by

(59) 2F1[α, β; γ ; z] = 1+ αβ
γ

z

1!
+ α(α + 1)β(β + 1)

γ (γ + 1)

z2

2!
+ · · · .

From their transformation theory (see for instance [604, ChXIV] and Appendix B.4:
Holonomic functions, p. 748, for proof techniques), hypergeometric functions can gen-
erally be expanded in the vicinity ofz= 1 by means of thez 7→ 1− z transformation.
Instantiation of this transformation withγ = 1 yields

(60) 2F1[α, β; 1; z] = Ŵ(1− α − β)
Ŵ(1− α)Ŵ(1− β) 2F1[α, β; α + β; 1− z]

+ Ŵ(α + β − 1)

Ŵ(α)Ŵ(β)
(1− z)−α−β+1

2F1[1− α,1− β; 2− α − β; 1− z].

The statement follows, upon appealing to the definition (59)of hypergeometric func-
tions. �

� VI.29. Special cases.The case where eithera or b is an integer poses no difficulty, since, for
m ∈ Z≥0, the function(1− z)m ⊙ g(z) is a polynomial, while(1− z)−m ⊙ g(z) is reducible
to a derivative ofg, to which the Singular Differentiation Theorem (p. 419) can be applied.

The casea+ b ∈ Z needs transformation formulae that extend (60): the principles (based
on a Lindel̈of integral representation, p. 237, and developed by Barnes) are described in [604,
§14.53], and the formulae appear explicitly in [3, pp. 559–560]. �

� VI.30. Simple expansions with logarithmic terms.The technique of differentiation with
respect to a parameter,

[
(1− z)a L(z)

]
⊙ (1− z)b = − ∂

∂a

[
(1− z)a ⊙ (1− z)b

]
,

makes it possible to derive explicit composition rules for expansions involving logarithmic
terms. �

The way Hadamard products preserve1–analyticity and compose error terms in
singular expansions is summarized by the next statement.

Theorem VI.11 (Hadamard closure). (i ) Assume that f(z) and g(z) are analytic in
a 1–domain,1(ψ0, η). Then, the Hadamard product( f ⊙ g)(z) is analytic in a
(possibly smaller)1–domain,1′.

(i i ) Assume further that

f (z) = O((1− z)a) and g(z) = O((1− z)b), z ∈ 1(ψ0, η).

Then the Hadamard product( f ⊙ g)(z) admits in1′ an expansion given by the fol-
lowing rules:
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— If a+ b+ 1< 0, then

( f ⊙ g)(z) = O((1− z)a+b+1).

— If k< a+ b+ 1< k+ 1, for some integer k∈ Z≥−1, then

( f ⊙ g)(z) =
k∑

j=0

(−1) j

j !
( f ⊙ g)( j ) (1)(1− z) j + O

(
(1− z)a+b+1

)
.

— If a+ b+ 1 is a non-negative integer, then (withL(z) = log(1− z)−1)

( f ⊙ g)(z) =
k∑

j=0

(−1) j

j !
( f ⊙ g)( j ) (1)(1− z) j + O

(
(1− z)a+b+1 L(z)

)
.

Proof. (Sketch) The starting point is an important formula due to Hadamard that
expresses Hadamard products as a contour integral:

(61) f (z)⊙ g(z) = 1

2iπ

∫

γ

f (w)g
( z

w

) dw

w
.

The contourγ in the w-plane should be chosen such that both factors,f (w) and
g(z/w) are analytic. In other words, given the domain1 in which both f andg are
analytic, one should haveγ ⊂ 1 ∩ (z1−1).

In the first case(a + b + 1 < 0), the precise geometry of a feasible contourγ

is described in [208], the principles being similar to thoseemployed in the construc-
tion of Hankel contours elsewhere in this chapter. The integral giving the value of the
Hadamard product is finally estimated trivially, based on the order of growth assump-
tions on f andg, asz→ 1. This approach extends to the casea+ b+ 1 = 0, where
a logarithmic factor comes in,

For the remaining cases, the easy identity

ϑc+d( f ⊙ g) =
(
ϑc f

)
⊙
(
ϑdg

)
, where ϑ ≡ z

d

dz
,

reduces the analysis to the situation wherea + b + 1 < 0. It suffices to differen-
tiate sufficiently many times and finally integrate back, as permitted by the Singular
Integration Theorem (p. 420). �

Globally, Theorems VI.10 and VI.11 establish the closure under Hadamard prod-
ucts of functions amenable to singularity analysis, which satisfy an expansion (51). In
practice, in order to derive the singular expansion of a function at a singularity, one
may conveniently appeal to theZigzag Algorithmdescribed in Figure VI.16, whose
validity is ensured by thea priori knowledge of theexistenceof an expansion guaran-
teed by Theorems VI.10 and VI.11. (The “zigzag” qualifier reflects the fact that the
algorithm proceeds back and forth, by making a repeated use of the correspondences
between coefficient asymptotics and singularity asymptotics.) A typical application
of this algorithm appears in (64) and (65) below, in the context of Pólya’s drunkard
problem.
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Let f (z) andg(z) be1–analytic and admit simple singular expansions of the form (51) or (52).
What is sought is the singular expansion of

h(z) := f (z)⊙ g(z).

Step 1. Determine the asymptotic expansionsfn = [zn] f (z) andgn = [zn]g(z) induced by
the singular expansions off andg in accordance with the singularity analysis process. Given
finite singular expansions off andg, the orderC of the error in the expansion ofh is knowna
priori by Theorem VI.11.

Step 2.Deduce from Step 1 an asymptotic expansion ofhn = [zn]h(z) by usual multiplication
from the expansions offn andgn.

Step 3.Reconstruct by singularity analysis a functionH(z) that is singular at 1 and is such that

[zn]H(z) ∼ [zn]h(z).

This can be done by using the expansions of basic functions, as provided by Theorems VI.1
and VI.2 in the reverse direction. By construction,H(z) is a sum of functions of the form
(1− z)α L(z)k, which are all singular at 1.

Step 4.Output the singular expansion off ⊙ g as

h(z) = H(z)+ P(z)+ O
(
(1− z)C

)
,

whereP is a polynomial of degreeδ, which is the largest integer< C. The polynomialP(z)
is needed, since polynomials (and more generally functions analytic at 1)do not leave a trace
in asymptotic expansions of coefficients. Sinceh(z) − H(z) is δ times differentiable at 1, one
must take

P(z) =
δ∑

j=0

(−1) j

j !
∂

j
z (h(z)− H(z))z=1 (1− z) j .

Figure VI.16. The Zigzag Algorithm for computing singular expansions of
Hadamard products.

ExampleVI.14. Pólya’s drunkard problem.(This example is taken from Fillet al. [208].) In
thed-dimensional latticeZd of points with integer coordinates, the drunkard performs a random
walk starting from the origin with steps in{−1,+1}d, each taken with equal likelihood. The
probability that the drunkard is back at the origin after 2n steps is

(62) q(d)n =
(

1

22n

(
2n

n

))d
,

since the walk is a productd independent one-dimensional walks. The probability that 2n is the

epoch of thefirst return to the origin is the quantityp(d)n , which is determined implicitly by

(63)


1−

∞∑

n=1

p(d)n zn



−1

=
∞∑

n=0

q(d)n zn,

as results from the decomposition of loops into primitive loops (see also NoteI.65, p. 90).
In terms of the associated ordinary generating functionsP and Q, this relation reads as(1−
P(z))−1 = Q(z), implying P(z) = 1− 1/Q(z).

The asymptotic analysis of theqn is straightforward; that of thepn is more involved and
is of interest in connection with recurrence and transience of the randomwalk; see, e.g., [170,
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403]. The Hadamard closure theorem provides a direct tool to solve thisproblem. Define

β(z) :=
∑

n≥0

1

22n

(
2n

n

)
zn ≡ 1√

1− z
.

Then, Equations (62) and (63) entail

P(z) = 1− 1

β(z)⊙d
, where β(z)⊙d := β(z)⊙ · · · ⊙ β(z) (d times).

The singularities ofP(z) are found as follows.

Case d= 1: No Hadamard product is involved and

P(z) = 1−
√

1− z, implying p(1)n =
1

n22n−1

(
2n− 2

n− 1

)
∼ 1

2
√
πn3

.

(This agrees with the classical combinatorial solution expressed in terms of Catalan numbers.)

Case d= 2: By the Hadamard closure theorem, the functionQ(z) = β(z)⊙ β(z) admits
a priori a singular expansion atz= 1 that is composed solely of elements of the form(1− z)α

possibly multiplied by integral powers of the logarithmic function L(z) = log(1/(1−z)). From
a computational standpoint (cf the Zigzag Algorithm), it is then best to startfrom the coefficients
themselves,

(64) q(2)n ∼
(

1√
πn
− 1

8
√
πn3
+ · · ·

)2
∼ 1

π

(
1

n
− 1

4n2
+ · · ·

)
,

and reconstruct the only singular expansion that is compatible, namely

(65) Q(z) = 1

π
L(z)+ K + O((1− z)1−ǫ),

whereǫ > 0 is an arbitrarily small constant andK is fully determined as the limit asz →
1 of Q(z) − π−1 L(z). Then it can be seen that the functionP is 1–continuable. (Proof:
Otherwise, there would be complex poles arising from zeros of the function Q on the unit disc,

and this would entail inp(2)n the presence of terms oscillating around 0, a fact that contradicts
the necessary positivity of probabilities.) The singular expansion ofP(z) at z = 1 results
immediately from that ofQ(z):

P(z) ∼ 1− π

L(z)
+ π2K

L(z)2
+ · · · .

so that, by Theorems VI.2 and VI.3, one has

p(2)n = π

n log2 n
− 2π

γ + πK

n log3 n
+ O

(
1

n log4 n

)

K = 1+
∞∑

n=1

(
16−n

(
2n

n

)2
− 1

πn

)

.= 0.8825424006106063735858257.

(See the study by Louchardet al. [422, Sec. 4] for somewhat similar calculations.)

Case d= 3: This case is easy sinceQ(z) remains finite at its singularityz = 1 where it
admits an expansion in powers of(1− z)1/2, with the consequence that

q(3)n ∼
(

1√
πn
− 1

8
√
πn3
+ · · ·

)3
∼ 1

π3/2

(
1

n3/2
− 3

8n5/2
+ · · ·

)
.
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The functionQ(z) is a priori 1–continuable and its singular expansion can be reconstructed
from the form of coefficients:

Q(z) ∼
z→1

Q(1)− 2

π

√
1− z+ O(|1− z|),

leading to

P(z) =
(

1− 1

Q(1)

)
− 2

πQ(1)2
√

1− z+ O(|1− z|).

By singularity analysis, the last expansion gives

p(3)n = 1

π3/2Q(1)2
1

n3/2
+ O

(
1

n2

)

Q(1) = π

Ŵ
(

3
4

)4
.= 1.3932039296856768591842463.

A complete asymptotic expansion in powersn−3/2, n−5/2, . . . can be obtained by the same de-
vices. In particular this improves the error term above toO(n−5/2). The explicit form ofQ(1)
results from its expression as the generalized hypergeometric3F2[ 1

2,
1
2,

1
2 ; 1, 1; 1], which eval-

uates by Clausen’s theorem and Kummer’s identity to the square of a complete elliptic integral.
(See the papers by Larry Glasser for context, for instance [293]; nowadays, several computer
algebra systems even provide this value automatically.)

Higher dimensions are treated similarly, with logarithmic terms surfacing in asymptotic
expansions for all even dimensions. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

VI. 10.3. Applications to tree recurrences.To conclude with singularity anal-
ysis theory, we present the general framework oftree recurrences, also known as
probabilistic divide-and-conquer recurrences, which are of the general form

(66) fn = tn +
∑

k

pn,k( fk + fn−a−k), (n ≥ n0).

There,( fn) is the sequence implicitly determined by the recurrence, assuming known
initial conditions f0, . . . , fn0−1; the sequence(tn) is known as the sequence oftolls;
the array(pn,k) is a triangular array of numbers that are probabilities in the sense that,
for each fixedn ≥ 0, one has

∑
k pn,k = 1; the numbera is a small fixed integer

(usually 0 or 1).
The interpretation of the recurrence is in the form of a splitting process: a col-

lection ofn elements is given; a numbera of these is put aside and what remains is
partitioned into two subgroups, a “left” subgroup of cardinality Kn and a “right” sub-
group of cardinalityn−a−Kn. The quantityKn is a random variable with probability
distribution

P(Kn = k) = pn,k.

The splitting is repeated (recursively) till only groups ofsize less than the threshold
n0 are obtained. Assuming stochastic independence of all the random variablesK
involved, it is seen thatfn represents the expectation of the (total)cost Cn of a random
(recursive) splitting, when a single stage involvingn elements incurs a toll equal totn.
In symbols:

fn = E(Cn), Cn = tn + CKn + Cn−a−Kn .
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Clearly, a particular realization of the splitting processcan be represented by a
binary tree. With a suitable choice of probabilities, such processes can be used to anal-
yse cost functional of increasing binary trees, and binary Catalan trees, for instance.
A prime motivation is the analysis of divide-and-conquer algorithms in computer sci-
ence, like quicksort, mergesort, union-find algorithms, and so on [132, 383, 384, 537,
538, 598]. Our treatment once more follows the article [208].

A general approach to the asymptotic solution of a tree recurrence goes as fol-
lows. First, introduce generating functions,

f (z) =
∑

n

fnωnzn, t (z) =
∑

n

tnω
′
nzn,

for some normalization sequences(ωn) and(ω′n) that are problem-specific. (So,ωn ≡
1 gives rise to an OGF,ωn ≡ 1/n! to an EGF, with other normalizations being also
useful.) Then, by linearity of the original recurrence, there exists a linear operatorL
on series (and functions), such that

f (z) = L[t (z)].

Provided the splitting probabilitiespn,k have expressions of a tractable form, it is rea-
sonable to attempt expressingL in terms of the usual operations of analysis. One may
then investigate the wayL affects singularities and deduce the asymptotic form of the
cost sequence( fn) from the singularities of its generating function,f (z). An inter-
esting feature of this approach is to allow for a powerful discussion of the relationship
between tolls and induced costs, in a way that parallels composition of singularities in
Section VI. 9. Closure properties discussed earlier in thissection are a crucial ingre-
dient in the intervening singularity analysis process.

The three examples that we present combine closure properties with the singu-
larity analysis of polylogarithms of Section VI. 8. ExampleVI.15 is relative to in-
creasing binary trees (defined in Example II.17, p. 143), which model binary search
trees of computer science. Example VI.16 discusses additive costs of random binary
Catalan trees in the perspective of tree recurrences. Finally, Example VI.17 shows the
applicability of singularity analysis to a basic coalescence–fragmentation process.

ExampleVI.15. The binary search tree recurrence.One of the simplest random tree models
is defined as follows: a random binary tree of sizen ≥ 1 is obtained by taking a root and
appending to it a left subtree of sizeKn and a right subtree of sizen − 1 − Kn, whereKn
is uniformly distributed over the set of permissible values{0,1, . . . , n − 1}. (Trees under this
model are equivalent toincreasing binary treesencountered in Example II.17, p. 143, and to
binary search treesof Note III.33, p. 203.) In the notations of (66), this process corresponds to

pn,k ≡ P(Kn = k) = 1

n
, 0≤ k ≤ n− 1.

The associated tree recurrence is then

fn = tn +
2

n

n−1∑

k=0

fk, f0 = t0,
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which translates for OGFs,

f (z) :=
∑

n≥0

fnzn, t (z) =
∑

n≥0

tnzn,

into a linear integral equation:

(67) f (z) = t (z)+ 2
∫ z

0
f (w)

dw

1− w .

Differentiation yields the ordinary differential equation

f ′(z) = t ′(z)+ 2

1− z
f (z), f (0) = t0,

which is then solved by the variation-of-constants method. In this way, it is found that an
integral transform expresses the relation between the GF of tolls and the GFof total costs.
Assuming without loss of generalityt0 = 0, we have (with∂w ≡ d

dw )

(68) f (z) = L[t (z)], where L[t (z)] = 1

(1− z)2

∫ z

0
(∂wt (w)) (1− w)2 dw.

First, simple toll sequences that admit generating functions of a simple form can be em-
ployed to build arepertoire13 that already provides useful indications on the relations between
the orders of growth of(tn) and( fn). For instance, we find, for the rising-factorial tolls




tαn :=
(

n+ α
α

)
, tα(z) = (1− z)−α−1,

f α(z) = α − 1

α + 1

[
(1− z)−α−1− (1− z)−2

]
, f αn =

α − 1

α + 1

[(
n+ α
α

)
− n− 1

]
,

for α 6= 1, whileα = 1 corresponding tot1
n = n+ 1 leads to

f 1(z) = 2

(1− z)2
log

1

1− z
, f 1

n = 2(n+ 1)(Hn+1−1) = 2n logn+ O(n),

with Hn a harmonic number. The emergence of an extra logarithmic factor forα = 1 is to
be noted: it corresponds to the fact that path length in an increasing binary tree of sizen is
∼ 2n logn. Such elementary techniques provide the top two entries of Figure VI.17.

Singularity analysis furthermore permits us to develop a complete asymptoticexpansion
for tolls of the form

√
n, logn, and many others. Consider for instance the tolltαn = nα , for

which the generating functiont (z) is recognized to be a polylogarithm. From Theorem VI.7
(p. 408), the functiont (z) admits a singular expansions in terms of elements of the form(1−z)β ,
with the main term corresponding toβ = −α − 1 whenα > −1. TheL transformation of (68)
reads as a succession of operations,”differentiate, multiply by(1− z)2, integrate, multiply by
(1− z)−2” , which are covered by Theorems VI.8 and VI.9. Consequently, the chain on any
particular element starts as

c(1− z)β
∂−→ cβ(1− z)β−1 ×(1−z)2−→ cβ(1− z)β+1.

At this stage, integration intervenes: according to Theorem VI.9, assuming β 6= −2 and ignor-
ing integration constants, we find

cβ(1− z)β+1
∫
−→ −c

β

β + 2
(1− z)β+2 ×(1−z)−2

−→ −c
β

β + 2
(1− z)β .

13The repertoire approach is developed in an attractive mannerby Greene and Knuth in [310].
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Tolls (tn) costs( fn)

tn =
(

n+ α
α

)
(α > 1)

α − 1

α + 1

[(
n+ α
α

)
− n+ 1

]
∼ α + 1

α − 1

nα

Ŵ(α + 1)

tn =
(

n+ α
α

)
(α < 1)

1− α − 1

1+ α

[
n+ 1−

(
n+ α
α

)]
∼ 1+ α

1− α n

tn = nα (2< α) fn =
α + 1

α − 1
nα + O(nα−1)

tn = nα (1< α < 2) fn =
α + 1

α − 1
nα + O(n)

tn = nα (0< α < 1) Kαn+ O(nα)

tn = logn K ′0n− logn+ O(1)

Figure VI.17. Tolls and costs for the binary search tree recurrence, witht0 = 0.

Thus, the singular element(1− z)β corresponds to a contribution

−c
β

β + 2

(
n− β − 1

−β − 1

)
,

which is of orderO(n−β−1). This chain of operations suffices to determine the leading order
of fn whentn = nα andα > 1.

The derivation above is representative of the main lines of the analysis, but it has left aside
the determination of integration constants, which play a dominant rôle whentn = nα andα < 1
(because a term of the formK/(1− z)2 then dominates inf (z)). Introduce, in accordance with
the statement of the Singular Integration Theorem (Theorem VI.9, p. 420) the quantity

K [t ] :=
∫ 1

0

[
t ′(w)(1− w)2−

(
t ′(w)(1− w)2

)
−

]
dw,

where f− represents the sum of singular terms of exponent< −1 in the singular expansion of
f (z). Then, fortn = nα with 0 < α < 1, taking into account the integration constant (which
gets multiplied by(1− z)−2, given the shape ofL), we find forα < 1:

fn ∼ Kαn, Kα = K [Li−α ] = 2
∞∑

n=1

nα

(n+ 1)(n+ 2)
.

Similarly, the tolltn = logn gives rise to

fn ∼ K ′0n, K ′0 = 2
∞∑

n=1

logn

(n+ 1)(n+ 2)
.= 1.2035649167.

This last estimate quantifies theentropyof the distribution of binary search trees, which is stud-
ied by Fill in [207], and discussed in the reference book by Cover and Thomas on information
theory [134, p. 74-76]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

Example VI.16. The binary tree recurrence.Consider a procedure that, given a (pruned)
binary tree, performs certain calculations (without affecting the tree itself) at a cost oftn, for
sizen, then recursively calls itself on the left and right subtrees. If the binarytree to which the
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Tolls (tn) costs( fn)

nα (3
2 < α)

Ŵ(α − 1
2)

Ŵ(α)
nα+1/2+ O(nα−1/2)

n3/2 2√
π

n2+ O(n logn)

nα (1
2 < α < 3

2)
Ŵ(α − 1

2)

Ŵ(α)
nα+1/2+ O(n)

n1/2 1√
π

n logn+ O(n)

nα (0< α < 1
2) Kαn+ O(1)

logn K
′
0n+ O(

√
n

Figure VI.18. Tolls and costs for the binary tree recurrence.

procedure is applied is drawn uniformly among all binary trees of sizen the expectation of the
total cost of the procedure satisfies the recurrence

(69) fn = tn +
n−1∑

k=0

CkCn−1−k

Cn
( fk + fn−k) with Cn =

1

n+ 1

(
2n

n

)
.

Indeed, the quantity

pn,k =
CkCn−1−k

Cn

represents the probability that a random tree of sizen has a left subtree of sizek and a right
subtree of sizen− k. It is then natural to introduce the generating functions

t (z) =
∑

n≥0

tnCnzn, f (z) =
∑

n≥0

fnCnzn,

and the recurrence (69) translates into a linear equation:

f (z) = t (z)+ 2zC(z) f (z),

with C(z) the OGF of Catalan numbers. Now, given a toll sequence(tn) with ordinary genera-
tion function

τ(z) :=
∑

n≥0

tnzn,

the functiont (z) is a Hadamard product:t (z) = τ(z)⊙C(z). Furthermore,C(z) is well known,
so that the fundamental relation is

(70) f (z) = L[τ(z)], where L[τ(z)] = τ(z)⊙ C(z)√
1− 4z

, C(z) = 1−
√

1− 4z

2z
.

This transform relates the ordinary generating function of tolls to the normalized generating
function of the total costs via a Hadamard product.
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Tolls (tn) costs( fn)

nα (3
2 < α)

Ŵ(α − 1
2)√

2Ŵ(α)
nα+1/2+ O(nα−1/2)

n3/2

√
2

π
n2+ O(n logn)

nα (1
2 < α < 3

2)
Ŵ(α − 1

2)√
2Ŵ(α)

nα+1/2+ O(n)

n1/2 1√
2π

n logn+ O(n)

nα (0< α < 1
2) K̂αn+ O(1)

logn K̂ ′0n+ O(
√

n)

Figure VI.19. Tolls and costs for the Cayley tree recurrence.

The calculation for simple tolls likenr with r ∈ Z≥0 can be carried out elementarily. For
the tollstαn = nα what is required is the singular expansion of

τ(z)⊙ C
( z

4

)
= Li−α(z)⊙ C

( z

4

)
=
∞∑

n=1

nα

n+ 1

(
2n

n

)( z

4

)n
.

This is precisely covered by Theorems VI.7 (p. 408), VI.10 (p. 422), and VI.11 (p. 423). The
results of Figure VI.18 follow, after routine calculations. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .�

ExampleVI.17. The Cayley tree recurrence.Considern vertices labelled 1, . . . , n. There are
(n− 1)!nn−2 sequences of edges,

〈u1, v1, 〉, 〈u2, v2, 〉, · · · , 〈un−1, vn−1〉,
that give rise to a tree over{1, . . . , n}, and the number of such sequences is(n− 1)!nn−2 since
there arenn−2 unrooted trees of sizen. At each stagek, the edges numbered 1 tok determine
a forest. Each addition of an edge connects two trees [that then become rooted] and reduces the
number of trees in the forest by 1, so that the forest evolves from the totally disconnected graph
(at time 0) to an unrooted tree (at timen−1). If we consider each of the sequences to be equally
likely, the probability thatun−1 andvn−1 belong to components of sizek and(n− k) is

1

2(n− 1)

(
n

k

)
kk−1(n− k)n−k−1

nn−2
.

(The reason is that there arekk−1 rooted trees of sizek; the last added edge hasn−1 possibilities
and 2 possible orientations.)

Assume that the aggregation of two trees into a tree of size equal toℓ incurs a toll oftℓ.
The total cost of the aggregation process for a final tree of sizen satisfies the recurrence

(71) fn = tn +
∑

0<k<n

pn,k( fk + fn−k), pn,k =
1

2(n− 1)

(
n

k

)
kk−1(n− k)n−k−1

nn−2
.

The recurrence (71) has been studied in detail by Knuth and Pittel [383], building upon an earlier
analysis of Knuth and Schönhage [384]. A prime motivation of the cited works is the emergence
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of this recurrence in the study algorithms that dynamically manage equivalence relations (the
so-called union-find algorithm [384]).

Given the sequence of tolls(tn), we introduce the generating function

τ(z) =
∑

n≥1

tnzn,

and letT be the Cayley tree function (T = zeT ). For total costs, the generating function
adopted is

f (z) =
∑

n≥1

fnnn−1zn.

The basic recurrence (71) can then be rephrased as a linear ordinary differential equation, which
is solved by the variation-of-constant method. This gives rise to an integral transform involving
a Hadamard product, namely,

(72) f (z) = L[τ(z)], with L[τ ](z) = 1

2

T(z)

1− T(z)

∫ z

0
∂w

(
τ(w)⊙ T(w)2

) dw

T(w)
.

Though the expression of the transform looks formidable at first sight,it is really nothing but a
short sequence of basic operations, “Hadamard product, multiplication, differentiation, division,
integration, multiplication”, each of which has a quantifiable effect on functions of singularity
analysis class. (The singularity structure ofT(z) is itself determined by the Singular Inversion
Theorem, Theorem VI.6, p. 404.)

The net result is that the effect of tolls of the formnα , logn, and so on, can be analysed:
see Figure VI.19 for a listing of estimates. Details of the proof are left as an exercise to our
reader and are otherwise found in [208, §5.3]. The analogy of behaviour with the Catalan
tree recurrence stands out. This example is also of interest since it furnishes an analytically
tractable model of a coalescence-fragmentation process, which is of great interest in several
areas of science, for which we refer to Aldous’ survey [9]. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

VI. 11. Tauberian theory and Darboux’s method

There are several alternative approaches to the analysis ofcoefficients of func-
tions that are of moderate growth. Naturally, all such methods must provide estimates
compatible with singularity analysis theory (Theorems VI.1, VI.2, and VI.3). Each
one requires some sort of “regularity condition” either on the part of the function or
on the part of the coefficient sequence, the regularity condition of singularity analysis
being in essence analytic continuation.

The methods briefly surveyed here fall into three broad categories:(i ) Elementary
real analytic methods;(i i ) Tauberian theorems;(i i i ) Darboux’s method.

Elementary real analytic methods assume somea priori smoothness conditions on
the coefficient sequence; they are included here for the sakeof completeness, though
properly speaking they do not belong to the galaxy of complexasymptotic methods.
Their scope is mostly limited to the analysis of products while the other methods
permit one to approach more general functional compositionpatterns. Tauberian the-
orems belong to the category of advanced real analysis methods; they also need some
a priori regularity on the coefficients, typically positivity or monotonicity. Darboux’s
method requires some smoothness of the function on the closed unit disc, and, by its
techniques and scope, it is the closest to singularity analysis.
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We content ourselves with a brief discussion of the main results. For more infor-
mation, the reader is referred to Odlyzko’s excellent survey [461].

Elementary real analytic methods.An asymptotic equivalent of the coefficients
of a function can sometimes be worked out elementarily from simple properties of the
component functions. The regularity conditions are a smooth asymptotic behaviour of
the coefficients of one of the two factors in a product of generating functions. A prime
source for these techniques is Bender’s survey [36].

Theorem VI.12 (Real analysis asymptotics). Let a(z) =∑anzn and b(z) =∑bnzn

be two power series with radii of convergenceα > β ≥ 0, respectively. Assume that
b(z) satisfies the ratio test,

bn−1

bn
→ β as n→∞.

Then the coefficients of the product f(z) = a(z) · b(z) satisfy, provided a(β) 6= 0:

[zn] f (z) ∼ a(β)bn as n→∞.
Proof. (Sketch) The basis of the proof is the following chain:

fn = a0bn + a1bn−1+ a2bn−2+ · · · + anb0)

= bn

(
a0+ a1

bn−1

bn
+ a2

bn−2

bn
+ · · · + an

b0

bn

)

= bn

(
a0+ a1

(
bn−1

bn

)
+ a2

(
bn−2

bn−1

)(
bn−1

bn

)
+ · · ·

)

∼ bn(a0+ a1β + a2β
2 + · · · ).

There, only the last line requires a little elementary analysis that is left as an exercise
to the reader (see Pólya–Szeg̋o [492], Problem 178, Part I, Volume I). �

This theorem applies for instance to the EGF of 2–regular graphs:

f (z) = a(z) · b(z) with a(z) = e−z/2−z2/4, b(z) = 1√
1− z

,

for which it gives fn ∼ e−3/4
(n−1/2

n

)
∼ e−3/4√

πn
, in accordance with Example VI.2

(p. 395). Clearly, a whole collection of lemmas can be statedin the same vein. Singu-
larity analysis usually provides more complete expansions, although Theorem VI.12
does apply to a few situations not covered by it.

Tauberian theory.Tauberian methods apply to functions whose growth is only
known along the positive real line. The regularity conditions are in the form of ad-
ditional assumptions on the coefficients (positivity or monotonicity) known under the
name of Tauberian “side conditions”. An insightful introduction to the subject may
be found in Titchmarsh’s book [577], and a detailed exposition in Postnikov’s mono-
graph [494] and Korevaar’s compendium [389]. We cite the most famous of all Taube-
rian theorems due to Hardy, Littlewood, and Karamata. For the purpose of this sec-
tion, a function is said to beslowly varyingat infinity iff, for any c > 0, one has
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3(cx)/3(x)→ 1 asx→ +∞. (Examples of slowly varying functions are provided
by powers of logarithms or iterated logarithms.)

Theorem VI.13 (The HLK Tauberian theorem). Let f(z) be a power series with
radius of convergence equal to 1, satisfying

(73) f (z) ∼ 1

(1− z)α
3(

1

1− z
),

for someα ≥ 0 with3 a slowly varying function. Assume that the coefficients fn =
[zn] f (z) are all non-negative (this is the “side condition”). Then

(74)
n∑

k=0

fk ∼
nα

Ŵ(α + 1)
3(n).

The conclusion (74) is consistent with the result given by singularity analysis:
under the conditions, and if in addition analytic continuation is assumed, then

(75) fn ∼
nα−1

Ŵ(α)
3(n),

which by summation yields the estimate (74).
It must be noted that a Tauberian theorem requires very little on the part of the

function. However, it gives little, since it doesnot include error estimates. Also, the
result it provides is valid in the more restrictive sense of mean values, or Cesàro aver-
ages. (If further regularity conditions on thefn are available, for instance monotonic-
ity, then the conclusion of (75) can then be deduced from (74)by purely elementary
real analysis.) The method applies only to functions that are large enough at their
singularity (the assumptionα ≥ 0), and despite numerous efforts to improve the con-
clusions, it is the case that Tauberian theorems do not have much to offer in terms of
error estimates.

Appeal to a Tauberian theorem may be justified when a functionhas, apart from
the positive half line, a very irregular behaviour near its circle of convergence, for
instance when each point of the unit circle is a singularity.(The function is then said
to admit the unit circle as a natural boundary.) An interesting example of this situation
is discussed by Greene and Knuth [309] who consider the function

(76) f (z) =
∞∏

k=1

(
1+ zk

k

)
,

which is the EGF of permutations having cycles all of different lengths. A little com-
putation shows that

log
∞∏

k=1

(
1+ zk

k

)
=

∞∑

k=1

zk

k
− 1

2

∞∑

k=1

z2k

k2
+ 1

3

∞∑

k=1

z3k

k3
− · · ·

∼ log
1

1− z
− γ + o(1).

(Only the last line requires some care, see [309].) Thus, we have

f (z) ∼ e−γ

1− z
−→ 1

n
( f0+ f1+ · · · + fn) ∼ e−γ ,
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by virtue of Theorem VI.12. In fact, Greene and Knuth were able to supplement this
argument by a “bootstrapping” technique and show a strongerresult, namely

fn→ e−γ .

� VI.31. Fine asymptotics of the Greene–Knuth problem.With f (z) as in (76), we have

[zn] f (z) = e−γ + e−γ

n
+ e−γ

n2
(− logn− 1− γ + log 2)

+ 1

n3

[
e−γ log2 n+ c1 logn+ c2+ 2(−1)n +�(n)

]
+ O

(
1

n4

)
,

wherec1, c2 are computable constants and�(n) has period 3. (The paper [227] derives a
complete expansion based on a combination of Darboux’s method and singularity analysis.)�

Darboux’s method.The method of Darboux (also known as the Darboux–Pólya
method) requires, as regularity condition, that functionsbe sufficiently differentiable
(“smooth”) on their circle of convergence. What lies at the heart of the method is a
simple relation between the smoothness of a function and thedecrease of its Taylor
coefficients.

Theorem VI.14 (Darboux’s method). Assume that f(z) is continuous in the closed
disc|z| ≤ 1 and is, in addition, k times continuously differentiable(k ≥ 0) on |z| = 1.
Then

(77) [zn] f (z) = o

(
1

nk

)
.

Proof. Start from Cauchy’s coefficient formula

fn =
1

2iπ

∫

C

f (z)
dz

zn+1
.

Because of the continuity assumption, one may take as integration contourC the unit
circle. Settingz= ei θ yields the Fourier version of Cauchy’s coefficient formula,

(78) fn =
1

2π

∫ 2π

0
f (ei θ )e−niθ dθ.

The integrand in (78) is strongly oscillating. The Riemann–Lebesgue lemma of clas-
sical analysis [577, p. 403] shows that the integral tends to0 asn→∞.

The argument above covers the casek = 0. For a generalk, successive integra-
tions by parts give

[zn] f (z) = 1

2π(in)k

∫ 2π

0
f (k)(ei θ )e−niθ dθ,

a quantity that iso(nk), by Riemann–Lebesgue again. �

Various consequences of Theorem VI.14 are given in reference texts also under
the name of Darboux’s method. See for instance [129, 309, 329, 608]. We shall only
illustrate the mechanism by rederiving in this framework the analysis of the EGF of
2–regular graphs (Example VI.2, p. 395). We have

(79) f (z) = e−z/2−z2/4

√
1− z

= e−3/4

√
1− z

+ e−3/4
√

1− z+ R(z).
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There R(z) is the product of(1 − z)3/2 with a function analytic atz = 1 that is
a remainder in the Taylor expansion ofe−z/2−z2/4. Thus, R(z) is of classC1, i.e.,
continuously differentiable once. By Theorem VI.14, we have

[zn]R(z) = o

(
1

n

)
,

so that

(80) [zn] f (z) = e−3/4

√
πn
+ o

(
1

n

)
.

Darboux’s method bears some resemblance to singularity analysis in that the es-
timates are derived from translating error terms in expansions. However, smoothness
conditions, rather than plain order of growth information,are required by it. The
method is often applied, in situations similar to (79)–(80), to functions that are prod-
ucts of the typeh(z)(1−z)α with h(z) analytic at 1. In such particular cases, Darboux’s
method is however subsumed by singularity analysis.

It is inherent in Darboux’s method that it cannot be applied to functions whose
singular expansion only involves terms that become infinite, while singularity analy-
sis can. A clear example arises in the analysis of the common subexpression prob-
lem [257] where there occurs a function with a singular expansion of the form

1√
1− z

1√
log 1

1−z

[
1+ c1

log 1
1−z

+ · · ·
]
.

� VI.32. Darboux versus singularity analysis.This note provides an instance where Darboux’s
method applies whereas singularity analysis does not. Let

Fr (z) =
∞∑

n=0

z2n

(2n)r
.

The functionF0(z) is singular at every point of the unit circle, and the same property holds for
any Fr with r ∈ Z≥0. [Hint: F0, which satisfies the functional equationF(z) = z+ F(z2),
grows unboundedly near 2nth roots of unity.] Darboux’s method can be used to derive

[zn]
1√

1− z
F5(z) =

c√
πn
+ o

(
1

n

)
, c := 32

31
.

What is the best error term that can be obtained? �

VI. 12. Perspective

The method of singularity analysis expands our ability to extract coefficient asymp-
totics to a far wider class of functions than the meromorphicand rational functions of
Chapters IV and V. This ability is the fundamental tool for analysing many of the
generating functions provided by the symbolic method of Part A, and it is applicable
at a considerable level of generality.

The basic method is straightforward and appealing: we locate singularities, es-
tablish analyticity in a domain around them, expand the functions around the singular-
ities, and apply general transfer theorems to take each termin the function expansion
to a term in the asymptotic expansion of its coefficients. Themethod applies directly
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to a large variety of explicitly given functions, for instance combinations of ratio-
nal functions, square roots, and logarithms, as well as to functions that are implicitly
defined, like generating functions for tree structures, which are obtained by analytic
inversion. Functions amenable to singularity analysis also enjoy rich closure prop-
erties, and the corresponding operations mirror the natural operations on generating
functions implied by the combinatorial constructions of Chapters I–III.

This approach again sets us in the direction of the ideal situation of having a
theory where combinatorial constructions and analytic methods fully correspond, but,
again, the very essence of analytic combinatorics is that the theorems that provide
asymptotic results cannot be so general as to be free of analytic side conditions. In
the case of singularity analysis, these side conditions have to do with establishing an-
alyticity in a domain around singularities. Such conditions are automatically satisfied
by a large number of functions with moderate (at most polynomial) growth near their
dominant singularities, justifying precisely what we need: the term-by-term transfer
from the expansion of a generating function at its singularity to an asymptotic form of
coefficients, including error terms. The calculations involved in singularity analysis
are rather mechanical. (Salvy [528] has indeed succeeded inautomating the analysis
of a large class of generating functions in this way.)

Again, we can look carefully at specific combinatorial constructions and then ap-
ply singularity analysis to general abstract schemas, thereby solving whole classes of
combinatorial problems at once. This process, along with several important examples,
is the topic of Chapter VII, to come next. After that, we introduce, in Chapter VIII,
the saddle-point method, which is appropriate for functions without singularities at a
finite distance (entire functions) as well as those whose growth is rapid (exponential)
near their singularities. Singularity analysis will surface again in Chapter IX, given
its crucial technical r̂ole in obtaining uniform expansions of multivariate generating
functions near singularities.

Bibliographic notes. Excellent surveys of asymptotic methods in enumeration have been given
by Bender [36] and more recently Odlyzko [461]. A general reference to asymptotic analy-
sis that has a remarkably concrete approach is De Bruijn’s book [143]. Comtet’s [129] and
Wilf’s [608] books each devote a chapter to these questions.

This chapter is largely based on the theory developed by Flajolet and Odlyzko in [248],
where the term “singularity analysis” originates. An important early (and unduly neglected)
reference is the study by Wong and Wyman [615]. The theory draws its inspiration from classi-
cal analytic number theory, for instance the prime number theorem where similar contours are
used (see the discussion in [248] for sources). Another area whereHankel contours are used
is the inversion theory of integral transforms [168], in particular in the case of algebraic and
logarithmic singularities. Closure properties developed here are from thearticles [208, 223] by
Flajolet, Fill, and Kapur.

Darboux’s method can often be employed as an alternative to singularity analysis. Al-
though it is still a widely used technique in the literature, the direct mapping of asymptotic scales
afforded by singularity analysis appears to us to be much more transparent. Darboux’s method is
well explained in the books by Comtet [129], Henrici [329], Olver [465], and Wilf [608]. Taube-
rian theory is treated in detail in Postnikov’s monograph [494] and Korevaar’s encyclopaedic
treatment [389], with an excellent introduction to be found in Titchmarsh’sbook [577].
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Mathematics is being lazy. Mathematics is letting the principles do the work for you
so that you do not have to do the work for yourself1.

— GEORGEPÓLYA

I wish to God these calculations had been executed by steam.

— CHARLES BABBAGE (1792–1871)

— The Bhagavad Gita XV.12
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Singularity analysis paves the way to the analysis of a largequantity of generating
functions, as provided by the symbolic method expounded in Chapters I–III. In accor-
dance with Ṕolya’s aphorism quoted above, it makes it possible to “be lazy” and “let
the principles work for you”. In this chapter we illustrate this situation with numerous
examples related to languages, permutations, trees, and graphs of various sorts. As in
Chapter V, most analyses are organized into broad classes called schemas.

First, we develop the generalexp–log schema, which covers theset construc-
tion, either labelled or unlabelled, applied to generatorswhose dominant singularity
is of logarithmic type. This typically non-recursive schema parallels in generality
the supercritical schema of Chapter V, which is relative to sequences. It permits us to
quantify various constructions of permutations, derangements, 2–regular graphs, map-
pings, and functional graphs, and provides information on factorization properties of
polynomials over finite fields.

1Quoted in M Walter, T O’Brien, Memories of George Pólya, Mathematics Teaching 116 (1986)
2“There is an imperishable tree, it is said, that has its rootsupward and its branches down and whose

leaves are the Hymns [Vedas]. He who knows it possesses knowledge.”

439



440 VII. APPLICATIONS OF SINGULARITY ANALYSIS

Next, we deal withrecursively defined structures, whose study constitutes the
main theme of this chapter. In that case, generating functions are accessible by means
of equations or systems that implicitly define them. A distinctive feature of many
such combinatorial types is that their generating functions have asquare-root sin-
gularity, that is, the singular exponent equals 1/2. As a consequence, the counting
sequences characteristically involve asymptotic terms ofthe formAnn−3/2, where the
latter asymptotic exponent,−3/2, precisely reflects the singular exponent 1/2 in the
function’s singular expansion, in accordance with the general principles of singularity
analysis presented in Chapter VI.

Treesare the prototypical recursively defined combinatorial type. Square-root
singularities automatically arise for all varieties of trees constrained by a finite set of
allowed node degrees, including binary trees, unary–binary trees, ternary trees, and
many more. The counting estimates involve the characteristic n−3/2 subexponential
factor, a property that holds in the labelled and unlabelledframeworks alike.

Simple varieties of trees have many properties in common, beyond the subexpo-
nential growth factor of tree counts. Indeed, in a random tree of some large sizen,
almost all nodes are found to be at level about

√
n, path length grows on average like

n
√

n, and height is of order
√

n, with high probability. These results serve to unify
classical tree types—we say that such properties of random trees areuniversal3among
all simply generated families sharing the square-root singularity property. (This notion
of universality, borrowed from physics, is also nowadays finding increasing popularity
among probabilists, for reasons much similar to ours.) In this perspective, the motiva-
tion for organizing the theory along the lines of majorschemasfits perfectly with the
quest ofuniversal lawsin analytic combinatorics.

In the context of simple varieties of trees, the square-rootsingularity arises from
general properties of the inverse of an analytic function. Under suitable conditions,
this characteristic feature can be extended to functions defined implicitly by a func-
tional equation. Consequences are the general enumerationof non-plane unlabelled
trees, including isomers of alkanes in theoretical chemistry, as well as secondary struc-
tures of molecular biology.

Much of this chapter is devoted tocontext-free specifications and languages. In
that case,a priori, generating functions arealgebraic functions, meaning that they sat-
isfy a system of polynomial equations, itself optionally reducible (by elimination) to
a single equation. For solutions of positive polynomial systems, square-root singular-
ities are found to be the rule under a simple technical condition of irreducibility that is
evocative of the Perron–Frobenius conditions encounteredin Chapter V in relation to
finite-state and transfer-matrix models. As an illustration, we show how to develop a

3The following quotation illustrates well the notion of universality in physics: “[. . . ]this echoes the
notion of universality in statistical physics. Phenomena that appear at first to be unconnected, such as mag-
netism and the phase changes of liquids and gases, share someidentical features. This universal behaviour
pays no heed to whether, say, the fluid is argon or carbon dioxide. All that matters are broad-brush charac-
teristics such as whether the system is one-, two- or three-dimensional and whether its component elements
interact via long- or short-range forces. Universality says that sometimes the details do not matter.” [From
“Utopia Theory”, inPhysics World, August 2003].
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coherent theory of topological configurations in the plane (trees, forests, graphs) that
satisfy a non-crossing constraint.

For arbitrary algebraic functions (the ones that are not necessarily associated with
positive coefficients and equations, or irreducible positive systems), a richer set of sin-
gular behaviours becomes possible: singular expansions involve fractional exponents
(not just 1/2, corresponding to the square-root paradigm above). Singularity analysis
is invariably applicable: algebraic functions are viewed as plane algebraic curves, and
the famous Newton–Puiseux theorem of elementary algebraicgeometry completely
describes the types of singularities thay may occur. Algebraic functions also surface
as solutions of various types of functional equations: thisturns out to be the case for
many classes of walks that generalize Dyck and Motzkin paths, via what is known
as the kernel method, as well as for many types of planar maps (embedded planar
graphs), via the so-called quadratic method. In all these cases, singular exponents of a
predictable (rational) form are bound to occur, implying inturn numerous quantitative
properties of random discrete structure and universality phenomena..

Differential equations and systemsare associated to recursively defined structure,
when either pointing constructions or order constraints appear. For counting generat-
ing functions, the equations are nonlinear, while the GFs associated to additive param-
eters lead to linear versions. Differential equations are also central in connection with
the holonomic framework4, which intervenes in the enumeration of many classes of
“hard” objects, like regular graphs and Latin rectangles. Singularity analysis is once
more instrumental in working out precise asymptotic estimates—the appearance of
singular exponents that are algebraic (rather than rational) numbers is a characteristic
feature of many such estimates. We examine here applications relative to quadtrees
and to varieties of increasing trees, some of which are closely related to permutations
as well as to algorithms and data structures for sorting and searching.

VII. 1. A roadmap to singularity analysis asymptotics

The singularity analysis theorems of Chapter VI, which may be coarsely summa-
rized by the correspondence

(1) f (z) ∼ (1− z/ρ)−α −→ fn ∼
1

Ŵ(α)
ρ−nnα−1,

serve as our main asymptotic engine throughout this chapter. Singularity analysis is
instrumental in quantifying properties of non-recursive as well as recursive structures.
Our reader might be surprised not to encounter integration contours anymore in this
chapter. Indeed, it now suffices to work out thelocal analysis of functions at their
singularities, then the general theorems of singularity analysis (Chapter VI) effect the
translation to counting sequences and parametersautomatically.

4Holonomic functions (Appendix B.4:Holonomic functions, p. 748) are defined as solutions of linear
differential equations with coefficients that are rationalfunctions.
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The exp–log schema.This schema, examined in Section VII. 2, is relative to the
labelledset construction,

(2) F = SET(G) H⇒ F(z) = exp(G(z)) ,

as well as its unlabelled counterparts, MSET and PSET: anF–structure is thus con-
structed (non-recursively) as an unordered assembly ofG–components. In the case
where the GF of components is logarithmic at its dominant singularity,

(3) G(z) ∼ κ log
1

1− z/ρ
+ λ,

an immediate computation shows thatF(z) has a singularity of the power type,

F(z) ∼ eλ (1− z/ρ)−κ ,

which is clearly in the range of singularity analysis. The construction (2), supple-
mented by simple technical conditions surrounding (3), defines theexp–log schema.
Then, for suchF–structures that are assemblies of logarithmic components, the asymp-
totic counting problem is systematically solvable (Theorem VII.1, p. 446): the number
of G–components in a large randomF–structure isO(logn), both in the mean and in
probability, while more refined estimates describe precisely the likely shape of pro-
files. This schema has a generality comparable to the supercritical schema examined
in Section V. 2, p. 293, but the probabilistic phenomena at stake appear to be in sharp
contrast: the number of components is typically small, being logarithmic for exp–log
sets, as opposed to a linear growth in the case of supercritical sequences. The schema
can be used to analyse properties of permutations, functional graphs, mappings, and
polynomial over finite fields.

Recursion and the universality of square-root singularity. A major theme of
this chapter is the study of asymptotic properties of recursive structures. In a large
number of cases, functions with a square root singularity are encountered, and given
the usual correspondence,

f (z) ∼ −(1− z)1/2 −→ fn ∼
1

2
√
πn3
;

the corresponding coefficients are of the asymptotic formCρ−nn−3/2. Several schemas
can be described to capture this phenomenon; we develop here, in order of increas-
ing structural complexity, the ones corresponding to simple varieties of trees, implicit
structures, Ṕolya operators, and irreducible polynomial systems.

Simple varieties of trees and inverse functions.Our treatment ofrecursive com-
binatorial typesstarts with simple varieties of trees, studied in Section VII. 3. In the
basic situation, that of plane unlabelled trees, the equation is

(4) Y = Z × SEQ�(Y) H⇒ Y(z) = zφ(Y(z)),

with, as usual,φ(w) = ∑ω∈�w
ω. Thus, the OGFY(z) is determined as the inverse

of w/φ(w), where the functionφ reflects the collection of all allowed node degrees
(�). From analytic function theory, we know that singularities of the inverse of an
analytic function are generically of the square-root type (Subsection IV. 7.1, p. 275
and Section VI. 7, p. 402), and such is the case whenever� is a “well-behaved” set
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of integers, in particular, a finite set. Then, the number of trees invariably satisfies an
estimate of the form

(5) Yn = [zn]Y(z) ∼ C Ann−3/2.

Square-root singularity is also attached to several universality phenomena, as evoked
in the general introduction to this chapter.

Tree-like structures and implicit functions.Functions defined implicitly by an
equation of the form

(6) Y(z) = G(z,Y(z))

whereG is bivariate analytic, has non-negative coefficients, and satisfies a natural set
of conditions also lead to square-root singularity (Section VII. 4 and Theorem VII.3,
p. 468)). The schema (6) obviously generalizes (4): simply takeG(z, y) = zφ(y).
Again, such functions invariably satisfy an estimate (5).

Trees under symmetries and Pólya operators.The analytic methods mentioned
above can be further extended to Pólya operators, which translate unlabelled set and
cycle constructions; see Section VII. 5. A typical application is to the class of non-
plane unlabelled trees whose OGF satisfies theinfinite functional equation,

H(z) = zexp

(
H(z)

1
+ H(z2)

2
+ · · ·

)
.

Singularity analysis applies more generally to varieties of non-plane unlabelled trees
(Theorem VII.4, p. 479), which covers the enumeration of various types of interesting
molecules in combinatorial chemistry.

Context-free structures and polynomial systems.The generating function of any
context-free class or language is known to be a component of asystemof positive
polynomial equations 




y1 = P1(z, y1, . . . , yr )
...

...
...

yr = Pr (z, y1, . . . , yr ).

The n−3/2 counting law is once more universal among such combinatorial classes
under a basic condition of “irreducibility” (Section VII. 6and Theorem VII.5, p. 483).
In that case, the GFs are algebraic functions satisfying a strong positivity constraint;
the corresponding analytic statement constitutes the importantDrmota–Lalley–Woods
Theorem(Theorem VII.6, p. 489).

Note that there is a progression in the complexity of the schemas leading to
square-root singularity. From the analytic standpoint, this can be roughly rendered
by a chain

inverse functions−→ implicit functions−→ systems.

It is, however, often meaningful to treat each combinatorial problem at its minimal
level of generality, since expressions tend to become less and less explicit as complex-
ity increases.



444 VII. APPLICATIONS OF SINGULARITY ANALYSIS

General algebraic functions.In essence, the coefficients ofall algebraic func-
tionscan be analysed asymptotically (Section VII. 7). There are only minor limitations
arising from the possible presence of several dominant singularities, like in the ratio-
nal function case. The starting point is the characterization of the local behaviour of
an algebraic function at any of its singularities, which is provided by the Newton–
Puiseux theorem: ifζ is a singularity, then the branchY(z) of an algebraic function
admits nearζ a representation of the form

(7) Y(z) = Zr/s


∑

k≥0

ck Zk/s


 , Z := (1− z/ζ ),

for somer/s ∈ Q, so that the singular exponent is invariably arational number.
Singularity analysis is systematically applicable, so that the nth coefficient ofY is
expressible as a finite linear combination of terms, each of the asymptotic form

(8) ζ−nnp/q,
p

q
∈ Q \ {−1,−2, . . .};

see also Figure VII.1. The various quantities (likeζ, r, s) entering the asymptotic
expansion of the coefficients of an algebraic function turn out to be effectively com-
putable.

Beside providing a wide-encompassing conceptual framework of independent in-
terest, the general theory of algebraic coefficient asymptotics is applicable whenever
the combinatorial problems considered are not amenable to any of the special schemas
previously described. For instance, certain kinds of supertrees (these are defined as
trees composed with trees, Example VII.10, p. 412) lead to the singular typeZ1/4,
which is reflected by an unusual subexponential factor ofn−5/4 present in asymptotic
counts. Maps, which are planar graphs drawn in the plane (or on the sphere), satisfy a
universality law with a singular exponent equal to 3/2, which is associated to counting
sequences involving an asymptoticn−5/2 factor.

Differential equations and systems.When recursion is combined with point-
ing or with order constraints, enumeration problems translate into integro-differential
equations. Section VII. 9 examines the types of singularities that may occur in two
important cases:(i ) linear differential equations;(i i ) nonlinear differential equations.

Linear differential equations arise from the analysis of parameters of splitting
processes that extend the framework of tree recurrences (Subsection VI. 10.3, p. 427),
and we treat the geometric quadtree structure in this perspective. An especially notable
source of linear differential equations is the class ofholonomic functions(solutions of
linear equations with rational coefficients, cf Appendix B.4: Holonomic functions,
p. 748), which includes GFs of Latin rectangles, regular graphs, permutations con-
strained by the length of their longest increasing subsequence, Young tableaux and
many more structures of combinatorial theory. In an important case, that of a“regu-
lar” singularity , asymptotic forms can be systematically extracted. The singularities
that may occur extend the algebraic ones (7), and the corresponding coefficients are
then asymptotically composed of elements of the form

(9) ζ−nnθ (logn)ℓ,
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Rational Irred. linear system ζ−n Perron–Frob., merom. fns,
Ch. V

— General rational ζ−nnℓ meromorphic functions,
Ch. V

Algebraic Irred. positive sys. ζ−nn−3/2 DLW Th., sing. analysis,
this chapter, §VII. 6, p. 482

— General algebraic ζ−nnp/q Puiseux, sing. analysis,
this chapter, §VII. 7, p. 493

Holonomic Regular sing. ζ−nnθ logℓ n ODE, sing. analysis,
this chapter, §VII. 9.1, p. 518

— Irregular sing. ζ−neP(n1/r )nθ logℓ n ODE, saddle-point,
§VIII. 7, p. 581

Figure VII.1 . A telegraphic summary of a hierarchy of special functions by increas-
ing level of generality: asymptotic elements composing coefficients and thecoeffi-
cient extraction method (withℓ, r ∈ Z≥0, p/q ∈ Q, ζ and θ algebraic, andP a
polynomial).

(θ an algebraic quantity,ℓ ∈ Z≥0), a type which is much more general than (8).
Nonlinear differential equations are typically attached to the enumeration of trees

satisfying various kinds of order constraints. A global treatment is intrinsically not
possible, given the extreme diversity of singular expansions that may occur. Accord-
ingly, we restrict attention to first-order nonlinear equations of the form

d

dz
Y(z) = φ(Y(z)),

which covers varieties of increasing trees and certain urn processes, including several
models closely related to permutations.

Figure VII.1 summarizes three classes of special functionsencountered in this
book, namely, rational, algebraic, and holonomic. When structural complexity in-
creases, a richer set of asymptotic coefficient behaviours becomes possible. (The com-
plex asymptotic methods employed extend much beyond the range summarized in the
figure. For instance, the class of irreducible positive systems of polynomial equations
are part of the general square-root singularity paradigm, also encountered with Ṕolya
operators, as well as inverse and implicit functions in non-algebraic cases.)

VII. 2. Sets and the exp–log schema

We begin by examining a schema that is structurally comparable to the supercrit-
ical sequence schema of Section V. 2, p. 293, but one that requires singularity analysis
for coefficient extraction. The starting point is the construction of permutations (P) as
labelled sets of cyclic permutations (K):

(10) P = SET(K) H⇒ P(z) = exp(K (z)) , whereK (z) = log
1

1− z
,
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which gives rise to many easy explicit calculations. For instance, the probability that
a random permutation consists of a unique cycle is 1/n (since it equalsKn/Pn); the
number of cycles is asymptotic to logn, both on average (p. 122) and in probability
(Example III.4, p. 160); the probability that a random permutation has no singleton
cycle is∼ e−1 (the derangement problem; see pp. 123 and 228).

Similar properties hold true under surprisingly general conditions. We start with
definitions that describe the combinatorial classes of interest.

Definition VII.1. A function G(z) analytic at 0, having non-negative coefficients and
finite radius of convergenceρ is said to be of(κ, λ)-logarithmic type, whereκ 6= 0, if
the following conditions hold:

(i ) the numberρ is the unique singularity of G(z) on |z| = ρ;
(i i ) G(z) is continuable to a1–domain atρ;
(i i i ) G(z) satisfies

(11) G(z) = κ log
1

1− z/ρ
+ λ+ O

(
1

(log(1− z/ρ))2

)
, as z→ ρ in 1.

Definition VII.2. The labelled constructionF = SET(G) is said to be alabelled
exp–log schema(“exponential–logarithmic schema”) if the exponential generating
function G(z) ofG is of logarithmic type. The unlabelled constructionF = MSET(G)

is said to be anunlabelled exp–log schemaif the ordinary generating function G(z)
of G is of logarithmic type, withρ < 1. In each case, the quantities(κ, λ) of (11) are
referred to as theparametersof the schema.

By the fact thatG(z) has positive coefficients, we must haveκ > 0, while the sign
of λ is arbitrary. The definitions and the main properties to be derived for unlabelled
multisets easily extend to the powerset construction: see Notes VII.1 and VII.5 below.

Theorem VII.1 (Exp–log schema). Consider an exp–log schema with parameters
(κ, λ).

(i ) The counting sequences satisfy




[zn]G(z) = κ

n
ρ−n

(
1+ O

(
(logn)−2

))
,

[zn]F(z) = eλ+r0

Ŵ(κ)
nκ−1ρ−n

(
1+ O

(
(logn)−2

))
,

where r0 = 0 in the labelled case and r0 =
∑

j≥2 G(ρ j )/j in the case of unlabelled
multisets.

(i i ) The number X ofG–components in a randomF–object satisfies

EFn(X) = κ(logn− ψ(κ))+ λ+ r1+ O
(
(logn)−1

)
(ψ(s) ≡ d

dsŴ(s)),

where r1 = 0 in the labelled case and r1 =
∑

j≥2 G(ρ j ) in the case of unlabelled
multisets. The variance satisfiesVFn(X) = O(logn), and, in particular, the distribu-
tion5 of X is concentrated around its mean.

5We shall see in Subsection IX. 7.1 (p. 667) that, in addition,the asymptotic distributionof X is
invariablyGaussianunder such exp–log conditions.
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Proof. This result is from an article by Flajolet and Soria [258], with a correction
to the logarithmic type condition given by Jennie Hansen [318]. We first discuss the
labelled case, F = SET(G), so thatF(z) = expG(z).

(i ) The estimate for [zn]G(z) follows directly from singularity analysis with log-
arithmic terms (Theorem VI.4, p. 393). RegardingF(z), we find, by exponentiation,

(12) F(z) = eλ

(1− z/ρ)κ

[
1+ O

(
1

(log(1− z/ρ))2

)]
.

Like G, the functionF = eG has an isolated singularity atρ, and is continuable to
the1–domain in which the expansion (11) is valid. The basic transfer theorem then
provides the estimate of [zn]F(z).

(i i ) Regarding the number of components, the BGF ofF with u marking the
number ofG–components isF(z,u) = exp(uG(z)), in accordance with the general
developments of Chapter III. The function

f1(z) := ∂

∂u
F(z,u)

∣∣∣∣
u=1
= F(z)G(z),

is the EGF of the cumulated values ofX. It satisfies nearρ

f1(z) =
eλ

(1− z/ρ)κ

(
κ log

1

1− z/ρ
+ λ

)[
1+ O

(
1

(log(1− z/ρ))2

)]
,

whose translation, by singularity analysis theory is immediate:

[zn] f1(z) ≡ EFn(X) =
eλ

Ŵ(κ)
ρ−n

(
κ logn− κψ(κ)+ λ+ O

(
(logn)−1

))
.

This provides the mean value estimate ofX as [zn] f1(z)/[zn]F(z). The variance
analysis is conducted in the same way, using a second derivative.

For theunlabelled case, the analysis of [zn]G(z) can be recycled verbatim. First,
given the assumptions, we must haveρ < 1 (since otherwise [zn]G(z) could not be
an integer). The classical translation of multisets (Chapter I) rewrites as

F(z) = exp(G(z)+ R(z)) , R(z) :=
∞∑

j=2

G(z j )

j
,

whereR(z) involves terms of the formG(z2), . . ., each being analytic in|z| < ρ1/2.
Thus,R(z) is itself analytic, as a uniformly convergent sum of analytic functions, in
|z| < ρ1/2. (This follows the usual strategy for treating Pólya operators in asymptotic
theory.) Consequently,F(z) is1–analytic. Asz→ ρ, we then find

(13) F(z) = eλ+r0

(1− z/ρ)κ

[
1+ O

(
1

(log(1− z/ρ))2

)]
, r0 ≡

∞∑

j=2

G(ρ j )

j
.

The asymptotic expansion of [zn]F(z) then results from singularity analysis.
The BGFF(z,u) of F , with u marking the number ofG–components, is

F(z,u) = exp

(
uG(z)

1
+ u2G(z2)

2
+ · · ·

)
.
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F κ n = 100 n = 272 n = 739

Permutations 1 5.18737 6.18485 7.18319

Derangements 1 4.19732 5.18852 6.18454

2–regular 1
2 2.53439 3.03466 3.53440

Mappings 1
2 2.97898 3.46320 3.95312

Figure VII.2 . Some exp–log structures (F ) and the mean number ofG–components
for n = 100, 272≡ ⌈100 · e⌋, 739≡ ⌈100 · e2⌋: the columns differ by aboutκ, as
expected.

Consequently,

f1(z) := ∂

∂u
F(z,u)

∣∣∣∣
u=1
= F(z) (G(z)+ R1(z)) , R1(z) =

∞∑

j=2

G(z j ).

Again, the singularity type is that ofF(z) multiplied by a logarithmic term,

(14) f1(z) ∼
z→ρ F(z)(G(z)+ r1), r1 ≡

∞∑

j=2

G(ρ j ).

The mean value estimate results. Variance analysis followssimilarly. �

� VII.1. Unlabelled powersets.For the powerset constructionF = PSET(G), the statement of
Theorem VII.1 holds with

r0 =
∑

j≥2

(−1) j−1 G(ρ j )

j
,

as seen by an easy adaptation of the proof technique of Theorem VII.1. �

As we see below, beyond permutations, mappings, unlabelledfunctional graphs,
polynomials over finite fields, 2–regular graphs, and generalized derangements belong
to the exp–log schema; see Figure VII.2 for representative numerical data. Further-
more, singularity analysis gives precise information on the decomposition of largeF
objects intoG components.

ExampleVII.1. Cycles in derangements.The case of allpermutations,

P(z) = exp(K (z)), K (z) = log
1

1− z
,

is immediately seen to satisfy the conditions of Theorem VII.1: it corresponds to the radius of
convergenceρ = 1 and parameters (κ, λ) = (1,0).

Let � be a finite set of integers and consider next the classD ≡ D� of permutations
withoutany cycle of length in�. This includes standardderangements(where� = {1}). The
specification is then

{
D = SET(K)

G = CYCZ>0\�(Z)
H⇒





D(z) = exp(K (z))

G(z) = log
1

1− z
−
∑

ω∈�

zω

ω
.
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The theorem applies, withκ = 1,λ := −∑ω∈� ω−1. In particular, the mean number of cycles
in a random generalized derangement of sizen is logn+ O(1). . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleVII.2. Connected components in 2–regular graphs.The class of (undirected)2–
regular graphsis obtained by the set construction applied to components that are themselves
undirected cyclesof length≥ 3 (see p. 133 and Example VI.2, p. 395). In that case:





F = SET(G)

G = UCYC≥3(Z)
H⇒





F(z) = exp(G(z))

G(z) = 1

2
log

1

1− z
− z

2
− z2

4
.

This is an exp–log scheme withκ = 1/2 andλ = −3/4. In particular the number of compo-
nents is asymptotic to12 logn, both in the mean and in probability. . . . . . . . . . . . . . . . . . . . . . .�

ExampleVII.3. Connected components in mappings.The classF of mappings(functions
from a finite set to itself) was introduced in Subsection II. 5.2, p. 129. The associated digraphs
are described as labelled sets of connected components (K), themselves (directed) cycles of
trees (T ), so that the class of all mappings has an EGF given by

F(z) = exp(K (z)), K (z) = log
1

1− T(z)
, T(z) = zeT(z),

with T the Cayley tree function. The analysis of inverse functions (Section VI. 7and Exam-
ple VI.8, p. 403) has shown thatT(z) is singular atz = e−1, where it admits the singular
expansionT(z) ∼ 1−

√
2
√

1− ez. ThusG(z) is logarithmic withκ = 1/2 andλ = − log
√

2.
As a consequence, the number of connected mappings satisfies

Kn ≡ n![zn]K (z) = nn
√
π

2n

(
1+ O(n−1/2)

)
.

In other words:the probability for a random mapping of size n to consist of a single component

is∼
√
π
2n . Also, the mean number of components in a random mapping of sizen is

1

2
logn+ log

√
2eγ + O(n−1/2).

Similar properties hold for mappings without fixed points, which are analogous to derangements
and were discussed in Chapter II, p. 130. We shall establish below, p. 480, thatunlabelled
functional graphs also belong to the exp–log schema. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .�

ExampleVII.4. Factors of polynomials over finite fields.Factorization properties of ran-
dom polynomials over finite fields are of importance in various areas of mathematics and have
applications to coding theory, symbolic computation, and cryptography [51, 599, 541]. Exam-
ple I.20, p. 90, offers a preliminary discussion.

Let Fp be the finite field withp elements andP ⊂ Fp[X] the set of monic polynomials
with coefficients in the field. We view these polynomials as (unlabelled) combinatorial objects
with size identified to degree. Since a polynomial is specified by the sequence of its coefficients,
one has, withA the “alphabet” of coefficients,A = Fp treated as a collection of atomic objects:

(15) P = SEQ(A) H⇒ P(z) = 1

1− pz
,

On the other hand, the unique factorization property of polynomials entails that the classI of all
monic irreducible polynomials and the classP of all polynomials are related byP = MSET(I).
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(X + 1)
(

X10+ X9 + X8 + X6 + X4 + X3 + 1
) (

X14+ X11+ X10+ X3 + 1
)

X3 (X + 1)
(

X2 + X + 1
)2 (

X17+ X16+ X15+ X11+ X9 + X6 + X2 + X + 1
)

X5(X + 1)
(

X5 + X3 + X2 + X + 1
) (

X12+ X8 + X7 + X6 + X5 + X3 + X2 + X + 1
) (

X2 + X + 1
)

X2
(

X2 + X + 1
)2 (

X3 + X2 + 1
) (

X8 + X7 + X6 + X4 + X2 + X + 1
) (

X8 + X7 + X5 + X4 + 1
)

(
X7 + X6 + X5 + X3 + X2 + X + 1

) (
X18+ X17+ X13+ X9 + X8 + X7 + X6 + X4 + 1

)

Figure VII.3 . The factorizations of five random polynomials of degree 25 overF2.
One out of five polynomials in this sample has no root in the base field (the asymptotic
probability is 1

4 by Note VII.4).

As a consequence of M̈obius inversion, one then gets (Equation (94) of Chapter I, p. 91):

(16) I (z) = log
1

1− z
+ R(z), R(z) :=

∑

k≥2

µ(k)

k
log

1

1− pzk
.

Regarding complex asymptotics, the functionR(z) of (16) is analytic in|z| < p−1/2.
Thus I (z) is of logarithmic type with radius of convergence 1/p and parameters

κ = 1, λ =
∑

k≥2

µ(k)

k
log

1

1− p1−k
.

As already noted in Chapter I, a consequence is the asymptotic estimateIn ∼ pn/n, which
constitutes a “Prime Number Theorem” for polynomials over finite fields:a fraction asymptotic
to 1/n of the polynomials inFp[X] are irreducible.Furthermore, sinceI (z) is logarithmic and
P is obtained by a multiset construction, we have an unlabelled exp–log scheme, to which
Theorem VII.1 applies. As a consequence:

The number of factors of a random polynomial of degree n has mean and variance each asymp-
totic to logn; its distribution is concentrated.

(See Figure VII.3 for an illustration; the mean value estimate appears in [378, Ex. 4.6.2.5].) We
shall revisit this example in Chapter IX, p. 672, and establish a companionGaussian limit law
for the number of irreducible factors in a random polynomial of large degree. This and similar
developments lead to a complete analysis of some of the basic algorithms known for factoring
polynomials over finite fields; see [236]. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

� VII.2. The divisor function for polynomials.Let δ(̟) for ̟ ∈ P be the total number of
monic polynomials (not necessarily irreducible) dividing̟: if ̟ = ι

e1
1 · · · ι

ek
k , where theι j

are distinct irreducibles, thenδ(̟) = (e1+ 1) · · · (ek + 1). One has

EPn(δ) =
[zn]

∏
j≥1(1+ 2z j + 3z2 j + · · · )

[zn]
∏

j≥1(1+ z j + z2 j + · · · ) =
[zn] P(z)2

[zn] P(z)
,

so that the mean value ofδ overPn is exactly(n + 1). This evaluation is relevant to poly-
nomial factorization overZ since it gives an upper bound on the number of irreducible factor
combinations that need to be considered in order to lift a factorization fromFp(X) to Z(X);
see [379, 599]. �

� VII.3. The cost of finding irreducible polynomials.Assume that it takes expected timet (n) to
testa random polynomial of degreen for irreducibility. Then it takes expected time∼ nt(n) to
finda random irreducible polynomial of degreen: simply draw a polynomial at random and test
it for irreducibility. (Testing for irreducibility can itself be achieved by developing a polynomial
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factorization algorithm which is stopped as soon as a non-trivial factor is found. See works by
Panarioet al. for detailed analyses of this strategy [468, 469].) �

Profiles of exp–log structures.Under the exp–log conditions, it is also possible
to analyse theprofile of structures, that is, the number of components of sizer for
each fixedr . The Poisson distribution (Appendix C.4:Special distributions, p. 774)
of parameterν is the law of a discrete random variableY such that

E(uY) = e−ν(1−u), P(Y = k) = e−ν
νk

k!
.

A variable Y is said to benegative binomialof parameter(m, α) if its probability
generating function and its individual probabilities satisfy:

E(uY) =
(

1− α
1− αu

)m

, P(Y = k) =
(

m+ k− 1

k

)
αk(1− α)m.

(The quantityP(Y = k) is the probability that themth success in a sequence of inde-
pendent trials with individual success probabilityα occurs at timem+ k; see [206,
p. 165] and Appendix C.4:Special distributions, p. 774.)

Proposition VII.1 (Profiles of exp–log structures). Assume the conditions of Theo-
rem VII.1 and let X(r ) be the number ofG–components of size r in anF–object. In
the labelled case, X(r ) admits a limit distribution of thePoisson type: for any fixed k,

(17) lim
n→∞PFn(X

(r ) = k) = e−ν
νk

k!
, ν = gr ρ

r , gr ≡ [zr ]G(z).

In the unlabelled case, X(r ) admits a limit distribution of thenegative-binomial type:
for any fixed k,
(18)

lim
n→∞PFn(X

(r ) = k) =
(

Gr + k− 1

k

)
αk(1− α)Gr , α = ρr , Gr ≡ [zr ]G(z).

Proof. In the labelled case, the BGF ofF with u marking the numberX(r ) of r –
components is

F(z,u) = exp
(
(u− 1)gr zr ) F(z).

Extracting the coefficient ofuk leads to

φk(z) := [uk]F(z,u) = exp
(
−gr zr ) (gr zr )k

k!
F(z).

The singularity type ofφk(z) is that ofF(z) since the prefactor (an exponential mul-
tiplied by a polynomial) is entire, so that singularity analysis applies directly. As a
consequence, one finds

[zn]φk(z) ∼ exp
(
−gr ρ

r ) (gr ρ
r )k

k!
·
(
[zn]F(z)

)
,

which provides the distribution ofX(r ) under the form stated in (17).
In the unlabelled case, the starting BGF equation is

F(z,u) =
(

1− zr

1− uzr

)Gr

F(z),
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and the analytic reasoning is similar to the labelled case. �

Proposition VII.1 will be revisited in Example IX.23, p. 675, when we examine
continuity theorems for probability generating functions. Its unlabelled version covers
in particular polynomials over finite fields; see [236, 372] for related results.

� VII.4. Mean profiles.The mean value ofX(r ) satisfies

EFn(X
(r )) ∼ gr ρ

r , EFn(X
(r )) ∼ Gr

ρr

1− ρr ,

in the labelled and unlabelled (multiset) case, respectively. In particular:the mean number of
roots of a random polynomial overFp that lie in the base fieldFp is asymptotic to p

p−1 . Also:

the probability that a polynomial has no root in the base field is asymptotic to(1− 1/p)p. (For
random polynomials with real coefficients, a famous result of Kac (1943) asserts that the mean
number of real roots is∼ 2

π logn; see [185].) �

� VII.5. Profiles of powersets.In the case of unlabelled powersetsF = PSET(G) (no repeti-
tions of elements allowed), the distribution ofX(r ) satisfies

lim
n→∞PFn(X

(r ) = k) =
(

Gr

k

)
αk(1− α)Gr−k, α = ρr

1+ ρr ;

i.e., the limit is abinomial lawof parameters(Gr , ρ
r /(1+ ρr )). �

VII. 3. Simple varieties of trees and inverse functions

A unifying theme in this chapter is the enumeration of rootedtrees determined
by restrictions on the collection of allowed node degrees (Sections I. 5, p. 64 and II. 5,
p. 125). Some set� ⊆ Z≥0 containing 0 (for leaves) and at least another num-
ber d ≥ 2 (to avoid trivialities) is fixed; in the trees considered, all outdegrees of
nodes are constrained to lie in�. Corresponding to the four combinations, unla-
belled/labelled and plane/non-plane, there are four typesof functional equations sum-
marized by Figure VII.4. In three of the four cases, namely,

unlabelled plane, labelled plane, and labelled non-plane,

the generating function (OGF for unlabelled, EGF for labelled) satisfies an equation
of the form

(19) y(z) = zφ(y(z)).

In accordance with earlier conventions (p. 194), we namesimple variety of treesany
family of trees whose GF satisfies an equation of the form (19). (The functional equa-
tion satisfied by the OGF of a degree-restricted variety of unlabelled non-plane trees
furthermore involves a Ṕolya operator8, which implies the presence of terms of the
form y(z2), y(z3), . . .: such cases are discussed below in Section VII. 5.)

The relationy = zφ(y) has already been examined in Section VI. 7, p. 402,
from the point of view of singularity analysis. For convenience, we encapsulate into a
definition the conditions of the main theorem of that section, Theorem VI.6, p. 404.
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plane non-plane

Unlabelled (OGF)

V = Z × SEQ�(V)

V(z) = zφ(V(z))

φ(u) :=∑ω∈� uω

V = Z ×MSET�(V)

V(z) = z8(V(z)))

(8 a Ṕolya operator)

Labelled (EGF)

V = Z ⋆ SEQ�(V)

V̂(z) = zφ(V̂(z))

φ(u) :=∑ω∈� uω

V = Z ⋆ SET�(V)

V̂(z) = zφ(V̂(z))

φ(u) :=∑ω∈�
uω
ω!

Figure VII.4 . Functional equations satisfied by generating functions (OGFV(z) or
EGF V̂(z)) of degree-restricted families of trees.

Definition VII.3. Let y(z) be a function analytic at0. It is said to belong to the
smooth inverse-function schemaif there exists a functionφ(u) analytic at 0, such
that, in a neighbourhood of0, one has

y(z) = zφ(y(z)),

andφ(u) satisfies the following conditions.
(H1) The functionφ(u) is such that

(20) φ(0) 6= 0, [un]φ(u) ≥ 0, φ(u) 6≡ φ0+ φ1u.

(H2) Within theopendisc of convergence ofφ at 0, |z| < R, there exists a (nec-
essarily unique) positive solution to thecharacteristic equation:

(21) ∃τ, 0< τ < R, φ(τ )− τφ′(τ ) = 0.

A classY whose generating function y(z) (either ordinary or exponential) satisfies
these conditions is also said to belong to the smooth inverse-function schema.

The schema is said to beaperiodicif φ(u) is an aperiodic function of u (Defini-
tion IV.5, p. 266).

VII. 3.1. Asymptotic counting. As we saw on general grounds in Chapters IV
and VI, inversion fails to be analytic when the first derivative of the function to be
inverted vanishes. The heart of the matter is that, at the point of failure y = τ ,
corresponding toz= τ/φ(τ) (the radius of convergence ofy(z) at 0), the dependency
y 7→ z becomes quadratic, so that its inversez 7→ y gives rise to a square-root
singularity (hence the characteristic equation). From here, the typicaln−3/2 term in
coefficient asymptotics results (Theorem VI.6, p. 404). In view of our needs in this
chapter, we rephrase Theorem VI.6 as follows.

Theorem VII.2. Let y(z) belong to thesmooth inverse-function schemain the ape-
riodic case. Then, withτ the positive root of the characteristic equation andρ =
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τ/φ(τ), one has

[zn]y(z) =
√

φ(τ)

2φ′′(τ )
ρ−n

√
πn3

[
1+ O

(
1

n

)]
.

As we also know from Theorem VI.6 (p. 404), a complete (and locally conver-
gent) expansion ofy(z) in powers of

√
1− z/ρ exists, starting with

(22) y(z) = τ − γ
√

1− z/ρ + O (1− z/ρ) , γ :=
√

2φ(τ)

φ′′(τ )
,

which implies a complete asymptotic expansion foryn = [zn]y(z) in odd powers of
1/
√

n. (The statement extends to the aperiodic case, with the necessary condition
thatn ≡ 1 mod p, whenφ has periodp.)

We have seen already that this framework covers binary, unary–binary, general
Catalan, as well as Cayley trees (Figure VI.10, p. 406). Hereis another typical appli-
cation.

ExampleVII.5. Mobiles. A (labelled) mobile, as defined by Bergeron, Labelle, and Ler-
oux [50, p. 240], is a (labelled) tree in which subtrees dangling from the root are taken up to
cyclic shift:

1 2 3!+ 3= 9 4!+ 4× 2+ 4× 3+ 4× 3× 2= 68

(Think of Alexander Calder’s creations.) The specification and EGF equation are

M = Z ⋆ (1+ CYC M) H⇒ M(z) = z

(
1+ log

1

1− M(z)

)
.

(By definition, cycles have at least one components, so that the neutralstructure must be added

to allow for leaf creation.) The EGF starts asM(z) = z+ 2z2

2! + 9z3

3! + 68z4

4! + 730z5

5! + · · · ,
whose coefficients constituteEISA038037.

The verification of the conditions of the theorem are immediate. We haveφ(u) = 1+
log(1− u)−1, whose radius of convergence is 1. The characteristic equation reads

1+ log
1

1− τ −
τ

1− τ = 0,

which has a unique positive root atτ
.= 0.68215. (In fact, one hasτ = 1− 1/T(e−2), with T

the Cayley tree function.) The radius of convergence isρ ≡ 1/φ′(τ ) = 1− τ . The asymptotic
formula for the number of mobiles then results:

1

n!
Mn ∼ C · Ann−3/2, where C

.= 0.18576, A
.= 3.14461.

(This example is adapted from [50, p. 261], with corrections.) . . . . . .. . . . . . . . . . . . . . . . . . . . .�
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� VII.6. Trees with node degrees that are prime numbers.Let P be the class of all unlabelled
plane trees such that the (out)degrees of internal nodes belong to the set of prime numbers,
{2,3, 5, . . .}. One hasP(z) = z+ z3 + z4 + 2z5 + 6z6 + 8z7 + 29z8 + 50z9 + · · · , and
Pn ∼ C Ann−3/2, with A

.= 2.79256 84676. The asymptotic form “forgets” many details of the
distribution of primes, so that it can be obtained to great accuracy. (Compare with Example V.2,
p. 297 and Note VII.24, p. 480.) �

VII. 3.2. Basic tree parameters. Throughout this subsection, we consider a sim-
ple variety of treesV, whose generating function (OGF or EGF, as the case may be)
will be denoted byy(z), satisfying the inverse relationy = zφ(y). In order to place
all cases under a single umbrella, we shall writeyn = [zn]y(z), so that the number of
trees of sizen is eitherVn = yn (unlabelled case) orVn = n!yn (labelled case). We
postulate throughout thaty(z) belongs to the smooth inverse-function schema and is
aperiodic.

As already seen on several occasions in Chapter III (SectionIII. 5, p. 181), addi-
tive parameters lead to generating functions that are expressible in terms of the basic
tree generating functiony(z). Now that singularity analysis is available, such gen-
erating functions can be exploited systematically, with a wealth of asymptotic esti-
mates relative to trees of large sizes coming within easy reach. The universality of the
square-root singularity among varieties of trees that satisfy the smoothness assump-
tion of Definition VII.3 then impliesuniversalbehaviour for many tree parameters,
which we now list.

(i ) Node degrees.The degree of the root in a large random tree isO(1) on
average and with high probability, and its asymptotic distribution can be
generally determined (Example VII.6). A similar property holds for the
degree of a random nodein a random tree (Example VII.8).

(i i ) Level profilescan also be determined. The quantity of interest is the mean
number of nodes in the kth layerfrom the root in a random tree. It is seen
for instance that, near the root, a tree from a simple varietytends to grow
linearly (Example VII.7), this in sharp contrast with otherrandom tree mod-
els (for instance, increasing trees, Subsection VII. 9.2, p. 526), where the
growth is exponential. This property is one of the numerous indications that
random trees taken from simple varieties are skinny and far from having a
well-balanced shape. A related property is the fact that path length is on
averageO(n

√
n) (Example VII.9), which means that the typical depth of a

random node in a random tree isO(
√

n).

These basic properties are only the tip of an iceberg. Indeed, Meir and Moon, who
launched the study of simple varieties of trees (the seminalpaper [435] can serve as
a good starting point) have worked out literally several dozen analyses of parameters
of trees, using a strategy similar to the one presented here6. We shall have occasion,
in Chapter IX, to return to probabilistic properties of simple varieties of trees satisfy-
ing the smooth inverse-function schema—we only indicate here for completeness that

6The main difference is that Meir and Moon appeal to the Darboux–Pólya method discussed in Sec-
tion VI. 11 (p. 433) instead of singularity analysis.
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Tree φ(w) τ, ρ PGF of root degree (type)

simple variety — — uφ′(τu)/φ′(τ )

binary (1+ w)2 1, 1
4

1
2u+ 1

2u2 (Bernoulli)

unary–binary 1+ w + w2 1, 1
3

1
3u+ 2

3u2 (Bernoulli)

general (1− w)−1 1
2,

1
4 u/(2− u)2 (sum of two geometric)

Cayley ew 1, e−1 ueu−1 (shifted Poisson)

Figure VII.5 . The distribution of root degree in simple varieties of trees of the
smooth inverse-function schema.

height is known generally to scale as
√

n and is associated to a limiting theta distribu-
tion (see Proposition V.4, p. 329 for the case of Catalan trees and Subsection VII. 10.2,
p. 535, for general results), with similar properties holding true for width as shown by
Odlyzko–Wilf and Chassaing–Marckert–Yor [112, 463].

Example VII.6. Root degrees in simple varieties.Here is an immediate application of
singularity analysis, one that exemplifies the synthetic type of reasoning that goes along with
the method. Take for notational simplicity a simple familyV that is unlabelled, with OGF
V(z) ≡ y(z). Let V [k] be the subset ofV composed of all trees whose root has degree equal
to k. Since a tree inV [k] is formed by appending a root to a collection ofk trees, one has

V [k](z) = φkzy(z)k, φk := [wk]φ(w).

For anyfixed k, a singular expansion results from raising both members of (22) to thekth power;
in particular,

(23) V [k](z) = φkz

[
τk − kγ τk−1

√
1− z

ρ
+ O

(
1− z

ρ

)]
.

This is to be compared with the basic estimate (22): the ratioV [k]
n /Vn is then asymptotic to

the ratio of the coefficients of
√

1− z/ρ in the corresponding generating functions,V [k](z) and
V(z) ≡ y(z). Thus, for any fixedk, we have found that

(24)
V [k]

n

Vn
= ρkφkτ

k−1+ O(n−1/2).

(The error term can be strengthened toO(n−1) by pushing the expansion one step further.)

The ratioV [k]
n /Vn is the probability that the root of a random tree of sizen has degreek.

Sinceρ = 1/φ′(τ ), one can rephrase (24) as follows:In a smooth simple variety of trees, the
random variable1 representing root-degree admits a discrete limit distribution given by

(25) lim
n→∞PVn(1 = k) = kφkτ

k−1

φ′(τ )
.

(By general principles expounded in Chapter IX, convergence is uniform.) Accordingly, the
probability generating function (PGF) of the limit law admits the simple expression

EVn

(
u1
)
= uφ′(τu)/φ′(τ ).
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The distribution is thus characterized by the fact that its PGF is a scaled version of thederivative
of the basic tree constructorφ(w). Figure VII.5 summarizes this property together with its
specialization to our four pilot examples. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

Additive functionals. Singularity analysis applies to many additive parameters of
trees. Consider three tree parameters,ξ, η, σ satisfying the basic relation,

(26) ξ(t) = η(t)+
deg(t)∑

j=1

σ(t j ),

which can be taken to defineξ(t) in terms of the simpler parameterη(t) (a “toll”, cf
Subsection VI. 10.3, p. 427) and the sum of values ofσ over the root subtrees oft
(with deg(t) the degree of the root andt j the j th root-subtree oft). In the case of a
recursive parameter,ξ ≡ σ , unwinding the recursion shows thatξ(t) := ∑s�t η(s),
where the sum is extended toall subtreess of t . As we are interested in average-case
analysis, we introduce the cumulative GFs,

(27) 4(z) =
∑

t

ξ(t)z|t |, H(z) =
∑

t

η(t)z|t |, 6(z) =
∑

t

σ(t)z|t |,

assuming again an unlabelled variety of trees for simplicity.
We first state a simple algebraic result which formalizes several of the calculations

of Section III. 5, p. 181, dedicated to recursive tree parameters.

Lemma VII.1 (Iteration lemma for trees). For tree parameters from a simple variety
with GF y(z) that satisfy the additive relation(26), the cumulative generating func-
tions(27), are related by

(28) 4(z) = H(z)+ zφ′(y(z))6(z).

In particular, if ξ is definedrecursivelyin terms ofη, that is,σ ≡ ξ , one has

(29) 4(z) = H(z)

1− zφ′(y(z))
= zy′(z)

y(z)
H(z).

Proof. We have

4(z) = H(z)+ 4̃(z), where 4̃(z) :=
∑

t∈V


z|t |

deg(t)∑

j=1

σ(t j )


 .

Spitting the expression of̃4(z) according to the valuesr of root degree, we find

4̃(z) =
∑

r≥0

φr z1+|t1|+···+|tr | (σ (t1)+ σ(t2)+ · · · + σ(tr ))

= z
∑

r≥0

φr

(
6(z)y(z)r−1+ y(z)6(z)y(z)r−2+ · · · y(z)r−16(z)

)

= z6(z) ·
∑

r≥0

(
rφr y(z)r−1

)
,

which yields the linear relation expressing4 in (28).
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In the recursive case, the function4 is determined by a linear equation, namely
4(z) = H(z) + zφ′(y(z))4(z), which, once solved, provides the first form of (29).
Differentiation of the fundamental relationy = zφ(y) yields the identity

y′(1− zφ′(y)) = φ(y) = y

z
, i.e., 1− zφ′(y) = y

zy′
,

from which the second form results. �

� VII.7. A symbolic derivation.For a recursive parameter, we can view4(z) as the GF of trees
with one subtree marked, to which is attached a weight ofη. Then (29) can be interpreted as
follows: point to an arbitrary node at a tree inV (the GF iszy′(z)), remove the tree attached to
this node (a factor ofy(z)−1), and replace it by the same tree but now weighted byη (the GF is
H(z)). �

� VII.8. Labelled varieties.Formulae (28) and (29) hold verbatim for labelled trees (either
of the plane or non-plane type), provided we interprety(z),4(z), H(z) as EGFs:4(z) :=∑

t∈V ξ(t)z|t |/|t |!, and so on. �

ExampleVII.7. Mean level profile in simple varieties.The question we address here is that
of determining the mean number of nodes at levelk (i.e., at distancek from the root) in a
random tree of some large sizen. (An explicit expression for the joint distribution of nodes at
all levels has been developed in Subsection III. 6.2, p. 193, but this multivariate representation
is somewhat hard to interpret asymptotically.)

Let ξk(t) be the number of nodes at levelk in tree t . Define the generating function of
cumulated values,

Xk(z) :=
∑

t∈V
ξk(t)z

|t |.

Clearly,X0(z) ≡ y(z) since each tree has a unique root. Then, since the parameterξk is the sum
over subtrees of parameterξk−1, we are in a situation exactly covered by (28), withη(t) ≡ 0.
The recurrenceXk(z) = zφ′(y(z))4k−1(z), is then immediately solved, to the effect that

(30) Xk(z) =
(
zφ′(y(z))

)k y(z).

Making use of the (analytic) expansion ofφ′ at τ , namely,φ′(y) ∼ φ′(τ )+ φ′′(τ )(y− τ) and
of ρφ′(τ ) = 1, one obtains, for any fixedk:

Xk(z) ∼
(

1− kγρφ′′(τ )
√

1− z

ρ

)(
τ − γ

√
1− z

ρ

)
∼ τ − γ (τρφ′′(τ )k+ 1)

√
1− z

ρ
.

Thus comparing the singular part ofXk(z) to that of y(z), we find: For fixed k, the mean
number of nodes at level k in a tree is of the asymptotic form

EVn [ξk] ∼ Ak+ 1, A := τρφ′′(τ ).
This result was first given by Meir and Moon [435]. The striking fact isthat, although the
number of nodes at levelk can at least double at each level, growth is only linear on average.
In figurative terms, the immediate vicinity of the root starts like a “cone”, and trees of simple
varieties tend to be rather skinny near their base.

When used in conjunction with saddle-point bounds (p. 246), the exact GF expression
of (30) additionally provides a probabilistic upper bound on the height of trees of the form
O(n1/2+δ) for anyδ > 0. Indeed restrictz to the interval(0, ρ) and assume thatk = n1/2+δ .
Let χ be the height parameter. First, we have

(31) PVn(χ ≥ k) ≡ EVn([[ξk ≥ 1]]) ≤ EVn(ξk).
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Figure VII.6 . Three random 2–3 trees (� = {0, 2, 3}) of sizen = 500 have height,
respectively, 48, 57, 47, in agreement with the fact that height is typically O(

√
n).

Next by saddle-point bounds, for any legal positivex (that is, 0< x < Rconv(φ)),

(32) EVn(ξk) ≤
(
xφ′(y(x))

)k y(x)x−n ≤ τ
(
xφ′(y(x))

)k x−n.

Fix now x = ρ − nδ
n . Local expansions then show that

(33) log
((

xφ′(y(x))
)k x−n

)
≤ −Kn3δ/2+ O

(
nδ
)
,

for some positive constantK . Thus, by (31) and (33):In a smoothsimple variety of trees,
the probability of height exceeding n1/2+δ is exponentially small, being of the rough form
exp(−n3δ/2). Accordingly, the mean height is O(n1/2+δ) for any δ > 0. The moments of
height were characterized in [246]: the mean is asymptotic toλ

√
n and the limit distribution is

of the Theta type encountered in Example V.8, p. 326, in the particular case of general Catalan
trees, where explicit expressions are available. (Further local limit andlarge deviation estimates
appear in [230]; we shall return to the topic of tree height in Subsection VII. 10.1, p. 532.)
Figure VII.6 displays three random trees of sizen = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� VII.9. The variance of level profiles.The BGF of trees withu marking nodes at levelk
has an explicit expression, in accordance with the developments of Chapter III. For instance
for k = 3, this iszφ(zφ(zφ(uy(z)))). Double differentiation followed by singularity analysis
shows that

VVn [ξk] ∼ 1

2
A2k2− 1

2
A(3− 4A)k+ τ A− 1,

another result of Meir and Moon [435]. The precise analysis of the mean and variance in
the interesting regime wherek is proportional to

√
n is also given in [435], but it requires

either the saddle-point method (Chapter VIII) or the adapted singularity analysis techniques of
Theorem IX.16, p. 709. �

ExampleVII.8. Mean degree profile.Let ξ(t) ≡ ξk(t) be the number of nodes of degreek
in random tree of some varietyV. The analysis extends that of the root degree seen earlier. The
parameterξ is an additive functional induced by the basic parameterη(t) ≡ ηk(t) defined by
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ηk(t) := [[deg(t) = k]]. By the analysis of root degree, we have for the GF of cumulated values
associated toη

H(z) = φkzy(z)k, φk := [wk]φ(w),

so that, by the fundamental formula (29),

X(z) = φkzy(z)k
zy′(z)
y(z)

= z2φky(z)k−1y′(z).

The singular expansion ofzy′(z) can be obtained from that ofy(z) by differentiation (Theo-
rem VI.8, p. 419),

zy′(z) = 1

2
γ

1√
1− z/ρ

+ O(1),

the corresponding coefficient satisfying [zn](zy′) = nyn. This gives immediately the singularity
type of X, which is of the form of an inverse square root. Thus,

X(z) ∼ ρφkτ
k−1(zy′(z))

implying (ρ = τ/φ(τ))
Xn

nyn
∼ φkτ

k

φ(τ)
.

Consequently, one has:

Proposition VII.2. In a smoothsimple variety of trees, the mean number of nodes of degree k
is asymptotic toλkn, whereλk := φkτ

k/φ(τ). Equivalently, the probability distribution of the
degree1⋆ of a random node in a random tree of size n satisfies

lim
n→∞Pn(1

⋆) = λk ≡
φkτ

k

φ(τ)
, with PGF :

∑

k

λkuk = φ(uτ)

φ(τ)
.

For the usual tree varieties this gives:

Tree φ(w) τ, ρ probability distribution (type)

binary (1+ w)2 1, 1
4 PGF: 1

4 +
1
2u+ 1

4u2 (Bernoulli)

unary–binary 1+ w + w2 1, 1
3 PGF: 1

3 +
1
3u+ 1

3u2 (Bernoulli)

general (1− w)−1 1
2,

1
4 PGF: 1/(2− u) (Geometric)

Cayley ew 1, e−1 PGF:eu−1 (Poisson)

For instance, asymptotically, a general Catalan tree has on averagen/2 leaves,n/4 nodes of
degre 1n/8 of degree 2, and so on; a Cayley tree has∼ ne−1/k! nodes of degreek; for binary
(Catalan) trees, the four possible types of nodes each appear with asymptotic frequency 1/4.
(These data agree with the fact that a random tree underVn is distributed like a branching
process tree determined by the PGFφ(uτ)/φ(τ); see Subsection III. 6.2, p. 193.) . . . . . . . . .�

� VII.10. Variances.The variance of the number ofk–ary nodes is∼ νn, so that the distribu-
tion of the number of nodes of this type is concentrated, for each fixedk. The starting point is
the BGF defined implicitly by

Y(z, u) = z
(
φ(Y(z,u))+ φk(u− 1)Y(z, u)k

)
,

upon taking a double derivative with respect tou, settingu = 1, and finally performing singu-
larity analysis on the resulting GF. �
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� VII.11. The mother of a random node.The discrepancy in distributions between the root
degree and the degree of a random node deserves an explanation. Pick up a node distinct from
the root at random in a tree and look at the degree of its mother. The PGF of the law is in
the limit uφ′(uτ)/φ′(τ ). Thus the degree of the root is asymptotically the same as that of the
mother of any non-root node.

More generally, letX have distributionpk := P(X = k). Construct a random variableY
such that the probabilityqk := P(Y = k) is proportional both tok and pk. Then for the
associated PGFs, the relationq(u) = p′(u)/p′(1) holds. The law ofY is said to be thesize-
biasedversion of the law ofX. Here, a mother is picked up with an importance proportional to
its degree. In this perspective, Eve appears to be just like a random mother. �

ExampleVII.9. Path length. Path length of a tree is the sum of the distances of all nodes to
the root. It is defined recursively by

ξ(t) = |t | − 1+
deg(t)∑

j=1

ξ(t j )

(Example III.15, p. 184 and Subsection VI. 10.3, p. 427). Within the framework of additive
functional of trees (28), we haveη(t) = |t | − 1 corresponding to the GF of cumulated values
H(z) = zy′(z)− y(z), and the fundamental relation (29) gives

X(z) = (zy′(z)− y(z))
zy′(z)
y(z)

= z2y′(z)2

y(z)
− zy′(z).

The type ofy′(z) at its singularity isZ−1/2, whereZ := (1− z/ρ). The formula forX(z)
involves the square ofy′, so that the singularity ofX(z) is of type Z−1, resembling a simple
pole. This means that the cumulated valueXn = [zn]X(z) grows likeρ−n, so that the mean
value ofξ overVn has growthn3/2. Working out the constants, we find

X(z)+ zy′(z) ∼ γ 2

4τ

1

Z
+ O(Z−1/2).

As a consequence:

Proposition VII.3. In a random tree of size n from a smooth simple variety, the expectation of
path length satisfies

(34) EVn(ξ) = λ
√
πn3+ O(n), λ :=

√
φ(τ)

2τ2φ′′(τ )
.

For our classical varieties, the main terms of (34) are then:

Binary unary–binary general Cayley

∼
√
πn3 ∼ 1

2

√
3πn3 ∼ 1

2

√
πn3 ∼

√
1
2πn3.

Observe that the quantity1nEVn(ξ) represents the expected depth of a random node in a random
tree (the model is then [1. .n]×Vn), which is thus∼ λ√n. (This result is consistent with height
of a tree being with high probability of orderO(n1/2).) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� VII.12. Variance of path length.Path length can be analysed starting from the bivariate gen-
erating function given by a functional equation of the difference type (see Chapter III, p. 185),
which allows for the computation of higher moments. The standard deviationis found to be
asymptotic to32n3/2 for some computable constant32 > 0, so that the distribution is spread.
Louchard [416] and Taḱacs [566] have additionally worked out the asymptotic form of all mo-
ments, leading to a characterization of the limit law of path length that can be described in terms
of the Airy function: see Subsection VII. 10.1, p. 532. �
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# components ∼ 1
2 logn

# cyclic nodes ∼ √πn/2

# terminal nodes ∼ ne−1

# nodes of in-degreek ∼ ne−k/k!

Tail length (λ) ∼ √πn/8

Cycle length (µ) ∼ √πn/8

Tree size ∼ n/3

Component size ∼ 2n/3

Figure VII.7 . Expectations of the main additive parameters of random mappings of sizen.

� VII.13. Generalizations of path length.Define thesubtree size indexof orderα ∈ R≥0
to beξ(t) ≡ ξα(t) := ∑

s�t |s|α , where the sum is extended to all the subtreess of t . This
corresponds to a recursively defined parameter withη(t) = |t |α . The results of Section VI. 10
relative to Hadamard products and polylogarithms make it possible to analyse the singularities
of H(z) andX(z). It is found that there are three different regimes

α > 1
2 α = 1

2 α < 1
2

EVn(ξ) ∼ Kαnα EVn(ξ) ∼ K1/2n logn EVn(ξ) ∼ Kαn

where eachKα is a computable constant. (This extends the results of Subsection VI. 10.3,
p. 427 to all simple varieties of trees that are smooth.) �

VII. 3.3. Mappings. The basic construction of mappings (Chapter II, p. 129),

(35)





F = SET(K)

K = CYC(T )

T = Z ⋆ SET(T )

H⇒





F = exp(K )

K = log
1

1− T
T = zeT ,

builds maps from Cayley trees, which constitute a smooth simple variety. The con-
struction lends itself to a number of multivariate extensions. For instance, we al-
ready know from Example VII.3, p. 449, that thenumber of componentsis asymptotic
to 1

2 logn, both on average and in probability.
Take next the parameterχ equal to the number of cyclic points, which gives rise

to the BGF

F(z,u) = exp

(
log

1

1− uT

)
= (1− uT)−1.

The mean number of a cyclic points, for a random mapping of sizen, is accordingly

(36) µn ≡ EFn [χ ] = n!

nn
[zn]

(
∂

∂u
F(z,u)

∣∣∣∣
u=1

)
= n!

nn
[zn]

T

(1− T)2
.

Singularity analysis is immediate, since

T

(1− T)2
∼

z→e−1

1

2

1

1− ez
−→ [zn]

T

(1− T)2
∼

n→∞
1

2
en.

Thus:The mean number of cyclic points in a random mapping of size n is asymptotic
to
√
πn/2.
Many parameters can be similarly analysed in a systematic manner, thanks to

generating function, as shown in the survey [247]: see Figure VII.7 for a summary
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Figure VII.8 . Two views of a random mapping of sizen = 100. The random map-
ping has three connected components, with cycles of respective size 2, 4, 4; it is made
of fairly skinny trees, has a giant component of size 75, and its diameterequals 14.

of results whose proofs we leave as exercises to the reader. The left-most table de-
scribes global parameters of mappings; the right-most table is relative to properties of
random point in randomn-mapping:λ is thedistance to its cycleof a random point,
µ the length of the cycleto which the point leads, tree size and component size are,
respectively, the size of the largest tree containing the point and the size of its (weakly)
connected component. In particular, a random mapping of size n has relatively few
components, some of which are expected to be of a large size.

The estimates of Figure VII.7 are in fair agreement with whatis observed on
the single sample of sizen = 100 of Figure VII.8: this particular mapping has 3
components (the average is about 2.97), 10 cyclic points (the average, as calculated
in (36), is about 12.20), but a fairly large diameter—the maximum value ofλ + µ,
taken over all nodes—equal to 14, and a giant component of size75. The proportion
of nodes of degree 0,1,2,3,4 turns out to be, respectively, 39%, 33%, 21%, 7%,
1%, to be compared against the asymptotic values given by a Poisson law of rate 1
(analogous to the degree profile of Cayley trees found in Example VII.8); namely
36.7%, 36.7%, 18.3%, 6.1%, 1.5%.
� VII.14. Extremal statistics on mappings.Let λmax, µmax, andρmax be the maximum val-
ues ofλ, µ, andρ, taken over all the possible starting points, whereρ = λ + µ. Then, the
expectations satisfy [247]

EFn(λ
max) ∼ κ1

√
n, EFn(µ

max) ∼ κ2
√

n, EFn(ρ
max) ∼ κ3

√
n,

whereκ1 =
√

2π log 2
.= 1.73746,κ2

.= 0.78248 andκ3
.= 2.4149. (For the estimate relative

to ρmax, see also [12].)
The largest tree and the largest components have expectations asymptotic, respectively, to

δ1n andδ2n, whereδ1
.= 0.48 andδ2

.= 0.7582. �



464 VII. APPLICATIONS OF SINGULARITY ANALYSIS

The properties outlined above for the class ofall mappings also prove to be uni-
versal for a wide variety of mappings defined by degree restrictions of various sorts:
we outline the basis of the corresponding theory in Example VII.10, then show some
surprising applications in Example VII.11.

ExampleVII.10. Simple varieties of mappings.Let� be a subset of the integers containing 0
and at least another integer greater than 1. Consider mappingsφ ∈ F such that the number of
preimages of any point is constrained to lie in�. Such special mappings may serve to model
the behaviour of special classes of functions under iteration, and are accordingly of interest in
various areas of computational number theory and cryptography. For instance, the quadratic
functionsφ(x) = x2 + a overFp have the property that each elementy has either zero, one,
or two preimages (depending on whethery − a is a quadratic non-residue, 0, or a quadratic
residue).

The basic construction of mappings needs to be amended. Start with the family of treesT
that are the simple variety corresponding to�:

(37) T = zφ(T), φ(w) :=
∑

ω∈�

uω

ω!
.

At any vertex on a cycle, one must graftr trees with the constraint thatr + 1 ∈ � (since one
edge is coming from the cycle itself). Such legal tuples with a root appended are represented by

(38) U = zφ′(T),

sinceφ is an exponential generating function and shift (r 7→ (r + 1)) corresponds to differenti-
ation. Then connected components and components are formed in the usual way by

(39) K = log
1

1−U
, F = exp(K ) = 1

1−U
.

The three relations (37), (38), (39) fully determine the EGF of�–restricted mappings.
The functionφ is a subseries of the exponential function; hence, it is entire and it satisfies

automatically the smoothness conditions of Theorem VII.2, p. 453. Withτ the characteristic
value, the functionT(z) then has a square-root singularity atρ = τ/φ(τ). The same holds for
U , which admits the singular expansion (withγ1 a constant simply related toγ of equation (22))

(40) U (z) ∼ 1− γ1

√
1− z

ρ
,

sinceU = zφ′(T). Thus, eventually:

F(z) ∼ κ√
1− z

ρ

, κ := 1

γ1
.

There results theuniversality of an n−1/2 counting lawin such constrained mappings:

Proposition VII.4. Consider mappings with node degrees in a set� ⊆ Z≥0, such that the
corresponding tree family belongs to the smooth implicit function schema and isaperiodic. The
number of mappings of size n satisfies

1

n!
Fn ∼

κ√
πn
ρ−n, κ =

√
φ′(τ )2

2φ(τ)φ′′(τ )
.

This statement nicely extends what is known to hold for unrestricted mappings. The anal-
ysis of additive functionals can then proceed on lines very similar to the case of standard map-
pings, to the effect that the estimates of the same form as in Figure VII.7 hold, albeit with



VII. 3. SIMPLE VARIETIES OF TREES AND INVERSE FUNCTIONS 465

different multiplicative factors. The programme just sketched has been carried out in a thor-
ough manner by Arney and Bender [18], whose paper provides a detailed treatment. . . . . . .�

ExampleVII.11. Applications of random mapping statistics.There are interesting conse-
quences of the foregoing asymptotic theory of random mappings in several areas of computa-
tional mathematics, as we now briefly explain.

Random number generators.Many (pseudo) random number generators operate by iterat-
ing a given functionϕ over a finite domaineE ; usually,E is a large integer interval [0. . N−1].
Such a scheme produces a pseudo-random sequenceu0, u1, u2, . . ., whereu0 is the “seed” and

un+1 = ϕ(un).

Particular strategies are known for the choice ofϕ, which ensure that the “period” (the maxi-
mum ofρ = λ+ µ, whereλ is the distance to cycle andµ is the cycle’s length) is of the order
of N: this is for instance granted by linear congruential generators and feedback register algo-
rithms; see Knuth’s authoritative discussion in [379, Ch. 3]. By contrast, a randomly chosen
functionϕ has expectedO(

√
N) cycle time (Figure VII.7, p. 462), so that it is highly likely to

give rise to a poor generator. As the popular adage says: “A randomrandom number generator
is bad!”. Accordingly, one can make use of the results of Figure VII.7 and Example VII.10 in
order to compare statistical properties of a proposed random number generator to properties of
a random function, and discard the former if there is a manifest closeness.

For instance, takeϕ to be

ϕ(x) := x2+ 1 mod(106+ 3),

where the modulus is a prime number. A random mapping of size(106+3) is expected to cycle
on average after about 1250 steps (the expectation ofρ = λ+µ is∼ √πN/2 by Figure VII.7).
From five starting valuesu0, we observe the following periods

(41)
u0 : 3 31 314 3141 31415 314159

ρ ≡ λ+ µ : 1569 687 985 813 557 932

whose magnitude looks suspiciously like
√

N. Such a random number generator is thus to be
discarded. For similar reasons, von Neumann’s well-known “middle-square” procedure (start
from anℓ-digit number, then repeatedly square and extract the middle digits) makes for a rather
poor random number generator [379, p. 5]. (Related applications to cryptography are presented
by Quisquater and Delescaille in [501].)

Floyd’s cycle detection.There is a spectacular algorithm due to Floyd [379, Ex. 3.1.6],
for cycle detection, which is well worth knowing when one needs to experiment with large
mappings. Given an initial seedx0 and a mappingϕ, Floyd’s algorithm determines, up to a
small factor, the value ofρ(x0) = λ(x0)+ µ(x0), using onlytwo registers. The principle is as
follows. Start a tortoise and a hare onu0 at time 0; then, let the tortoise move at speed 1 along
the rho-shaped path and let the hare move at twice the speed. Afterλ(x0) steps, the tortoise
joins the cycle, from which time on, the hare, which is already on the cycle, will catch the
tortoise after at mostµ(x0) steps, since their speed differential on the cycle is one. Pictorially:

λ µ
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In more dignified terms, setting

X0 = u0, Xn+1 = ϕ(Xn), and Y0 = u0, Yn+1 = ϕ(ϕ(Xn)),

we have the property that the first valueν such thatXν = Yν ≡ X2ν must satisfy the inequalities

(42) λ ≤ ν ≤ λ+ µ ≤ 2ν.

The corresponding algorithm is then extremely short:

Algorithm: Floyd’s Cycle Detector:
tortoise := x0; hare := x0; ν := 0;
repeat

tortoise :=ϕ(tortoise); hare := ϕ(ϕ(hare)); ν := ν + 1;
until tortoise = hare {ν is an estimate ofλ+ µ in the sense of (42)}.

Pollard’s rho method for integer factoring.Pollard [487] had the insight to exploit Floyd’s
algorithm in order to develop an efficient integer factoring method. Assumeheuristicallythat a
quadratic functionx 7→ x2+a mod p, with p a prime number, has statistical properties similar
to those of a random function (we have verified a particular case by (41)above). It must then
tend to cycle after about

√
p steps. LetN be a (large) number to be factored, and assume for

simplicity that N = pq, with p andq both prime (but unknown!). Choose a randoma and a
random initial valuex0, fix

ϕ(x) = x2+ a (modN),

and run the hare-and-tortoise algorithm. By the Chinese Remainder Theorem, the value of a
numberx mod N is determined by the pair(x mod p, x modq); the tortoiseT and the hareH
can then be seen as running two simultaneous races, one modulop, the other moduloq. Say
that p < q. After about

√
p steps, one is likely to have

H ≡ T (modp),

while, most probably, hare and tortoise will be non-congruent modq. In other words, the
greatest common divisor of the difference(H − T) andN will provide p; hence it factorsN.
The resulting algorithm is also extremely short:

Algorithm: Pollard’s Integer Factoring:
choosea, x0 randomly in [0. . N − 1];
T := x0; H := x0;
repeat

T := (T2+ a) mod N; H := (H2+ a)2+ a mod N;
D := gcd(H − T, N);

until D 6= 1 {if D 6= 0, a non-trivial divisor has been found}.
The agreement with what the theory of random mappings predicts is excellent: one indeed
obtains an algorithm that factors large numbersN in O(N1/4) operations with high probability
(see for instance the data in [538, p. 470]).

Although Pollard’s algorithm is, for very largeN, subsumed by other factoring methods, it
is still the best for moderate values ofN or for numbers with small divisors, where it proves far
superior to trial divisions. Equally importantly, similar ideas serve in many areas of computa-
tional number theory; for instance the determination of discrete logarithms. (Proving rigorously
what one observes in simulations is another story: it often requires advanced methods of number
theory [23, 442].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�
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� VII.15. Probabilities of first-order sentences.A beautiful theorem of Lynch [426], much
in line with the global aims of analytic combinatorics, gives a class of properties of random
mappings for which asymptotic probabilities are systematically computable. In mathematical
logic, a first-order sentence is built out of variables, equality, boolean connectives (∨,∧,¬,
etc), and quantifiers (∀, ∃). In addition, there is a function symbolϕ, representing a generic
mapping.

Theorem. Given a property P expressed by a first-order sentence, letµn(P) be the
probability that P is satisfied by a random mappingϕ of size n. Then the quantity
µ∞(P) = limn→∞ µn(P) exists and its value is given by an expression consisting
of integer constants and the operators+,−,×,÷, and ex .

For instance:

P : ϕ is perm. ϕ without fixed pt. ϕ has #leaves≥ 2

∀x∃yϕ(y) = x ∀x¬ϕ(x) = x ∃x, y [x 6= y ∧ ∀z[ϕ(z) 6= x ∧ ϕ(z) 6= y]]

µ∞(P) : 0 e−1 1

One can express in this language a property likeP12 : “all cycles of length 1 are attached to

trees of height at most 2”, for which the limit probability ise−1+e−1+e−1
. The proof of the theo-

rem is based on Ehrenfeucht games supplemented by ingenious inclusion–exclusion arguments.
(Many cases, likeP12, can be directly treated by singularity analysis.) Compton [125, 126, 127]
has produced lucid surveys of this area, known as finite model theory. �

VII. 4. Tree-like structures and implicit functions

The aim of this section is to demonstrate the universality ofthe square-root sin-
gularity type for classes of recursively defined structures, which considerably extend
the case of (smooth) simple varieties of trees. The startingpoint is the investigation of
recursive classesY, with associated GFy(z), that correspond to a specification:

(43) Y = G[Z,Y] H⇒ y(z) = G(z, y(z)).

In the labelled case,y(z) is an EGF andG may be an arbitrary composition of basic
constructors, which is reflected by a bivariate functionG(z, w); in the unlabelled case,
y(z) is an OGF andG may be an arbitrary composition of unions, products, and se-
quences. (Ṕolya operators corresponding to unlabelled sets and cyclesare discussed in
Section VII. 5, p. 475.) This situation covers structures that we have already seen, like
Schr̈oder’s bracketing systems (Chapter I, p. 69) and hierarchies (Chapter II, p. 128),
as well as new ones to be examined here; namely, paths with diagonal steps and trees
with variable node sizes or edge lengths.

VII. 4.1. The smooth implicit-function schema. The investigation of (43) ne-
cessitates certain analytic conditions to be satisfied by the bivariate functionG, which
we first encapsulate into the definition of a schema.

Definition VII.4. Let y(z) be a function analytic at0, y(z) =∑n≥0 ynzn, with y0 = 0
and yn ≥ 0. The function is said to belong to thesmooth implicit-function schemaif
there exists a bivariate G(z, w) such that

y(z) = G(z, y(z)),

where G(z, w) satisfies the following conditions.
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(I1): G(z, w) =∑m,n≥0 gm,nzmwn is analytic in a domain|z| < R and|w| < S,
for some R, S> 0.

(I2): The coefficients of G satisfy

(44)
gm,n ≥ 0, g0,0 = 0, g0,1 6= 1,
gm,n > 0 for some m and for some n≥ 2.

(I3): There exist two numbers r, s, such that0< r < R and0< s< S, satisfying
the system of equations,

(45) G(r, s) = s, Gw(r, s) = 1, with r < R, s< S,

which is called thecharacteristic system.
A classY with a generating y(z) satisfying y(z) = G(z, y(z)) is also said to

belong to thesmooth implicit-function schema.

Postulating thatG(z, w) is analytic and with non-negative coefficients is a min-
imal assumption in the context of analytic combinatorics. The problem is assumed
to be normalized, so thaty(0) = 0 andG(0,0) = 0, the conditiong0,1 6= 1 being
imposed to avoid that the implicit equation be of the reducible form y = y+ · · · (first
line of (44)). The second condition of (44) means that inG(z, y), the dependency ony
is nonlinear (otherwise, the analysis reduces to rational and meromorphic asymptotic
methods of Chapter V). The major analytic condition is(I3), which postulates the
existence of positive solutionsr, s to thecharacteristic systemwithin the domain of
analyticity ofG.

The main result7due to Meir and Moon [439] expresses universality of the square-
root singularity together with its usual consequences regarding asymptotic counting.

Theorem VII.3 (Smooth implicit-function schema). Let y(z) belong to thesmooth
implicit-function schemadefined by G(z, w), with (r, s) the positive solution of the
characteristic system. Then, y(z) converges at z= r , where it has a square-root
singularity,

y(z) =
z→r

s− γ
√

1− z/r + O(1− z/r ), γ :=
√

2rGz(r, s)

Gww(r, s)
,

the expansion being valid in a1–domain. If, in addition, y(z) is aperiodic8, then r is
the unique dominant singularity of y and the coefficients satisfy

[zn]y(z) =
n→∞

γ

2
√
πn3

r−n
(
1+ O(n−1)

)
.

7This theorem has an interesting history. An overly general version of it was first stated by Bender
in 1974 (Theorem 5 of [36]). Canfield [102] pointed out ten years later that Bender’s conditions were
not quite sufficient to grant square-root singularity. A corrected statement was given by Meir and Moon
in [439] with a further (minor) erratum in [438]. We follow here the form given in Theorem 10.13 of
Odlyzko’s survey [461] with the correction of another minor misprint (regardingg0,1 which should read
g0,1 6= 1). A statement concerning a restricted class of functions (either polynomial or entire) already
appears in Hille’s book [334, vol. I, p. 274].

8In the usual sense of Definition IV.5, p. 266. Equivalently, there exist three indicesi < j < k such
that yi y j yk 6= 0 and gcd( j − i, k− i ) = 1.
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Observe that the statement implies the existence ofexactly one rootof the char-
acteristic system within the part of the positive quadrant whereG is analytic, since,
obviously,yn cannot admit two asymptotic expressions with different parameters. A
complete expansion exists in powers of(1− z/r )1/2 (for y(z)) and in powers of 1/n
(for yn), while periodic cases can be treated by a simple extension of the technical
apparatus to be developed.

The proof of this theorem first necessitates two lemmas of independent interest:
(i ) Lemma VII.2 is logically equivalent to an analytic version of the classical Im-
plicit Function Theorem found in Appendix B.5:Implicit Function Theorem, p. 753.
(i i ) Lemma VII.3 supplements this by describing what happens at apoint where the
implicit function theorem “fails”. These two statements extend the analytic and sin-
gular inversion lemmas of Subsection IV. 7.1, p. 275.

Lemma VII.2 (Analytic Implicit Functions). Let F(z, w) be z bivariate function
analytic at (z, w) = (z0, w0). Assume that F(z0, w0) = 0 and Fw(z0, w0) 6= 0.
Then, there exists a unique function y(z) analytic in a neighbourhood of z0 such that
y(z0) = w0 and F(z, y(z)) = 0.

Proof. This is a restatement of the Analytic Implicit Function Theorem of Appen-
dix B.5: Implicit Function Theorem, p. 753, upon effecting a translationz 7→ z+ z0,
w 7→ w + w0. �

Lemma VII.3 (Singular Implicit Functions). Let F(z, w) be a bivariate function an-
alytic at (z, w) = (z0, w0). Assume the conditions: F(z0, w0) = 0, Fz(z0, w0) 6= 0,
Fw(z0, w0) = 0, and Fww(z0, w0) 6= 0. Choose an arbitrary ray of angleθ ema-
nating from z0. Then there exists a neighbourhood� of z0 such that at every point z
of� with z 6= z0 and z not on the ray, the equation F(z, y) = 0 admits two analytic
solutions y1(z) and y2(z) that satisfy, as z→ z0:

y1(z) = y0− γ
√

1− z/z0+ O (1− z/z0)) , γ :=
√

2z0Fz(z0, w0)

Fww(z0, w0)
,

and similarly for y2 whose expansion is obtained by changing
√

to−√ .

Proof. Locally, near(r, s), the functionF(z, w) behaves like

(46) F + (w − s)Fw + (z− r )Fz+
1

2
(w − s)2Fww,

(plus smaller order terms), whereF and its derivatives are evaluated at the point(r, s).
SinceF = Fw = 0, cancelling (46) suggests for the solutions ofF(z, w) = 0 near
z= r the form

w − s= ±γ
√

r − z+ O(z− r ),

which is consistent with the statement. This informal argument can be justified by the
following steps (details omitted):(a) establish the existence of a formal solution in
powers of±(1− z/r )1/2; (b) prove, by the method of majorant series, that the formal
solutions also converge locally and provide a solution to the equation.

Alternatively, by the Weierstrass Preparation Theorem (Appendix B.5: Implicit
Function Theorem, p. 753) the two solutionsy1(z), y2(z) that assume the values
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Figure VII.9 . The connection problem for the equationw = 1
4z+w2 (with explicit

formsw = (1±
√

1− z)/2): the combinatorial solutiony(z) nearz= 0 and the two
analytic solutionsy1(z), y2(z) nearz= 1.

at z= r are solutions of a quadratic equation

(Y − s)2+ b(z)(Y − s)+ c(z) = 0,

whereb andc are analytic atz = r , with b(r ) = c(r ) = 0. The solutions are then
obtained by the usual formula for solving a quadratic equation,

Y − s= 1

2

(
−b(z)±

√
b(z)2− 4c(z)

)
,

which provides fory1(z) an expression as the square-root of an analytic function and
yields the statement. �

It is now possible to return to the proof of our main statement.

Proof. [Theorem VII.3] Given the two lemmas, the general idea of the proof of The-
orem VII.3 can be easily grasped. SetF(z, w) = w −G(z, w). There exists a unique
analytic functiony(z) satisfyingy = G(z, y) nearz = 0, by the analytic lemma. On
the other hand, by the singular lemma, near the point(z, w) = (r, s), there existtwo
solutionsy1, y2, both of which have a square root singularity. Given the positive char-
acter of the coefficients ofG, it is not hard to see that, ofy1, y2, the functiony1(z) is
increasing asz approachesz0 from the left (assuming the principal determination of
the square root in the definition ofγ ). A simple picture of the situation regarding the
solutions to the equationy = G(z, y) is exemplified by Figure VII.9.

The problem is then to show that a smooth analytic curve (the thin-line curve
in Figure VII.9) doesconnect the positive-coefficient solution at 0 to the increasing-
branch solution atr . Precisely, one needs to check thaty1(z) (defined nearr ) is the
analytic continuation ofy(z) (defined near 0) asz increases along the positive real
axis. This is indeed a delicateconnection problemwhose technical proof is discussed
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in Note VII.16. Once this fact is granted and it has been verified thatr is the unique
dominant singularity ofy(z) (Note VII.17), the statement of Theorem VII.3 follows
directly by singularity analysis. �

� VII.16. The connection problem for implicit functions.A proof thaty(z) andy1(z) are well
connected is given by Meir and Moon in the study [439], from which our description is adapted.

Let ρ be the radius of convergence ofy(z) at 0 andτ = y(ρ). The pointρ is a singularity
of y(z) by Pringsheim’s Theorem. The goal is to establish thatρ = r andτ = s. Regarding the
curve

C =
{
(z, y(z))

∣∣ 0≤ z≤ ρ
}
,

this means that three cases are to be excluded:

(a) C stays entirely in the interior of the rectangle

R :=
{
(z, y)

∣∣ 0≤ z≤ r, 0≤ y ≤ s
}
.

(b) C intersects the upper side of the rectangleR at some point of abscissar0 < r where
y(r0) = s.

(c) C intersects the right-most side of the rectangleRat the point(r, y(r ))with y(r ) < s.

Graphically, the three cases are depicted in Figure VII.10.

(a)
(b)

(c)

Figure VII.10 . The three
cases(a), (b), and(c), to be
excluded (solid lines).

In the discussion, we make use of the fact thatG(z, w), which has non-negative coefficients
is an increasing function in each of its argument. Also, the form

(47) y′ = Gz(z, y)

1− Gw(z, y)
,

shows differentiability (hence analyticity) of the solutiony as soon asGw(z, y) 6= 1.
Case(a) is excluded.Assume that 0< ρ < r and 0< τ < s. Then, we haveGw(r, s) =

1, and by monotonicity properties ofGw, the inequalityGw(ρ, τ ) < 1 holds. But theny(z)
must be analytic atz= ρ, which contradicts the fact thatρ is a singularity.

Case(b) is excluded.Assume that 0< r0 < r andy(r0) = s. Then there are two distinct
points on the implicit curvey = G(z, y) at the same altitude, namely(r0, s) and(r, s), implying
the equalities

y(r0) = G(r0, y(r0)) = s= G(r, s),

which contradicts the monotonicity properties ofG.
Case(c) is excluded.Assume thaty(r ) < s. Leta < r be a point chosen close enough tor .

Then abovea, there are three branches of the curvey = G(z, y), namelyy(a), y1(a), y2(a),
where the existence ofy1, y2 results from Lemma VII.3. This means that the functiony 7→
G(a, y) has a graph that intersects the main diagonal at three points, a contradiction with the
fact thatG(a, y) is a convex function ofy. �
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� VII.17. Unicity of the dominant singularity.From the previous note, we know thaty(r ) = s,
with r the radius of convergence ofy. The aperiodicity ofy implies that|y(ζ )| < y(r ) for all
|ζ | such that|ζ | = r and|ζ | 6= r (see the Daffodil Lemma IV.1, p. 266). One then has for any
suchζ the property:|Gw(ζ, y(ζ ))| < G(r, s) = 1, by monotonicity ofGw. But then by (47)
above, this implies thaty(ζ ) is analytic atζ . �

The solutions to the characteristic system (45) can be regarded as the intersection
points of two curves, namely,

G(r, s)− s= 0, Gw(r, s) = 1.

Here are plots in the case of two functionsG: the first one has non-negative coeffi-
cients whereas the second one (corresponding to a counterexample of Canfield [102])
involves negative coefficients. Positivity of coefficientsimplies convexity properties
that avoid pathological situations.

G(z, y) = 1

1− z− y
− 1− y− y3 G(z, y) = z

24− 9y+ y2

(positive) (not positive)

0

0.2

0.4

(s)

0.1 0.2
(r)

0

2

4

(s)

10 20
(r)

VII. 4.2. Combinatorial applications. Many combinatorial classes, which ad-
mit a recursive specification of the formY = G(Z,Y), as in (43), p. 467, can be
subjected to Theorem VII.3. The resulting structures are, to varying degrees, avatars
of tree structures. In what follows, we describe a few instances in which the square-
root universality holds.

(i ) Hierarchies are trees enumerated by the number of their leaves (Exam-
ples VII.12 and VII.13).

(i i ) Trees with variable node sizesgeneralize simple families of trees; they oc-
cur in particular as mathematical models of secondary structures in biology
(Example VII.14).

(i i i ) Lattice paths with variable edge lengthsare attached to some of the most
classical objects of combinatorial theory (Note VII.19).

Example VII.12. Labelled hierarchies.The classL of labelled hierarchies, as defined in
Note II.19, p. 128, satisfies

L = Z + SET≥2(L) H⇒ L = z+ eL − 1− L .
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Indo-European

Celtic Germanic Italic Greek Armenian BaSl InIr

Irish WG NG

German English Danish

French Italian Slavic Baltic

Polish Russian Lithuanian

Persian Urdu Hindi

Figure VII.11 . A hierarchyplaced on some of the modern Indo-European languages.

These occur in statistical classification theory: given a collection ofn distinguished items,Ln
is the number of ways of superimposing a non-trivial classification (cf Figure VII.11). Such
abstract classifications usually have no planar structure, hence our modelling by a labelled set
construction.

In the notations of Definition VII.4, p. 467, the basic function isG(z, w) = z+ew−1−w,
which is analytic in|z| <∞, |w| <∞. The characteristic system is

r + es − 1− s= s, es − 1= 1,

which has a unique positive solution,s= log 2,r = 2 log 2−1, obtained by solving the second
equation fors, then propagating the solution to getr . Thus, hierarchies belong to the smooth
implicit-function schema, and, by Theorem VII.3, the EGFL(z) has a square-root singularity.
One then finds mechanically

1

n!
Ln ∼

1

2
√
πn3

(2 log 2− 1)−n+1/2 .

(The unlabelled counterpart is the object of Note VII.23, p. 479.) . . .. . . . . . . . . . . . . . . . . . . . .�

� VII.18. The degree profile of hierarchies.Combining BGF techniques and singularity anal-
ysis, it is found that a random hierarchy of some large sizen has on average about 0.57n nodes
of degree 2, 0.18n nodes of degree 3, 0.04n nodes of degree 4, and less than 0.01n nodes of
degree 5 or higher. �

ExampleVII.13. Trees enumerated by leaves.For a (non-empty) set� ⊂ Z≥0 that does not
contain 0,1, it makes sense to consider the class of labelled trees,

C = Z + SEQ�(C) or C = Z + SET�(C).

(A similar discussion can be conducted forunlabelled planetrees, with OGFs replacing EGFs.)
These are rooted trees (plane or non-plane, respectively), with size determined by the number
of leaves and with degrees constrained to lie in�. The EGF is then of the form

C(z) = z+ η(C(z)).
This variety of trees includes the labelled hierarchies, which correspondto η(w) = ew−1−w.

Assume for simplicityη to be entire (possibly a polynomial). The basic function is
G(z, w) = z+ η(w), and the characteristic system iss= r + η(s), η′(s) = 1. Sinceη′(0) = 0
andη′(+∞) = +∞, this system always has a solution:

s= η[−1](1), r = s− η(s).
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A fragment of RNA is, in first approximation, a tree-
like structure with edges corresponding to base pairs
and “loops” corresponding to leaves. There are con-
straints on the sizes of leaves (taken here between 4 and
7) and length of edges (here between 1 and 4 base pairs).
We model such an RNA fragment as a planted treeP at-
tached to a binary tree (Y) with equations:
{

P = AY, Y = AY2+ B,
A = z2+ z4+ z6+ z8, B = z4+ z5+ z6+ z7.

Figure VII.12 . A simplified combinatorial model of RNA structures analogous to
those considered by Watermanet al.

Thus Theorem VII.3 applies, giving

(48) [zn]C(z) ∼ γ

2
√
πn3

r−n, γ =
√

1

2
r η′′(s),

and a complete expansion can be obtained. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

ExampleVII.14. Trees with variable edge lengths and node sizes.Consider unlabelled plane
trees in which nodes can be of different sizes: what is given is a set�̂ of ordered pairs(ω, σ ),
where a value(ω, σ ) means that a node of degreeω and sizeσ is allowed. Simple varieties
in their basic form correspond toσ ≡ 1; trees enumerated by leaves (including hierarchies)
correspond toσ ∈ {0, 1} with σ = 1 iff ω = 0. Figure VII.12 suggests the way such trees can
model the self-bonding of single-stranded nucleic acids like RNA, according to Watermanet
al. [336, 453, 534, 558]. Clearly an extremely large number of variationsare possible.

The fundamental equation in the case of a finite�̂ is

Y(z) = P(z,Y(z)), P(z, w) :=
∑

(ω,σ )∈�̂
zσwω,

with P a polynomial. In the aperiodic case, there is invariably a formula of the form

Yn ∼ κ · Ann3/2,

corresponding to the universal square-root singularity. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

� VII.19. Schr̈oder numbers.Consider the classY of unary–binary trees where unary nodes
have size 2, while leaves and binary nodes have the usual size 1. The GFsatisfiesY = z+
z2Y + zY2, so that

Y(z) = zD(z2), D(z) = 1− z−
√

1− 6z+ z2

2z
.

We haveD(z) = 1+ 2z+ 6z2+ 22z3+ 90z4+ 394z5+ · · · , which isEISA006318(“Large
Schr̈oder numbers”). By the bijective correspondence between trees andlattice paths,Y2n+1 is
in correspondence with excursions of lengthn made of steps(1, 1), (2, 0), (1,−1). Upon tilting
by 45◦, this is equivalent to paths connecting the lower left corner to the upper right corner of
an(n× n) square that are made of horizontal, vertical, and diagonal steps, andnever go under
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the main diagonal. The seriesS = z
2(1+ D) enumerates Schröder’s generalized parenthesis

systems (Chapter I, p. 69):S := z+ S2/(1− S), and the asymptotic formula

Y2n−1 = Sn =
1

2
Dn−1 ∼

1

4
√
πn3

(
3− 2

√
2
)−n+1/2

follows straightforwardly. �

VII. 5. Unlabelled non-plane trees and Ṕolya operators

Essentially all the results obtained earlier for simple varieties of trees can be ex-
tended to the case of non-plane unlabelled trees.Pólya operatorsare central, and
their treatment is typical of the asymptotic theory of unlabelled objects obeying sym-
metries (i.e., involving the unlabelled MSET, PSET, CYC constructions), as we have
seen repeatedly in this book.

Binary and general trees.We start the discussion by considering the enumer-
ation of two classes of non-plane trees following Pólya [488, 491] and Otter [466],
whose articles are important historic sources for the asymptotic theory of non-plane
tree enumeration—a brief account also appears in [319]. (These authors used the
more traditional method of Darboux instead of singularity analysis, but this distinc-
tion is immaterial here, as calculations develop under completely parallel lines under
both theories.) The two classes under consideration are those of general and binary
non-plane unlabelled trees. In both cases, there is a fairlydirect reduction to the enu-
meration of Cayley trees and of binary trees, which renders explicit several steps of
the calculation. The trick is, as usual, to treat values off (z2), f (z3), . . . , arising from
Pólya operators, as “known” analytic quantities.

Proposition VII.5 (Special unlabelled non-plane trees). Consider the two classes of
unlabelled non-plane trees

H = Z ×MSET(H), W = Z ×MSET{0,2}(W),

respectively, of the general and binary type. Then, with constantsγH , AH andγW, AW

given by Notes VII.21 and VII.22, one has

(49) Hn ∼
γH

2
√
πn3

An
H , W2n−1 ∼

γW

2
√
πn3

An
W.

Proof. (i ) General case.The OGF of non-plane unlabelled trees is the analytic solu-
tion to the functional equation

(50) H(z) = zexp

(
H(z)

1
+ H(z2)

2
+ · · ·

)
.

Let T be the solution to

(51) T(z) = zeT(z),

that is to say, the Cayley function. The functionH(z) has a radius of convergenceρ
strictly less than 1 as its coefficients dominate those ofT(z), the radius of convergence
of the latter being exactlye−1 .= 0.367. The radiusρ cannot be 0 since the number of
trees is bounded from above by the number of plane trees whoseOGF has radius 1/4.
Thus, one has 1/4≤ ρ ≤ e−1.
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Rewriting the defining equation ofH(z) as

H(z) = ζeH(z) with ζ := zexp

(
H(z2)

2
+ H(z3)

3
+ · · ·

)
,

we observe thatζ = ζ(z) is analytic for|z| < ρ1/2; that is,ζ is analytic in a disc that
properly contains the disc of convergence ofH(z). We may thus rewriteH(z) as

H(z) = T(ζ(z)).

Sinceζ(z) is analytic atz= ρ, a singular expansion ofH(z) nearz= ρ results from
composing the singular expansion ofT at e−1 with the analytic expansion ofζ at ρ.
In this way, we get:

(52) H(z) = 1− γ
(

1− z

ρ

)1/2

+ O

((
1− z

ρ

))
, γ =

√
2eρζ ′(ρ).

Thus,
[zn]H(z) ∼ γ

2
√
πn3

ρ−n.

(i i ) Binary case.Consider the functional equation

(53) f (z) = z+ 1

2
f (z)2+ 1

2
f (z2).

This enumerates non-plane binary trees with size defined as the number of external
nodes, so thatW(z) = 1

z f (z2). Thus, it suffices to analyse [zn] f (z), which dispenses
us from dealing with periodicity phenomena arising from theparity ofn.

The OGF f (z) has a radius of convergenceρ that is at least 1/4 (since there are
fewer non-plane trees than plane ones). It is also at most 1/2, which is seen from a
comparison off with the solution to the equationg = z+ 1

2g2. We may then proceed
as before: treat the term12 f (z2) as a function analytic in|z| < ρ1/2, as though it were
known, then solve. To this effect, set

ζ(z) := z+ 1

2
f (z2),

which exists in|z| < ρ1/2. Then, the equation (53) becomes a plain quadratic equa-
tion, f = ζ + 1

2 f 2, with solution

f (z) = 1−
√

1− 2ζ(z).

The singularityρ is the smallest positive solution ofζ(ρ) = 1/2. The singular expan-
sion of f is obtained by combining the analytic expansion ofζ at ρ with

√
1− 2ζ .

The usual square-root singularity results:

f (z) ∼ 1− γ
√

1− z/ρ, γ :=
√

2ρζ ′(ρ).

This induces theρ−nn−3/2 form for the coefficients [zn] f (z) ≡ [z2n−1]W(z). �

The argument used in the proof of the proposition may seem partly non-constructive.
However, numerically, the values ofρ andγ can be determined to great accuracy.
See the notes below as well as Finch’s section on “Otter’s tree enumeration con-
stants” [211, Sec. 5.6].
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� VII.20. Complete asymptotic expansions for Hn,W2n−1. These can be determined since the
OGFs admit complete asymptotic expansions in powers of

√
1− z/ρ. �

� VII.21. Numerical evaluation of constants I.Here is an unoptimized procedure controlled
by a parameterm≥ 0 for evaluating the constantsγH , ρH of (49) relative to general unlabelled
non-plane trees.
ProcedureGet valueof ρ(m : integer);

1. Set up a procedure to compute and memorize theHn on demand;
(this can be based on recurrence relations implied byH ′(z); see [456])
2. Define f [m](z) :=∑m

j=1 Hnzn;

3. Defineζ [m](z) := zexp
(∑m

k=2
1
k f [m](zk)

)
;

4. Solve numericallyζ [m](x) = e−1 for x ∈ (0, 1) to max(m, 10) digits of accuracy;
5. Returnx as an approximation toρ.

For instance, a conservative estimate of the accuracy attained form = 0, 10, . . . , 50 (in a few
billion machine instructions) is:

m= 0 m= 10 m= 20 m= 30 m= 40 m= 50

3 · 10−2 10−6 10−11 10−16 10−21 10−26

Accuracy appears to be a little better than 10−m/2. This yields to 25D:

ρ
.= 0.3383218568992076951961126, AH ≡ ρ−1 .= 2.955765285651994974714818,

γH
.= 1.559490020374640885542206.

The formula of Proposition VII.5 estimatesH100 with a relative error of 10−3. �

� VII.22. Numerical evaluation of constants II.The procedure of the previous note adapts
easily to binary trees, giving:

ρ
.= 0.4026975036714412909690453, AW ≡ ρ−1 .= 2.483253536172636858562289,

γW
.= 1.130033716398972007144137.

The formula of Proposition VII.5 estimates [z100] f (z) with a relative error of 7· 10−3. �

The results relative to general and binary trees are thus obtained by a modification
of the method used for simple varieties of trees, upon treating the Ṕolya operator part
as an analytic variant of the corresponding equations of simple varieties of trees.

Alkanes, alcohols, and degree restrictions.The previous two examples suggest
that a general theory is possible for varieties of unlabelled non-plane trees,T =
Z MSET�(T ), determined by some� ⊂ Z≥0. First, we examine the case of spe-
cial regular trees defined by� = {0,3}, which, when viewed as alkanes and alcohols,
are of relevance to combinatorial chemistry (Example VII.15). Indeed, the problem
of enumerating isomers of such chemical compounds has been at the origin of Ṕolya’s
foundational works [488, 491]. Then, we extend the method tothe general situation
of trees with degrees constrained to an arbitrary finite set� (Proposition VII.5).

ExampleVII.15. Non-plane trees and alkanes.In chemistry, carbon atoms (C) are known
to have valency 4 while hydrogen (H ) has valency 1.Alkanes, also known as paraffins (Fig-
ure VII.13), are acyclic molecules formed of carbon and hydrogenatoms according to this rule
and without multiple bonds; they are thus of the typeCnH2n+2. In combinatorial terms, we
are talking of unrooted trees with (total) node degrees in{1, 4}. The rooted version of these
trees are determined by the fact that a root is chosen and (out)degrees of nodes lie in the set
� = {0, 3}; such rooted ternary trees then correspond to alcohols (with theOH group marking
one of the carbon atoms).
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H H H H H H H OH H
| | | | | | | | |
| | | | | | | | |

H--C--H H--C--C--H H--C--C--C--H H--C--C--C--H
| | | | | | | | |
| | | | | | | | |
H H H H H H H H H

Methane Ethane Propane Propanol

Figure VII.13 . A few examples of alkanes (C H4,C2H6,C3H8) and an alcohol.

Alcohols (A) are the simplest to enumerate, since they correspond to rooted trees. The
OGF starts as (EISA000598)

A(z) = 1+ z+ z2+ z3+ 2z4+ 4z5+ 8z6+ 17z7+ 39z8+ 89z9+ · · · ,
with size being taken here as the number of internal nodes. The specification is

A = {ǫ} + Z MSET3(A).

(EquivalentlyA+ := A \ {ǫ} satisfiesA+ = Z MSET0,1,2,3(A
+).) This implies thatA(z)

satisfies the functional equation:

A(z) = 1+ z

(
1

3
A(z3)+ 1

2
A(z)A(z2)+ 1

6
A(z)3

)
.

In order to apply Theorem VII.3, introduce the function

(54) G(z, w) = 1+ z

(
1

3
A(z3)+ 1

2
A(z2)w + 1

6
w3
)
,

which exists in|z| < |ρ|1/2 and |w| < ∞, with ρ the (yet unknown) radius of convergence
of A. Like before, the Ṕolya termsA(z2), A(z3) are treated as known functions. By methods
similar to those earlier in the analysis of binary and general trees, we find that the characteristic
system admits a solution,

r
.= 0.3551817423143773928, s

.= 2.1174207009536310225,

so thatρ = r and y(ρ) = s. Thus the growth of the number of alcohols is of the form
κρ−nn−3/2, with ρ−1 .= 2.81546.

Let B(z) be the OGF of alkanes (EISA000602), which are unrooted trees:

B(z) = 1+ z+ z2+ z3+ 2z4+ 3z5+ 5z6+ 9z7+ 18z835z9+ 75z10+ · · · .
For instance,B6 = 5 because there are five isomers of hexane,C6H14, for which chemists had
to develop a nomenclature system, interestingly enough based on a diameter of the tree:

Hexane 3-Methylpentane 2-Methylpentane

2,3-Dimethylbutane 2,2-Dimethylbutane
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The number of structurally different alkanes can then be found by an adaptation of the
dissimilarity formula (Equation (57) below and Note VII.26). This problemhas served as a
powerful motivation for the enumeration of graphical trees and its fascinating history goes back
to Cayley. (See Rains and Sloane’s article [502] and [491]). The asymptotic formula of (un-
rooted) alkanes is of the global formρ−nn−5/2, which represents roughly a proportion 1/n of
the number of (rooted) alcohols: see below. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

The pattern of analysis should by now be clear, and we state:

Theorem VII.4 (Non-plane unlabelled trees). Let� ∋ 0 be a finite subset ofZ≥0
and consider the varietyV of (rooted) unlabelled non-plane trees with outdegrees of
nodes in�. Assume aperiodicity(gcd(�) = 1) and the condition that� contains at
least one element larger than1. Then the number of trees of size n inV satisfies an
asymptotic formula:

Vn ∼ C · Ann−3/2.

Proof. The argument given for alcohols is transposed verbatim. Only the existence of
a root of the characteristic system needs to be established.

The radius of convergence ofV(z) is a priori ≤ 1. The fact thatρ is strictly less
than 1 is established by means of an exponential lower bound;namely,Vn > Bn, for
someB > 1 and infinitely many values ofn. To obtain this “exponential diversity” of
the set of trees, first choose ann0 such thatVn0 > 1, then build a perfectd–ary tree
(for somed ∈ �, d 6= 0,1) of heighth, and finally graft freely subtrees of sizen0 at
n/(4n0) of the leaves of the perfect tree. Choosingd such thatdh > n/(4n0) yields
the lower bound. That the radius of convergence is non-zero results from the upper
bound provided by corresponding plane trees whose growth isat most exponential.
Thus, one has 0< ρ < 1.

By the translation of multisets of bounded cardinality, thefunctionG is polyno-
mial in finitely many of the quantities{V(z),V(z2), . . .}. Thus the functionG(z, w)
constructed as in the case of alcohols, in Equation (54), converges in|z| < ρ1/2, |w| <
∞. As z→ ρ−1, we must haveτ := V(ρ) finite, since otherwise, there would be a
contradiction in orders of growth in the nonlinear equationV(z) = · · ·+· · ·V(z)d · · ·
as z → ρ. Thus(ρ, τ ) satisfiesτ = G(ρ, τ ). For the derivative, one must have
Gw(ρ, τ ) = 1 since:(i ) a smaller value would mean thatV is analytic atρ (by the
Implicit Function Theorem);(i i ) a larger value would mean that a singularity has
been encountered earlier (by the usual argument on failure of the Implicit Function
Theorem). Thus, Theorem VII.3 on positive implicit functions is applicable. �

A large number of variations are clearly possible as evidenced by the sugges-
tive title of an article [320] published by Harary, Robinson, and Schwenk in 1975:
“Twenty-step algorithm for determining the asymptotic number of trees of various
species”.

� VII.23. Unlabelled hierarchies.The classH of unlabelled hierarchies is specified byH =
Z +MSET≥2(H); see Note I.45, p. 72. One has

H̃n ∼
γ

2
√
πn3

ρ−n, ρ
.= 0.29224.

(Compare with the labelled case of Example VII.12, p. 472.) What is the asymptotic proportion
of internal nodes of degreer , for a fixedr > 0? �
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� VII.24. Trees with prime degrees and the BBY theory.Bell, Burris, and Yeats [33] develop
a general theory meant to account for the fact that, in their words,“ almost anyfamily of trees
defined by a recursive equation that is nonlinear [. . . ] lead[s] to an asymptotic law of the Ṕolya
form t(n) ∼ Cρ−nn−3/2” . Their most general result [33, Th. 75] implies for instance that the
number of unlabelled non-plane trees whose node degrees are restricted to be prime numbers
admits such a Ṕolya form (see also Note VII.6, p. 455). �

Unlabelled functional graphs (mapping patterns).Unlabelled functional graphs
(named “functions” in [319, pp. 69–70]) are denoted here byF ; they correspond to
unlabelled digraphs with loops allowed, in which each vertex has outdegree equal to 1.
They can be specified as multisets of components (L) that are cycles of non-plane
unlabelled trees (H),

F = MSET(L); L = CYC(H); H = Z ×MSET(H),

a specification that entirely parallels that of mappings in Equation (35), p. 462. Indeed,
an unlabelled functional graph can be used to represent the “shape” of a mapping, as
obtained when labels are discarded. That is, functional graphs result when mappings
are identified up to a possible permutation of their underlying domain. This explains
the alternative term of “mapping pattern” [436] sometimes employed for such graphs.
The counting sequence starts as 1,1,3,7,19,47,130,343,951 (EISA001372).

The OGFH(z) has a square-root singularity by virtue of (52) above, with addi-
tionally H(ρ) = 1. The translation of the unlabelled cycle construction,

L(z) =
∑

j≥1

ϕ( j )

j
log

1

1− H(z j )
,

implies thatL(z) is logarithmic, andF(z) has a singularity of type 1/
√

Z whereZ :=
1− z/ρ. Thus,unlabelled functional graphs constitute an exp–log structure in the
sense of Section VII. 2, p. 445, withκ = 1/2. The number of unlabelled functional
graphs thus grows likeCρ−nn−1/2 and the mean number of components in a random
functional graph is∼ 1

2 logn, as for labelled mappings; see [436] for more on this
topic.
� VII.25. An alternative form of F(z). Arithmetical simplifications associated with the Euler
totient function (APPENDIX A, p. 721) yield:

F(z) =
∞∏

k=1

(
1− H(zk)

)−1
.

A similar form applies generally to multisets of unlabelled cycles (Note I.57, p. 85). �

Unrooted trees.All the trees considered so far have been rooted and this version
is the one most useful in applications. Anunrooted tree9 is by definition a connected
acyclic (undirected) graph. In that case, the tree is clearly non-plane and no special
root node is distinguished.

The counting of the classU of unrooted labelled treesis easy: there are plainly
Un = nn−2 of these, since each node is distinguished by its label, which entails that

9Unrooted trees are also called sometimesfree trees.
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nUn = Tn, with Tn = nn−1 by Cayley’s formula. Also, the EGFU (z) satisfies

(55) U (z) =
∫ z

0
T(y)

dy

y
= T(z)− 1

2
T(z)2,

as already seen when we discussed labelled graphs in Subsection II. 5.3, p. 132.
For unrooted unlabelled trees, symmetries are present and a tree can be rooted

in a number of ways that depends on its shape. For instance, a star graph leads to a
number of different rooted trees that equals 2 (choose either the centre or one of the
peripheral nodes), while a line graph gives rise to⌈n/2⌉ structurally different rooted
trees. WithH the class of rooted unlabelled trees andI the class of unrooted trees,
we have at this stage only a general inequality of the form

In ≤ Hn ≤ nIn.

A table of values of the ratioHn/In suggests that the answer is close to the upper
bound:

(56)
n 10 20 30 40 50 60

Hn/In 6.78 15.58 23.89 32.15 40.39 48.62

The solution is provided by a famous exact formula due to Otter (Note VII.26):

(57) I (z) = H(z)− 1

2

(
H(z)2− H(z2)

)
,

which gives in particular (EISA000055) I (z) = z+ z2 + z3 + 2z4 + 3z5 + 6z6 +
11z7+ 23z8+ · · · . Given (57), it is child’s play to determine the singular expansion
of I knowing that ofH . The radius of convergence ofI is the same as that ofH , since
the termH(z2) only introduces exponentially small coefficients. Thus, itsuffices to
analyseH − 1

2 H2:

H(z)− 1

2
H(z)2 ∼ 1

2
− δ2Z + δ3Z3/2+ O

(
Z2
)
, Z =

(
1− z

ρ

)
.

What is noticeable is the cancellation in coefficients for theterm Z1/2 (since 1− x −
1
2(1− x)2 = 1

2 + O(x2)), so thatZ3/2 is the actual singularity type ofI . Clearly,
the constantδ3 is computable from the first four terms in the singular expansion of H
atρ. Then singularity analysis yields:The number of unrooted trees of size n satisfies
the formula

(58) In ∼
3δ3

4
√
πn5

ρ−n, In ∼ (0.5349496061. . .) (2.9955765856. . .)nn−5/2.

The numerical values are from [211] and the result is Otter’soriginal [466]: an un-
rooted tree of sizen gives rise to about different 0.8n rooted trees on average. (The
formula (58) corresponds to an error slightly under 10−2 for n = 100.)
� VII.26. Dissimilarity theorem for trees. Here is how combinatorics justifies (57), follow-
ing [50, §4.1]. LetI• (andI•–•) be the class of unrooted trees with one vertex (respectively, one
edge) distinguished. We haveI• ∼= H (rooted trees) andI•–• ∼= SET2(H). The combinatorial
isomorphism claimed is

(59) I• + I•–• ∼= I + (I × I) .

Proof. A diameterof an unrooted tree is a simple path of maximal length. If the length of
any diameter is even, call “centre” its mid-point; otherwise, call “bicentre” its mid-edge. (For



482 VII. APPLICATIONS OF SINGULARITY ANALYSIS

each tree, there is eitheronecentre oronebicentre.) The left-hand side of (59) corresponds to
trees that are pointed either at a vertex (I•) or an edge (I•–•). The termI on the right-hand
side corresponds to cases where the pointing happens to coincide with the canonical centre or
bicentre. If there is not coincidence, then, an ordered pair of trees results from a suitable surgery
of the pointed tree. [Hint: cut in some canonical way near the pointed vertex or edge.] �

VII. 6. Irreducible context-free structures

In this section, we discuss an important variety of context-free classes, one that
gives rise to theuniversal law of square-root singularities, itself attached to count-
ing sequences that are of the general asymptotic formAnn−3/2. First, we enunciate
an abstract structural result (Theorem VII.5, p. 483) that connects“irreducibility” of
context-free systems to the square-root singularity phenomenon. Before engaging into
a proof, we first illustrate its scope by describing applications to non-crossing configu-
rations in the plane (these are richer than triangulations introduced in Chapter I) and to
random boolean expressions. Finally, we prove an importantcomplex analytic result,
the Drmota–Lalley–Woods Theorem (Theorem VII.6, p. 489), which provides the un-
derlying analytic engine needed to establish Theorem VII.5and justify the asymptotic
properties of irreducible context-free specifications. General algebraic functions are
to be treated next, in Section VII. 7, p. 493.

VII. 6.1. Context-free specifications and the irreducibility schema. We start
from the notion of a context-free class already introduced in Subsection I. 5.4, p. 79,
which we recall: a class iscontext-freeif it is determined as the first component of a
system of combinatorial equations

(60)





Y1 = F1(Z,Y1, . . . ,Yr )
...

...
...

Yr = Fr (Z,Y1, . . . ,Yr ),

where eachF j is a construction that only involves the combinatorial constructions of
disjoint union and cartesian product. (This repeats Equation (83) of Chapter I, p. 79.)
As seen in Subsection I. 5.4, binary and general trees, triangulations, as well as Dyck
and Łukasiewicz languages are typical instances of context-free classes.

As a consequence of the symbolic rules of Chapter I, the OGF ofa context-free
classC is the first component (C(z) ≡ y1(z)) of the solution of a polynomial system
of equations of the form

(61)





y1(z) = 81(z, y1(z), . . . , yr (z))
...

...
...

yr (z) = 8r (z, y1(z), . . . , yr (z)),

where the8 j are polynomials. By elimination (Cf Appendix B.1:Algebraic elimina-
tion, p. 739), it is always possible to find a bivariate polynomialP(z, y) such that

(62) P(z,C(z)) = 0,

andC(z) is analgebraic function. (Algebraic functions are discussed in all generality
in the next section.)
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The case of linear systems has been dealt with in Chapter V, when examining
the transfer matrix method. Accordingly, we only need to consider herenonlinear
systems (of equations or specifications) defined by the condition that at least one8 j

in (61) is a polynomial of degree 2 or more in they j , corresponding to the fact that at
least one of the constructionsF j in (60) involves at least a productYkYℓ.

Definition VII.5. A context-free specification(60) is said to belong to theirreducible
context-freeschema if it is nonlinear and its dependency graph (p. 33) is strongly
connected. It is said to be aperiodic if all the yj (z) are aperiodic10.

Theorem VII.5 (Irreducible context-free schema). A classC that belongs to the irre-
ducible context-free schema has a generating function thathas a square-root singu-
larity at its radius of convergenceρ:

C(z) = τ − γ
√

1− z

ρ
+ O

(
1− z

ρ

)
,

for computable algebraic numbersρ, τ, γ . If, in addition, C(z) is aperiodic, then the
dominant singularity is unique and the counting sequence satisfies

(63) Cn ∼
γ

2
√
πn3

ρ−n.

This theorem is none other than a transcription, at the combinatorial level, of a
remarkable analytic statement, Theorem VII.6, due to Drmota, Lalley, and Woods,
which is proved below (p. 489), is slightly stronger, and is of independent interest.

Computability issues.There are two complementary approaches to the calcula-
tion of the quantities that appear in (63), one based on the original system (61), the
other based on the single equation (62) that results from elimination. We offer at this
stage a brief pragmatic discussion of computational aspects, referring the reader to
Subsection VII. 6.3, p. 488, and Section VII. 7, p. 493, for context and justifications.

(a) System:Considering the proof of Theorem VII.6 below, one should solve, in
positivereal numbers, a polynomial system ofm+1 equations in them+1 unknowns
ρ, τ1, . . . , τm; namely,

(64)





τ1 = 81(ρ, τ1, . . . , τm)

...
...

...

τm = 8m(ρ, τ1, . . . , τm)

0 = J(ρ, τ1, . . . , τm),

which one can call thecharacteristic system. ThereJ is the Jacobian determinant:

(65) J(z, y1, . . . , ym) := det

(
δi, j −

∂

∂y j
8i (z, y1, . . . , ym)

)
,

10An aperiodicfunction is such that the span of the coefficient sequence is equal to 1 (Definition IV.5,
p. 266). For an irreducible system, it can be checked thatall the y j are aperiodic if and only ifat leastone
of the y j is aperiodic.
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with δi, j ≡ [[ i = j ]] being the usual Kronecker symbol. The quantityρ represents the
common radius of convergence of all they j (z) andτ j = y j (ρ). (In case several pos-
sibilities present themselves forρ, as in Note VII.28, then one can use eithera priori
combinatorial bounds to filter out the spurious ones11or make use of the reduction to a
single equation as in point(b) below.) The constantγ ≡ γ1 in Theorem VII.5 is then
a component of the solution to alinear system of equations (with coefficients in the
field generated byρ, τ j ) and is obtained by the method of undetermined coefficients,
since eachy j is of the form

(66) y j (z) ∼ τ j − γ j

√
1− z/ρ, z→ ρ.

(b)Equation:The general techniques are going to be described in Section,§VII. 7,
p. 493. They give rise to the following algorithm:(i ) determine the exceptional set,
identify the proper branch of the algebraic curve and the dominant positive singularity;
(i i ) determine the coefficients in the singular (Puiseux) expansion, knowinga priori
that the singularity is of the square-root type.

In all events, symbolic algebra systems prove invaluable inperforming the re-
quired algebraic eliminations and isolating the combinatorially relevant roots (see, in
particular, Pivoteauet al. [485] for a general symbolic–numeric approach). Exam-
ple VII.16 serves to illustrate some of these computations.

� VII.27. Catalan and the Jacobian determinant.For the Catalan GF, defined byy = 1+ zy2,
the characteristic system (64) instantiates to

τ − 1− ρτ2 = 0, 1− 2ρτ = 0,

giving back as expected:ρ = 1
4 , τ = 2. �

� VII.28. Burris’ Caveat. As noted by Stanley Burris (private communication), even some
very simple context-free specifications may be such that there exist several positive solutions to
the characteristic system (64). Consider

(B) :





y1 = z(1+ y2+ y2
1)

y2 = z(1+ y1+ y2
2),

which is clearly associated to a redundant way of counting unary–binarytrees (via a determin-
istic 2-colouring). The characteristic system is

{
τ1 = ρ(1+ τ2+ τ2

1 ), τ2 = ρ(1+ τ1+ τ2
2 ), (1− 2ρτ1)(1− 2ρτ2)− ρ2 = 0

}
.

The positive solutions are
{
ρ = 1

3
, τ1 = τ2 = 1

}
∪

{
ρ = 1

7
(2
√

2− 1), τ1 = τ2 =
√

2+ 1

}
.

Only the first solution is combinatorially significant. (A somewhat similar situation, though it
relates to anon-irreduciblecontext-free specification, arises with supertrees of Example VII.20,
p. 503: see Figure VII.19, p. 504.) �

11This is once more a connection problem, in the sense of p. 470.
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VII. 6.2. Combinatorial applications. Lattice animals (Example I.18, p. 80),
random walks on free groups [395], directed walks in the plane (see references [27,
392, 395] and p. 506 below), coloured trees [616], and boolean expression trees (refer-
ence [115] and Examples VII.17) are only some of the many combinatorial structures
belonging to the irreducible context-free schema. Stanleypresents in his book [554,
Ch. 6] several examples of algebraic GFs, and an inspiring survey is provided by
Bousquet-Ḿelou in [84]. We limit ourselves here to a brief discussion ofnon-crossing
configurations and random boolean expressions.

ExampleVII.16. Non-crossing configurations.Context-free descriptions can model naturally
very diverse sorts of objects including particular topological-geometric configurations—we ex-
amine here non-crossing planar configurations. The problems considered have their origin in
combinatorial musings of the Rev. T.P. Kirkman in 1857 and were revisited in 1974 by Domb
and Barett [169] for the purpose of investigating certain perturbative expansions of statistical
physics. Our presentation follows closely the synthesis offered by Flajolet and Noy in [245].

Consider, for each value ofn, graphs built on vertices that are all thenth complex roots
of unity, numbered 0, . . . , n − 1. A non-crossing graphis a graph such that no two of its
edges cross. One can also define connected non-crossing graphs,non-crossing forests (acyclic
graphs), and non-crossing trees (acyclic connected graphs); seeFigure VII.14. Note that the
various graphs considered can always be considered as rooted in some canonical way (e.g., at
the vertex of smallest index) .

Trees. A non-crossing tree is rooted at 0. To the root vertex is attached an ordered collec-
tion of vertices, each of which has an end-nodeν that is the common root of two non-crossing
trees, one on the left of the edge(0, ν) the other on the right of(0, ν). Let T denote the class
of trees andU denote the class of trees whose root has been severed. With• ≡ Z denoting a
generic node, we have

T = • × U , U = SEQ(U × • × U),

which corresponds graphically to the “butterfly decomposition”:

U
UU

U U

U = T = 

The reduction to a pure context-free form is obtained by noticing thatU = SEQ(V) is
equivalent toU = 1+ UV: a specification and the associated polynomial system are then

(67) {T = ZU , U = 1+ UV, V = ZUU} H⇒ {T = zU, U = 1+U V, V = zU2}.

This system relatingU and V is irreducible (then,T is immediately obtained fromU ), and
aperiodicity is obvious from the first few values of the coefficients. The Jacobian (65) of the
{U,V}-system (obtained byz→ ρ, U → υ, V → β), is

∣∣∣∣
1− β υ

2ρυ 1

∣∣∣∣ = 1− β − 2ρυ2.

Thus, the characteristic system (64) giving the singularity ofU,V is

{υ = 1+ υβ, β = ρυ2, 1− β − 2ρυ2 = 0},
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(connected graph)

(tree) (forest)

(graph)

Configuration / OGF coefficients (exact / asymptotic)

Trees (EISA001764) z+ z2+ 3z3+ 12z4+ 55z5+ · · ·
T3− zT+ z2 = 0

1

2n− 1

(
3n− 3

n− 1

)

∼
√

3

27
√
πn3

(
27

4
)n

Forests (EISA054727) 1+ z+ 2z2+ 7z3+ 33z4+ 181z5 · · ·

F3+ (z2− z− 3)F2+ (z+ 3)F − 1= 0
n∑

j=1

1

2n− j

(
n

j − 1

)(
3n− 2 j − 1

n− j

)

∼ 0.07465√
πn3

(8.22469)n

Connected graphs (EISA007297) z+ z2+ 4z3+ 23z4+ 156z5+ · · ·

C3+ C2− 3zC+ 2z2 = 0
1

n− 1

2n−3∑

j=n−1

(
3n− 3

n+ j

)(
j − 1

j − n+ 1

)

∼ 2
√

6− 3
√

2

18
√
πn3

(
6
√

3
)n

Graphs (EISA054726) 1+ z+ 2z2+ 8z3+ 48z4+ 352z5+ · · ·

G2+ (2z2− 3z− 2)G+ 3z+ 1= 0
1

n

n−1∑

j=0

(−1) j
(

n

j

)(
2n− 2− j

n− 1− j

)
2n−1− j

∼
√

140− 99
√

2

4
√
πn3

(
6+ 4

√
2
)n

Figure VII.14 . (Top) Non-crossing graphs: a tree, a forest, a connected graph, and a
general graph. (Bottom) The enumeration of non-crossing configurations by algebraic
functions.
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whose positive solution isρ = 4
27, υ = 3

2 , β = 1
3 . The complete asymptotic formula is

displayed in Figure VII.14. (In a simple case like this, we have more:T satisfiesT3−zT+z2 =
0, which, by Lagrange inversion, givesTn = 1

2n−1

(3n−3
n−1

)
.)

Forests.A (non-crossing) forest is a non-crossing graph that is acyclic. In the present con-
text, it is not possible to express forests simply as sequences of trees, because of the geometry of
the problem. Starting conventionally from the root vertex 0 and following allconnected edges
defines a “backbone” tree. To the left of every vertex of the tree, a forest may be placed. There
results the decomposition (expressed directly in terms of OGFs)

(68) F = 1+ T [z 7→ zF],

whereT is the OGF of trees andF is the OGF of forests. In (68), the termT [z 7→ zF] denotes
a functional composition. A context-free specification in standard form results mechanically
from (67) upon replacingz by zF:

(69) {F = 1+ T, T = zFU, U = 1+U V, V = zFU2 }.
This system is irreducible and aperiodic, so that the asymptotic shape ofFn is a priori of the
form γωnn−3/2 according to Theorem VII.5. The characteristic system is found to havethree
solutions, of which only one has all its components positive, corresponding toρ

.= 0.12158, a
root of the cubic equation 5ρ3 − 8ρ2 − 32ρ + 4 = 0. (The values of constants are otherwise
worked out in Example VII.19, p. 502, by means of the equational approach.)

Graphs.Similar constructions (see [245]) give the OGFs of connected and general graphs,
with the results tabulated in Figure VII.14. In summary:

Proposition VII.6. The number of non-crossing trees, forests, connected graphs, andgraphs
each satisfy an asymptotic formula of the form

C√
πn3

An.

The common shape of the asymptotic estimates is worthy of note, as is the fact that bino-
mial expressions are available in each particular case (Note VII.34, p.495, introduces a general
framework that “explains” the existence of such binomial expressions). . . . . . . . . . . . . . . . . . .�

Example VII.17. Random boolean expressions.We reconsider boolean expressions in
the form of and–or trees introduced in Example I.15, p. 69, in connection with Hipparchus of
Rhodes and Schröder, and in Example I.17, p. 77. Such an expression is described bya binary
tree whose internal nodes can be tagged with “∨” (or-function) or “∧” (and-function); external
nodes are formal variables and their negations (“literals”). We fix the number of variables to
some numberm. The classE of all such boolean expressions satisfies a symbolic equation of
the form

E =
∨

ւ ց
E E

+
∧

ւ ց
E E

+
m∑

j=1

(
x j + ¬x j

)
.

Size is taken to be the number of internal (binary) nodes; that is, the number of boolean con-
nectives. Each boolean expression given in the form of such anand–or treerepresents a certain
boolean function ofm variables, among the 22m

functions. The corresponding OGF and coeffi-
cients are

E(z) = 1−
√

1− 16mz

4z
, En ≡ [zn]E(z) = 2n(2m)n+1 1

n+ 1

(
2n

n

)
∼ 2m√

πn3
(16m)n,

the radius of convergence ofE(z) beingρ = 1/(16m).
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Our purpose is to establish the following result due to Lefmann and Savický [405], our line
of proof following [115].

Proposition VII.7. Let f be a boolean function of m variables (m fixed). Then the probability
that a random and–or formula of size n computes f converges, as n tends to infinity, to a
constant value̟ ( f ) 6= 0.

Proof. Consider, for eachf , the subclassY f ⊂ E of expressions that computef . We thus

have 22
m

such classes. It is then immediate to write combinatorial equations describing theY f ,
by considering all the ways in which a functionf can arise. Indeed, iff is not a literal, then

Y f =
∑

(g∨h)= f

∨
ւ ց

Yg Yh
+

∑

(g∧h)= f

∨
ւ ց

Yg Yh,

while, if f = x j (say), then

Y f = x j +
∑

(g∨h)= f

∨
ւ ց

Yg Yh
+

∑

(g∧h)= f

∨
ւ ց

Yg Yh.

Thus, at generating function level, we have a system of 22m
polynomial equations. This system

is irreducible: given two functions f and g represented by8 andŴ (say), we can always
construct an expression forf involving the expressionŴ by building a tree of the form

(8 ∧ (True∨Ŵ)) = ((8 ∧ ((x1 ∨ ¬x1) ∨ Ŵ)).
Thus anyY f depends on any otherYg. Similar arguments, based on the fact that

True= (True∧True) = (True∧True∧True) = · · · ,
with “True” itself representable as(x1 ∨ ¬x1) = ((x1 ∧ x1) ∨ ¬x1) = · · · , guarantee aperi-
odicity. Thus Theorem VII.5 applies: theY f all have the same radius of convergence, and that
radius must be equal to that ofE(z) (namelyρ = 1/(16m)), sinceE = ∑ f Y f . Thereby the
proposition is established. �

It is an interesting and largely open problem to characterize the relation between the limit
probability̟( f ) of a function f and its structural complexity. At least, the casesm = 1, 2, 3
can be solved exactly and numerically: it appears that functions of low complexity tend to occur
much more frequently, as shown by the data of [115]. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

VII. 6.3. The analysis of irreducible polynomial systems.The analytic engine
behind Theorem VII.5 is a fundamental result, the “Drmota–Lalley–Woods” (DLW)
Theorem, due to independent research by several authors: Drmota [172] developed a
version of the theorem in the course of studies relative to limit laws in various families
of trees defined by context-free grammars; Woods [616], motivated by questions of
boolean complexity and finite model theory, gave a form expressed in terms of colour-
ing rules for trees; finally, Lalley [395] came across a similarly general result when
quantifying return probabilities for random walks on groups. Drmota and Lalley show
how to pull out limit Gaussian laws for simple parameters (bya perturbative analysis;
see Chapter IX); Woods shows how to deduce estimates of coefficients even in some
periodic or non-irreducible cases.

In the treatment that follows we start from a polynomial system of equations,
{
y j = 8 j (z, y1, . . . , ym)

}
, j = 1, . . . ,m,
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in accordance with the notations adopted at the beginning ofthe section. We only
considernonlinear systemsdefined by the fact that at least one polynomial8 j is non-
linear in some of the indeterminatesy1, . . . , ym. (Linear systems have been discussed
extensively in Chapter V.)

For applications to combinatorics, we define four possible attributes of a polyno-
mial system. The first one is a natural positivity condition.

(i ) Algebraic positivity(or a-positivity). A polynomial system is said to bea-
positiveif all the component polynomials8 j have non-negative coefficients.

Next, we want to restrict consideration to systems that determine a unique so-
lution vector (y1, . . . , ym) ∈ (C[[z]])m. Define thez-valuationval(Ey) of a vector
Ey ∈ C[[z]]m as the minimum over allj ’s of the individual valuations12 val(y j ). The
distance between two vectors is defined as usual byd(Eu, Ev) = 2− val(Eu−Ev). Then:

(i i ) Algebraic properness(or a-properness). A polynomial system is said to be
a-properif it satisfies a Lipschitz condition

d(8(Ey),8(Ey ′)) < Kd(Ey, Ey ′) for someK < 1.

In that case, the transformation8 is a contraction on the complete metric space of
formal power series and, by the general fixed point theorem, the equationEy = 8(Ey)
admits a unique solution. This solution may be obtained by the iterative scheme,

Ey(0) = (0, . . . ,0)t , Ey(h+1) = 8(y(h)), Ey = lim
h→∞

Ey(h).

in accordance with our discussion of thesemantics of recursion, on p. 31.
The key notion is irreducibility. To a polynomial system,Ey = 8(Ey), associate its

dependency graphdefined in the usual way as a graph whose vertices are the numbers
1, . . . ,m and the edges ending at a vertexj arek→ j , if y j figures in a monomial of
8k.

(i i i ) Algebraic irreducibility(or a-irreducibility). A polynomial system is said to
bea-irreducibleif its dependency graph is strongly connected.

(This notion matches that of Definition VII.5, p. 483.)
Finally, one needs the usual technical notion of aperiodicity:

(i v) Algebraic aperiodicity(or a-aperiodicity). A proper polynomial system is
said to be aperiodic if each of its component solutionsy j is aperiodic in the
sense of Definition IV.5, p. 266.

We can now state:

Theorem VII.6 (Irreducible positive polynomial systems, DLW Theorem). Consider
a nonlinear polynomial systemEy = 8(Ey) that is a-positive, a-proper, and a-irreducible.
Then, all component solutions yj have the same radius of convergenceρ < ∞, and
there exist functions hj analytic at the origin such that, in a neighbourhood ofρ:

(70) y j = h j

(√
1− z/ρ

)
.

12Let f = ∑∞n=β fnzn with fβ 6= 0 and f0 = · · · = fβ−1 = 0; the valuation off is by definition

val( f ) = β; see Appendix A.5:Formal power series, p. 730.
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In addition, all other dominant singularities are of the formρω withω a root of unity.
If furthermore the system is a-aperiodic, all yj haveρ as unique dominant singularity.
In that case, the coefficients admit a complete asymptotic expansion,

(71) [zn]y j (z) ∼ ρ−n


∑

k≥0

dkn−3/2−k


 ,

for computable dk.

Proof. The proof consists in gathering by stages consequences of the assumptions.
It is essentially based on a close examination of “failure” of the multivariate implicit
function theorem and the way this situation leads to square-root singularities.

(a) As a preliminary observation, we note that each component solution y j is an
algebraic function that has a non-zero radius of convergence. This can be checked
directly by the method of majorant series (Note IV.20, p. 250), or as a consequence
of the multivariate version of the implicit function theorem (Appendix B.5:Implicit
Function Theorem, p. 753).

(b) Properness together with the positivity of the system implies that eachy j (z)
has non-negative coefficients in its expansion at 0, since itis a formal limit of ap-
proximants that have non-negative coefficients. In particular, by positivity, ρ j is a
singularity ofy j (by virtue of Pringsheim’s theorem). From the known nature of sin-
gularities of algebraic functions (e.g., the Newton–Puiseux Theorem, p. 498 below),
there must exist some orderR ≥ 0 such that eachRth derivative∂R

z y j (z) becomes
infinite asz→ ρ−j .

We establish now thatρ1 = · · · = ρm. In effect, differentiation of the equations
composing the system implies that a derivative of arbitraryorderr , ∂r

z y j (z), is a linear
form in other derivatives∂r

z y j (z) of the same order (and a polynomial form in lower
order derivatives); also the linear combination and the polynomial form have non-
negative coefficients. Assumea contrario that the radii were not all equal, sayρ1 =
· · · = ρs, with the other radiiρs+1, . . . being strictly greater. Consider the system
differentiated a sufficiently large number of times,R. Then, asz→ ρ1, we must have
∂R

z y j tending to infinity for j ≤ s. On the other hand, the quantitiesys+1, etc., being
analytic, theirRth derivatives that are analytic as well must tend to finite limits. In
other words, because of the irreducibility assumption (andagain positivity), infinity
has topropagate and we have reached a contradiction. Thus:all the yj have the same
radius of convergence. We letρ denote this common value.

(c1) The key step consists in establishing the existence of a square-root singularity
at the common singularityρ. Consider first the scalar case, that is

(72) y− φ(z, y) = 0,

whereφ is assumed to be a nonlinear polynomial iny and have non-negative coeffi-
cients. This case belongs to the smooth implicit function schema, whose argument we
briefly revisit under our present perspective.

Let y(z) be the unique branch of the algebraic function that is analytic at 0. Com-
parison of the asymptotic orders iny inside the equalityy = φ(z, y) shows that (by
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nonlinearity) we cannot havey→∞ whenz tends to a finite limit. Let nowρ be the
radius of convergence ofy(z). Sincey(z) is necessarily finite at its singularityρ, we
setτ = y(ρ) and note that, by continuity,τ − φ(ρ, τ) = 0.

By the implicit function theorem, a solution(z0, y0) of (72) can be continued
analytically as(z, y0(z)) in the vicinity ofz0 as long as the derivative with respect toy
(the simplest form of a Jacobian),

J(z0, y0) := 1− φ′y(z0, y0),

remains non-zero. The quantityρ being a singularity, we must thus haveJ(ρ, τ ) = 0.
On the other hand, the second derivative−φ′′yy is non-zero at(ρ, τ ) (by nonlinearity
and positivity). Then, the local expansion of the defining equation (72) at(ρ, τ ) binds
(z, y) locally by

−(z− ρ)φ′z(ρ, τ )−
1

2
(y− τ)2φ′′yy(ρ, τ )+ · · · = 0,

implying the singular expansion

y− τ = −γ (1− z/ρ)1/2+ · · · .
This establishes the first part of the assertion in the scalarcase.

(c2) In the multivariate case, we graft Lalley’s ingenious argument [395] that is
based on a linearized version of the system to which Perron–Frobenius theory is appli-
cable. First, irreducibility implies that any component solution y j depends positively
and nonlinearly on itself (by possibly iterating8), so that a contradiction in asymp-
totic regimes would result, if we suppose that anyy j tends to infinity. Each yj (z)
remains finite at the positive dominant singularityρ.

Now, the multivariate version of the implicit function theorem (Theorem B.6,
p. 755) grants us locally the analytic continuation of any solution y1, y2, . . . , ym at z0
provided there is no vanishing of the Jacobian determinant

J(z0, y1, . . . , ym) := det

(
δi, j −

∂

∂y j
8i (z0, y1, . . . , ym)

)

i, j=1 . .m
.

Thus, we must have

(73) J(ρ, τ1, . . . , τm) = 0 where τ j := y j (ρ).

The next argument uses Perron–Frobenius theory (Subsection V. 5.2 and Note V.34,
p. 345) and linear algebra. Consider the Jacobian matrix

K (z, y1, . . . , ym) :=
(
∂

∂y j
8i (z, y1, . . . , ym)

)

i, j=1 . .m
,

which represents the “linear part” of8. Forz, y1, . . . , ym all non-negative, the matrix
K has positive entries (by positivity of8) so that it is amenable to Perron–Frobenius
theory. In particular it has a positive eigenvalueλ(z, y1, . . . , ym) that dominates all
the other in modulus. The quantity

λ(z) := λ(z, y1(z), . . . , ym(z))
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is increasing, as it is an increasing function of the matrix entries that themselves in-
crease withz for z≥ 0.

We propose to prove thatλ(ρ) = 1, In effect, λ(ρ) < 1 is excluded since
otherwise(I − K ) would be invertible atz = ρ and this would implyJ 6= 0,
thereby contradicting the singular character of they j (z) at ρ. Assumea contrario
λ(ρ) > 1 in order to exclude the other case. Then, by the monotonicity and continuity
of λ(z), there would existρ < ρ such thatλ(ρ) = 1. Let v be a left eigenvector
of K (ρ, y1(ρ), . . . , ym(ρ)) corresponding to the eigenvalueλ(ρ). Perron–Frobenius
theory guarantees that such a vectorv has all its coefficients that are positive. Then,
upon multiplying on the left byv the column vectors corresponding toy and8(y)
(which are equal), one gets an identity; this derived identity, upon expanding nearρ,
gives

(74) A(z− ρ) = −
∑

i, j

Bi, j (yi (z)− yi (ρ))(y j (z)− y j (ρ))+ · · · ,

where· · · hides lower order terms and the coefficientsA, Bi, j are non-negative with
A > 0. There is a contradiction in the orders of growth if eachyi is assumed to be
analytic atρ, since the left-hand side of (74) is of exact order(z− ρ) while the right-
hand side is at least as small as(z− ρ)2. Thus, we must haveλ(ρ) = 1 andλ(x) < 1
for x ∈ (0, ρ).

A calculation similar to (74) but withρ replaced byρ shows finally that, if

yi (z)− yi (ρ) ∼ γi (ρ − z)α,

then consistency of asymptotic expansions implies 2α = 1, that isα = 1
2. We have

thus proved:All the component solutions yj (z) have a square-root singularity atρ.
(The existence of a complete expansion in powers of(ρ − z)1/2 results from a refine-
ment of this argument.) The proof of the general case (70) is thus complete.

(d) In the aperiodic case, we first observe that eachy j (z) cannot assume an in-
finite value on its circle of convergence|z| = ρ, since this would contradict the
boundedness of|y j (z)| in the open disc|z| < ρ (where y j (ρ) serves as an upper
bound). Consequently, by singularity analysis, the Taylorcoefficients of anyy j (z) are
O(n−1−η) for someη > 1 and the series representingy j at the origin converges on
|z| = ρ.

For the rest of the argument, we observe that, ifEy = 8(z, Ey), thenEy = 8〈m〉(z, Ey)
where the superscript denotes iteration of the transformation 8 in the variablesEy =
(y1, . . . , ym). By irreducibility,8〈m〉 is such thateachof its component polynomials
involvesall the variables.

Assumea contrario the existence of a singularityρ∗ of somey j (z) on |z| = ρ.
The triangle inequality yields|y j (ρ

∗)| ≤ y j (ρ), and the stronger form|y j (ρ
∗)| <

y j (ρ) results from the Daffodil Lemma (p. 267). Then, the modified Jacobian matrix
K 〈m〉 of 8〈m〉 taken at they j (ρ

∗) has entries dominated strictly by the entries ofK 〈m〉

taken at they j (ρ). Therefore, the dominant eigenvalue ofK 〈m〉(z, Ey j (ρ
∗)) must be

strictly less than 1. This would imply thatI − K 〈m〉(z, Ey j (ρ
∗)) is invertible so that
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the y j (z) would be analytic atρ∗. A contradiction has been reached:ρ is the sole
dominant singularity of eachy j and this concludes the argument. �

Many extensions of the DLW Theorem are possible, as indicated by the notes and
references below—the underlying arguments are powerful, versatile, and highly gen-
eral. Consequences regarding limit distributions, as obtained by Drmota and Lalley,
are further explored in Chapter IX (p. 681).
� VII.29. Analytic systems.Drmota [172] has shown that the conclusions of the DLW The-
orem regarding universality of the square-root singularity hold more generally for8 j that are

analytic functions ofCm+1 to C, provided there exists a positive solution of the characteris-
tic system within the domain of analyticity of the8 j (see the original article [172] and the
note [99] for a discussion of precise conditions). This extension then unifies the DLW theorem
and Theorem VII.3 relative to the smooth implicit function schema. �

� VII.30. Pólya systems.Woods [616] has shown that several systems built from Pólya opera-
tors of the form MSETk can also be treated by an extension of the DLW Theorem, which then
unifies this theorem and Theorem VII.4. �

� VII.31. Infinite systems.Lalley [398] has extended the conclusions of the DLW Theorem to
certain infinite systems of generating function equations. This makes it possible to quantify the
return probabilities of certain random walks on infinite free products of finite groups. �

The square-root singularity property ceases to be universal when the assumptions
of Theorems VII.5 and VII.6, in essence, positivity or irreducibility, fail to be satis-
fied. For instance, supertrees that are specified by a positive but reducible system have
a singularity of the fourth-root type (Example VII.10, p. 412 to be revisited in Exam-
ple VII.20, p. 503). We discuss next, in Section VII. 7, general methods that apply to
anyalgebraic function and are based on the minimal polynomialequation(rather than
a system) satisfied by the function. Note that the results there do not always subsume
the present ones, since structure is not preserved when a system is reduced, byelimi-
nation, to a single equation. It would at least be desirable to determine directly, from
a positive (butreducible) system, the type of singular behaviour of the solution, but
the systematic research involved in such a programme is yet to be carried out.

VII. 7. The general analysis of algebraic functions

Algebraic series and algebraic functions are simply definedas solutions of a poly-
nomial equation or system. Their singularities are strongly constrained to bebranch
points, with the local expansion at a singularity being a fractional power series known
as a Newton–Puiseux expansion (Subsection VII. 7.1). Singularity analysis then turns
out to be systematically applicable to algebraic functions, to the effect that their coef-
ficients are asymptotically composed of elements of the form

(75) C · ωnnp/q,
p

q
∈ Q \ {−1,−2, . . .},

see Subsection VII. 7.2. This last form includes as a specialcase the exponentp/q =
−3/2, that was encountered repeatedly, when dealing with inverse functions, implicit
functions, and irreducible systems. In this section, we develop the basic structural
results that lead to the asymptotic forms (75). However, designing effective methods
(i.e., decision procedures) to compute the characteristicconstants in (75) is not obvi-
ous in the algebraic case. Several algorithms will be described in order to locate and
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analyse singularities (e.g., Newton’s polygon method). Inparticular, the multivalued
character of algebraic functions creates a need to solve what are known asconnection
problems.

Basics. We adopt as the starting point of the present discussion the following
definition of an algebraic function or series (see also Note VII.32 for a variant).

Definition VII.6. A function f(z) analytic in a neighbourhoodV of a point z0 is said
to bealgebraicif there exists a (non-zero) polynomial P(z, y) ∈ C[z, y], such that

(76) P(z, f (z)) = 0, z ∈ V.

A power series f∈ C[[z]] is said to be an algebraic power series if it coincides with
the expansion of an algebraic function at 0.

Thedegreeof an algebraic series or functionf is by definition the minimal value
of degy P(z, y) over all polynomials that are cancelled byf (so that rational series
are algebraic of degree 1). One can always assumeP to be irreducible overC (that is
P = QR implies that one ofQ or R is a scalar) and of minimal degree.

An algebraic function may also be defined by starting with a polynomial system
of the form

(77)





P1(z, y1, . . . , ym) = 0
...

...
...

Pm(z, y1, . . . , ym) = 0,

where eachPj is a polynomial. A solution of the system (77) is by definitionanm–
tuple ( f1, . . . , fm) that cancels eachPj ; that is, Pj (z, f1, . . . , fm) = 0. Any of the
f j is called a component solution. A basic but non-trivial result of elimination theory
is that any component solution of a non-degenerate polynomial system is an algebraic
series (Appendix B.1:Algebraic elimination, p. 739). In other words, one can elimi-
nate the auxiliary variablesy2, . . . , ym and construct a single bivariate polynomialQ
such thatQ(z, y1) = 0.

We stress the point that, in the definitions by an equation (76) or a system (77),
no positivity of any sort nor irreducibility is assumed. Theanalysis which is now pre-
sented applies toanyalgebraic function, whether or not it comes from combinatorics.

� VII.32. Algebraic definition of algebraic series.It is also customary to definef to be an
algebraic series if it satisfiesP(z, f ) = 0 in the sense of formal power series, withouta priori
consideration of convergence issues. Then the technique of majorantseries may be used to
prove that the coefficients off grow at most exponentially. Thus, the alternative definition is
indeed equivalent to Definition VII.6. �

� VII.33. “Alg is in Diag of Rat”. Every algebraic functionF(z) overC(z) is the diagonal of
a rational functionG(x, y) = A(x, y)/B(x, y) ∈ C(x, y). Precisely:

F(z) =
∑

n≥0

Gn,nzn, where G(x, y) =
∑

m,n≥0

Gm,nxmyn.

This is implied by a theorem of Denef and Lipshitz [154], which is related to theholonomic
framework (Appendix B.4:Holonomic functions, p. 748). �
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0−1 +1

Figure VII.15 . The real section of the lemniscate of Bernoulli defined byP(z, y) =
(z2+ y2)2− (z2− y2) = 0: the origin is a double point where two analytic branches
meet; there are also two real branch points atz= ±1.

� VII.34. Multinomial sums and algebraic coefficients.Let F(z) be an algebraic function.
ThenFn = [zn]F(z) is a (finite) linear combination of “multinomial forms” defined as

Sn(C; h; c1, . . . , cr ) :=
∑

C

(
n0+ h

n1, . . . , nr

)
cn1
1 · · · c

nr
r ,

where the summation is over all values ofn0, n1, . . . , nr satisfying a collection of linear in-
equalitiesC involving n. [Hint: a consequence of Denef–Lipshitz.] Consequently:coefficients
of any algebraic function overQ(z) invariably admit combinatorial (i.e., binomial) expres-
sions”. (Eisenstein’s lemma, p. 505, can be used to establish algebraicity overQ(z).) An
alternative proof can be based on Note IV.39, p. 270, and Equation (31), p. 753. �

VII. 7.1. Singularities of general algebraic functions. Let P(z, y) be an irre-
ducible polynomial ofC[z, y],

P(z, y) = p0(z)y
d + p1(z)y

d−1+ · · · + pd(z).

The solutions of the polynomial equationP(z, y) = 0 define a locus of points(z, y)
in C × C that is known as acomplex algebraic curve. Let d be they-degree ofP.
Then, for eachz there are at mostd possible values ofy. In fact, there existd values
of y “almost always”, that is except for a finite number of cases.

— If z0 is such thatp0(z0) = 0, then there is a reduction in the degree iny and
hence a reduction in the number of finitey-solutions for the particular value
of z = z0. One can conveniently regard the points that disappear as “points
at infinity” (formally, one then operates in the projective plane).

— If z0 is such thatP(z0, y) has a multiple root, then some of the values ofy
will coalesce.

Define theexceptional setof P as the set (R is the resultant of Appendix B.1:Alge-
braic elimination, p. 739):

(78) 4[ P] := {z
∣∣ R(z) = 0}, R(z) := R(P(z, y), ∂y P(z, y), y).

The quantityR(z) is also known as thediscriminantof P(z, y), with y as the main
variable andz a parameter. Ifz 6∈ 4[ P], then we have a guarantee that there exist
d distinct solutions toP(z, y) = 0, sincep0(z) 6= 0 and∂y P(z, y) 6= 0. Then, by
the Implicit Function Theorem, each of the solutionsy j lifts into a locally analytic
function y j (z). A branchof the algebraic curveP(z, y) = 0 is the choice of such a
y j (z) together with a simply connected region of the complex planethroughout which
this particulary j (z) is analytic.
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Singularities of an algebraic function can thus only occur if z lies in the excep-
tional set4[ P]. At a point z0 such thatp0(z0) = 0, some of the branches escape to
infinity, thereby ceasing to be analytic. At a pointz0 where the resultant polynomial
R(z) vanishes butp0(z) 6= 0, then two or more branches collide. This can be either
a multiple point (two or more branches happen to assume the same value, but each
one exists as an analytic function aroundz0) or a branch point (some of the branches
actually cease to be analytic). An example of an exceptionalpoint that is not a branch
point is provided by the classical lemniscate of Bernoulli:at the origin, two branches
meet while each one is analytic there (see Figure VII.15).

A partial knowledge of the topology of a complex algebraic curve may be ob-
tained by first looking at its restriction to the reals. Consider for instance the polyno-
mial equationP(z, y) = 0, where

P(z, y) = y− 1− zy2,

which defines the OGF of the Catalan numbers. A rendering of the real part of the
curve is given in Figure VII.16. The complex aspect of the curve, as given byℑ(y) as
a function ofz, is also displayed there. In accordance with earlier observations, there
are normally two sheets (branches) above each point. The exceptional set is given by
the roots of the discriminant,

R = z(1− 4z),

that is,z= 0, 1
4. Forz= 0, one of the branches escapes at infinity, while forz= 1/4,

the two branches meet and there is a branch point: see Figure VII.16.
In summary the exceptional set provides a set ofpossible candidatesfor the sin-

gularities of an algebraic function.

Lemma VII.4 (Location of algebraic singularities). Let y(z), analytic at the origin,
satisfy a polynomial equation P(z, y) = 0. Then, y(z) can be analytically continued
along any simple path emanating from the origin that does notcross any point of the
exceptional set defined in(78).

Proof. At anyz0 that is not exceptional and for ay0 satisfyingP(z0, y0) = 0, the fact
that the discriminant is non-zero implies thatP(z0, y) has only a simple root aty0, and
we havePy(z0, y0) 6= 0. By the Implicit Function Theorem, the algebraic function
y(z) is analytic in a neighbourhood ofz0. �

Nature of singularities. We start the discussion with an exceptional point that
is placed at the origin (by a translationz 7→ z+ z0) and assume that the equation
P(0, y) = 0 hask equal rootsy1, . . . , yk wherey = 0 is this common value (by a
translationy 7→ y + y0 or an inversiony 7→ 1/y, if points at infinity are consid-
ered). Consider a punctured disc|z| < r that does not include any other exceptional
point relative toP. In the argument that follows, we lety1, (z), . . . , yk(z) be analytic
determinations of the root that tend to 0 asz→ 0.

Start at some arbitrary value interior to the real interval(0, r ), where the quantity
y1(z) is locally an analytic function ofz. By the implicit function theorem,y1(z) can
be continued analytically along a circuit that starts fromzand returns tozwhile simply
encircling the origin (and staying within the punctured disc). Then, by permanence of
analytic relations,y1(z) will be taken into another root, say,y(1)1 (z). By repeating the
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Figure VII.16 . The real section of the Catalan curve (top). The complex Catalan
curve with a plot ofℑ(y) as a function ofz = (ℜ(z),ℑ(z)) (bottom left); a blow-up
of ℑ(y) near the branch point atz= 1/4 (bottom right).

process, we see that, after a certain number of timesκ with 1 ≤ κ ≤ k, we will have
obtained a collection of rootsy1(z) = y(0)1 (z), . . . , y(κ)1 (z) = y1(z) that form a set of
κ distinct values. Such roots are said to form acycle. In this case,y1(tκ) is an analytic
function of t except possibly at 0 where it is continuous and has value 0. Thus, by
general principles (regarding removable singularities, see Morera’s Theorem, p. 743),
it is in fact analytic at 0. This in turn implies the existenceof a convergent expansion
near 0:

(79) y1(t
κ) =

∞∑

n=1

cntn.

(The parametert is known as thelocal uniformizing parameter, as it reduces a multi-
valued function to a single-valued one.) This translates back into the world ofz: each
determination ofz1/κ yields one of the branches of the multivalued analytic function
as

(80) y1(z) =
∞∑

n=1

cnzn/κ .
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Alternatively, withω = e2iπ/κ a root of unity, theκ determinations are obtained as

y( j )
1 (z) =

∞∑

n=1

cnω
nzn/κ ,

each being valid in a sector of opening< 2π . (The caseκ = 1 corresponds to an
analytic branch.)

If κ = k, then the cycle accounts for all the roots which tend to 0. Otherwise,
we repeat the process with another root and, in this fashion,eventually exhaust all
roots. Thus, all thek roots that have value 0 atz = 0 are grouped into cycles of size
κ1, . . . , κℓ. Finally, values ofy at infinity are brought to zero by means of the change
of variablesy = 1/u, then leading to negative exponents in the expansion ofy.

Theorem VII.7 (Newton–Puiseux expansions at a singularity). Let f(z) be a branch
of an algebraic function P(z, f (z)) = 0. In a circular neighbourhood of a singu-
larity ζ slit along a ray emanating fromζ , f (z) admits a fractional series expansion
(Puiseux expansion) that is locally convergent and of the form

f (z) =
∑

k≥k0

ck(z− ζ )k/κ ,

for a fixed determination of(z− ζ )1/κ , where k0 ∈ Z andκ is an integer≥ 1, called
the “branching type”13.

Newton (1643–1727) discovered the algebraic form of Theorem VII.7 and pub-
lished it in his famous treatiseDe Methodis Serierum et Fluxionum(completed in
1671). This method was subsequently developed by Victor Puiseux (1820–1883) so
that the name of Puiseux series is customarily attached to fractional series expansions.
The argument given above is taken from the neat presentationoffered by Hille in [334,
Ch. 12, vol. II]. It is known as a “monodromy argument”, meaning that it consists in
following the course of values of an analytic function alongpaths in the complex plane
till it returns to its original value.

Newton polygon.Newton also described aconstructiveapproach to the determi-
nation of branching types near a point(z0, y0), that, by means of the previous dis-
cussion, can always be taken to be(0,0). In order to introduce the discussion, let us
examine the Catalan generating function nearz0 = 1/4. Elementary algebra gives the
explicit form of the two branches

y1(z) =
1

2z

(
1−
√

1− 4z
)
, y2(z) =

1

2z

(
1+
√

1− 4z
)
,

whose forms are consistent with what Theorem VII.7 predicts. If however one starts
directly with the equation,

P(z, y) ≡ y− 1− zy2 = 0

13From the general discussion, ifk0 < 0, thenκ = 1 is possible (casef (ζ ) = ∞, with a polar
singularity); ifk0 ≥ 0, then a singularity only exists ifκ ≥ 2 (case of a branch point with| f (ζ )| <∞).
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then, the translationz = 1/4− Z (the minus sign is a mere notational convenience),
y = 2+ Y yields

(81) Q(Z,Y) ≡ −1

4
Y2+ 4Z + 4ZY+ ZY2.

Look for solutions of the formY = cZα(1+ o(1)) with c 6= 0, whoseexistenceis a
priori granted by Theorem VII.7 (Newton–Puiseux). Each of the monomials in (81)
gives rise to a term of a well-determined asymptotic order, respectively,Z2α, Z1,
Zα+1, Z2α+1. If the equation is to be identically satisfied, then the mainasymptotic
order ofQ(Z,Y) should be 0. Sincec 6= 0, this can only happen if two or more of the
exponents in the sequence(2α,1, α + 1,2α + 1) coincideand the coefficients of the
corresponding monomial inP(Z,Y) is zero, a condition that is an algebraic constraint
on the constantc. Furthermore, exponents of all the remaining monomials have to be
larger since by assumption they represent terms of lower asymptotic order.

Examination of all the possible combinations of exponents leads one to discover
that the only possible combination arises from the cancellation of the first two terms
of Q, namely−1

4Y2+ 4Z, which corresponds to the set of constraints

2α = 1, −1

4
c2+ 4= 0,

with the supplementary conditionsα + 1 > 1 and 2α + 1 > 1 being satisfied by this
choiceα = 1/2. We have thus discovered thatQ(Z,Y) = 0 is consistent asymptoti-
cally with

Y ∼ 4Z1/2, Y ∼ −4Z1/2.

The process can be iterated upon subtracting dominant terms. It invariably gives
rise to complete formal asymptotic expansions that satisfyQ(Z,Y) = 0 (in the Cata-
lan example, these are series in±Z1/2). Furthermore, elementary majorizations estab-
lish that such formal asymptotic solutions represent indeed convergent series. Thus,
local expansions of branches have indeed been determined.

An algorithmic refinement (also due to Newton) is known as themethod ofNew-
ton polygons. Consider a general polynomial

Q(Z,Y) =
∑

j∈J

Za j Yb j ,

and associate to it the finite set of points(a j ,b j ) in N×N, which is called the Newton
diagram. It is easily verified that the only asymptotic solutions of the formY ∝ Zτ

correspond to values ofτ that are inverse slopes (i.e.,1x/1y) of lines connecting
two or more points of the Newton diagram (this expresses the cancellation condition
between two monomials ofQ) andsuch that all other points of the diagram are on this
line or to the right of it (as the other monomials must be of smaller order). In other
words:

Newton’s polygon method.Any possible exponentτ such that Y∼ cZτ is
a solution to a polynomial equation corresponds to one of theinverse slopes
of the left-most convex envelope of the Newton diagram. For each viableτ ,
a polynomial equation constrains the possible values of thecorresponding
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Figure VII.17 . The real algebraic curve defined by the equationP = (y− z2)(y2−
z)(y2− z3)− z3y3 near(0, 0) (left) and the corresponding Newton diagram (right).

coefficient c. Complete expansions are obtained by repeating the process,
which means deflating Y from its main term by way of the substitution Y 7→
Y − cZτ .

Figure VII.17 illustrates what goes on in the case of the curve P = 0 where

P(z, y) = (y− z2)(y2− z)(y2− z3)− z3y3

= y5− y3z− y4z2+ y2z3− 2z3y3+ z4y+ z5y2− z6,

considered near the origin. As the factored part suggests, the curve is expected to
resemble (locally) the union of two orthogonal parabolas and of a curvey = ±z3/2

having a cusp, i.e., the union of

y = z2, y = ±√z, y = ±z3/2,

respectively. It is visible on the Newton diagram that the possible exponentsy ∝ zτ

at the origin are the inverse slopes of the segments composing the envelope, that is,

τ = 2, τ = 1

2
, τ = 3

2
.

For computational purposes, once determined the branchingtypeκ, the value of
k0 that dictates where the expansion starts, and the first coefficient, the full expansion
can be recovered by deflating the function from its first term and repeating the New-
ton diagram construction. In fact, after a few initial stages of iteration, the method
of indeterminate coefficients can always be eventually applied [Bruno Salvy, private
communication, August 2000]. Computer algebra systems usually have this routine
included as one of the standard packages; see [531].

VII. 7.2. Asymptotic form of coefficients. The Newton–Puiseux theorem de-
scribes precisely the local singular structure of an algebraic function. The expansions
are valid around a singularity and, in particular, they holdin indented discs of the type
required in order to apply the formal translation mechanisms of singularity analysis.
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Theorem VII.8 (Algebraic asymptotics). Let f(z) = ∑
n fnzn be the branch of an

algebraic function that is analytic at0. Assume that f(z) has a unique dominant
singularity at z= α1 on its circle of convergence. Then, in thenon-polarcase, the
coefficient fn satisfies the asymptotic expansion,

(82) fn ∼ α−n
1


∑

k≥k0

dkn−1−k/κ


 ,

where k0 ∈ Z and κ is an integer≥ 2. In the polar case, κ = 1 and k0 < 0, the
estimate(82) is to be interpreted as a terminating (exponential–polynomial) form.

If f (z) has several dominant singularities|α1| = |α2| = · · · = |αr |, then there
exists an asymptotic decomposition (whereǫ is some small fixed number,ǫ > 0)

(83) fn =
r∑

j=1

φ( j )(n)+ O((|α1| + ǫ))−n,

where eachφ( j )(n) admits a complete asymptotic expansion,

φ( j )(n) ∼ α−n
j



∑

k≥k( j )
0

d( j )
k n−1−k/κ j


 ,

with either k( j )
0 in Z andκ j an integer≥ 2 or κ j = 1 and k0 < 0.

Proof. An early version of this theorem appeared as [220, Th. D, p. 293]. The expan-
sions granted by Theorem VII.7 are of the exact type requiredby singularity analysis
(Theorem VI.4, p. 393). For multiple singularities, Theorem VI.5 (p. 398) based on
composite contours is to be used: in that case eachφ( j )(n) is the contribution obtained
by transfer of the corresponding local singular element. �

In the case of multiple singularities, partial cancellations may occur in some of
the dominant terms of (83): consider for instance the case of

1√
1− 6

5z+ z2
= 1+ 0.60z+ 0.04z2− 0.36z3− 0.408z4− · · · ,

where the function has two complex conjugate singularitieswith an argument not
commensurate toπ , and refer to the corresponding discussion of rational coefficients
asymptotics (Subsection IV. 6.1, p. 263). Fortunately, such delicate arithmetic situa-
tions tendnot to arise in combinatorial situations.

ExampleVII.18. Branches of unary–binary trees.The generating function of unary–binary
trees (Motzkin numbers, pp. 68 and 396) isf (z) defined byP(z, f (z)) = 0 where

P(z, y) = y− z− zy− zy2,

so that

f (z) = 1− z−
√

1− 2z− 3z2

2z
= 1− z−√(1+ z)(1− 3z)

2z
.

There exist only two branches:f and its conjugatef that form a 2–cycle atz = 1/3. The
singularities of all branches are at 0,−1, 1/3 as is apparent from the explicit form off or from
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Figure VII.18 . The real algebraic curve corresponding to non-crossing forests.

the defining equation. The branch representingf (z) at the origin is analytic there (by a general
argument or by the combinatorial origin of the problem). Thus, the dominant singularity off (z)
is at 1/3 and it is unique in its modulus class. The “easy” case of Theorem VII.8then applies
once f (z) has been expanded near 1/3. As a rule, the organization of computations is simpler
if one makes use of the local uniformizing parameter with a choice of sign inaccordance to the
direction along which the singularity is approached. In this case, we setz= 1/3− δ2 and find

f (z) = 1− 3δ + 9

2
δ2− 63

8
δ3+ 27

2
δ4− 2997

128
δ5+ · · · , δ =

(
1

3
− z

)1/2
.

This translates immediately into

fn ≡ [zn] f (z) ∼ 3n+1/2

2
√
πn3

(
1− 15

16n
+ 505

512n2
− 8085

8192n3
+ · · ·

)
,

which agrees with the direct derivation of Example VI.3, p. 396. . . . . .. . . . . . . . . . . . . . . . . . .�

� VII.35. Meta-asymptotics.Estimate the growth of the coefficients in the asymptotic expan-
sions of Catalan and Motzkin (unary–binary trees) numbers. �

ExampleVII.19. Branches of non-crossing forests.Consider the polynomial equationP(z, y) =
0, where

P(z, y) = y3+ (z2− z− 3)y2+ (z+ 3)y− 1,

(see Figure VII.18 for the real branches) and the combinatorial GF satisfying P(z, F) = 0
determined by the initial conditions,

F(z) = 1+ 2z+ 7z2+ 33z3+ 181z4+ 1083z5+ · · · .
(EISA054727). F(z) is the OGF of non-crossing forests defined in Example VII.16, p. 485.

The exceptional set is mechanically computed: its elements are roots of thediscriminant

R= −z3(5z3− 8z2− 32z+ 4).

Newton’s algorithm shows that two of the branches at 0, sayy0 andy2, form a cycle of length 2
with y0 = 1−√z+O(z), y2 = 1+√z+O(z)while it is the “middle branch”y1 = 1+z+O(z2)

that corresponds to the combinatorial GFF(z).
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The non-zero exceptional points are the roots of the cubic factor ofR; namely

�
.= {−1.93028, 0.12158, 3.40869}.

Let ξ
.= 0.1258 be the root in(0, 1). By Pringsheim’s theorem and the fact that the OGF

of an infinite combinatorial class must have a positive dominant singularityin [0,1], the only
possibility for the dominant singularity ofy1(z) is ξ .

For z nearξ , the three branches of the cubic give rise to one branch that is analytic with
value approximately 0.67816 and a cycle of two conjugate branches with value near 1.21429 at
z= ξ . The expansion of the two conjugate branches is of the singular type,

α ± β
√

1− z/ξ,

where

α = 43

37
+ 18

37
ξ − 35

74
ξ2 .= 1.21429, β = 1

37

√
228− 981ξ − 5290ξ2 .= 0.14931.

The determination with a minus sign must be adopted for representing the combinatorial GF
whenz→ ξ− since otherwise one would get negative asymptotic estimates for the non-negative
coefficients. Alternatively, one may examine the way the three real branches along(0, ξ)match
with one another at 0 and atξ−, then conclude accordingly.

Collecting partial results, we finally get by singularity analysis the estimate

Fn =
β

2
√
πn3

ωn
(

1+ O(
1

n
)

)
, ω = 1

ξ

.= 8.22469

with the cubic algebraic numberξ and the sexticβ as above. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

The example above illustrates several important points in the analysis of coeffi-
cients of algebraic functions when there are no simple explicit radical forms. First,
a given combinatorial problem determines a unique branch ofan algebraic curve at
the origin. Next, the dominant singularity has to be identified by “connecting” the
combinatorial branch with the branches at every possible singularity of the curve. Fi-
nally, computations tend to take place over algebraic numbers and not simply rational
numbers.

So far, examples have illustrated the common situation where the function’s ex-
ponent at its dominant singularity is 1/2. Our last example shows a case where the
exponent assumes a different value, namely 1/4.

ExampleVII.20. Branches of supertrees.Consider the quartic equation

y4− 2 y3+ (1+ 2z) y2− 2 yz+ 4z3 = 0

and letK be the branch analytic at 0 determined by the initial conditions:

K (z) = 2z2+ 2z3+ 8z4+ 18z5++64z6+ 188z7+ · · · .
The OGFK corresponds to bicoloured supertrees of Example VI.10, p. 412; a partial graph is
represented in Figure VII.19.

The discriminant is found to be

R = 16z4
(
16z2+ 4z− 1

)
(−1+ 4z)3 ,

with roots at 1/4 and(−1±
√

5)/8. The dominant singularity of the branch of combinatorial
interest turns out to be atz= 1

4 whereK (1/4) = 1/2. The translationz= 1/4+Z, y = 1/2+Y
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Figure VII.19 . The real algebraic curve associated with the generating function of
supertrees of typeK .

then transforms the basic equation into

4Y4+ 8 ZY2+ 16Z3+ 12Z2+ Z = 0.

According to Newton’s polygon method, the main cancellation arises from 4Y4 + Z = 0: this
corresponds to a segment of inverse slope 1/4 in the Newton diagram and accordingly to a cycle
formed with four conjugate branches, i.e., a fourth-root singularity.Thus, one has

K (z) ∼
z→ 1

4

1/2− 1√
2

(
1

4
− z

)1/4
− 1√

2

(
1

4
− z

)3/4
+ · · · , [zn]K (z) ∼

n→∞
4n

8Ŵ(3
4)n

5/4
,

which is consistent with values found earlier (p. 412). . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .�

Computable coefficient asymptotics.The previous discussion contains the germ
of a complete algorithm for deriving an asymptotic expansion of coefficients of any
algebraic function. We sketch in Note VII.36 the main principles, while leaving some
of the details to the reader. Observe that the problem is aconnection problem: the
“shapes” of the various sheets around each point (includingthe exceptional points) are
known, but it remains to connect them together and see which ones are encountered
first when starting with a given branch at the origin.
� VII.36. Algebraic Coefficient Asymptotics (ACA).Here is an outline of the algorithm.

Algorithm ACA:

Input: A polynomial P(z, y) with d = degy P(z, y); a seriesY(z) such thatP(z,Y) = 0 and
assumed to be specified by sufficiently many initial terms so as to be distinguished from all
other branches.

Output: The asymptotic expansion of [zn]Y(z) whose existence is granted by Theorem VII.8.

The algorithm consists of three main steps:Preparation(I), Dominant singularities(II ), and
Translation(III ).

I. Preparation:Define the discriminantR(z) = R(P, P′y, y).
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(P1) Compute the exceptional set4 = {z
∣∣ R(z) = 0} and the points of infinity40 =

{z
∣∣ p0(z) = 0}, wherep0(z) is the leading coefficient ofP(z, y) considered as a

function of y.
(P2) Determine the Puiseux expansions of all thed branches at each of the points of

4 ∪ {0} (by Newton diagrams and/or indeterminate coefficients). This includes the
expansion of analytic branches as well. Let{yα, j (z)}dj=1 be the collection of all
such expansions at someα ∈ 4 ∪ {0}.

(P3) Identify the branch at 0 that corresponds toY(z).

II. Dominant singularities:(Controlled approximate matching of branches). Let41, 42, . . .
be a partition of the elements of4∪ {0} sorted according to the increasing values of their mod-
ulus: it is assumed that the numbering is such that ifα ∈ 4i andβ ∈ 4 j , then|α| < |β| is
equivalent toi < j . Geometrically, the elements of4 have been grouped in concentric circles.
First, a preparation step is needed.

(D1) Determine a non-zero lower boundδ on the radius of convergence of any local
Puiseux expansion of any branch at any point of4. Such a bound can be con-
structed from the minimal distance between elements of4 and from the degreed of
the equation.

The sets4 j are to be examined in sequence until it is detected that one of them contains asin-
gularity. At stepj , letσ1, σ2, . . . , σs be an arbitrary listing of the elements of4 j . The problem
is to determine whether anyσk is a singularity and, in that event, to find the right branch to
which it is associated. This part of the algorithm proceeds by controlled numerical approxima-
tions of branches and constructive bounds on the minimum separation distance between distinct
branches.

(D2) For each candidate singularityσk, with k ≥ 2, setζk = σk(1−δ/2). By assumption,
eachζk is in the domain of convergence ofY(z) and of anyyσk, j .

(D3) Compute a non-zero lower boundηk on the minimum distance between two roots of
P(ζk, y) = 0. This separation bound can be obtained from resultant computations.

(D4) EstimateY(ζk) and eachyσk, j (ζk) to an accuracy better thanηk/4. If two elements,
Y(z) and yσk, j (z) are (numerically) found to be at a distance less thanηk for z =
ζk, then they are matched:σk is a singularity and the correspondingyσk, j is the
corresponding singular element. Otherwise,σk is declared to be a regular point for
Y(z) and discarded as candidate singularity.

The main loop onj is repeated until a singularity has been detected, whenj = j0, say. The
radius of convergenceρ is then equal to the common modulus of elements of4 j0; the corre-
sponding singular elements are retained.

III. Coefficient expansion:Collect the singular elements at all the pointsσ determined to
be a dominant singularity at Phase II. Translate termwise using the singularity analysis rule,

(σ − z)p/κ 7→ σ p/κ−n Ŵ(−p/κ + n)

Ŵ(−p/κ)Ŵ(n+ 1)
,

and reorganize into descending powers ofn, if needed. �

This algorithm vindicates the following assertion (see also Chabaud’s thesis [110]).

Proposition VII.8 (Decidability of algebraic connections.). The dominant singular-
ities of a branch of an algebraic function can be determined in a finite number of
operations by the algorithmACA of Note VII.36.

� VII.37. Eisenstein’s lemma.Let y(z) be an algebraic function with rational coefficients (for
instance a combinatorial generating function) satisfying8(z, y(z)) = 0, where the coefficient
of the polynomial8 are inC; then there exists a polynomial9 with integer coefficients such
that9(z, y(z)) = 0. (Hint [65]. Consider the case where the coefficients of8 areQ–linear
combinations of 1 and an irrationalα, and write8(z, y) = 81(z, y) + α8α(z, y), where
81,8α ∈ Q[z, y]; extracting [zn]8(z, y(z)) would produce aQ–linear relation between 1
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andα, unlessone of81,8α is trivial, which must then be the case.) Thus, one can get9(z, y)
in Q[z, y], and by clearing denominators, inZ[z, y]. As a consequence, for algebraicy(z) with
rational coefficients, there exists an integerB such that for alln, one hasBn[zn]y(z) ∈ Z. Since
there are infinitely many primes, the functionsez, log(1+ z),

∑
zn/n2,

∑
zn/(n!)3, and so on,

are transcendental (i.e., not algebraic). �

� VII.38. Powers of binomial coefficients.DefineSr (z) :=∑n≥0
(2n

n
)r

zn, with r ∈ Z>0. For
evenr = 2ν the functionS2ν(z) is transcendental (not algebraic) since its singular expansion
involves a logarithmic term. For oddr = 2ν + 1 andr ≥ 3, the functionS2ν+1(z) is also
transcendental as a consequence of the arithmetic transcendence of the numberπ ; see [220].
These functions intervene in Pólya’s drunkard problem (p. 425). In contrast with the “hard”
theory of arithmetic transcendence, it is usually “easy” to establish transcendence of functions,
by exhibiting a local expansion that contradicts the Newton–Puiseux Theorem (p. 498). �

VII. 8. Combinatorial applications of algebraic functions

In this section, we introduce objects whose construction leads to algebraic func-
tions, in a way that extends the basic symbolic method. This includes: walks with
a finite number of allowed jumps (Subsection VII. 8.1) and planar maps (Subsec-
tion VII. 8.2). In such cases,bivariate functional equationsreflect the combinatorial
decompositions of objects. The common form of these functional equations is

(84) 8(z,u, F(z,u), h1(z), . . . , hr (z)) = 0,

where8 is a known polynomial and the unknown functions areF andh1, . . . , hr .
Specific methods are needed in order to attain solutions to such functional equations
that would seem at first glance to be grossly underdetermined. Walks and excursions
lead to a linear version of (84) that is treated by the so-calledkernel method. Maps lead
to nonlinear versions that are solved by means of Tutte’squadratic method. In both
cases, the strategy consists in bindingz andu by forcing them to lie on an algebraic
curve (suitably chosen in order to eliminate the dependencyon F(z,u)), and then
pulling out consequences of such a specialization. Asymptotic estimates can then be
developed from such algebraic solutions, thanks to the general methods expounded in
the previous section.

VII. 8.1. Walks and the kernel method. Start with a set� that is a finite sub-
set ofZ and is called the set ofjumps. A walk (relative to�) is a sequencew =
(w0, w1, . . . , wn) such thatw0 = 0 andwi+1 − wi ∈ �, for all i , 0 ≤ i < n. A
non-negative walk(also known as a “meander”) satisfieswi ≥ 0 and anexcursionis
a non-negative walk such that, additionally,wn = 0. A bridge is a walk such that
wn = 0. The quantityn is called the length of the walk or the excursion. For in-
stance, Dyck paths and Motzkin paths analysed in Section V. 4, p. 318, are excursions
that correspond to� = {−1,+1} and� = {−1,0,+1}, respectively. (Walks and
excursions are also somewhat related to paths in graphs in the sense of Section V. 5,
p. 336.)

We let−c denote the smallest (negative) value of a jump, andd denote the largest
(positive) jump. A fundamental rôle is played in this discussion by thecharacteristic
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polynomial14 of the walk,

S(y) :=
∑

ω∈�
yω =

d∑

j=−c

Sj y j ,

which is a Laurent polynomial; that is, it involves negativepowers of the variabley. .

Walks.Observe first the rational character of the BGF of walks, withz marking
length andu marking final altitude:

(85) W(z,u) = 1

1− zS(u)
.

Since walks may terminate at a negative altitude, this is a Laurent series inu.

Bridges.The GF of bridges is formally [u0]W(z,u), since bridges correspond to
walks that end at altitude 0. Thus one has

(86) B(z) = 1

2iπ

∫

γ

1

1− zS(u)

du

u
,

upon integrating along a circleγ that separates the small and large branches, as dis-
cussed below. The integral can then be evaluated by residues: details are found in [27];
the net result is Equation (97), p. 511.

Excursions and meanders.We propose next to determine the numberFn of ex-
cursions of lengthn and type�, via the corresponding OGF

F(z) =
∞∑

n=0

Fnzn.

In fact, we shall determine the more general BGF

F(z,u) :=
∑

n,k

Fn,kukzn,

where Fn,k is the number of non-negative walks (meanders) of lengthn and final
altitudek (i.e., the value ofwn in the definition of a walk is constrained to equalk). In
particular, one hasF(z) = F(z,0).

The main result of this subsection can be stated informally as follows (see Propo-
sitions VII.9, p. 510 and VII.10, p. 513 for precise versions):

For each finite set� ∈ Z, the generating function of excursions is analge-
braic functionthat is explicitly computable from�. The number of excur-
sions of length n satisfies asymptoticallya universal lawof the form

C Ann−3/2.

14If � is a set, then the coefficients ofS lie in {0,1}. The treatment presented here applies in all
generality to cases where the coefficients are arbitrary positive real numbers. This accounts for probabilistic
situations as well as multisets of jump values.
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There are many ways to view this result. The problem is usually treated within proba-
bility theory by means of Wiener–Hopf factorizations [515], and Lalley [396] offers an
insightful analytic treatment from this angle. On another level, Labelle and Yeh [392]
show that an unambiguous context-free specification of excursions can be systemat-
ically constructed, a fact that is sufficient to ensure the algebraicity of the GFF(z).
(Their approach is implicitly based on the construction of apushdown automaton it-
self equivalent, by general principles, to a context-free grammar.) The Labelle–Yeh
construction reduces the problem to a large, but somewhat “blind”, combinatorial pre-
processing. Accordingly, for analysts, it has the disadvantage of not extracting a sim-
pler analytic (but non-combinatorial) structure inherentin the problem: theshapeof
the end result can indeed be predicted by the Drmota–Lalley–Woods Theorem, but the
nature of the constants involved is not clearly accessible in this way.

The kernel method.The method described below is often known as thekernel
method. It takes some of its inspiration from exercises in the 1968 edition of Knuth’s
book [377] (Ex. 2.2.1.4 and 2.2.1.11), where a new approach was proposed to the
enumeration of Catalan and Schröder objects. The technique has since been extended
and systematized by several authors; see for instance [26, 27, 86, 202, 203] for relevant
combinatorial works. Our presentation below follows that of Lalley [396] and of
Banderier and Flajolet [27].

The polynomial fn(u) = [zn]F(z,u) is the generating function of non-negative
walks of lengthn, with u recording final altitude. A simple recurrence relatesfn+1(u)
to fn(u), namely,

(87) fn+1(u) = S(u) · fn(u)− rn(u),

wherern(u) is a Laurent polynomial consisting of the sum of all the monomials of
S(u) fn(u) that involve negative powers15 of u:

(88) rn(u) :=
−1∑

j=−c

u j ([u j ] S(u) fn(u)) = {u<0}S(u) fn(u).

The idea behind the formula is to subtract the effect of thosesteps that would take the
walk below the horizontal axis. For instance, one has

S(u) = S−1

u
+ O(1), so that rn(u) =

S−1

u
fn(0)

S(u) = S−2

u2
+ S−1

u
+ O(1), so that rn(u) =

(
S−2

u2
+ S−1

u

)
fn(0)+

S−2

u
f ′n(0).

(This technique is similar to that of “adding a slice”, p. 199.)
Generally, set

(89) λ j (u) := 1

j !
{u<0}u j S(u).

15The convenient notation{u<0} denotes the singular part of a Laurent expansion:{u<0} f (z) :=∑
j<0

(
[u j ] f (u)

)
· u j .
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Then, from (87) and (88) (multiply byzn+1 and sum), the generating functionF(z,u)
satisfies the fundamental functional equation

(90) F(z,u) = 1+ zS(u)F(z,u)− z{u<0} (S(u)F(z,u)) .
Thus, one has, explicitly,

(91) F(z,u) = 1+ zS(u)F(z,u)− z
c−1∑

j=0

λ j (u)

[
∂ j

∂u j
F(z,u)

]

u=0
,

where the Laurent polynomialsλ j (u) depend onS(u) in an effective way by (89).
The main equations (90) and (91) involve one unknown bivariate GF, F(z,u)

andc univariate GFs, the partial derivatives ofF specialized atu = 0. It is true, but
not at all obvious, that the single functional equation (91)fully determines thec+ 1
unknowns. The basic technique is known as “cancelling the kernel” and it relies on
strong analyticity properties; see the book by Fayolleet al. [203] for deep ramifica-
tions in the study of two-dimensional walks. The form of (91)to be employed for this
purpose starts by grouping on one side the terms involvingF(z,u),

(92) F(z,u)(1− zS(u)) = 1− z
c−1∑

j=0

λ j (u)G j (z), G j (z) :=
[
∂ j

∂u j
F(z,u)

]
.

If the right-hand side sum was not present, then the solutionwould reduce to (85). In
the case at hand, from the combinatorial origin of the problem and implied bounds,
the quantityF(z,u) is bivariate analytic at(z,u) = (0,0) (by elementary exponential
majorizations on the coefficients). The main principle of the kernel method consists
in couplingthe values ofz andu in such a way that 1− zS(u) = 0, so thatF(z,u)
disappears from the picture. A condition is that bothz andu should remain small (so
that F remains analytic). Relations between the partial derivatives are then obtained
from such a specialization,(z,u) 7→ (z,u(z)), which happen to be just in the right
number.

Consequently, we consider the “kernel equation”,

(93) 1− zS(u) = 0,

which is rewritten as
uc = z · (ucS(u)).

Under this form, it is clear that the kernel equation (93) definesc+ d branches of an
algebraic function. A local analysis shows that, among thesec+d branches, there are
c branches that tend to 0 asz→ 0, whereas the otherd tend to infinity asz→ 0. (The
idea is that, in the equation (93), either one ofzu−c ≈ 1 or zud ≈ 1 predominates;
equivalently, a Newton polygon can be constructed.) Letu0(z), . . . ,uc−1(z) be the
c branches that tend to 0, that we call “small” branches. In addition, we single out
u0(z), the “principal” solution, by the reality condition

u0(z) ∼ γ z1/c, γ := (Sc)
1/c ∈ R>0 (z→ 0+).

By local uniformization (see (79), p. 497), the conjugate branches are given locally by

uℓ(z) = u0(e
2i ℓπz) (z→ 0+).
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Coupling z and u by u = uℓ(z) produces interesting specializations of Equa-
tion (92). In that case,(z,u) is close to(0,0) whereF is bivariate analytic so that the
substitution is admissible. By substitution, we get

(94) 1− z
c−1∑

j=0

λ j (uℓ(z))

[
∂ j

∂u j
F(z,u)

]

u=0
, ℓ = 0 . . c− 1.

This is now a linear system ofc equations inc unknowns (namely, the partial deriva-
tives) with algebraic coefficients that, in principle, determine F(z,0).

A convenient approach to the solution of (94) is due to Mireille Bousquet-Ḿelou.
The argument goes as follows. The quantity

(95) M(u) := uc − zuc
c−1∑

j=0

λ j (u)
∂ j

∂u j
F(z,0)

can be regarded as a polynomial inu. It is monic while it vanishes by construction at
thec small branchesu0, . . . ,uc−1. Consequently, one has the factorization,

(96) M(u) =
c−1∏

ℓ=0

(u− uℓ(z)).

Now, the constant term ofM(u) is otherwise known to equal−zS−cF(z,0), by the
definition (95) ofM(u) and by Equation (89) specialized toλ0(u). Thus, the compar-
ison of constant terms between (95) and (96) provides us withan explicit form of the
OGF of excursions:

F(z,0) = (−1)c−1

S−cz

c−1∏

ℓ=0

uℓ(z).

One can then finally return to the original functional equation and pull the BGFF(z,u).
In summary:

Proposition VII.9. Let� be a finite step of jumps and let S(u) be the characteristic
polynomial of�. Consider the c small branches of the “kernel” equation,

1− zS(u) = 0,

denoted by u0(z), . . . ,uc−1(z). The generating function of excursions is given by

F(z) = (−1)c−1

zS−c

c−1∏

ℓ=0

uℓ(z), where S−c = [u−c]S(u)

is the multiplicity (or weight) of the smallest element−c ∈ �. More generally the
bivariate generating function of non-negative walks (meanders) with u marking final
altitude is bivariate algebraic and given by

F(z,u) = 1

uc − zucS(u)

c−1∏

ℓ=0

(u− uℓ(z)) .
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The OGF of bridges is expressible in terms of the small branches, by

(97) B(z) = z
c∑

j=1

u′j (z)

u j (z)
= z

d

dz
log(u1(z) · · · uc(z)) .

(The proof of (97) is based on a residue evaluation of (86), p.507.)

Example VII.21. Trees and Łukasiewicz codes.A particular class of walks is of special
interest; it corresponds to cases wherec = 1; that is, the largest jump in the negative direction
has amplitude 1. Consequently,� + 1 = {0, s1, s2, . . . , sd}. In that situation, combinatorial
theory teaches us the existence of fundamental isomorphisms between walks defined by steps
� and trees whose degrees are constrained to lie in 1+ �. The correspondence is by way of
Łukasiewicz codes16, also known as ‘Polish” prefix codes introduced in Chapter I. From this
correspondence, we expect to find tree GFs in such cases.

With regard to generating functions, there now exists onlyonesmall branch, namely the
solutionu0(z) to u0(z) = zφ(u0(z)) (whereφ(u) = uS(u)) that is analytic at the origin. One
then hasF(z) = F(z,0) = 1

zu0(z), so that the walk GF is determined by

F(z, 0) = 1

z
u0(z), u0(z) = zφ(u0(z)), φ(u) := uS(u).

This form is consistent with what is already known regarding the enumeration of simple families
of trees. In addition, one finds

F(z, u) = 1− u−1u0(z)

1− zS(u)
= u− u0(z)

u− zφ(u)
.

Classical cases are rederived in this way:

— the Catalan walk (Dyck path), defined by� = {−1,+1} andφ(u) = 1+ u2, has

u0(z) =
1

2z

(
1−

√
1− 4z2

)
;

— the Motzkin walk, defined by� = {−1,0,+1} andφ(u) = 1+ u+ u2 has

u0(z) =
1

2z

(
1− z−

√
1− 2z− 3z2

)
;

— the modified Catalan walk, defined by� = {−1, 0, 0,+1} (with two steps of type 0)
andφ(u) = 1+ 2u+ u2, has

u0(z) =
1

2z

(
1− 2z−

√
1− 4z

)
;

— thed–ary tree walk (the excursions encoded–ary trees) defined by� = {−1,d−1},
hasu0(z) that is defined implicitly byu0(z) = z(1+ u0(z)

d).

The kernel method thus provides a new perspective for the enumeration of Dyck paths and
related objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

16Such a code (p. 74) is obtained by a preorder traversal of the tree, recording a jump ofr − 1 when a
node of outdegreer is encountered. The sequence of jumps gives rise to an excursion followed by an extra
−1 jump.
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ExampleVII.22. Walks with amplitude at most 2.Take� = {−2,−1, 1, 2}, so that

S(u) = u−2+ u−1+ u+ u2.

Then,u0(z),u1(z) are the two branches that vanish asz→ 0 of the curve

y2 = z(1+ y+ y3+ y4).

The linear system that determinesF(z, 0) andF ′u(z,0) is




1−
(

z

u0(z)2
+ z

u0(z)

)
F(z, 0)− z

u0(z)
F ′u(z, 0) = 0

1−
(

z

u1(z)2
+ z

u1(z)

)
F(z,0)− z

u1(z)
F ′u(z, 0) = 0

(derivatives are taken with respect to the second argument) and one finds

F(z, 0) = −1

z
u0(z)u1(z), F ′u(z, 0) =

1

z
(u0(z)+ u1(z)+ u0(z)u1(z)).

This gives the number of walks, through a combination of series expansions,

F(z) = 1+ 2z2+ 2z3+ 11z4+ 24z5+ 93z6+ 272z7+ 971z8+ 3194z9+ · · · .
A single algebraic equation forF(z) = F(z, 0) is then obtained by elimination (e.g., via
Gröbner bases) from the system:





u2
0− z(1+ u0+ u3

0+ u4
0) = 0

u2
1− z(1+ u1+ u3

1+ u4
1) = 0

zF+ u0u1 = 0

Elimination shows thatF(z) is a root of the equation

z4y4− z2(1+ 2z)y3+ z(2+ 3z)y2− (1+ 2z)y+ 1= 0.

For� = {−2,−1, 0, 1, 2}, we find similarlyF(z) = −1
zu0(z)u1(z), whereu0, u1 are the

small branches ofy2 = z(1+ y+ y2+ y3+ y4); the expansion starts as

F(z) = 1+ z+ 3z2+ 9z3+ 32z4+ 120z5+ 473z6+ 1925z7+ 8034z8+ · · · ,
(EISA104184; see also [441]), andF(z) is a root of the equation

z4y4− z2(1+ z)y3+ z(2+ z)y2− (1+ z)y+ 1= 0.

In such cases, the GFs are no longer of the simple tree type. . . . . . . . . .. . . . . . . . . . . . . . . . . . .�

Asymptotic analysis.The singularities of the branches involved in the statement
of Proposition VII.9 can be worked out in all generality [27,396]. The roots of the
kernel equation (93) are singular at pointsz with valueu satisfying the simultaneous
set of equations,

1− zS(u) = 0, S′(u) = 0,

where the second equation corresponds to a place where the analytic implicit function
theorem “fails” to defineu as an analytic function ofz. The second equation always
has a positive rootτ , corresponding to a positive value ofz, which isρ = 1/S(τ ). It
is then natural to suspectρ to be radius of convergence ofF(z) and the singularity to
be of the square-root type (Z1/2), this for reasons seen in the proof of Theorem VII.3
(the smooth implicit-function schema). These properties are shown in complete detail
in the articles [27, 395, 396], where it is also established that the GF of bridges is of
singular typeZ−1/2, as in the case of Dyck bridges.
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Proposition VII.10. Define the structural constantτ by S′(τ ) = 0, τ > 0. Then
assuming aperiodicity, the number of bridges (Bn) and the number of excursions (Fn)
satisfy

Bn ∼ β0
S(τ )n√

2πn
, Fn ∼ ǫ0

S(τ )n

2
√
πn3

,

where

β0 =
1

τ

√
S(τ )

S′′(τ )
, ǫ0 =

(−1)c−1

S−c

√
2S(τ )3

S′′(τ )

c−1∏

j=1

u j

(
1

S(τ )

)
.

There, the uj represent the small branches and u0 is the —principal” branch that is
finite and real positive as z→ 0.

Proposition VII.10 expresses auniversal lawof type n−3/2 for excursions and
n−1/2 for bridges, a fact otherwise at least partly accessible to classical probability
theory (e.g., via a local limit theorem for bridges and via Brownian motion for ex-
cursions). Basic parameters of walks, excursions, bridges, and meanders can then be
analysed in a uniform fashion [27].

VII. 8.2. Maps and the quadratic method. A (planar) map is a connected pla-
nar graph together with an embedding into the plane. In all generality, loops and
multiple edges are allowed. A planar map therefore separates the plane into regions
called faces. The maps considered here are in addition rooted, meaning that a face, an
incident edge, and an incident vertex are distinguished. Inthis section, only rooted
maps are considered. (Nothing is lost regarding asymptoticproperties of random
structures when a rooting is imposed. The reason is that a maphas, with probabil-
ity exponentially close to 1, a trivial automorphism group;consequently, almost all
maps ofm edges can be rooted in 2m ways—by choosing an edge, and an orienta-
tion of this edge—and there is an almost uniform 2m-to-1 correspondence between
unrooted maps and rooted ones.) When representing rooted maps, we shall agree to
draw the root edge with an arrow pointing away from the root node, and to take the
root face as that face lying to the left of the directed edge (represented in grey below):

.

Tutte launched in the 1960s a large census of planar maps, with the intention of
attacking the four-colour problem by enumerative techniques17; see [96, 579, 580,

17The four-colour theorem to the effect that every planar graph can be coloured using only four colours
was eventually proved by Appel and Haken in 1976, using structural graph theory methods supplemented
by extensive computer search.
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581, 582]. There is in fact a very large collection of maps defined by various degree
or connectivity constraints. In this chapter, we shall limit ourselves to conveying a
flavour of this vast theory, with the goal of showing how algebraic functions arise.
The presentation takes its inspiration from the book of Goulden and Jackson [303,
Sec. 2.9]

The quadratic method.Let M be the class of all maps where size is taken to be
the number of edges. LetM(z,u) be the BGF of maps withu marking the number
of edges on the outside face. The basic surgery performed on maps distinguishes two
cases based upon the nature of the root edge. A rooted map willbe declared to be
isthmic if the root edger of mapµ is an “isthmus”; that is, an edge whose deletion
would disconnect the graph. Clearly, one has

(98) M = o+M(i ) +M(n),

whereM(i ) (resp.M(n)) represent the class of isthmic (resp. non-isthmic) maps and
‘o’ is the graph consisting of a single vertex and no edge. Thereare accordingly two
ways to build maps from smaller ones by adding a new edge.

(i ) The class of all isthmic maps is constructed by taking two arbitrary maps and
joining them together by a new root edge, as shown below:

.

The effect is to increase the number of edges by 1 (the new rootedge) and have the
root face degree become 2 (the two sides of the new root edge) plus the sum of the
root face degrees of the component maps. The construction isclearly revertible. In
other words, the BGF ofM(i ) is

(99) M (i )(z,u) = zu2M(z,u)2.

(i i ) The class of non-isthmic maps is obtained by taking an already existing map
and adding an edge that preserves its root node and “cuts across” its root face in some
unambiguous fashion (so that the construction should be revertible). This operation
will therefore result in a new map with an essentially smaller root-face degree. For
instance, there are five ways to cut across a root face of degree 4; namely,
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.

This corresponds to the linear transformation

u4 7→ zu5 + zu4 + zu3 + zu2 + zu1.
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In general the effect on a map with root face of degreek is described by the trans-
formationuk 7→ zu(1− uk+1)/(1− u); equivalently, each monomialg(u) = uk is
transformed intozu(g(1)−ug(u))/(1−u). Thus, the OGF ofM(n) involves a discrete
difference operator:

(100) M (n)(z,u) = zu
M(z,1)− uM(z,u)

1− u
.

Collecting the contributions from (99) and (100) in (98) then yields the basic
functional equation,

(101) M(z,u) = 1+ u2zM(z,u)2+ uz
M(z,1)− uM(z,u)

1− u
.

The functional equation (101) binds two unknown functions,M(z,u) andM(z,1).
Similar to the case of walks, it would seem to be underdetermined. Now, a method
due to Tutte and known as thequadratic methodprovides solutions. Following Tutte
and the account in [303, p. 138], we consider momentarily themore general equation

(102) (g1F(z,u)+ g2)
2 = g3,

whereg j = G j (z,u, h(z)) and theG j are explicit functions—here the unknown
functions areF(z,u) andh(z) (cf M(z,u) and M(z,1) in (101)). Bindu andz in
such a way that the left side of (102) vanishes; that is, substitute u = u(z) (a yet
unknown function) so thatg1F + g2 = 0. Since the left-hand side of (102) now has a
double root inu, so must the right-hand side, which implies

(103) g3 = 0,
∂g3

∂u

∣∣∣∣
u=u(z)

= 0.

The original equation has become a system of two equations intwo unknowns that de-
termines implicitlyh(z) andu(z). From this system, elimination provides individual
equations foru(z) and forh(z). (If needed,F(z,u) can then be recovered by solv-
ing a quadratic equation.) It will be recognized that, if thequantitiesg1, g2, g3 are
polynomials, then the process invariably yields solutionsthat are algebraic functions.

We now carry out this programme in the case of maps and Equation (101). First,
isolateM(z,u) by completing the square, giving

(104)

(
M(z,u)− 1

2

1− u+ u2z

u2z(1− u)

)2

= Q(z,u)+ M(z,1)

u(1− u)
,

where

Q(z,u) = z2u4− 2zu2(u− 1)(2u− 1)+ (1− u2)

4u4z2(1− u)2
.

Next, the condition expressing the existence of a double root is

Q(z,u)+ 1

u(1− u)
M(z,1) = 0, Q′u(z,u)+

2u− 1

u2(1− u)2
M(z,1) = 0.
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It is now easy to eliminateM(z,1), since the dependency inM is linear, and a straight-
forward calculation shows thatu = u(z) should satisfy

(
u2z+ (u− 1)

) (
u2z+ (u− 1)(2u− 3)

)
= 0.

The first parameterization would lead toM(z,1) = 1/z which is not acceptable. Thus,
u(z) is to be taken as the root of the second factor, withM(z,1) being defined para-
metrically by

(105) z= (1− u)(2u− 3)

u2
, M(z,1) = −u

3u− 4

(2u− 3)2
.

Asymptotic analysis.In principle, the problem of enumerating maps is solved
by (105), albeit in a parameterized form. We can then eliminate u (for instance, by
resultants) and get an explicit equation forM ≡ M(z,1):

27z2M2− 18zM+ M + 16z− 1= 0.

This quadratic equation is explicitly solvable

M(z,1) = − 1

54z2

(
1− 18z− (1− 12z)3/2

)
,

and its singular type isZ3/2 (with Z = (1− 12z)). Summarizing, we obtain one of
the very first results in the enumerative theory of maps.

Proposition VII.11. The OGF of maps admits the explicit form

(106) M(z) ≡ M(z,1) = − 1

54z2

(
1− 18z− (1− 12z)3/2

)
.

The number of maps with n edges, Mn = [zn]M(z,1), satisfies

(107) Mn = 2
(2n)!3n

n!(n+ 2)!
∼ 2√

πn5
12n.

The sequence of coefficients isEISA000168:

(108) M(z,1) = 1+2z+9z2+54z3+378z4+2916z5+24057z6+208494z7+· · · .
We refer to [303, Sec. 2.9] for detailed calculations (that are nowadays routinely per-
formed with the assistance of a computer algebra system). Currently, there exist many
applications of the quadratic method to maps satisfying allsorts of combinatorial
constraints, in particular multiconnectivity; see [533] for a panorama. Interestingly
enough, the singular exponent of maps isuniversally3/2, a fact further reflected by
the n−5/2 factor in the asymptotic form of coefficients. Accordingly,randomness
properties of maps are appreciably different from what is observed in trees and many
commonly encountered context-free objects (e.g., irreducible ones).
� VII.39. Lagrangean parametrization of general maps.The change of parameteru = 1−1/w
reduces (105) to the “Lagrangean form”,

(109) z= w

1− 3w
, M(z,1) = 1− 4w

(1− 3w)2
,

to which the Lagrange Inversion Theorem can be applied, giving back (107). �
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Figure VII.20 . The “kitten”: a random irreducible triangulation with a quadrangu-
lar outer face built out of 69 vertices and 200 edges. Left: a projection of a three-
dimensional view (imagine the map drawn on a surface inR3). Right: a straight-line
orthogonal rendering based on Fusy’s algorithm [274].

� VII.40. Distances in maps.Chassaing and Schaeffer [113] have shown that the distance
between two random vertices of a random planar map withn faces scales asn1/4, whenn→∞.
Le Gall [404] has proved that a rescaled planar triangulation converges to a random“continuum
planar map”that has a spherical topology. See Figure VII.20 for some aspects ofa random map.
(Physicists study similar random planar structures under the name of2-dimensional quantum
gravity; see also Note VI.22, p. 414, for related material.) �

� VII.41. Matrix integrals and maps.Consider anN × N Hermitian matrixH , such that

ℜ(Hi, j ) = ℜ(H j,i ) = xi, j and ℑ(Hi, j ) = −ℑ(H j,i ) = yi, j ,

and define the Gaussian measure of parameterλ on the set of Hermitian matrices as (Tr is the
matrix trace):

dµN(H ; λ) :=
(

2π

λ

)−N2/2
e−λTr(H2)/2

N∏

i=1

dxi,i
∏

i< j

dxi, j dyi, j .

Let M(t, v) be the multivariate generating function of rooted planar maps, wheret marks the
number of edges,v represents the vector of indeterminates(v1, v2, . . .), andv j marks the num-
ber of vertices of degreej . One has

M(t, v) = t
d

dt


 lim

N→∞
1

N2
log

∫
exp


N

∞∑

m=1

vm
Hm

m


 dµN(H ; N/t)


 .

(For this rich theory largely originating with Bessis, Brézin, Itzykson, Parisi and Zuber [60, 94],
see Zvonkin’s gentle introduction [630], Bouttier’s thesis [88], as well as [89] and references
therein.) �

� VII.42. The number of planar graphs.The asymptotic number of labelled planar graphs
with n vertices was determined by Giménez and Noy [290] to be of the form

Gn ∼ g · γ nn−7/2n!, g
.= 0.4970 04399, γ

.= 27.22687 77685.

This spectacular result, which settled a long standing open question, is obtained by a suc-
cession of combinatorial and analytic steps based on:(i ) the enumeration of 3–connected
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maps (these are the same as graphs, due to unique embeddability), whichcan be performed
by the quadratic method;(i i ) the enumeration of 2–connected graphs by Bender, Gao, and
Wormald [41]; (i i i ) the integro-differential relations that relate the GFs of 2–connected and
1–connected graphs. The authors of [290] also show that a random planar graph is connected
with probability asymptotic toe−ν .= 0.96325 and the mean number of connected components
is asymptotic to 1+ ν .= 1.03743. See also the rich survey [291] for much more. �

VII. 9. Ordinary differential equations and systems

In Part A of this book relative toSymbolic Methods, we have encountered differ-
ential relations attached to several combinatorial constructions.

— Pointing: the operation of pointing a specific atom in an object of a combi-
natorial classC produces a pointed classD = 2C. If the generating function
of C is C(z) (an OGF in the unlabelled case, an EGF in the labelled case),
then one has

(110) D = 2C H⇒ D(z) = z
d

dz
C(z).

See Subsections I. 6.2 (p. 86) and II. 6.1 (p. 136).
— Order constraints:in Subsection II. 6.3 (p. 139), we have defined the boxed

productA = (B2 ⋆ C) to be the modified labelled product comprised of
pairs of elements such that the smallest label is constrained to lie in theB
component. The translation over OGFs is

(111) A = (B2 ⋆ C) H⇒ A(z) =
∫ z

0
(∂t B(t)) · C(t)dt.

Thus pointing and order constraints systematically lead tointegro-differential relation,
which can be transformed intoordinary differential equations(ODEs) and systems.
Another rich source of differential equations in combinatorics is provided by the holo-
nomic framework (Appendix B.4:Holonomic functions, p. 748). We summarize be-
low some of the major methods that can be used to analyse the corresponding GFs.
On the side of differential equations, our analytic arguments largely follow the ac-
cessible introductions found in the books by Henrici [329] and Wasow [602]. Linear
ODEs are examined in Subsection VII. 9.1, some simple nonlinear ODEs in Subsec-
tion VII. 9.2. The main applications discussed here are relative to trees associated to
ordered structures—quadtrees and increasing trees principally.

VII. 9.1. Singularity analysis of linear differential equations. Linear differ-
ential equations with analytic coefficients have solutionsthat, near a reasonably well-
behaved singularityζ , are of the form

Zθ (log Z)k H(Z), Z := z− ζ,
with θ ∈ C an algebraic number,k ∈ Z≥0, and H a locally analytic function. The
coefficients of such equations are composed of elements thatare asymptotically of the
form

nβ(logn)k, β = −θ − 1,

in accordance with the general correspondence provided by singularity analysis. For
instance, a naturally occurring combinatorial structure,the quadtree, gives rise to a
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number sequence that, surprisingly, turns out to be asymptotically proportional to
n(
√

17−3)/2.

Regular singularities.Our starting point is alinear ordinary differential equa-
tion (linear ODE), which we take to be of the form

(112) c0(z)∂
r Y(z)+ c1(z)∂

r−1Y(z)+ · · · + cr Y(z) = 0, ∂ ≡ d

dz
.

The integerr is theorder. We assume the existence of a simply connected domain�

in which the coefficientsc j ≡ c j (z) are analytic. At a pointz0 wherec0(z0) 6= 0, a
classical existence theorem (Note VII.43 and [602, p. 3]) guarantees that, in a neigh-
bourhood ofz0, there existr linearly independentanalyticsolutions of (112). Thus,
singularitiescan only occur at pointsζ that are roots of the leading coefficientc0(z).
� VII.43. Analytic solutions.Consider the ODE (112) nearz0 = 0 and assumec0(0) 6= 0.
Then, a formal solutionY(z) can be determined, given any set of initial conditionsY( j )(0) =
w j , by the method of indeterminate coefficients. The coefficients can be constructed recurrently,
and simple bounds show that they are of at most exponential growth. �

To proceed, we rewrite Equation (112) as

(113) ∂r Y(z)+ d1(z)∂
r−1Y(z)+ · · · + dr (z)Y(z) = 0,

whered j = c j /c0. Under our assumptions, the functionsd j (z) are now meromorphic
in�. Given a meromorphic functionf (z), we defineωζ ( f ) to be the order of the pole
of f at ζ , andωζ ( f ) = 0 means thatf (z) is analytic atζ .

Definition VII.7. The differential equations(112)and(113)are said to have a singu-
larity at ζ if at least one of theωζ (d j ) is positive. The pointζ is said to be aregular
singularity18 if

ωζ (d1) ≤ 1, ωζ (d2) ≤ 2, . . . , ωζ (dr ) ≤ r,

an irregular singularityotherwise.

For instance, the second-order ODE

(114) Y′′ + z−1 sin(z)Y′ − z−2 cos(z)Y = 0,

has a regular singular point atz = 0, since the orders are 0,2, respectively. It is a
notable fact that, even though we do not know how to solve explicitly the equation in
terms of the usual special functions of analysis, the asymptotic form of its solutions
can be precisely determined.

Let ζ be a regular singular point, and say we attempt to solve (112)by trying a
solution of the formZθ + · · · , whereZ := z− ζ . For instance, proceeding somewhat
optimistically with (114) atζ = 0, we may expect the left-hand side of the equation
to be of the form[

θ(θ − 1)zθ−2+ · · ·
]
+
[
θzθ−1+ · · ·

]
−
[
zθ−2+ · · ·

]
= 0.

In order to obtain cancellation to main asymptotic order (zθ−2), we must then assume
that the coefficient ofzθ−2 vanishes; then,θ solves an algebraic equation of degree 2,
namely,θ(θ − 1)− 1= 0, which suggests the possibility of two solutions of the form

18For “irregular” singularities, see Section VIII. 7, p. 581.
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zθ near 0, withθ = (1±
√

5)/2. This informal discussion motivates the following
definition.

Definition VII.8. Given an equation of the form(113)and a regular singular pointζ ,
the indicial polynomialI (θ) at ζ is defined to be

I (θ) = θ r + δ1θ r−1+ · · · + δr , θℓ := θ(θ − 1) · · · (θ − ℓ+ 1),

whereδ j := limz→ζ (z− ζ ) j d j (z). Theindicial equation (atζ ) is the algebraic equa-
tion I (θ) = 0.

If we let L denote the differential operator corresponding to the left-hand side
of (113), we have formally, at a regular singular point,

L
[
Zθ
]
= I (θ)Zθ−r + O

(
Zθ−r−1

)
, Z = (z− ζ ),

which justifies the r̂ole of the indicial polynomial. (The process used to determine
the solutions by restricting attention to dominant asymptotic terms is analogous to
the Newton polygon construction for algebraic equations.)An important structure
theorem describes the possible types of solutions of a meromorphic ODE at a regular
singularity.

Theorem VII.9 (Regular singularities of ODEs). Consider a meromorphic differen-
tial equation(113)and a regular singular pointζ . Assume that the indicial equation
at ζ , I (θ) = 0, is such that no two roots differ by an integer (in particular, all roots
are distinct). Then, in a slit neighbourhood ofζ , there exists a linear basis of all the
solutions that is comprised of functions of the form

(115) (z− ζ )θ j H j (z− ζ ),
whereθ1, . . . , θr are the roots of the indicial polynomial and each Hj is analytic at 0.
In the case of roots differing by an integer (or multiple roots), the solutions(115)may
include additional logarithmic terms involving non-negative powers oflog(z− ζ ).

A description of the logarithmic cases is best based on a matrix treatment of
the first-order linearsystemthat is equivalent to the ODE [329, 602]. Note VII.44
describes the main lines of a proof of Theorem VII.9; Note VII.45 discusses the rep-
resentative case of Euler systems, which is explicitly solvable.
� VII.44. Singular solutions.In the first case of Theorem VII.9 (no two roots differing by an
integer), it suffices to work out the modified differential equation satisfied by Z−θ j Y(z) and
verify that one of its solutions is analytic atζ : the coefficients ofH j satisfy a recurrence, as in
the non-singular case, from which their growth is verified to be at most exponential. �

� VII.45. Euler equations and systems.An equation of the form,

∂r Y + e1Z−1∂r−1Y + · · · + er Z−r Y = 0, ej ∈ C, Z := (z− ζ ),
is known as anEuler equation. In the case where all roots of the indicial equation are simple,
a basis of solutions is exactly of the formZθ j . Whenθ is a root of multiplicitym, the set of
solutions includesZθ (log Z)p, for p = 0, . . . ,m − 1. (Euler equations appear for instance
in the median-of-three quicksort algorithm [378, 538]. See [117] forseveral applications to
random tree models and the analysis of algorithms.)Euler systemsare first-order systems of
the form

d

dz
Y(z) = A

z− ζ Y(z),
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whereA ∈ Cr×r is a scalar matrix and Y= (Y1, . . . ,Yr )
T is a vector of functions. A formal

solution is provided by

(z− ζ )A = exp(A log(z− ζ )) ,
which indicates that the Jordan block decomposition ofA plays a r̂ole in the occurrence of
logarithmic factors of solutions. �

Theorem VII.10 (Coefficient asymptotics for meromorphic ODEs). Let f(z) be ana-
lytic at 0 and satisfy a linear differential equation

dr

dzr
f (z)+ c1(z)

dr−1

dzr−1
f (z)+ · · · + cr (z) f (z) = 0,

where the coefficients cj (z) are analytic in|z| < ρ1, except for possibly a pole at
someζ satisfying|ζ | < ρ1, ζ 6= 0. Assume thatζ is a regular singular point and no
two roots of the indicial equation atζ differ by an integer. Then, there exist scalar
constantsλ1, . . . , λr ∈ C such that for anyρ0 with |ζ | < ρ0 < ρ1, one has

(116) [zn] f (z) =
r∑

j=1

λ j1 j (n)+ O
(
ρ−n

0

)
,

where the1 j (n) are of the asymptotic form

(117) 1 j (n) ∼
n−θ j−1

Ŵ(−θ j )
ζ−n

[
1+

∞∑

k=1

si, j

ni

]
,

and theθ j are the roots of the indicial equation atζ .

Proof. The coefficientsλ j relate the particular solutionf (z) to the basis of solu-
tions (115). The rest, by singularity analysis, is nothing but a direct transcription to
coefficients of the solutions provided by the structure theorem, Theorem VII.9, with
1 j (n) = [zn](z− ζ )θ j H j (z− ζ ). �

Taking into account multiple roots (as in Note VII.45) and roots differing by an
integer, we see that solutions to meromorphic linear ODEs, in the regular case at least,
are only composed of linear combinations of asymptotic elements of the form19

(118) ζ−nnβ(logn)ℓ,

whereζ is determined as root of a (possibly transcendental) equation,c0(ζ ) = 0, the
numberβ is an algebraic quantity (over the field of constantsδ j ) determined by the
polynomial equationI (−β − 1) = 0, andℓ is an integer.

The coefficientsλ j serve to “connect” the particular function of interest,f (z) to
the local basis of singular solutions (115). Their determination thus represents acon-
nectionproblem (see pp. 470 and 505 for the easier algebraic case). However, contrary
to what happens for algebraic equations, the determinationof theλ j can only be ap-
proached in all generality by numerical methods [252]. (Even when the coefficients
d j (z) ∈ Q(z) are rational fractions, no effective procedure is available to decide, from

19The forms (118) are appreciably more general than the corresponding ones arising in algebraic
coefficient asymptotics (Theorem VII.8, p. 501), in which no logarithmic term can be present and the
exponents are constrained to be rational numbers only.
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an f (z) ∈ Q[[z]] determined by initial conditions at 0, which of the connection coef-
ficientsλ j may vanish.) In many combinatorial applications the calculations can be
carried out explicitly, in which case the forms (118) serve as a beacon of what to ex-
pect asymptotically. (Once existence of such forms is granted, e.g., by Theorems VII.9
and VII.10, it is often possible to identify coefficients and/or exponents in asymptotic
expansions directly.) Similar considerations apply to functions defined bysystemsof
linear differential equations (Note VII.48 below).
� VII.46. Multiple singularities. In the case of several singularitiesζ1, . . . , ζs, a sum ofs
terms, each of the form (117) withζ → ζi , expresses [zn] f (z). [The structure theorem applies
at eachζi and singularity analysis is known to adapt to multiple singularities; cf Section VI. 5,
p. 398.] �

� VII.47. A relaxation. In Theorem VII.10, one may allow the equation to have a singularity
of any kind at 0. [Only properties of the basis of solutions nearζ are used.] �

� VII.48. Equivalence between equations and systems.A (first-order) linear differential system
is by definition

d

dz
Y(z) = A(z)Y(z),

whereY = (Y1, . . . ,Ym)
T is anm-dimensional column vector andA is anm× m coefficient

matrix. A differential equation of order m can always be reduced to a system of dimension m,
and conversely.Only rational operations and derivatives are involved in each of the conver-
sions: technically, coefficient manipulations take place in a differential field K that contains
coefficients of recurrences and systems. (For instance, the set of rational functionsC(z) and the
set of meromorphic functions in an open set� are differential fields.)

The proofs are simple extensions of the casem= 2. Starting from the equationy′′+by′+
cy= 0, one setsY1 = y, Y2 = y′ to get the system

{∂Y1 = Y2, ∂Y2 = −cY1− bY2}.
Conversely, given the system

{∂Y1 = a11Y1+ a12Y2, ∂Y2 = a21Y1+ a22Y2},
let E = VS[Y1,Y2] be the vector space overK spanned byY1,Y2, which is of dimension≤ 2.
Differentiation of the relation∂Y1 = a11Y1 + a12Y2 shows that∂2Y1 can be expressed as
combination ofY1,Y2,

∂2Y1 = a′11Y1+ a′12Y2+ a11(a11Y1+ a12Y2)+ a12(a21Y1+ a22Y2),

hence∂2Y1 lies inE . Thus, the system{Y1, ∂Y1, ∂Y2
1 } is bound, which corresponds to a differ-

ential equation of order 2 being satisfied byY1. (In the case where the coefficient matrixA has
a simple pole atζ , singularities of solutions can be studied by matrix methods akin to those of
Note VII.45.) �

Combinatorial applications.The quadtreeis a structure, discovered by Finkel
and Bentley [212], that can be superimposed on any sequence of points in Euclidean
spaceRd. In computer science, it forms the basis of several algorithms for maintaining
and searching dynamically varying geometric objects [532], and it constitutes a natu-
ral extension of binary search trees. Quadtrees are associated to differential equations,
whose order equals the dimension of the underlying space. Some of their major char-
acteristics can be determined via singularity analysis of these equations [233, 242].

ExampleVII.23. The plain quadtree.Start from the unit squareQ = [0,1]2 and letp =
(P1, . . . , Pn) be a sequence ofn points drawn uniformly and independently fromQ, with Pj =
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Figure VII.21 . The quadtree splitting process (left, center); a hierarchical partition
associated ton = 50 random points (right).

(x j , y j ). A quaternary tree, called thequadtreeand noted QT(p), is built recursively fromp as
follows:

— if p is the empty sequence (n = 0), then QT(p) = ∅ is the empty tree;
— otherwise, letpN W, pN E, pSW, pSE be the four subsequences of points ofp that lie,

respectively, North-West, North-East, South-West, South-East ofP1. For instance
pSW is pSW =

(
Pj1, Pj2, . . . , Pjk

)
, where 1< j1 < j2, · · · < jk ≤ n, and the

Pjℓ = (x jℓ , y jℓ) are those of the points that satisfy the predicatex jℓ < x1 and
y jℓ < y1. Then QT(p) is

QT(p) = 〈P1; QT(pN W),QT(pN E),QT(pSW),QT(pSE)〉.

In other words, the sequence of points induces a hierarchical partition of the space QT; see
Figure VII.21. (For simplicity, the tree is only defined here for points having differentx and
y coordinates, an event that has probability 1.)

Quadtrees are used for searching in two related ways:(i ) given a pointP0 = (x0, y0),
exact searchaims at determining whetherP0 occurs inp; (i i ) given a coordinatex0 ∈ [0, 1], a
partial-match queryasks for the set of pointsP = (x, y) occurring inp such thatx = x0 (irre-
spective of the values ofy). Both types are accommodated by the quadtree structure: an exact
search corresponds to descending in the tree, following a branch guided by the coordinates of
the pointP0 that is sought; partial match is implemented by recursive descents into two subtrees
(either the pairN W, SWor N E, SE) based on the wayx0 compares with thex coordinate of
the root point.

In an ideal world (for computers), trees are perfectly balanced, in which case the search
costs satisfy the approximate recurrences,

(119) fn = 1+ fn/4, gn = 1+ 2gn/4,

for exact search and partial match, respectively. The solutions of these recurrences are≈ log4 n
and≈ √n, respectively. To what extent do randomly grown quadtrees differ from the per-
fect shape, and what is the growth of the cost functions on average? The answer lies in the
singularities of certain linear differential equations.
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Exact search.Our purpose is to set up recurrences20 in the spirit of Subsection VI. 10.3,
p. 427. We need the probabilityπn,k that a quadtree of sizen gives rise to aN W root-subtree
of sizek and claim that

(120) πn,k =
1

n
(Hn−Hk) , Hn = 1+ 1

2
+ · · · + 1

n
.

Indeed, the probability thatℓ elements are West of the root andk are North-West is

(121) ̟n,ℓ,k =
(

n− 1

k, ℓ− k, n− 1− ℓ

)∫ 1

0

∫ 1

0
(xy)k(x(1− y))ℓ−k(1− x)n−1−ℓdx dy.

(The double integral is the probability that the firstk elements fallN W, the nextℓ− k fall SW,
the rest fall eitherN E or SE; the integrand corresponds to a conditioning upon the coordinates
(x, y) of the root; the multinomial coefficient takes into account the possible shufflings.) The
Eulerian Beta integral (p. 747) simplifies the integrals to̟n,ℓ,k = 1/(n(ℓ + 1)), from which
the claimed (120) follows by summation overℓ.

Given (120), the recurrence

(122) Pn = n+ 4
n−1∑

k=0

πn,k Pk, P0 = 0,

with πn,k as in (120), determines the sequence of expected value of path length. This recurrence
translates into the integral equation,

(123) P(z) = z

(1− z)2
+ 4

∫ z

0

dt

t (1− t)

∫ t

0
P(u)

du

1− u)
,

itself equivalent to the linear differential equation of order 2:

z(1− z)4P′′(z)+ (1− 2z)(1− z)3P′(z)− 4(1− z)2P(z) = 1+ 3z.

The homogeneous equation has a regular singularity atz = 1. In such a simple case, it is not
difficult to guess the “right” solution, which can then be verified by substitution:

P(z) = 1

3

1+ 2z

(1− z)2
log

1

1− z
+ 1

6

4z+ z2

(1− z)2
, Pn =

(
n+ 1

3

)
Hn−

n+ 1

6n
.

The ratioPn/n represents the mean level of a random node in a randomly grown quadtree, a
quantity which is thus logn+ O(1). Accordingly, quadtrees are on average fairly balanced, the
expected level being within a factor log 4

.= 1.38 of the corresponding quantity in a perfect tree.

Partial match.The analysis of partial match reveals a curious consequence of the imbal-
ance of quadtrees, where the order of growth differs from that whichthe perfect tree model (119)
predicts. The recurrence satisfied by the expected cost of a partial match query is determined
by methods similar to path length [233]. One finds, by a computation similar to (121),

(124) Qn = 1+ 4

n(n+ 1)

n−1∑

k=0

(n− k)Qk, Q0 = 0,

corresponding, for the GFQ(z) = ∑
Qnzn, to the inhomogeneousdifferential equation,

L[Q(z)] = 2/(1− z), where the differential operatorL is

(125) L[ f ] = z(1− z)2∂2 f + 2(1− z)2∂ f − 4 f.

20It is also possible, although less convenient, to develop equations starting from basic principles of
the symbolic method.
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A particular solution of the inhomogeneous equation is−1/(1− z), so thaty(z) := Q(z) +
1/(1− z) satisfies the homogeneous equationL[y] = 0.

The differential equationL[y] = 0 is singular atz = 0, 1,+∞ and it has a regular sin-
gularity at z = 1. Since one hasyn = O(n), by the origin of the problem, the singularity
at z = 1 is the one that matters. The indicial polynomial can be computed from its definition
or, equivalently, by simply substitutingy = (z−1)θ in the definition ofL and discarding lower
order terms. One finds, withZ = z− 1:

L[Zθ ] = θ(θ − 1)Zθ − 4Zθ + O
(

Zθ−1
)
.

The roots of the indicial equations are then

θ1 =
1

2

(
1−
√

17
)
, θ2 =

1

2

(
1+
√

17
)
.

Theorem VII.9 guarantees thaty(z) admits, nearz= 1 a representation of the form

(126) y(z) = λ1(1− z)θ1 H1(z− 1)+ (1− z)θ2 H2(z− 1),

with H1, H2 analytic at 0.
In order to complete the analysis, we still have to verify that the coefficientλ1, which

multiplies the singular element that dominates asz→ 1 is non-zero. Indeed, if we hadλ1 = 0,
then, one would havey(z) → 0 asz → 1, which contradicts the fact thatyn ≥ 1. In other
words, here:the connection problem is solved by means of bounds that are available from the
combinatorial origin of the problem.Singularity analysis then yields the asymptotic form of
yn, hence ofQn. Summarizing , we have:

Proposition VII.12. Path length in a randomly grown quadtree of size n is on average nlogn+
O(n). The expected cost of a partial match query satisfies, for some positiveκ:

(127) Qn ∼ κ · nα−1, α =
√

17− 1

2
.= 1.56155.

The analysis extends to quadtrees of higher dimensions [233]. In general dimensiond,
path length is on average2d n logn+ O(n). The cost of a partial match query is of the order of

nβ , whereβ is an algebraic number of degreed. The cost of a random (fully specified) search
admits a limit Gaussian distribution, as we prove in Example IX.29, p. 687. .. . . . . . . . . . . . .�

� VII.49. Quadtrees and hypergeometric functions.For the plain quadtree (d = 2), the change
of variablesy = (1− z)−θη(z) reduces the differential equationL[y] = 0 to hypergeometric
form. The constantκ in (127) is then found to satisfy

κ = 1

2

Ŵ(2α)

Ŵ(α)3
, α =

√
17− 1

2
.

Hypergeometric solutions (Note B.15, p. 751) are available ford ≥ 2; see [116, 233, 242].�

� VII.50. Closed meanders.A closed meanderof sizen is a topological configuration de-
scribing the way a circuit can cross a river 2n times. The sequence starts as 1, 1, 2, 8, 42, 262
(EISA005315). For instance, here is a meander of size 5:

1 2 3 4 5 6 7 8
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There are good reasons tobelievethat the numberMn of meanders satisfies

Mn ∼ C Ann−β , with β = 29+
√

145

12
,

based on analogies with well-established models of statistical physics [163]. �

VII. 9.2. Nonlinear differential equations. Solutions to nonlinear equations do
not necessarily have singularities that arise from the equation itself (as in the linear
case). Even the simplest nonlinear equation,

Y′(z) = Y(z)2, Y(0) = a,

has a solutionY(z) = 1/(a − z) whose singularity depends on the initial condition
and is not visible on the equation itself. The problem of determining thelocationof
singularities is non-obvious in the case of a nonlinear ODE.Furthermore, the problem
of determining thenatureof singularities for nonlinear equations defies classification
in general (Note VII.51). In this section, we thus limit ourselves to examining a few
examples where enough structure is present in the combinatorics, so that fairly explicit
solutions are available, which are then amenable to singularity analysis.
� VII.51. A universal differential equation.Following ideas of Rubel [521, 522], Duffin [178]
proved the following:The differential equation

(D) 2y′′′′y′2− 5y′′′y′′y′ + 3y′3 = 0

is universal in the sense that any continuous functionϕ(x) on R can be approximated with
arbitrary accuracy by a solution of the equation.Thus, real solutions of nonlinear differential
equations cannot be “classified” in general. [Proof:(i ) construct a third-order differential equa-
tion (E) satisfied by the class of functionsga,b,c(x) = a cos4(bx+ c) for −π/2 ≤ bx+ c ≤
π/2; (i i ) verify that any functionG(x) that is a juxtaposition ofg functions over disjoint inter-
vals and is smooth enough satisfies(E); (i i i ) prove that such aG(x) can be taken so that

∫
G

approximates a continuousϕ(x) to any predetermined accuracy, and determine(D).] �

ExampleVII.24. Varieties of increasing trees.Consider a labelled class defined by either of

(128) Y = Z2 ⋆ SEQ�(Y), Y = Z2 ⋆ SET�(Y),

where a set of integers� ⊆ Z≥0 has been fixed. This defines trees that are either plane (SEQ)
or non-plane (SET) and increasing, in the sense that labels go in increasing order along any
branch stemming from the root. Such trees have been encountered in Subsection II. 6.3 (p. 139)
in relation to alternating permutations, general permutations, and regressive mappings.

Enumeration of trees.By the symbolic translation of the boxed product, the EGF ofY

satisfies a nonlinear differential equation

(129) Y(z) =
∫ z

0
φ(Y(w))dw,

where the structure functionφ is

φ(y) =
∑

ω∈�
yω (case SEQ), φ(y) =

∑

ω∈�

yω

ω!
(case SET).

The integral equation (129) is our starting point; in order to unify both cases, we setφω :=
[yω]φ(y). The discussion below is excerpted from the paper of Bergeron, Flajolet, and Salvy [49].

First note that (129) is equivalent to the nonlinear differential equation

(130) Y′(z) = φ(Y(z)), Y(0) = 0,
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Differential eq. EGF ρ sing. type coefficient

A : Y′ = (1+ Y)2
z

1− z
1 Z−1 Yn = n!

B : Y′ = 1+ Y2 tanz π
2 Z−1 Y2n+1

(2n+ 1)!
≍ ( 2

π
)2n+1

C: Y′ = eY log[(1− z)−1] 1 log Z Yn = (n− 1)!

D : Y′ = 1

1− Y
1−
√

1− 2z 1
2 Z1/2 Yn = (2n− 3)!!

Figure VII.22 . Some classical varieties of increasing trees: (A) plane binary; (B)
strict plane binary; (C) increasing Cayley; (D) increasing plane.

which implies thatY′/φ(Y) = 1 and, upon integrating back,

(131)
∫ Y(z)

0

dη

φ(η)
= z, i.e., K (Y(z)) = z, K (y) :=

∫ y

0

dη

φ(η)
.

Thus,the EGF Y(z) is the compositional inverse of the integral of the multiplicative inverse of
the structure function. We can visualize this chain of transformation as follows:

(132) Y = Inv ◦
∫
◦ 1

( · ) ◦ φ.

In simpler situations, the integration definingK (y) in (131) can be carried out explicitly,
so that explicit expressions may become available forY(z). Figure VII.22 displays data relative
to four such classes, the first three of which were already encountered in Chapter II. In each
case, there is listed: the differential equation (from which the definition of the trees and the form
of φ are apparent), the dominant positive singularity, the singularity type, andthe corresponding
form of coefficients. The general analytic expressions of (131) contain much more: they allow
for a general discussion of singularity types and permit us to analyse asymptotically classes that
do not admit of an explicit GF.

Assume for simplicityφ to be an aperiodic entire function (possibly a polynomial). Let
ρ be the radius of convergence ofY(z), which is a singular point (by Pringsheim’s Theorem).
Consider the limiting valueY(ρ). One cannot haveY(ρ) < ∞ since thenK (z) being analytic
at Y(ρ) would be analytically invertible (by the Implicit Function Theorem). Thus, one must
haveY(ρ) = +∞ and, sinceY and K are inverses of each other, we getK (+∞) = ρ. The
radius of convergence ofY(z) is accordingly

(133) ρ =
∫ ∞

0

dη

φ(η)
.

The singularity type ofY(z) is then systematically determined by the rules (132). For a general
polynomial of degreed ≥ 2, we have (ignoring coefficients)

K (+∞)− K (y) ≈
∫ ∞

y

dη

ηd
≈ y−d+1, Y(z) ≈ Z−1/(d−1), with Z := (ρ − z).

This back-of-the-envelope calculation shows that

(134) forφ a polynomial of degreed : Yn ∼ Cn!n f , with f = 2−d
1−d .

In the same vein, the logarithmic singularity of the EGF of increasing Cayley trees (CaseC
of Figure VII.22) appears as eventually reflecting the inverse of the exponential singularity of
φ(y) = ey. Such a singularity type must then be systematically present when considering
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increasing non-plane trees (increasing Cayley trees) with a finite collectionof node degrees
excluded—in other words, whenever the SET constructor is used in (128) and� is a cofinite
set. This observation “explains” and extends an analysis of [437].

Additive parameters.Consider next an additive parameter of trees21 defined by a recur-
rence,

(135) s(τ ) = t|τ | +
∑

υ∝τ
s(υ),

where(tn) is a numeric sequence of “tolls” witht0 = 0, and the summationυ ∝ τ is carried
out over all root subtreesυ of τ . Introduce the two functions (of cumulated values)

S(z) =
∑

τ∈Y
s(τ )

z|τ |

|τ |! , T(z) =
∑

n≥0

tnYn
zn

n!
,

so that the ratio[z
n]S(z)

[zn]Y(z) equals the mean value of parameters taken over all increasing trees of
sizen. By simple algebra similar to Lemma VII.1 (p. 457), it is found that the GFS(z) is

(136) S(z) = Y′(z)
∫ z

0

T ′(w)
Y′(w)

dw.

The relation (128) defines an integral transformT 7→ S, which can be viewed as asingularity
transformer. Thanks to the methods of Subsection VI. 10.3, p. 427, its systematic study can be
done, once the singularity type ofY(z) is known.

The discussion of path length (tn = n corresponding toT(z) = zY′(z)) is conducted
in the present perspective as follows. For polynomial varieties of increasing trees, we have
Y(z) ≈ Z−δ with δ = 1/(d − 1), so that

T ≈ Y′ ≈ Z−δ−1, T ′ ≈ Z−δ−2,
T ′

Y′
≈ Z−1,

∫
T ′

Y′
≈
∫

1

Z
≈ log Z.

Thus, the relation betweenY andS is of the simplified formS≈ Y′ log Z. Singularity analysis,
then implies that average path length is of ordern logn. Working out the constants involved
gives the following proposition.

Proposition VII.13. LetY be an increasing variety of trees defined by a functionφ that is an
aperiodic polynomial of degree d≥ 2 and letδ = 1/(d − 1). The number of trees of size n
satisfies

Yn ∼
n!

Ŵ(δ)

(
δ

ρφd

)δ
ρ−nn−1+δ, ρ :=

∫ ∞

0

dη

φ(η)
, φd = [yd]φ(y).

The expected value of path length on a tree ofYn is (δ + 1)n logn+ O(n).

For naturally occurring models like those of Figure VII.22 and more, many parameters
of increasing tree varieties can be analysed in a synthetic way (e.g., the degree profile, the
level profile [49]). What stands out is the type of conceptual reasoning afforded by singularity
analysis, which provides a direct path to the right order of magnitude of both combinatorial
counts and basic parameters of structures. After this, it is only a matter ofdoing the bookkeeping
and getting the constants right! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

21Such parameters have been investigated in Subsection VI. 10.3 (p. 427): the binary search tree
recurrence there corresponds exacty to the caseφ(w) = (1+ w)2 here.
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ExampleVII.25. Pólya urn processes.An interesting example of the joint use of nonlinear
ODEs and singularity analysis is provided byurn processesof probability theory. There, an urn
may contain balls of different colours. A fixed set of replacement rules is given (one for each
colour). At any discrete instant, a ball is chosen uniformly at random, itscolour is inspected,
and the corresponding replacement rule is applied. The problem is to determine the evolution
of the urn at a large instantn. (The book by Johnson and Kotz [357] can serve as an elementary
introduction to the field; Janson otherwise develops a comprehensive probabilistic approach
in [349, 351].) In the case of two colours and urns called balanced, it isshown in [130, 225]
that the generating function of urn histories is determined by a nonlinear first-order autonomous
system, from which many characteristics of the urn can be effectively analysed.

In accordance with the informal description above, an urn model with twocolours is de-
termined by a 2× 2 matrix with integer entries:

(137) M =
(
α β

γ δ

)
, α, δ ∈ Z, β, γ ∈ Z≥0.

At any instant, if a ball of the first colour is drawn, then it is placed back intothe urn together
with α balls of the first colour andβ balls of the second colour; similarly, when a ball of the
second colour is drawn, withγ balls of the first colour andδ balls of the second colour. Negative
diagonal entries mean that balls are taken out of the urn (rather than added to it). We restrict
attention tobalancedurns, which are such that there existsσ , called the balance:

(138) σ = α + β = γ + δ.
Given an urn initialized witha0 balls of the first colour andb0 balls of the second colour, what
is sought is the multivariate generating functionH(x, y, z) (of exponential type), such that
n![znxayb]H(x, y, z) is the number of possible evolutions of the urn leading at timen to an
urn with colour composition(a, b). Forσ ≥ 1, thetotal number of evolutions is clearly

(a0+ b0)(a0+ b0+ σ) · · · (a0+ b0+ (n− 1)σ ), so that H(1,1, z) = 1

(1− σz)a0+b0
.

We have the following proposition.

Proposition VII.14. The exponential MGF of a balanced urn with matrix(137), balanceσ ,
and initial composition(a0, b0) satisfies for|x0|, |y0| ≤ 1, x0y0 6= 0, and|z| < 1/σ

H(x0, y0, z) = X(z | x0, y0)
a0 Y(z | x0, y0)

b0,

where X(t) ≡ X(t |x0, y0) and Y(t) ≡ Y(t |x0, y0) are the solutions of theassociated differ-
ential system:

(139) 6 :





d

dt
X(t) = X(t)α+1Y(t)β

d

dt
Y(t) = X(t)γY(t)δ+1

, X(0) = x0, Y(0) = y0.

Proof. The proof is an interesting illustration of the modelling of combinatorial structures by
differential operators (Note I.63, p. 88). As a starting point, we observe that the obvious rule
∂x[xn] = nxn−1 of calculus can be interpreted as

∂x [xx · · · x] = (6 xx · · · x)+ (x6 x · · · )+ · · · + (xx · · ·6 x),
meaning:“pick up in all possible ways a single occurrence of the formal variable and delete it”.
Similarly, x∂x means:“pick up an occurrencewithoutdeleting it(this is the pointing operation
of Subsection I. 6.2, p. 86).
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Guided by this principle, we associate to an urn the linearpartial differential operator

(140) D := xα+1yβ∂x + xγ yδ+1∂y.

If m = xayb represents an urn with composition(a,b), then it is easily verified thatD[m]
generates all the possible evolutions of the urn in one step; similarlyDn[m] is the generat-
ing polynomial of the urn’s composition aftern steps. This gives us a symbolic form of the
exponential MGFH as

(141) H(x, y, z) =
∑

n≥0

Dn[xa0 yb0]
zn

n!
= ezD[xa0 yb0].

Now comes the crucial (and easy) observation that for a solutionX(t),Y(t) of the associ-
ated differential system (139), one has:

∂t (XaYb) = aXa−1X′Yb + bXaYb−1Y′ (by usual differentiation rules)
= aXa+αYb+β + bXa+γYb+δ (by system6)

= D
[
xayb

]
x→X
y→Y

(by definition ofD).

Induction then provides

(142) ∂n
t (X

aYb) = Dn
[
xayb

]
x→X
y→Y

.

In other words:the evolution of the urn is mimicked by the effect of standard differentiation
applied to solutions of the associated system.

We can now conclude. We have formally, from (141) and the correspondenceDn ↔ ∂n
t ,

H(X(t),Y(t), z) =
∑

n≥0

∂n
t [X(t)a0Y(y)b0]

zn

n!
= X(t + z)a0Y(t + z)b0

(the last form plainly expresses Taylor’s formula). Settingt = 0 yields the statement. �

As a simple illustration, the Ehrenfest urn (Notes II.11, p. 118 and V.25, p. 336) whose
matrix is

(−1 1
1 −1

)
, with balanceσ = 0, only requires solving the associated system

X′(t) = Y(t), Y′(t) = X(t), X(0) = x0, Y′(0) = y0,

which provides the explicit form

H(x, y, z) = (x coshz+ y sinhz)a0(x sinhz+ y coshz)b0.

We only discuss one more example, which is typical of the algebraic solutionmethods and
the corresponding singularity analysis. Consider the urn with matrix

(−1 2
2 −1

)
, which describes

the parity of levels in binary increasing trees [130]. Say we start the urn with one ball of the
first colour and seek the probability that, at timen, all balls are of the second colour. We thus
need [zn]H(0,1, z). The associated system is

X′ = Y2, Y′ = X2, X(0) = 0, Y(0) = 1.

The system can be solved by a sequence of manipulations (this is general[225]): starting with

X′′ = 2Y Y′ = 2
√

X′X2, implying X′′
√

X′ = 2X′X2,

we can integrate the last form, so that

X′ = (X3+ 1)2/3, i.e.,
∫ X

0

dζ

(1+ ζ3)2/3
= t,
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meaning thatX(t) is implicitly determined as the inverse of the integral of an algebraic function.
In this case, it could be verified that the functionX(t) is anelliptic function(see [225, 471] for
other elliptic models), but its dominant singularity can be directly determined by the methods
of Example VII.24. The functionX(t) is found to become infinite at

ρ :=
∫ ∞

0

dζ

(1+ ζ3)2/3
= 1

2π
√

3
Ŵ

(
1

3

)3
,

by an argument similar to (133), p. 527. A local analysis of the integral combined with inversion
then reveals thatX(t) has a simple pole atρ. In addition, we have elementarilyX(ωt) =
ωX(t) for ω3 = 1, which entails the existence of three conjugate singularities atρ, ρe2iπ/3,
andρe−2iπ/3. With the initial conditions(a0, b0) = (1, 0), the probability that all balls be
of the second colour at timen is then non-zero only ifn ≡ 1 (mod 3) and it is found to be
exponentially small: for some computablec > 0, there holds

[zn]X(z) ∼ cρ−n, n ≡ 1 (mod 3).

In [225, 229] it is shown that one can develop along these lines a completetreatment of
2× 2 balanced urns and fully characterize the limit distributions involved. . . . .. . . . . . . . . . . �

� VII.52. Diagrams and combinatorial modelling via differential operators.Define the linear
differential operator

D := x∂2
x .

Its meaning, when applied to a monomialxn, is to pick up two occurrences ofx, replace them
by unity, and then create a new occurrence ofx (this is analogous to a one-colour urn model). It
can thus be represented by a “gate” with two “inputs” and one “output”. The effect of applying
Dn to xn+1 is then to build all the binary trees, whose external nodes are the occurrences of
the originalx-variables and whose internal nodes (the gates) are characterized bytheir order of
arrival. Indeed, each particular expansion results in a binary decreasing tree (node labels are
decreasing from the root; such a tree is clearly isomorphic to an increasing binary tree) with
distinguished external nodes as in the following example relative ton = 4,

x5 x1 x3 x2 x4

1 2

3

4
(In this particular expansion, the first
application ofD is to the first (x1) and
third (x3) occurrence ofx in xxxxx,
corresponding to the first gate (la-
belled1), and it creates one new occur-
rence ofx (the output link of gate 1).
The second application is tox2, x4
(gate2). The third application is tox5
and to thex produced by gate1; and so
on.)

Consequently:

Dn
[
xn+1

]
= n!(n+ 1)!x, equivalently,

1

n!
Dn

[
xn+1

(n+ 1)!

]
= 1.

Thus, one obtains the EGF of decreasing trees, i.e., permutations, via the coefficient ofx in

ezD [
ex] = 1+ x

1

1− z
+ x2

2!

1

(1− z)2
+ · · · .

Other operators that may be considered include

D = x + ∂, x∂, x2+ ∂2, x∂3, x∂2+ x∂, . . . .

It is fascinating to try and model as many classical combinatorial structures as possible in this
way, via differential operators and systems of gates. (This exercise was suggested by works
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of Błasiak, Horzela, Penson, Duchamp, and Solomon [73, 74], themselves motivated by the
“boson normal ordering problem” of quantum physics.) �

To conclude this section, it is of interest to compare the properties of increasing
trees (Example VII.24) and of simple varieties of trees (Subsection VII. 3.2, p. 455).
The conclusion is that simple trees are of the “square-root”type, in the sense that the
typical depth of a node and the expected height are of order

√
n. By contrast, increas-

ing trees, which are strongly bound by an order constraint, have logarithmic depth and
height [157, 158, 160]—they belong to a “logarithmic” type. From a singular per-
spective, simple trees are associated to the universalZ1/2 law, while increasing trees
exhibit a divergence behaviour (Z−1/(d−1) in the polynomial case). Tolls then affect
singularities of GFs in rather different ways: through a factor Z−1/2 for simple trees,
through a factor logZ in the case of increasing trees. Such abstract observationsare
typical of the spirit of analytic combinatorics.

A spectacular result in the general area of random discrete structures and nonlin-
ear differential equations is the discovery by Baik, Deift,and Johansson (Note VIII.46,
p. 598) of the law governing the longest increasing subsequence in a random permuta-
tion. There, the solutions of the nonlinear Painlevé equationu′′(x) = 2u(x)3+ xu(x)
play a central r̂ole.

VII. 10. Singularity analysis and probability distributio ns

Singularity analysis can often be used to extract information about the probabil-
ity distribution of a combinatorial parameter. In the central sections of Chapter IX
(pp. 650–666), we shall develop perturbation methods grafted on singularity analysis,
which are applicable given a bivariate generating functionF(z,u), provided it can be
continued whenu lies in a complex neighbourhood of 1. However, such conditions
are not always satisfied. First, it may be the case thatF(z,u) is defined for no other
value thanz = 0 (it diverges), as soon asu > 1. Second, it may be the case that
a parameter is accessible via a collection of univariate GFsrather than a BGF (see
typically our discussion of extremal parameters in SectionIII. 8, p. 214). We briefly
indicate in this section ways to deal with such situations.

VII. 10.1. Moment pumping. Our reader should have no difficulty in recogniz-
ing as familiar at least the first two steps of the following procedure, nicknamed “mo-
ment pumping” in [249], which serve to extract moments from bivariate generating
functions.

Procedure: Moment Pumping
Input: A bivariate generating functionF(z,u) determined by a functional equation.
Output: The limit law corresponding to the array of coefficients [znuk]F(z,u); that is, the
asymptotic probability distribution of a parameterχ on a classFn.

Step 1. Elucidate the singular structure ofF(z, 1) corresponding to the counting prob-
lem [zn]F(z, 1). (Tools of Chapters IV–VII are well-suited for this task, the functional equation
satisfied byF(z, 1) being usually simpler than that ofF(z, u).)

Step 2.Work out the singular structure (main terms) of each of the partial derivatives

µr (z) := ∂r

∂ur F(z, u)

∣∣∣∣
u=1
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for r = 1, 2, . . ., and use meromorphic methods or singularity analysis to conclude as to
[zn]µr (z). If, as it is most often the case, the combinatorial parameter marked byu is of
polynomial growth in the sizen, then the radius of convergence of eachµr is a priori the same
as that ofF(z, 1). Furthermore, in many cases, the singular structure of theµr (z) is of the same
broad type as that ofµ0(z) ≡ F(z, 1).

Step 3.From the moments, as given by Step 2, attempt to reconstruct the limit distribution
using theMoment Convergence Theorem(Theorem C.2, p. 778).

In order for the procedure to succeed22, we typically need the standard deviation ofχ

to be of the same order as the mean, which necessitates that the distribution is spread in
the sense of Chapter III, p. 161. (Otherwise, there are larger and larger cancellations
in moments of the centred and scaled variant ofχ , so that the analysis requires an
unbounded number of terms in the singular expansions of the GFsµr (z); see also
Pittel’s study [484] for an insightful discussion of related problems.)

ExampleVII.26. The area under Dyck excursions.We now examine the coefficients in the
BGF, which is a solution of the functional equation

(143) F(z,q) = 1

1− zF(qz,q)
, i.e., F(z,q) = 1+ zF(z,q)F(qz,q).

It is such that [znqk]F(z,q) represents the number of Dyck excursions of length 2n and areak−
n (p. 330). Thus we are aiming at characterizing the distribution of area in Dyck paths. We set

µr (z) := ∂r
q F(z,q)

∣∣∣
q=1

, which is, up to normalization, the GF of ther th factorial moments.

Clearly,µ0 satisfies the relationµ0 = 1+ zµ2
0, andµ0 = 1

2z

(
1−
√

1− 4z
)
, as anticipated.

Application of the moment pumping procedure leads to a collection of equations,

µ1 = 2zµ0µ1+ z2µ0µ
′
0

µ2 = 2zµ0µ2+ 2zµ2
1+ 2z2µ1µ

′
0+ 2z2µ0µ

′
1+ z3µ0µ

′′
0,

and so on. Precisely, the shape of the equation givingµr , for r ≥ 1, is

(144) µr = z
r∑

j=0

(
r

j

)
µr− j

j∑

k=0

(
j

k

)
zk∂k

zµ j−k,

as results, upon settingq = 1, from Leibniz’s product rule and a computation of the derivatives

∂
j
q F(qz,q). In particular, eachµr can be expressed from the previousµ and their derivatives,

since the equation relative toµr is of the linear formµr = 2zµ0µr + · · · , so thatµr (z) is a
rational form inz andδ :=

√
1− 4z. An examination of the initial values of theµ then suggests

that, in terms of dominant singular asymptotics, asz→ 1
4 , there holds

(145) µr (z) =
Kr

(1− 4z)(3r−1)/2
+ O

(
(1− 4z)−(3r−2)/2

)
, r ≥ 1,

a property that is readily verified by induction. (In such situations, the closure of functions of
singularity analysis class under differentiation, p. 419, proves handy.) In particular, by singu-
larity analysis, the mean and standard deviation ofχ onFn are each of ordern3/2.

Now, equipped with (145), we can trace back the main singular contributions in (144),
noting that the “weight”, as measured by the exponent of(1 − 4z)−1, of the term in (144)

22The importantGaussiancase, which is mostly excluded by moment pumping, tends to yield agree-
ably to theperturbation methodsof Chapter IX, so that the univariate methods discussed here and those of
Chapter IX are indeed complementary.
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corresponding to generic indicesj, k is (3r − k− 2)/2. Then, by identifying the corresponding
coefficients, we come up with the recurrence valid forr ≥ 2

(146) 3r =
1

4

r−1∑

j=1

(
r

j

)
3r− j3 j +

r (3r − 1)

4
3r−1

(the linear term arises fromj = r, k = 1) and from (145) and (146), the shape of factorial
moments, hence that of the usual power moments, results by plain singularity analysis:

(147) En
(
χr ) ∼ Mr n3r/2, Mr :=

√
π3r

Ŵ((3r − 1)/2)
.

It can then be verified [568] that the momentMr uniquely characterize a probability distribution
(Appendix C.5:Convergence in law, p. 776).

Proposition VII.15. The distribution of areaχ in Dyck excursions, scaled by n−3/2, con-
verges to a limit, known as theAiry23 distribution of the area type, which is determined by its
moments Mr , as specified by(146)and(147). In other terms, there exists a distribution function
H(x) supported byR>0 such thatlimn→∞ Pn(χ < xn3/2) = H(x).

Due to the exact correspondence between Dyck excursions and trees, the same limit dis-
tribution occurs forpath lengthin general Catalan trees. Proposition VII.15 is originally due to
Louchard [415, 416], who developed connections with Brownian motion—the limit distribution
is indeed up to normalization that ofBrownian excursion area. (The approach presented here
also has the merit of providing finiten corrections.) Our moment pumping approach largely
follows the lines of Taḱacs’ treatment [568]. The recurrence relation (144) can furthermore be
solved by generating functions, to the effect that the3r entertain intimate relations with the
Airy function: for surveys, see [244, 352]. Curiously, the Wright constants arising in the enu-
meration of labelled graphs of fixed excess (thePk(1) of p. 134) appear to be closely related to
the momentsMr : this fact can be explained combinatorially by means of breadth-first search of
graphs, as noted by Spencer [548]. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�

� VII.53. Path length in simple varieties of trees.Under the usual conditions onφ, the limit
distribution is an Airy distribution of the area type, as shown by Takács [566]. �

� VII.54. A parking problem II.This continues Example II.19, p. 146. Considerm cars and
condition by the fact that everybody eventually finds a parking space and the last space remains
empty. Definetotal displacementas the sum of the distances (over all cars) between the initially
intended parking location and the first available space. The analysis reduces to the difference-
differential equation [249, 380], which generalizes (65), p. 146,

∂

∂z
F(z,q) = F(z,q) · F(z,q)− q F(qz,q)

1− q
.

Moment pumping is applicable [249]: the limit distribution is once more an Airy(of area type).
This problem arises in the analysis of thelinear probing hashingalgorithm [380, §6.4] and is of
relevance as a discrete version of important coalescence models. It isalso shown in [249] based
on [285] that the number of inversions in a Cayley tree is asymptotically Airy. �

23 The Airy function Ai(z) is of hypergeometric type and is closely related to Bessel functions of
order±1/3. It is defined as the solution ofy′′ − zy= 0 satisfying Ai(0) = 3−2/3/Ŵ(2/3) and Ai′(0) =
−3−1/3/Ŵ(1/3); see [3, 604] for basic properties. The3r intervene in the expansion of log Ai(z) at
infinity [244, 352]. After Louchard and Takács, the distribution functionH(x) can be expressed in terms of
confluent hypergeometric functions and zeros of the Airy function.
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� VII.55. The Wiener index and other functionals of trees.The Wiener index, a structural index
of interest to chemists, is defined as the sum of the distances between all pairs of nodes in a tree.
For simple families, as shown by Janson [348], it admits a limit distribution. (Similar properties
hold for many additive functionals of combinatorial tree families [210]. As regards moment
pumping, the methods are also related to those of Subsection VI. 10.3, p.427, dedicated to tree
recurrences.) �

� VII.56. Difference equations, polyominoes, and limit laws.Many of theq–difference equa-
tions that are defined by a polynomial relation betweenF(z,q), F(qz,q), . . . (and even sys-
tems) may be analysed, as shown by Richard [509, 510]. This coversseveral models of polyomi-
noes, including the staircase, the horizontally-vertically convex, and the column convex ones.
Area (for fixed perimeter) is asymptotically Airy distributed. It is from these and similar results,
supplemented by extensive computations based on transfer-matrix methods, that Guttmann and
the Melbourne school have been led to conjecturing that the limit area of self-avoiding polygons
(closed walks) in the plane is Airy (see our comments on p. 365). �

� VII.57. Path length in increasing trees.For binary increasing trees, the analysis of path
length reduces to that of the functional equation,

F(z,q) = 1+
∫ z

0
F(qt,q)2 dt.

There exists a limit law, as first shown by Hennequin [328] using momentpumping, with al-
ternative approaches due to Régnier [505] and R̈osler [517]. This law is important in computer
science, since it describes the number of comparisons used by theQuicksortalgorithm and in-
volved in the construction of a binary search tree. The mean is 2n logn + O(n), the variance
is ∼ (7− 4ζ(2))n2, and the moment of orderr of the limit law is a polynomial form in zeta
valuesζ(2), . . . , ζ(r ). See [209] for recent news and references. �

VII. 10.2. Families of generating functions. There is no logical obstacle to ap-
plying singularity analysis to a whole family of functions.In a way, this is similar to
what was done in Chapter V when analysing longest runs in words (p. 308) and the
height of general Catalan trees (p. 326), in the simpler caseof meromorphic coeffi-
cient asymptotics. One then needs to develop suitable singular expansions together
with companion error terms, a task that may be technically demanding when GFs are
given by nonlinear functional relations or recurrences. Weillustrate below the situa-
tion by anaperçuof the analysis of height in simple varieties of trees.

ExampleVII.27. Height in simple varieties of trees.The recurrence

(148) y0(z) = 0, yh+1(z) = 1+ zyh(z)
2

is such thatyh(z) is the OGF of binary trees of height less thanh, with size measured by the
number of binary nodes (Example III.28, p. 216). Eachyh(z) is a polynomial, with deg(yh) =
2h−1 − 1. Some technical difficulties are to be expected since theyh have no singularity at a
finite distance, whereas their formal limity(z) is the OGF of Catalan number,

y(z) = 1

2z

(
1−
√

1− 4z
)
,

which has a square-root singularity atz = 1/4. As a matter of fact, the sequencewh = zyh
satisfies the recurrencewh+1 = z+ w2

h, which was made famous by Mandelbrot’s studies and
gives rise to amazing graphics [473]; see Figure VII.23 for a poor man’s version.

When |z| ≤ r < 1/4, simple majorant series considerations show that theconvergence
yh(z) → y(z) is uniformly geometric. Whenz ≥ s > 1/4, it can be checked that theyh(z)
grow doubly exponentially. What happens in-between, in a1–domain, needs to be quantified.
We do so following Flajolet, Gao, Odlyzko, and Richmond [230, 246].
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The grey level relative to a pointz =
x+ iy in the diagram indicates the num-
ber of iterations necessary for the GFs
yh(z) either to diverge to infinity (the
outer, darker region) or to the finite limit
y(z) (the inner region, corresponding to
the Mandelbrot set, with the darker area
around 0 corresponding to faster con-
vergence). The cardioid-shaped region
defined by|1− ε(z)| ≤ 1 is a guaran-
teed region of convergence, beyond the
circle |z| = 1/4. The determination of
height reduces to finding what goes on
near the cuspz= 1/4 of the cardioid.

Figure VII.23 . The GFs of binary trees of bounded height: speed of convergence.

Starting from the basic recurrence (148), we have

y− yh+1 = z(y2− y2
h) = z(y− yh)(2y− (y− yh)),

which rewrites as

(149) eh+1 = (2zy)eh(1− eh), where eh(z) =
1

2zy(z)
y(z)− yh(z)

is proportional to the OGF of trees having height at leasth. (The functionx 7→ λx(1− x),
which is at the basis of the recurrence (149), is also known as the logistic map; its iterates, for
real parameter valuesλ, give rise to a rich diversity of patterns.)

First, let us examine what happens right at the singularity 1/4 and considereh ≡ eh(
1
4).

The induced recurrence is

(150) eh+1 = eh(1− eh), with e0 = 1
2 ,

whose solution decreases monotonically to 0 (argument: otherwise, therewould need to be a
fixed point in(0,1)). This form resembles the familiar recurrence associated with the solution
by iteration of a fixed-point equationℓ = f (ℓ), but here it corresponds to an “indifferent”
fixed-point, f ′(ℓ) = 1, which precludes the usual geometric convergence. A classical trickof
iteration theory, found in de Bruijn’s book [143, §8.4], neatly solves theproblem. Consider
instead the quantitiesfh := 1/eh, which satisfy the induced recurrence

(151) fh+1 =
fh

1− f −1
h

≡ fh + 1+ 1

fh
+ 1

f 2
h

· · · , with f0 = 2.

This suggests thatfh ∼ h. Indeed, by a terminating form of (151),

(152) fh+1 = fh+1+ 1

fh
+

f −2
h

1− f −1
h

, i.e., fh+1 = h+2+
h∑

j=0

f −1
j +

h∑

j=0

f −2
j

1− f −1
j

,

one can derive properties of the sequence( fh) by “bootstrapping”: the fact thatfh > h implies
that the first sum in (152) isO(logh), while the second one isO(1); then, another round serves
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to refine the estimates, so that, for someC:

fh = h+ logh+ C + O

(
logh

h

)
,

and the behaviour ofeh = 1/ fh is now well quantified.
The analysis forz 6= 1/4 proceeds along similar lines. We setε ≡ ε(z) :=

√
1− 4z and

again abbreviateeh(z) aseh. Upon considering

fh =
eh

(1− ε)h
and taking inverses, we obtain

(153) fh+1 = fh + (1− ε)h +
fhe2

h
1− eh

.

Proceeding as before leads to the general approximation

(154) eh(z) ∼
ε(z)(1− ε(z))h
1− (1− ε(z))h , ε(z) :=

√
1− 4z,

proved to be valid for any fixedz ∈ (0,1/4), ash → ∞. This approximation is compatible
both witheh(1/4) ∼ 1/h (derived earlier) and with the geometric convergence ofyh(z) to y(z)
valid for 0< z< 1/4. With some additional work, it can be proved that (154) remains valid as
z→ 1

4 in a1–domainand ash → ∞; see Figure VII.23. Obtaining the detailed conditions
on (z, h), together with a uniform error term for (154), is the crux of the analysis in[247].

From this point on, we content ourselves with brief indications on subsequent develop-
ments. Given (154), one deduces24 that theGF of cumulated heightsatisfies

H(z) := 2y(z)
∑

h≥0

eh(z) ∼ 4
∑

h≥1

ε(1− ε)h
1− (1− ε)h = 4 log

1

ε
+ O(1),

asz→ 1
4 . Thus, by singularity analysis, one has

H(z) ∼ 2 log
1

1− 4z
−→ [zn]H(z) ∼ 2 · 4n/n,

which gives the expected height [zn]H(z)/[zn]y(z) of a binary tree of sizen as∼ 2
√
πn.

Moments of higher order can be similarly analysed.
It is of interest to note that the GFs that surface explicitly in the analysis of height in

general Catalan trees (eventually due to the continued fraction structure and the impliedlinear
recurrences) appear here asanalytic approximationsin suitable regions of the complex plane.
A precise form of the approximation (154) can also be subjected to singularity analysis, to the
effect that the same Theta law expresses in the asymptotic limit the distributionof height in
binary trees. Finally, the technique can be extended to all simple varieties oftrees satisfying the
smooth inverse-function schema (Theorem VII.2, p. 453). In summary, we have the following
proposition [230, 246].

Proposition VII.16. Let Y be a simple variety of trees satisfying the conditions of Theo-
rem VII.2, withφ the basic tree constructor andτ the root of the characteristic equation
φ(τ)− τφ(τ) = 0. Letχ denote tree height. Then the rth moment of height satisfies

EYn [χr ] ∼ r (r − 1)Ŵ(r/2)ζ(r )ξ r nr/2, ξ := 2φ′(τ )2

φ(τ)φ′′(τ )
.

24In order to obtain the logarithmic approximation ofH(z), one can for instance appeal to Mellin
transform techniques in a way parallel to the analysis of general Catalan trees (p. 326): set 1− ε(z) = e−t .
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The normalized heightχ/
√
ξn converges to a Theta law, bothin distributionand in the sense

of a local limit law.

(The Theta distribution is defined in (67), p. 328; Chapter IX develops thenotions of con-
vergence in law and of local limits much further.) In particular the expected height in general
Catalan trees [145], binary trees, unary–binary trees, prunedt–ary trees, and Cayley trees [507],
is found to be, respectively, asymptotic to

√
πn, 2

√
πn,

√
3πn,

√
2π t/(t − 1),

√
2πn,

and a pleasantuniversalityphenomenon manifests itself in the height of simple trees.
A somewhat related analysis of a polynomial iteration in the vicinity of a singularity yields

the asymptotic number of balanced trees (Note IV.49, p. 283). . . . . . .. . . . . . . . . . . . . . . . . . . .�

VII. 11. Perspective

The theorems in this chapter demonstrate the central rôle of the singularity ana-
lysis theory developed in Chapter VI, this in a way that parallels what Chapter V did
for Chapter IV with meromorphic function analysis. Exploiting properties of complex
functions to develop coefficient asymptotics for abstract schemas helps us solve whole
collections of combinatorial constructions at once.

Within the context of analytic combinatorics, the results in this chapter have broad
reach, and bring us closer to our ideal of a theory covering full analysis of combi-
natorial objects of any “reasonable” description. Analytic side conditions defining
schemas often play a significant rôle. Adding in this chapter the mathematical support
for handling set constructions (with the exp–log schema) and context-free construc-
tions (with coefficient asymptotics of algebraic functions) to the support developed
in Chapter V to handle the sequence construction (with the supercritical sequence
schema) and regular constructions (with coefficient asymptotics of rational functions)
gives us general methods encompassing a broad swathe of combinatorial analysis,
with a great many applications (Figure VII.24).

Together, the methods covered in Chapter V, this chapter, and, next, Chapter VIII
(relative to the saddle-point method) apply to virtually all of the generating functions
derived in Part A of this book by means of the symbolic techniques defined there.
The SEQ construction and regular specifications lead to poles; the SET construction
leads to algebraic singularities (in the case of logarithmic generators discussed here) or
to essential singularities (in most of the remaining cases discussed in Chapter VIII);
recursive (context-free) constructions lead to square-root singularities. The surpris-
ing end result is that the asymptotic counting sequences from all of these generating
functions have one of just a few functional forms. This universality means that com-
parisons of methods, finding optimal values of parameters, and many other outgrowths
of analysis can be very effective in practical situations. Indeed, because of the nature
of the asymptotic forms, the results are often extremely accurate, as we have seen
repeatedly in this book.

The general theory of coefficient asymptotics based on singularities has many ap-
plications outside of analytic combinatorics (see the notes below). The broad reach of
the theory provides strong indications that universal lawshold for many combinatorial
constructions and schemas yet to be discovered.
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Combinatorial Type coeff. asymptotics (subexp. term)

Rooted maps n−5/2 §VII. 8.2

Unrooted trees n−5/2 §VII. 5

Rooted trees n−3/2 §VII. 3, §VII. 4

Excursions n−3/2 §VII. 8.1

Bridges n−1/2 §VII. 8.1

Mappings n−1/2 §VII. 3.3

Exp-log sets nκ−1 §VII. 2

Increasingd–ary trees n−(d−2)/(d−1) §VII. 9.2

Analytic form singularity type coeff. asymptotics

Positive irred. (polynomial syst.) Z1/2 ζ−nn−3/2 §VII. 6

General algebraic Z p/q ζ−nn−p/q−1 §VII. 7

Regular singularity (ODE) Zθ (log Z)ℓ ζ−nn−θ−1(logn)ℓ §VII. 9.1

Figure VII.24 . A collection ofuniversality lawssummarized by the subexponential
factors involved in the asymptotics of counting sequences (top). A summary of the
main singularity types and asymptotic coefficient forms of this chapter (bottom).

Bibliographic notes. The exp–log schema, like its companion, the supercritical-sequence
schema, illustrates the level of generality that can be attained by singularity analysis techniques.
Refinements of the results we have given can be found in the book by Arratia, Barbour, and
Tavaŕe [20], which develops a stochastic process approach to these questions; see also [19] by
the same authors for an accessible introduction.

The rest of the chapter deals in an essential manner with recursively defined structures. As
noted repeatedly in the course of this chapter, recursion is conducive tosquare-root singularity
and universal behaviours of the formn−3/2. Simple varieties of trees have been introduced
in an important paper of Meir and Moon [435], that bases itself on methods developed earlier
by Pólya [488, 491] and Otter [466]. One of the merits of [435] is to demonstrate that a high
level of generality is attainable when discussing properties of trees. A similar treatment can be
inflicted more generally to recursively defined structures when their generating functions satisfy
an implicit equation. In this way, non-plane unlabelled trees are shown to exhibit properties
very similar to their plane counterparts. It is of interest to note that some ofthe enumerative
questions in this area had been initially motivated by problems of theoretical chemistry: see the
colourful account of Cayley and Sylvester’s works in [67], the reference books by Harary and
Palmer [319] and Finch [211], as well as Pólya’s original studies [488, 491].

Algebraic functions are the modern counterpart of the study of curvesby classical Greek
mathematicians. They are either approached by algebraic methods (this isthe core of algebraic
geometry) or by transcendental methods. For our purposes, however, only rudiments of the
theory of curves are needed. For this, there exist several excellentintroductory books, of which
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we recommend the ones by Abhyankar [2], Fulton [273], and Kirwan [365]. On the algebraic
side, we have aimed at providing an introduction to algebraic functions thatrequires minimal
apparatus. At the same time the emphasis has been put somewhat on algorithmic aspects, since
most algebraic models are nowadays likely to be treated with the help of computer algebra.
As regards symbolic computational aspects, we recommend the treatise by von zur Gathen and
Gerhard [599] for background, while polynomial systems are excellently reviewed in the book
by Cox, Little, and O’Shea [135].

In the combinatorial domain, algebraic functions have been used early:in Euler and Seg-
ner’s enumeration of triangulations (1753) as well as in Schröder’s famous “Vier combina-
torische Probleme” described by Stanley in [554, p. 177]. A major advance was the realization
by Chomsky and Scḧutzenberger that algebraic functions are the “exact” counterpart of context-
free grammars and languages (see their historic paper [119]). A masterful summary of the early
theory appears in the proceedings edited by Berstel [54] while a modernand precise presenta-
tion forms the subject of Chapter 6 of Stanley’s book [554]. On the analytic asymptotic side,
many researchers have long been aware of the power of Puiseux expansions in conjunction with
some version of singularity analysis (often in the form of the Darboux–Pólya method: see [491]
based on Ṕolya’s classic paper [488] of 1937). However, there appeared to bedifficulties in cop-
ing with the fully general problem of algebraic coefficient asymptotics [102, 440]. We believe
that Section VII. 7 sketches the first complete theory (though most ingredients are of folklore
knowledge). In the case of positive systems, the “Drmota–Lalley–Woods” theorem is the key to
most problems encountered in practice—its importance should be clear from the developments
of Section VII. 6.

The applicability of algebraic function theory to context-free languages has been known
for some time (e.g., [220]). Our presentation of one-dimensional walks of a general type follows
articles by Lalley [396] and Banderier and Flajolet [27], which can be regarded as the analytic
pendant of algebraic studies by Gessel [286, 287]. The kernel method has its origins in prob-
lems of queueing theory and random walks [202, 203] and is further explored in an article by
Bousquet-Ḿelou and Petkov̌sek [86]. The algebraic treatment of random maps by the quadratic
method is due to brilliant studies of Tutte in the 1960s: see for instance his census [579] and
the account in the book by Jackson and Goulden [303]. A combinatorial–analytic treatment of
multiconnectivity issues is given in [28], where the possibility of treating in a unified manner
about a dozen families of maps appears clearly.

Regarding differential equations, an early (and at the time surprising) occurrence in an
asymptotic expansion of terms of the formnα , with α an algebraic number, is found in the
study [252], dedicated to multidimensional search trees. The asymptotic analysis of coeffi-
cients of solutions to linear differential equations can also, in principle, be approached from the
recurrences that these coefficients satisfy. Wimp and Zeilberger [611] propose an interesting
approach based on results by George Birkhoff and his school (e.g., [70]), which are relative to
difference equations in the complex plane. There are, however, somedoubts among special-
ists regarding the completeness of Birkhoff’s programme (see our discussion in Section VIII. 7,
p. 581). By contrast, the (easier) singularity theory of linear ODEs is wellestablished, and, as
we showed in this chapter, it is possible—in the regular singular case at least—to base a sound
method for asymptotic coefficient extraction on it.
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Saddle-point Asymptotics

Like a lazy hiker, the path crosses the ridge at a low point;
but unlike the hiker, the best path takes the steepest ascent to the ridge.

[· · · ] The integral will then be concentrated in a small interval.

— DANIEL GREENE AND DONALD KNUTH [310, sec. 4.3.3]
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A saddle-pointof a surface is a point reminiscent of the inner part of a saddle or of a
geographical pass between two mountains. If the surface represents the modulus of an
analytic function, saddle-points are simply determined asthe zeros of the derivative
of the function.

In order to estimatecomplex integralsof an analytic function, it is often a good
strategy to adopt as contour of integration a curve that “crosses” one or several of
the saddle-points of the integrand. When applied to integrals depending on a large
parameter, this strategy provides in many cases accurate asymptotic information. In
this book, we are primarily concerned with Cauchy integralsexpressing coefficients of
large index of generating functions. The implementation ofthe method is then fairly
simple, since integration can be performed along a circle centred at the origin.

Precisely, the principle of thesaddle-point methodfor the estimation of contour
integrals is to choose a path crossing a saddle-point, then estimate the integrand lo-
cally near this saddle-point (where the modulus of the integrand achieves its maximum
on the contour), and deduce, by local approximations and termwise integration, an
asymptotic expansion of the integral itself. Some sort of “localization” or “concentra-
tion” property is required to ensure that the contribution near the saddle-point captures
the essential part of the integral. A simplified form of the method provides what are
known assaddle-point bounds—these useful and technically simple upper bounds are
obtained by applying trivial bounds to an integral relativeto a saddle-point path. In

541
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many cases, the saddle-point method can furthermore provide complete asymptotic
expansions.

In the context of analytic combinatorics, the method is applicable to Cauchy co-
efficient integrals, in the case of rapidly varying functions: typical instances areentire
functionsas well as functions with singularities at a finite distance that exhibit some
form of exponential growth. Saddle-point analysis then complements singularity ana-
lysis whose scope is essentially the category of functions having only moderate (i.e.,
polynomial) growth at their singularities. The saddle-point method is also a method
of choice for the analysis of coefficients oflarge powersof some fixed function and,
in this context, it paves the way to the study of multivariateasymptotics and limiting
Gaussian distributions developed in the next chapter.

Applications are given here to Stirling’s formula, as well as the asymptotics of the
central binomial coefficients, the involution numbers and the Bell numbers associated
to set partitions. The asymptotic enumeration of integer partitions is one of the jewels
of classical analysis and we provide an introduction to thisrich topic where saddle-
points lead to effective estimates of an amazingly good quality. Other combinatorial
applications include balls-in-bins models and capacity, the number of increasing sub-
sequences in permutations, and blocks in set partitions. The counting of acyclic graphs
(equivalently forests of unrooted trees), finally takes us beyond the basic paradigm of
simple saddle-points by making use of multiple saddle-points, also known as “monkey
saddles”.

Plan of this chapter.First, we examine the surface determined by the modulus
of an analytic function and give, in Section VIII. 1, a classification of points into three
kinds: ordinary points, zeros, and saddle-points. Next we develop general purpose
saddle-point bounds in Section VIII. 2, which also serves todiscuss the properties
of saddle-point crossing paths. The saddle-point methodper seis presented in Sec-
tion VIII. 3, both in its most general form and in the way it specializes to Cauchy
coefficient integrals. Section VIII. 4 then discusses threeexamples, involutions, set
partitions, and fragmented permutations, which help us getfurther familiarized with
the method. We next jump to a new level of generality and introduce in Section VIII. 5
the abstract concept ofadmissibility—this approach has the merit of providing easily
testable conditions, while opening the possibility of determining broad classes of func-
tions to which the saddle-point method is applicable. In particular, many combinato-
rial types whose leading construction is a SET operation are seen to be “automatically”
amenable to saddle-point analysis. The case of integer partitions, which is technically
more advanced, is treated in a separate section, Section VIII. 6. The saddle-method
is also instrumental in analysing coefficients of many generating functions implicitly
defined by differential equations, including holonomic functions: see Section VIII. 7.
Next, the framework of “large powers”, developed in SectionVIII. 8 constitutes a
combinatorial counterpart of the central limit theorem of probability theory, and as
such it provides a bridge to the study of limit distributionsto be treated systematically
in Chapter IX. Other applications to discrete probability distributions are examined
in Section VIII. 9. Finally, Section VIII. 10 serves as a brief introduction to the rich
subject of multiple saddle-points and coalescence.
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VIII. 1. Landscapes of analytic functions and saddle-points

This section introduces a well-known classification of points on the surface rep-
resenting the modulus of an analytic function. In particular, as we are going to see,
saddle-points, which are determined by roots of the function’s derivative, are associ-
ated with a simple geometric property that gives them their name.

Consider any functionf (z) analytic forz ∈ �, where� is some domain ofC. Its
modulus| f (x+ iy)| can be regarded as a function of the two real quantities,x = ℜ(z)
andy = ℑ(z). As such, it can be represented as a surface in three-dimensional space.
This surface is smooth (analytic functions are infinitely differentiable), but far from
being arbitrary.

Let z0 be an interior point of�. The local shape of the surface| f (z)| for z nearz0
depends on which of the initial elements in the sequencef (z0), f ′(z0), f ′′(z0), . . .,
vanish. As we are going to see, its points can be of only one of three types: ordinary
points (the generic case), zeros, and saddle-points; see Figure VIII.1. The classifi-
cation of points is conveniently obtained by considering polar coordinates, writing
z= z0+ rei θ , with r small.

An ordinary pointis such thatf (z0) 6= 0, f ′(z0) 6= 0. This is the generic situation
as analytic functions have only isolated zeros. In that case, one has, for smallr > 0,

(1) | f (z)| =
∣∣∣ f (z0)+ rei θ f ′(z0)+ O(r 2)

∣∣∣ = | f (z0)|
∣∣∣1+ λrei (θ+φ) + O(r 2)

∣∣∣ ,

where we have setf ′(z0)/ f (z0) = λeiφ , with λ > 0. The modulus then satisfies

| f (z)| = | f (z0)|
(
1+ λr cos(θ + φ)+ O(r 2)

)
.

Thus, forr kept small enough and fixed, asθ varies,| f (z)| is maximum whenθ =
−φ (where it is∼ | f (z0)|(1+ λr )), and minimum whenθ = −φ + π (where it is
∼ | f (z0)(1− λr )). Whenθ = −φ ± π

2 , one has| f (z)| = | f (z0)| + o(r ), which
means that| f (z)| is essentially constant. This is easily interpreted: the lineθ ≡ −φ
(modπ) is (locally) a steepest descent line; the perpendicular lineθ ≡ −φ + π

2
(modπ) is locally alevel line. In particular, near an ordinary point, the surface| f (z)|
has neither a minimum nor a maximum. In figurative terms, thisis like standing on
the flank of a mountain.

A zero is by definition a point such thatf (z0) = 0. In this case, the function
| f (z)| attains its minimum value 0 atz0. Locally, to first order, one has| f (z)| ∼
| f ′(z0)|r for a simple zero and| f (z)| = O(r m) or a zero of orderm. A zero is thus
like a sink or the bottom of a lake, save that, in the landscapeof an analytic function,
all lakes are at sea level.

A saddle-pointis a point such thatf (z0) 6= 0, f ′(z0) = 0; it thus corresponds
to a zero of the derivative, when the function itself does not vanish. It is said to be
a simple saddle-pointif furthermore f ′′(z0) 6= 0. In that case, a calculation similar
to (1),
(2)

| f (z)| =
∣∣∣∣ f (z0)+

1

2
r 2e2i θ f ′′(z0)+ O(r 3)

∣∣∣∣ = | f (z0)|
∣∣∣1+ λr 2ei (2θ+φ) + O(r 3)

∣∣∣ ,
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Ordinary point Zero Saddle-point
f (z0) 6= 0, f ′(z0) 6= 0 f (z0) = 0 f (z0) 6= 0, f ′(z0) = 0

f ′′(z0) 6= 0
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Figure VIII.1 . The different types of points on a surface| f (z)|: an ordinary point,
a zero, a simple saddle-point. Top: a diagram showing the local structureof level
curves (in solid lines), steepest descent lines (dashed with arrows pointing towards the
direction of increase) and regions (hashed) where the surface lies below the reference
value| f (z0)|. Bottom: the functionf (z) = coshz and the local shape of| f (z)| near
an ordinary point (iπ/4), a zero (iπ/2), and a saddle-point (0), with level lines shown
on the surfaces.

where we have set12 f ′′(z0)/ f (z0) = λeiφ , shows that the modulus satisfies

| f (z)| = | f (z0)|
(
1+ λr 2 cos(2θ + φ)+ O(r 3)

)
.

Thus, starting at the directionθ = −φ/2 and turning aroundz0, the following se-
quence of events regarding the modulus| f (z)| = | f (rei θ )| is observed: it is maximal
(θ = −φ/2), stationary (θ = −φ/2+ π/4), minimal (θ = −φ/2+ π/2), stationary,
(θ = −φ/2+ 3π/4), maximal again (θ = −φ/2+ π ), and so on. The pattern, sym-
bolically “+ = − =”, repeats itself twice. This is superficially similar to an ordinary
point, save for the important fact that changes are observedat twice the angular speed.
Accordingly, the shape of the surface looks quite different; it is like the central part of
a saddle. Two level curves cross at a right angle: one steepest descent line (away from
the saddle-point) is perpendicular to another steepest descent line (towards the saddle-
point). In a mountain landscape, this is thus much like a passbetween two mountains.
The two regions on each side corresponding to points with an altitude belowa simple
saddle-point are often referred to as “valleys”.
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0.0
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−1.0 −0.5−1.5
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Figure VIII.2 . The “tripod”: two views of|1+z+z2+z3| as function ofx = ℜ(z),
y = ℑ(z): (left) the modulus as a surface inR3; (right) the projection of level lines
on thez-plane.

Generally, amultiple saddle-pointhas multiplicity p if f (z0) 6= 0 and all deriva-
tives f ′(z0), . . . , f (p)(z0) are equal to zero whilef (p+1)(z0) 6= 0. In that case, the
basic pattern “+ = − =” repeats itselfp + 1 times. For instance, from a double
saddle-point (p = 2), three roads go down to three different valleys separatedby
the flanks of three mountains. A double saddle-point is also called a “monkey sad-
dle” since it can be visualized as a saddle having places for the legs and the tail: see
Figure VIII.12 (p. 602) and Figure VIII.14 (p. 605).

Theorem VIII.1 (Classification of points on modulus surfaces). A surface| f (z)| at-
tached to the modulus of a function analytic over an open set� has points of only
three possible types:(i ) ordinary points, (i i ) zeros, (i i i ) saddle-points. Under pro-
jection on the complex plane, a simple saddle-point is locally the common apex of two
curvilinear sectors with angleπ/2, referred to as “valleys”, where the modulus of the
function is smaller than at the saddle-point.

As a consequence, the surface defined by the modulus of an analytic function has
no maximum: this property is known as theMaximum Modulus Principle. It has no
minimum either, apart from zeros. It is therefore a peaklesslandscape, in de Bruijn’s
words [143]. Accordingly, for a meromorphic function, peaks are at∞ and minima
are at 0, the other points being either ordinary points or isolated saddle-points.

ExampleVIII.1. The tripod: a cubic polynomial.An idea of the typical shape of the surface
representing the modulus of an analytic function can be obtained by examining Figure VIII.2
relative to the third degree polynomialf (z) = 1+ z+ z2+ z3. Since f (z) = (1− z4)/(1− z),
the zeros are at

−1, i, −i .

There are saddle-points at the zeros of the derivativef ′(z) = 1+ 2z+ 3z2, that is, at the points
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ζ := −1

3
+ i

3

√
2, ζ ′ := −1

3
− i

3

√
2.

The diagram below summarizes the position of these “interesting” points:

(3) −1 (zero)

i (zero)

−i (zero)

ζ ′ ζ ′ = − 1
3 −

i
3

√
2 (saddle-point)

ζ = − 1
3 +

i
3

√
2 (saddle-point)ζ

(0)

The three zeros are especially noticeable on Figure VIII.2 (left), where they appear at the end
of the three “legs”. The two saddle-points are visible on Figure VIII.2 (right) as intersection
points of level curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� VIII.1. The Fundamental Theorem of Algebra.This theorem asserts that a non-constant
polynomial has at least one root, hencen roots if its degree isn (Note IV.38, p. 270). Let
P(z) = 1+ a1z+ · · ·anzn be a polynomial of degreen. Consider f (z) = 1/P(z). By basic
analysis, one can takeR sufficiently large, so that on|z| = R, one has| f (z)| < 1

2 . Assume
a contrario that P(z) has no zero. Then,f (z) which is analytic in|z| ≤ R should attain its
maximum at an interior point (sincef (0) = 1), so that a contradiction has been reached.�

� VIII.2. Saddle-points of polynomials and the convex hull of zeros.Let P be a polynomial
andH the convex hull of its zeros. Then any root ofP′(z) lies inH. (Proof: assume distinct
zeros and consider

φ(z) := P′(z)
P(z)

=
∑

α : P(α)=0

1

z− α .

If z lies outsideH, then z “sees” all zerosα in a half-plane, this by elementary geometry.
By projection on the normal to the half-plane boundary, it is found that, for someθ , one has
ℜ(ei θφ(z)) < 0, so thatP′(z) 6= 0.) �

VIII. 2. Saddle-point bounds

Saddle-point analysis is a general method suited to the estimation of integrals of
analytic functionsF(z),

(4) I =
∫ B

A
F(z)dz,

whereF(z) ≡ Fn(z) involves some large parametern. The method is instrumental
when the integrandF is subject to rather violent variations, typically when there oc-
curs in it some exponential or some fixed function raised to a large powern→ +∞.
In this section, we discuss some of theglobal properties of saddle-point contours,
then particularize the discussion to Cauchy coefficient integrals. Generalsaddle-point
bounds, which are easy to derive, result from simple geometric considerations (a pre-
liminary discussion appears in Chapter IV, p. 246.).
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Starting from the general form (4), we letC be a contour joiningA and B and
taken in a domain of the complex plane whereF(z) is analytic. By standard inequali-
ties, we have

(5) |I | ≤ ||C|| · sup
z∈C
|F(z)|,

with ||C|| representing the length ofC. This is the commontrivial boundfrom integra-
tion theory applied to a fixed contourC.

For an analytic integrandF with A andB inside the domain of analyticity, there
is an infinite classP of acceptable paths to choose from, all in the analyticity domain
of F . Thus, by optimizing the bound (5), we may write

(6) |I | ≤ inf
C∈P

[
||C|| · sup

z∈C
|F(z)|

]
,

where the infimum is taken over all pathsC ∈ P. Broadly speaking, a bound of this
type is called asaddle-point bound1.

The length factor||C|| usually turns out to be unimportant for asymptotic bounding
purposes—this is, for instance, the case when paths remain infinite regions of the
complex plane. If there happens to be a pathC from A to B such that no point is
at an altitude higher than sup(|F(A)|, |F(B)|), then a simple bound results, namely,
|I | ≤ ||C|| ·sup(|F(A)|, |F(B)|): this is in a sense the uninteresting case. The common
situation, typical of Cauchy coefficient integrals of combinatorics, is that paths have to
go at some higher altitude than the end points. A pathC that traverses a saddle-point
by connecting two points at a lower altitude on the surface|F(z)| and by following
two steepest descent lines across the saddle-point is clearly a local minimum for the
path functional

8(C) = sup
z∈C
|F(z)|,

as neighbouring paths must possess a higher maximum. Such a path is called asaddle-
point pathor steepest descent path. Then, the search for a path minimizing

inf
C

[
sup
z∈C
|F(z)|

]

(a simplification of (6) to its essential feature) naturallysuggests considering saddle-
points and saddle-point paths. This leads to the variant of (6),

(7) |I | ≤ ||C0|| · sup
z∈C0

|F(z)|, C0 minimizes sup
z∈C
|F(z)|,

also referred to as asaddle-point bound.
We can summarize this stage of the discussion by a simple generic statement.

Theorem VIII.2 (General saddle-point bounds). Let F(z) be a function analytic in
a domain�. Consider the class of integral

∫
γ F(z)dz where the contourγ connects

1Notice additionally that the optimization problem need not be solved exactly, as any approximate
solution to (6) still furnishes a valid upper bound because of the universal character of the trivial bound (5).
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two points A, B and is constrained to a classP of allowable paths in� (e.g., those
that encircle0). Then one has thesaddle-point bound2:

(8)

∣∣∣∣
∫

γ

F(z)dz

∣∣∣∣ ≤ ||C0|| · sup
z∈C0

|F(z)|,

whereC0 is any path that minimizessup
z∈C
|F(z)|.

If A and B lie in opposite valleys of a saddle-point z0, then the minimization problem
is solved by saddle-point pathsC0 made of arcs connecting A to B through z0. In that
case, one has

∣∣∣∣
∫ B

A
F(z)dz

∣∣∣∣ ≤ ||C0|| · |F(z0)| , F ′(z0) = 0.

Borrowing a metaphor of de Bruijn [143], the situation may bedescribed as fol-
lows. Estimating a path integral is like estimating the difference of altitude between
two villages in a mountain range. If the two villages are in different valleys, the best
strategy (this is what road networks often do) consists in following paths that cross
boundaries between valleys at passes,i.e., through saddle-points.

The statement of Theorem VIII.2 does no fix all details of the contour, when
there are several saddle-points “separating”A andB—the problem is like finding the
most economical route across a whole mountain range. But at least it suggests the
construction of a composite contour made of connected arcs crossing saddle-points
from valley to valley. Furthermore, in cases of combinatorial interest, some strong
positivity is present and the selection of the suitable saddle-point contour is normally
greatly simplified, as we explain next.

� VIII.3. An integral of powers.Consider the polynomialP(z) = 1+ z+ z2 + z3 of Exam-
ple VIII.1. Define the line integral

In =
∫ +i

−1
P(z)n dz.

On the segment connecting the end points, the maximum of|P(z)| is 0.63831, giving the weak
trivial bound In = O(0.63831n). In contrast, there is a saddle-point atζ = −1

3 +
i
3

√
2 where

|P(ζ )| = 1
3 , resulting in the bound

|In| ≤ λ
(

1

3

)n
, λ := |ζ + 1| + |i − ζ | .= 1.44141,

as follows from adopting a contour made of two segments connecting−1 to i throughζ . Discuss

further the bounds on
∫ α′
α , when(α, α′) ranges over all pairs of roots ofP. �

Saddle-point bounds for Cauchy coefficient integrals.Saddle-point bounds can
be applied to Cauchy coefficient integrals,

(9) gn ≡ [zn]G(z) = 1

2iπ

∮
G(z)

dz

zn+1
,

2The form given by (8) is in principle weaker than the form (6),since it does not take into account the
length of the contour itself, but the difference is immaterialin all our asymptotic problems.
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for which we can avail ourselves of the previous discussion,with F(z) = G(z)z−n−1.
In (9) the symbol

∮
indicates that the allowable paths are constrained to encircle

the origin (the domain of definition of the integrand is a subset of C \ {0}; the points
A, B can then be seen as coinciding and taken somewhere along the negative real line;
equivalently, one may takeA = −aei ǫ andB = −ae−i ǫ , for a > 0 andǫ → 0).

In the particular case whereG(z) is a function with non-negative coefficients, a
simple condition guarantees the existence of a saddle-point on the positive real axis.
Indeed, assume thatG(z), which has radius of convergenceR with 0 < R ≤ +∞,
satisfiesG(z)→+∞ asz→ R− along the real axis andG(z) nota polynomial. Then
the integrandF(z) = G(z)z−n−1 satisfiesF(0+) = F(R−) = +∞. This means that
there exists at least one local minimum ofF over (0, R), hence, at least one value
ζ ∈ (0, R) where the derivativeF ′ vanishes. (Actually, there can be only one such
point; see Note VIII.4, p. 550.) Sinceζ corresponds to a local minimum ofF , we have
additionally F ′′(ζ ) > 0, so that the saddle-point is crossed transversally by a circle
of radiusζ . Thus, the saddle-point bound, specialized to circles centred at the origin,
yields the following corollary.

Corollary VIII.1 (Saddle-point bounds for generating functions). Let G(z), not a
polynomial, be analytic at 0 with non-negative coefficientsand radius of convergence
R≤ +∞. Assume that G(R−) = +∞. Then one has

(10) [zn]G(z) ≤ G(ζ )

ζ n
, with ζ ∈ (0, R) the unique root ofζ

G′(ζ )
G(ζ )

= n+ 1.

Proof. The saddle-point is the point where the derivative of the integrand is 0. There-
fore, we consider(G(z)z−n−1)′ = 0, orG′(z)z−n−1− (n+ 1)G(z)z−n−2 = 0, or

z
G′(z)
G(z)

= n+ 1.

We refer to this as thesaddle-point equationand useζ to denote its positive root. The
perimeter of the circle is 2πζ , so that the inequality [zn]G(z) ≤ G(ζ )/ζ n follows. �

Corollary VIII.1 is equivalent to Proposition IV.1, p. 246,on which it sheds a new
light, while paving the way to the full saddle-point method to be developed in the next
section.

We examine below two particular cases related to the centralbinomial and the
inverse factorial. The corresponding landscapes of FigureVIII.3, which bear a sur-
prising resemblance to one another, are, by the previous discussion, instances of a
general pattern for functions with non-negative coefficients. It is seen on these two
examples that the saddle-point bounds already catch the proper exponential growths,
being off only by a factor ofO(n−1/2).

ExampleVIII.2. Saddle-point bounds for central binomials and inverse factorials.Consider
the two contour integrals around the origin

(11) Jn =
1

2iπ

∮
(1+ z)2n dz

zn+1
, Kn =

1

2iπ

∮
ez dz

zn+1
,

whose values are otherwise known, by virtue of Cauchy’s coefficientformula, to beJn =
(2n

n
)

andKn = 1/n!. In that case, one can think of the end pointsA andB as coinciding and taken
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Figure VIII.3 . The modulus of the integrands ofJn (central binomials) andKn (in-
verse factorials) forn = 5 and the corresponding saddle-point contours.

somewhat arbitrarily on the negative real axis, while the contour has to encircle the origin once
and counter-clockwise.

The saddle-point equations are, respectively,

2n

1+ z
− n+ 1

z
= 0, 1− n+ 1

z
= 0,

the corresponding saddle-points beingζ = n+ 1

n− 1
andζ ′ = n + 1. This provides the upper

bounds

(12) Jn =
(

2n

n

)
≤
(

4n2

n2− 1

)n

≤ 16

9
4n, Kn =

1

n!
≤ en+1

(n+ 1)n
,

which are valid for all valuesn ≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. �

� VIII.4. Upward convexity of G(x)x−n. For G(z) having non-negative coefficients at the
origin, the quantityG(x)x−n is upward convex forx > 0, so that the saddle-point equation for
ζ can have at most one root. Indeed, the second derivative

(13)
d2

dx2

G(x)

xn = x2G′′(x)− 2nxG′(x)+ n(n+ 1)G(x)

xn+2
,

is positive forx > 0 since its numerator,
∑

k≥0

(n+ 1− k)(n− k)gkxk, gk := [zk]G(z),

has only non-negative coefficients. (See Note IV.46, p. 280, for analternative derivation.) �

� VIII.5. A minor optimization.The bounds of Equation (6), p. 547, which take the length of
the contour into account, lead to estimates that closely resemble (10). Indeed, we have

[zn]G(z) ≤ G(̂ζ )

ζ̂n
, ζ̂ root of z

G′(z)
G(z)

= n,
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when optimization is carried out over circles centred at the origin. �

VIII. 3. Overview of the saddle-point method

Given a complex integral with a contour traversing asingle saddle-point, the
saddle-point corresponds locally to a maximum of the integrand along the path. It
is then natural to expect thata small neighbourhood of the saddle-point may provide
the dominant contribution to the integral. The saddle-point method is applicable pre-
cisely when this is the caseandwhen this dominant contribution can be estimated by
means of local expansions. The method then constitutes the complex analytic coun-
terpart of the method of Laplace (Appendix B.6:Laplace’s method, p. 755) for the
evaluation of real integrals depending on a large parameter, and we can regard it as
being

Saddle-point method = Choice of contour + Laplace’s method.

Similar to its real-variable counterpart, the saddle-point method is a general strategy
rather than a completely deterministic algorithm, since many choices are left open in
the implementation of the method concerning details of the contour and choices of its
splitting into pieces.

To proceed, it is convenient to setF(z) = e f (z) and consider

(14) I =
∫ B

A
e f (z) dz,

where f (z) ≡ fn(z), asF(z) ≡ Fn(z) in the previous section, involves some large
parametern. Following possibly some preparation based on Cauchy’s theorem, we
may assume that the contourC connects two end pointsA and B lying in opposite
valleys of the saddle-pointζ . The saddle-point equation isF ′(ζ ) = 0, or equivalently
sinceF = e f :

f ′(ζ ) = 0.

The saddle-point method, of which a summary is given in Figure VIII.4, is based
on a fundamental splitting of the integration contour. We decomposeC = C(0) ∪ C(1),
whereC(0) called the “central part” containsζ (or passes very near to it) andC(1)

is formed of the two remaining “tails”. This splitting has tobe determined in each
case in accordance with the growth of the integrand. The basic principle rests on two
major conditions: the contributions of the two tails shouldbe asymptotically negligible
(conditionSP1); in the central region, the quantityf (z) in the integrand should be
asymptotically well approximated by a quadratic function (condition SP2). Under
these conditions, the integral is asymptotically equivalent to an incomplete Gaussian
integral. It then suffices to verify—this is conditionSP3, usually a minora posteriori
technical verification—that tails can be completed back, introducing only negligible
error terms. By this sequence of steps, the original integral is asymptotically reduced
to a complete Gaussian integral, which evaluates in closed form.

Specifically, the three steps of the saddle-point method involve checking condi-
tions expressed by Equations (15), (16), and (18) below.
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Goal: Estimate
∫ B

A
F(z)dz, settingF = e f ; here,F ≡ Fn and f ≡ fn depend on a large

parametern.
— The end pointsA, B are assumed to lie in opposite valleys of the saddle-point.
— A contourC through (or near) a simple saddle-pointζ , so that f ′(ζ ) = 0, has been chosen.
— The contour is split asC = C(0) ∪ C(1).
The following conditions are to be verified.

SP1: Tails pruning.On the contourC(1), the tails integral
∫
C(1) is negligible:

∫

C(1)
F(z)dz= o

(∫

C
F(z)dz

)
.

SP2: Central approximation.Along C(0), a quadratic expansion,

f (z) = f (ζ )+ 1

2
f ′′(ζ )(z− ζ )2+ O(ηn),

is valid, withηn→ 0 asn→∞, uniformlywith respect toz ∈ C(0).
SP3: Tails completion.The incomplete Gaussian integral resulting fromSP2, taken over the
central range, is asymptotically equivalent to acompleteGaussian integral (withf ′′(ζ ) =
eiφ | f ′′(ζ )| andε = ±1 depending on orientation):

∫

C(0)
e

1
2 f ′′(ζ )(z−ζ )2 dz∼ εie−iφ/2

∫ ∞

−∞
e−| f

′′(ζ )|x2/2 dx ≡ εie−iφ/2

√
2π

| f ′′(ζ )| .

Result: AssumingSP1, SP2, andSP3, one has, withε = ±1 and arg( f ′′(ζ )) = φ:

1

2iπ

∫ B

A
e f (z) dz∼ εe−iφ/2 e f (ζ )

√
2π | f ′′(ζ )|

= ± e f (ζ )
√

2π f ′′(ζ )
.

Figure VIII.4 . A summary of the basic saddle-point method.

SP1: Tails pruning.On the contourC(1), the tail integral
∫
C(1) is negligible:

(15)
∫

C(1)
F(z)dz= o

(∫

C

F(z)dz

)
.

This condition is usually established by proving thatF(z) remains small enough (e.g.,
exponentially small in the scale of the problem) away fromζ , for z ∈ C(1).

SP2: Central approximation.Along C(0), a quadratic expansion,

(16) f (z) = f (ζ )+ 1

2
f ′′(ζ )(z− ζ )2+ O(ηn),

is valid, withηn→ 0 asn→∞, uniformly for z ∈ C(0). This guarantees that
∫

e f is
well-approximated by an incomplete Gaussian integral:

(17)
∫

C(0)
e f (z) dz∼ e f (ζ )

∫

C(0)
e

1
2 f ′′(ζ )(z−ζ )2 dz.
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SP3: Tails completion.The tails can be completed back, at the expense of asymp-
totically negligible terms, meaning that the incomplete Gaussian integral is asymptot-
ically equivalent to a complete one (itself given by (12), p.744),

(18)
∫

C(0)
e

1
2 f ′′(ζ )(z−ζ )2 dz∼ εie−iφ/2

∫ ∞

−∞
e−| f

′′(ζ )|x2/2 dx ≡ εie−iφ/2

√
2π

| f ′′(ζ )| .

whereε = ±1 is determined by the orientation of the original contourC, and f ′′(ζ ) =
eiφ | f ′′(ζ )|. This last step deserves a word of explanation. Along a steepest descent
curve acrossζ , the quantityf ′′(ζ )(z− ζ )2 is real and negative, as we saw when dis-
cussing saddle-point landscapes (p. 543). Indeed, withf ′′(ζ ) = eiφ | f ′′(ζ )|, one has
arg(z−ζ ) ≡ −φ/2+ π

2 (modπ). Thus, the change of variablesx = ±i (z−ζ )e−iφ/2

reduces the left side of (18) to an integral taken along (or close to) the real line3. The
condition (18) then demands that this integral can be completed to a complete Gauss-
ian integral, which itself evaluates in closed form.

If these conditions are granted, one has the chain
∫

C

e f dz∼
∫

C(0)
e f dz∼ e f (ζ )

∫

C(0)
e

1
2 f ′′(ζ )(z−ζ )2 dz∼ ±ie−iφ/2e f (ζ )

√
2π

| f ′′(ζ )| ,

by virtue of Equations (15), (17), (18). In summary:

Theorem VIII.3 (Saddle-point Algorithm). Consider an integral
∫ B

A F(z)dz, where
the integrand F= e f is an analytic function depending on a large parameter and
A, B lie in opposite valleys across a saddle-pointζ , which is a root of the saddle-
point equation

f ′(ζ ) = 0

(or, equivalently, F′(ζ ) = 0). Assume that the contourC connecting A to B can be
split intoC = C(0) ∪ C(1) in such a way that the following conditions are satisfied:

(i ) tails are negligible, in the sense of Equation(15)of SP1,
(i i ) a central approximation hold, in the sense of Equation(16)of SP2,
(i i i ) tails can be completed back, in the sense of Equation(18)of SP3.

Then one has, withε = ±1 reflecting orientation andφ = arg( f ′′(ζ )):

(19)
1

2iπ

∫ B

A
e f (z) dz∼ εe−iφ/2 e f (ζ )

√
2π | f ′′(ζ )|

= ± e f (ζ )

√
2π f ′′(ζ )

.

It can be verified at once that a blind application of the formula to the two integrals
of Example VIII.2 produces the expected asymptotic estimates

(20) Jn ≡
(

2n

n

)
∼ 4n

√
πn

and Kn ≡
1

n!
∼ 1

nne−n
√

2πn
.

The complete justification in the case ofKn is given in Example VIII.3 below. The
case ofJn is covered by the general theory of “large powers” of SectionVIII. 8, p. 585.

3The sign in (18) is naturally well-defined, once the dataA, B, and f are fixed: one possibility is to
adopt the determination ofφ/2 (mod π) such thatA andB are sent close to the negative and the positive
real axis, respectively, after the final change of variablesx = i (z− ζ )e−iφ/2.



554 VIII. SADDLE-POINT ASYMPTOTICS

In order for the saddle-point method to work, conflicting requirements regard-
ing the dimensioning ofC(0) andC(1) must be satisfied. The tails pruning and tails
completion conditions,SP1 andSP3, forceC(0) to be chosen large enough, so as to
capture the main contribution to the integral; the central approximation conditionSP2
requiresC(0) to be small enough, to the effect thatf (z) can be suitably reduced to its
quadratic expansion. Usually, one has to take||C(0)||/||C|| → 0, and the following ob-
servation may help make the right choices. The error in the two-term expansion being
likely given by the next term, which involves a third derivative, it is a good guess to
dimensionC(0) to be of lengthδ ≡ δ(n) chosen in such a way that

(21) f ′′(ζ )δ2→∞, f ′′′(ζ )δ3→ 0,

so that both tail and central approximation conditions can be satisfied. We call this
choice thesaddle-point dimensioning heuristic.

On another register, it often proves convenient to adopt integration paths that
come close enough to the saddle-point but need not pass exactly through it. In the same
vein, a steepest descent curve may be followed only approximately. Such choices
will still lead to valid conclusions, as long as the conditions of Theorem VIII.3 are
verified. (Note carefully that these conditionsneither impose that the contour should
pass strictly through the saddle-point,nor that a steepest descent curve should be
exactly followed.)

Saddle-point method for Cauchy coefficient integrals.For the purposes of an-
alytic combinatorics, the general saddle-point method specializes. We are given a
generating functionG(z), assumed to be analytic at the origin and with non-negative
coefficients, and seek an asymptotic form of the coefficients, given in integral form by

[zn]G(z) = 1

2iπ

∫

C

G(z)
dz

zn+1
.

There,C encircles the origin, lies within the domain whereG is analytic, and is posi-
tively oriented. This is a particular case of the general integral (14) considered earlier,
with the integrand beingF(z) = G(z)/zn+1.

The geometry of the problem is now simple, and, for reasons seen in the previous
section, it suffices to consider as integration contour a circle centred at the origin and
passing through (or very near) a saddle-point present on thepositive real line. It is
then natural to make use of polar coordinates and set

z= rei θ ,

where the radiusr of the circle will be chosen equal to (or close to) the positive saddle-
point value. We thus need to estimate

(22) [zn]G(z) = 1

2iπ

∮
G(z)

dz

zn+1
= r−n

2π

∫ +π

−π
G(rei θ )e−niθ dθ.

Under the circumstances, the basic split of the contourC = C(0) ∪ C(1) involves a
central partC(0), which is an arc of the circle of radiusr determined by|θ | ≤ θ0 for
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some suitably chosenθ0. OnC(0), a quadratic approximation should hold, according
to SP2 [central approximation]. Set

(23) f (z) := logG(z)− n logz.

A natural possibility is to adopt forr the value that cancelsf ′(r ),

(24) r
G′(r )
G(r )

= n,

which is a version of thesaddle-point equation4 relative to polar coordinates. This
grants uslocally, a quadratic approximation without linear terms, withβ(r ) a com-
putable quantity (in terms off (r ), f ′(r ), f ′′(r )), we have

(25) f (rei θ )− f (r ) = −1

2
β(r )θ2+ o(θ3),

which is valid at least for fixedr (i.e., for fixedn), asθ → 0
The cutoff angleθ0 is to be chosen as a function ofn (or, equivalently,r ) in accor-

dance with the saddle-point heuristic (21). It then sufficesto carry out a verification of
the validity of the three conditions of the saddle-point method,SP1, SP2 (for which a
suitablyuniformversion of (25) needs to be developed), andSP3 of Theorem VIII.3,
p. 553, adjusted to take into account polar coordinate notations.

The example below details the main steps of the saddle-pointanalysis of the gen-
erating function of inverse factorials, based on the foregoing principles.

ExampleVIII.3. Saddle-point analysis of the exponential and the inverse factorial I.The goal
is to estimate1

n! = [zn]ez, the starting point being

Kn =
1

2iπ

∫

|z|=r
ez dz

zn+1
,

where integration will be performed along a circle centred at the origin. The landscape of the
modulus of the integrand has been already displayed in Figure VIII.3, p. 550—there is a saddle-
point of G(z)z−n−1 atζ = n+ 1 with an axis perpendicular to the real line. We thus expect an
asymptotic estimate to derive from adopting a circle passing through the saddle-point, or about.

We switch to polar coordinates, fix the choice of the radiusr = n in accordance with (24),
and setz= nei θ . The original integral becomes, in polar coordinates,

(26) Kn =
en

nn ·
1

2π

∫ +π

−π
en
(
ei θ−1−i θ

)
dθ,

where, for readability, we have taken out the factorG(r )/r n ≡ en/nn. Seth(θ) = ei θ −1− i θ .
The function|eh(θ)| = ecosθ−1 is unimodal with its peak atθ = 0 and the same property
holds for|enh(θ)|, representing the modulus of the integrand in (26), which gets more and more
strongly peaked atθ = 0, asn→+∞; see Figure VIII.5.

4Equation (24) is almost the same asζG′(ζ )/G(ζ ) = n+1 of (10), which defines the saddle-point in
z-coordinates. The (minor) difference is accounted for by thefact that saddle-points are sensitive to changes
of variables in integrals. In practice, it proves workable to integrate along a circle of radius eitherr or ζ , or
even a suitably close approximation ofr, ζ , the choice being often suggested by computational convenience.
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Figure VIII.5 . Plots of |ezz−n−1| for n = 3 andn = 30 (scaled according to the
value of the saddle-point) illustrate the essential concentration condition as higher
values ofn produce steeper saddle-point paths.

In agreement with the saddle-point strategy, the estimation ofKn proceeds by isolating a
small portion of the contour, corresponding toz near the real axis. We thus introduce

K (0)n =
∫ +θ0
−θ0

enh(θ) dθ, K (1)n =
∫ 2π−θ0

θ0

enh(θ) dθ,

and chooseθ0 in accordance with the general heuristic of (21), which corresponds tothe two
conditions:nθ2

0 → ∞ (informally: θ0 ≫ n−1/2) andnθ3
0 → 0, (informally: θ0 ≪ n−1/3).

One way of realizing the compromise is to adoptθ0 = na, wherea is any number between
−1/2 and−1/3. To be specific, we fixa = −2/5, so

(27) θ0 ≡ θ0(n) = n−2/5.

In particular, the angle of the central region tends to zero.

(i ) Tails pruning.For z = nei θ one has
∣∣ez
∣∣ = en cosθ , and, by unimodality properties of

the cosine, the tail integralK (1) satisfies

(28)
∣∣∣K (1)n

∣∣∣ = O
(
e−n(cosθ0−1)

)
= O

(
exp

(
−Cn1/5

))
,

for someC > 0. The tail integral is thus is exponentially small.

(i i ) Central approximation.Nearθ = 0, one hash(θ) ≡ ei θ − 1− i θ = −1
2θ

2+ O(θ3),
so that, for|θ | ≤ θ0,

enh(θ) = e−nθ2/2+O(nθ3) = e−nθ2/2
(
1+ O(nθ3

0)
)
.

Sinceθ0 = n−2/5, we have

(29) K (0)n =
∫ +n−2/5

−n−2/5
e−nθ2/2 dθ

(
1+ O(n−1/5)

)
,

which, by the change of variablest = θ√n, becomes

(30) K (0)n = 1√
n

∫ +n1/10

−n1/10
e−t2/2 dt

(
1+ O(n−1/5)

)
.

The central integral is thus asymptotic to an incomplete Gaussian integral.
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(i i i ) Tails completion. Given (30), the task is now easy. We have, elementarily, forc > 0,

(31)
∫ +∞

c
e−t2/2 dt = O

(
e−c2/2

)
,

which expresses the exponential smallness of Gaussian tails. As a consequence,

(32) K (0)n ∼ 1√
n

∫ +∞

−∞
e−t2/2 dt ≡

√
2π

n
.

Assembling (28) and (32), we obtain

K (0)n + K (1)n ∼
√

2π

n
, i.e., Kn =

1

2π

en

nn

(
K (0)n + K (1)n

)
∼ en

nn
√

2πn
.

The proof also provides a relative error term ofO(n−1/5). Stirling’s formula is thus seen to be
(inter alia!) a consequence of the saddle-point method. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .�

Complete asymptotic expansions.Just like Laplace’s method, the saddle-point
method can often be made to providecomplete asymptotic expansions. The idea is
still to localize the main contribution in the central region, but now take into account
corrections terms to the quadratic approximation. As an illustration of these general
principles, we make explicit here the calculations relative to the inverse factorial.

ExampleVIII.4. Saddle-point analysis of the exponential and the inverse factorial II.For a
complete expansion of [zn]ez, we only need to revisit the estimation ofK (0) in the previous
example, sinceK (1) is exponentially small anyhow. One first rewrites

K (0)n =
∫ θ0

−θ0
e−nθ2/2en(cosθ−1+ 1

2θ
2) dθ

= 1√
n

∫ θ0
√

n

−θ0
√

n
e−w

2/2enξ(w/
√

n) dw, ξ(θ) := cosθ − 1+ 1

2
θ2.

The calculation proceeds exactly in the same way as for the Laplace method(Appendix B.6:
Laplace’s method, p. 755). It suffices to expandh(θ) to any fixed order, which is legitimate in
the central region. In this way, a representation of the form,

K (0)n = 1√
n

∫ θ0
√

n

−θ0
√

n
e−w

2/2


1+

M−1∑

k=1

Ek(w)

nk/2
+ O

(
1+ w3M

nM/2

)
 dw,

is obtained, where theEk(w) are computable polynomials of degree 3k. Distributing the inte-
gral operator over terms in the asymptotic expansion and completing the tailsyields an expan-
sion of the form

K (0)n ∼ 1√
n




M−1∑

k=0

dk

nk/2
+ O(n−M/2)


 ,

whered0 =
√

2π anddk :=
∫+∞
−∞ e−w

2/2Ek(w) dw. All odd terms disappear by parity. The
net result is then the following.

Proposition VIII.1 (Stirling’s formula). The factorial numbers satisfy

1

n!
∼ enn−n
√

2πn

(
1− 1

12n
+ 1

288n2
+ 139

51840n3
− 571

2488320n4
+ · · ·

)
.
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Notice the amazing similarity with the form obtained directly forn! in Appendix B.6:
Laplace’s method, p. 755. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .�

� VIII.6. A factorial surprise.Why is it that the expansion ofn! and 1/n! involve the same set
of coefficients, up to sign? �

VIII. 4. Three combinatorial examples

The saddle-point method permits us to solve a number of asymptotic problems
coming from analytic combinatorics. In this section, we illustrate its use by treating
in some detail three combinatorial examples5:

Involutions(I), Set partitions(S), Fragmented permutations(F).

These are all labelled structures introduced in Chapter II.Their specifications and
EGFs are

(33)





Involutions : I = SET(SET1,2(Z)) H⇒ I (z) = ez+z2/2

Set Partition : S = SET(SET≥1(Z)) H⇒ S(z) = eez−1

Fragmented perms :F = SET(SEQ≥1(Z)) H⇒ F(z) = ez/(1−z).

The first two are entire functions (i.e., they only have a singularity at∞), while the
last one has a singularity atz = 1. Each of these functions exhibits a fairly vio-
lent growth—of an exponential type—near its positive singularity, at either a finite or
infinite distance. As the reader will have noticed, all threecombinatorial types are
structurally characterized by a set construction applied to some simpler structure.

Each example is treated, starting from the easier saddle-point bounds and pro-
ceeding with the saddle-point method. The example of involutions deals with a prob-
lem that is only a little more complicated than inverse factorials. The case of set
partitions (Bell numbers) illustrates the need in general of a good asymptotic tech-
nology for implicitly defined saddle-points. Finally, fragmented permutations, with
their singularity at a finite distance, pave the way for the (harder) analysis of integer
partitions in Section VIII. 6. We recapitulate the main features of the saddle-point
analyses of these three structures, together with the case of inverse factorials (urns),
in Figure VIII.6.

ExampleVIII.5. Involutions. An involution is a permutationτ such thatτ2 is the identity

permutation (p. 122). The corresponding EGF isI (z) = ez+z2/2. We have in the notation
of (23)

f (z) = z+ z2

2
− n logz,

and the saddle-point equation in polar coordinates is

r (1+ r ) = n, implying r = −1

2
+ 1

2

√
4n+ 1∼ √n− 1

2
+ 1

8
√

n
+ O(n−3/2).

5The purpose of these examples is to become further familiarizedwith the practice of the saddle-point
method in analytic combinatorics. The impatient reader can jumpdirectly to the next section, where she
will find a general theory that covers these and many more cases.
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Class EGF radius(r ) angle(θ0) coeff[zn] in EGF
urns

SET(Z) ez n n−2/5 ∼ enn−n
√

2πn
(Ex. VIII.3, p. 555)

involutions

SET(CYC1,2(Z)) ez+z2/2 ∼ √n− 1
2 n−2/5 ∼ en/2−1/4n−n/2

2
√
πn

e
√

n

(Ex. VIII.5, p. 558)

set partitions

SET(SET≥1(Z)) eez−1 ∼ logn− log logn e−2r/5/r ∼ eer−1

r n
√

2πr (r + 1)er

(Ex. VIII.6, p. 560)

fragmented perms

SET(SEQ≥1(Z)) ez/(1−z) ∼ 1− 1√
n

n−7/10 ∼ e−1/2+2
√

n

2
√
πn3/4

(Ex. VIII.7, p. 562)

Figure VIII.6 . A summary of some major saddle-point analyses in combinatorics.

The use of the saddle-point bound then gives mechanically

(34)
In
n!
≤ e−1/4 en/2+√n

nn/2
(1+ o(1)), In ≤ e−1/4

√
2πne−n/2+√nnn/2(1+ o(1)).

(Notice that if we use instead the approximate saddle-point value,
√

n, we only lose a factor
e−1/4 .= 0.77880.)

The cutoff point between the central and non-central regions is determined, in agree-
ment with (21), by the fact that the lengthδ of the contour (inz coordinates) should satisfy
f ′′(r )δ2 → ∞ and f ′′′(r )δ3 → 0. In terms of angles, this means that we should choose a
cutoff angleθ0 that satisfies

r 2 f ′′(r )θ2
0 →∞, r 3 f ′′′(r )θ3

0 → 0.

Here, we havef ′′(r ) = O(1) and f ′′′(r ) = O(n−1/2). Thus,θ0 must be of an order some-
where in betweenn−1/2 andn−1/3, and we fix

θ0 = n−2/5.

(i ) Tails pruning. First, some general considerations are to be made, regarding the be-
haviour of|I (z)| along large circles,z= rei θ . One has

log |I (rei θ )| = r cosθ + r 2

2
cos 2θ.

As a function ofθ , this function decreases on(0, π2 ), since it is the sum of two decreasing

functions. Thus,|I (z)| attains its maximum(er+r 2/2) atr and its minimum(e−r 2/2) atz= r i .
In the left half-plane, first forθ ∈ (π2 ,

3π
4 ), the modulus|I (z)| is at moster since cos 2θ < 0.

Finally, for θ ∈ (3π
4 , π) smallness is granted by the fact that cosθ < −1/

√
2 resulting in the

bound|I (z)| ≤ er 2/2−r/
√

2. The same argument applies to the lower half planeℑ(z) < 0.
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As a consequence of these bounds,I (z)/I (
√

n) is strongly peaked atz = r ; in particular, it is
exponentially small away from the positive real axis, in the sense that

(35)
I (rei θ )

I (r )
= O

(
I (rei θ0)

I (r )

)
= O

(
exp(−nα)

)
, θ 6∈ [−θ0, θ0],

for someα > 0.

(i i ) Central approximation. We then proceed and consider the central integral

J(0)n = e f (r )

2π

∫ +θ0
−θ0

exp
(

f (rei θ )− f (r )
)

dθ.

What is required is a Taylor expansion with remainder near the pointr ∼ √n. In the central
region, the relationsf ′(r ) = 0 f ′′(r ) = 2+ O(1/n), and f ′′′(z) = O(n−1/2) yield

f (rei θ )− f (r ) = r 2

2
f ′′(r )(ei θ − 1)2+ O

(
n−1/2r 3θ3

0

)
= −r 2θ2+ O(n−1/5).

This is enough to guarantee that

(36) J(0)n = e f (r )

2π

∫ +θ0
−θ0

e−r 2θ2
dθ
(
1+ O(n−1/5)

)
.

(i i i ) Tails completion.Sincer ∼ √n andθ0 = n−2/5, we have

(37)
∫ +θ0
−θ0

e−r 2θ2
dθ = 1

r

∫ +θ0r

−θ0r
e−t2

dt = 1

r

(∫ +∞

−∞
e−t2

dt + O
(
e−n1/5

))
.

Finally, Equations (35), (36), and (37) give:

Proposition VIII.2. The number In of involutions satisfies

(38)
In
n!
= e−1/4

2
√
πn

n−n/2en/2+√n
(

1+ O

(
1

n1/5

))
.

Comparing the saddle-point bound (34) to the true asymptotic form (38),we see that the
former is only off by a factor ofO(n1/2). Here is a table further comparing the asymptotic
estimateI ⋆n provided by the right side of (38) to the exact value ofIn:

n 10 100 1000

In 9496 2.40533· 1082 2.14392· 101296

I ⋆n 8839 2.34149· 1082 2.12473· 101296.

The relative error is empirically close to 0.3/
√

n, a fact that could be proved by developing a
complete asymptotic expansion along the lines expounded in the previous section, p. 557.

The estimate (38) ofIn is given by Knuth in [378]: his derivation is carried out by means
of the Laplace method applied to the explicit binomial sum that expressesIn. Our complex
analytic derivation follows Moser and Wyman’s in [448]. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .�

ExampleVIII.6. Set partitions and Bell numbers.The number of partitions of a set ofn
elements defines the Bell numberSn (p. 109) and one has

Sn = n!e−1[zn]G(z) where G(z) = eez
.

The saddle-point equation relative toG(z)z−n−1 (in z-coordinates) is

ζeζ = n+ 1.
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This famous equation admits an asymptotic solution obtained by iteration (or “bootstrapping”):
it suffices to writeζ = log(n+1)− logζ , and iterate (say, starting fromζ = 1), which provides
the solution,

(39) ζ ≡ ζ(n) = logn− log logn+ log logn

logn
+ O

(
log2 logn

log2 n

)

(see [143, p. 26] for a detailed discussion). The corresponding saddle-point bound reads

Sn ≤ n!
eeζ−1

ζn .

The approximate solution̂ζ = logn yields in particular the simplified upper bound

Sn ≤ n!
en−1

(logn)n
.

which is enough to check that there are much fewer set partitions than permutations, the ratio
being bounded from above by a quantitye−n log logn+O(n).

In order to implement the saddle-point strategy, integration will be carriedout over a circle
of radiusr ≡ ζ . We then set

f (z) = log

(
G(z)

zn+1

)
= ez− (n+ 1) logz,

and proceed to estimate the integral,

Jn =
1

2iπ

∫

C
G(z)

dz

zn+1
,

along the circleC of radiusr . The usual saddle-point heuristic suggests that the range of the
saddle-point is determined by a quantityθ0 ≡ θ0(n) such that the quadratic terms in the ex-
pansion of f at r tend to infinity, while the cubic terms tend to zero. In order to carry out the
calculations, it is convenient to express all quantities in terms ofr alone, which is possible since
n can be disposed of by means of the relationn+ 1= rer . We find:

f ′′(r ) = er (1+ r−1), f ′′′(r ) = er (1− 2r 2).

Thus,θ0 should be chosen such thatr 2er θ2
0 →∞, r 3er θ3

0 → 0, and the choicer θ0 = e−2r/5

is suitable.

(i ) Tails pruning. First, observe that the functionG(z) is strongly concentrated near the
real axis since, withz= rei θ , there holds

(40)
∣∣ez∣∣ = er cosθ ,

∣∣∣eez
∣∣∣ ≤ eer cosθ

.

In particularG(rei θ ) is exponentially smaller thanG(r ) for any fixedθ 6= 0, whenr gets large.

(i i ) Central approximation. One then considers the central contribution,

J(0)n := 1

2iπ

∫

C(0)
G(z)

dz

zn+1
,

whereC(0) is the part of the circlez = rei θ such that|θ | ≤ θ0 ≡ e−2r/5r−1. Since onC(0),
the third derivative is uniformlyO(er ), one has there

f (rei θ ) = f (r )− 1

2
r 2θ2 f ′′(r )+ O(r 3θ3er ).

This approximation can then be transported into the integralJ(0)n .
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(i i i ) Tails completion. Tails can be completed in the usual way. The net effect is the
estimate

[zn]G(z) = e f (r )
√

2π f ′′(r )

(
1+ O

(
r 3θ3er

))
,

which, upon making the error term explicit rephrases, as follows.

Proposition VIII.3. The number Sn of set partitions of size n satisfies

(41) Sn = n!
eer−1

r n
√

2πr (r + 1)er

(
1+ O(e−r/5)

)
,

where r is defined implicitly by rer = n+ 1, so that r= logn− log logn+ o(1).

Here is a numerical table of the exact valuesSn compared to the main termS⋆n of the
approximation (41):

n 10 100 1000

Sn 115975 4.75853· 10115 2.98990· 101927

S⋆n 114204 4.75537· 10115 2.99012· 101927

The error is about 1.5% forn = 10, less than 10−3 and 10−4 for n = 100 andn = 1000.
The asymptotic form in terms ofr itself is the proper one as no back substitution of an

asymptotic expansion ofr (in terms ofn and logn) can provide an asymptotic expansion forSn
solely in terms ofn. Regarding explicit representations in terms ofn, it is only logSn that can
be expanded as

1

n
log Sn = logn− log logn− 1+ log logn

logn
+ 1

logn
+ O

((
log logn

logn

)2
)
.

(Saddle-point estimates of coefficient integrals often involve such implicitlydefined quantities.)
This example probably constitutes the most famous application of saddle-point techniques

to combinatorial enumeration. The first correct treatment by means ofthe saddle-point method
is due to Moser and Wyman [447]. It is used for instance by de Bruijn in [143, pp. 104–108] as
a lead example of the method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

ExampleVIII.7. Fragmented permutations.These correspond toF(z) = exp(z/(1− z)).
The example now illustrates the case of a singularity at a finite distance. We set as usual

f (z) = z

1− z
− (n+ 1) logz,

and start with saddle-point bounds. The saddle-point equation is

(42)
ζ

(1− ζ )2 = n+ 1,

so thatζ comes close to the singularity at 1 asn gets large:

ζ = 2n+ 3−
√

4n+ 5

2n+ 2
= 1− 1√

n
+ 1

2n
+ O(n−3/2).

Here, the approximation̂ζ (n) = 1− 1/
√

n, leads to

(43) [zn]F(z) ≤ e−1/2e2
√

n(1+ o(1)).

The saddle-point method is then applied with integration along a circle of radius r ≡ ζ .
The saddle-point heuristic suggests to restrict the integral to a small sector of angle 2θ0, and,
since f ′′(r ) = O(n3/2) while f ′′′(r ) = O(n2), this means takingθ0 such thatn3/4θ0 → ∞
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andn2/3θ0 → 0. For instance, the choiceθ0 = n−7/10 is suitable. Concentration is easily
verified: we have ∣∣∣e1/(1−z)

∣∣∣
z=rei θ

= e · exp

(
1− r cosθ

1− 2r cosθ + r 2

)
,

which is a unimodal function ofθ for θ ∈ (−π, π). (The maximum of this function ofθ is of
order exp((1− r )−1) and is attained atθ = 0; the minimum isO(1), attained atθ = π .) In
particular, along the non-central part|θ | ≥ θ0 of the saddle-point circle, one has

(44)
∣∣∣e1/(1−z)

∣∣∣
z=rei θ

= O(exp
(√

n− n1/10
)
,

so that tails are exponentially small. Local expansions then enable us to justify the use of the
general saddle-point formula in this case. The net result is the following.

Proposition VIII.4. The number of fragmented permutations, Fn = n![zn]F(z), satisfies

(45)
Fn

n!
∼ e−1/2e2

√
n

2
√
πn3/4

.

Quite characteristically, the corresponding saddle-point bound (43) turns out to be off the
asymptotic estimate (45) only by a factor of ordern3/4. The relative error of the approxima-
tion (45) is about 4%, 1%, 0.3% forn = 10, 100, 1000, respectively.

The expansion above has been extended by E. Maitland Wright [618, 619] to several
classes of functions with a singularity whose type is an exponential of a function of the form
(1− z)−ρ ; see Note VIII.7. (For the case of (45), Wright [618] refers to an earlier article of
Perron published in 1914.) His interest was due, at least partly, to applications to generalized
partition asymptotics, of which the basic cases are discussed in Section VIII. 6, p. 574. . . . .�

� VIII.7. Wright’s expansions.Consider the function

F(z) = (1− z)−β exp

(
A

(1− z)ρ

)
, A > 0, ρ > 0.

Then, a saddle-point analysis yields, whenρ < 1:

[zn]F(z) ∼ Nβ−1−ρ/2 exp
(
A(ρ + 1)Nρ

)
√

2πAρ(ρ + 1)
, N :=

(
n

Aρ

) 1
ρ+1

.

(The caseρ ≥ 1 involves more terms of the asymptotic expansion of the saddle-point.) The
method generalizes to analytic and logarithmic multipliers, as well as to a sum ofterms of the
form A(1− z)−ρ inside the exponential. See [618, 619] for details. �

� VIII.8. Some oscillating coefficients.Define the function

s(z) = sin

(
z

1− z

)
.

The coefficientssn = [zn]s(z) are seen to change sign atn = 6, 21, 46, 81, 125, 180, . . . . Do
signs change infinitely many times? (Hint: Yes. there are two complex conjugate saddle-points
and the associated asymptotic forms combine a growth of the typenaeb

√
n with an oscillating

factor similar to sin
√

n.) The sum

Un =
n∑

k=0

(
n

k

)
(−1)k

k!

exhibits similar fluctuations. �
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VIII. 5. Admissibility

The saddle-point method is a versatile approach to the analysis of coefficients
of fast-growing generating functions, but one which is often cumbersome to apply
step-by-step. Fortunately, it proves possible to encapsulate the conditions repeatedly
encountered in our previous examples into a general framework. This leads to the
notion of anadmissible functionpresented in Subsection VIII. 5.1. By design, saddle-
point analysis applies to such functions and asymptotic forms for their coefficients
can be systematically determined: this follows an approachinitiated by Hayman in
1956. A great merit of abstraction in this context is that admissible functions satisfy
useful closure properties, so that aninfinite classof admissible functions of relevance
to combinatorial applications can be determined—we developthis theme in Subsec-
tion VIII. 5.2, relative to enumeration. Finally, Subsection VIII. 5.3 presents an ap-
proach to the probabilistic problem known as depoissonization, which is much akin to
admissibility.

VIII. 5.1. Admissibility theory. The notion of admissibility is in essence an ax-
iomatization of the conditions underlying Theorem VIII.3 particularized to the case
of Cauchy coefficient integrals. In this section, we base ourdiscussion onH–admis-
sibility, the prefixH being a token of Hayman’s original contribution [325]. A crisp
account of the theory is given in Section II.7 of Wong’s book [614] and in Odlyzko’s
authoritative survey [461, Sec. 12].

We consider here a functionG(z) that is analytic at the origin and whose coeffi-
cients [zn]G(z) are to be estimated by

gn ≡ [zn]G(z) = 1

2iπ

∫

C

G(z)
dz

zn+1
.

The switch to polar coordinates is natural, so that the expansion ofG(rei θ ) for smallθ
plays a central r̂ole: with r a positive real number lying within the disc of analyticity
of G(z), the fundamental expansion is

(46) logG(rei θ ) = logG(r )+
∞∑

ν=1

αν(r )
(i θ)ν

ν!
.

Not surprisingly, the most important quantities are the first two terms, and onceG(z)
has been put into exponential form,G(z) = eh(z), a simple computation yields

(47)

{
a(r ) := α1(r ) = rh′(r )
b(r ) := α2(r ) = r 2h′′(r )+ rh′(r ), with h(z) := logG(z).

In terms ofG, itself, one thus has

(48) a(r ) = r
G′(r )
G(r )

, b(r ) = r
G′(r )
G(r )

+ r 2 G′′(r )
G(r )

− r 2
(

G′(r )
G(r )

)2

.

WheneverG(z) has non-negative Taylor coefficients at the origin,b(r ) is positive for
r > 0 anda(r ) increases asr → ρ, with ρ the radius of convergence ofG. (This
follows from the argument developed in Note VIII.4, p. 550.)
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Definition VIII.1 (Hayman–admissibility). Let G(z) have radius of convergenceρ
with 0< ρ ≤ +∞ and be always positive on some subinterval(R0, ρ) of (0, ρ). The
function G(z) is said to be H–admissible (Hayman admissible)if, with a(r ) and b(r )
as defined in(47), it satisfies the following three conditions:

H1. [Capture condition] lim
r→ρ a(r ) = +∞ and lim

r→ρ b(r ) = +∞.

H2. [Locality condition]For some functionθ0(r ) defined over(R0, ρ) and sat-
isfying0< θ0 < π , one has

G(rei θ ) ∼ G(r )ei θa(r )−θ2b(r )/2 as r→ ρ,

uniformly in|θ | ≤ θ0(r ).
H3. [Decay condition]Uniformly in θ0(r ) ≤ |θ | < π

G(rei θ ) = o

(
G(r )√
b(r )

)
.

Note that the conditions in the definition areintrinsic to the function: they only
make reference tothe function’s values along circles, no parametern being involved
yet. It can be easily verified, from the previous examples, that the functionsez, eez−1,
andez+z2/2 are admissible withρ = +∞, and that the functionez/(1−z) is admissible
with ρ = 1 (refer in each case to the discussion of the behaviour of themodulus of
G(rei θ ), asθ varies). By contrast, functions such asez2

andez2+ez arenotadmissible
since they attain values that are too large when arg(z) is nearπ .

Coefficients ofH–admissible functions can be systematically analysed to first
asymptotic order, as expressed by the following theorem:

Theorem VIII.4 (Coefficients of admissible functions). Let G(z) be an H–admissible
function andζ ≡ ζ(n) be the unique solution in the interval(R0, ρ) of the equation

(49) ζ
G′(ζ )
G(ζ )

= n.

The Taylor coefficients of G(z) satisfy, as n→∞:

(50) gn ≡ [zn]G(z) ∼ G(ζ )

ζ n
√

2πb(ζ )
, b(z) := z2 d2

dz2
logG(z)+ z

d

dz
logG(z).

Proof. The proof simply amounts to transcribing the definition of admissibility into
the conditions of Theorem VIII.3. Integration is carried out over a circle centred at the
origin, of some radiusr to be specified shortly. Under the change of variablez= rei θ ,
the Cauchy coefficient formula becomes

(51) gn ≡ [zn]G(z) = r−n

2π

∫ +π

−π
G(rei θ )e−niθ dθ.

In order to obtain a quadratic approximationwithout a linear term, one chooses
the radius of the circle as the positive solutionζ of the equationa(ζ ) = n, that is, a
solution of Equation (49). (Thusζ is a saddle-point ofG(z)z−n.) By the capture con-
dition H1, we haveζ → ρ− asn→+∞. Following the general saddle-point strategy,
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we decompose the integration domain and set, withθ0 as specified in conditionsH2
andH3:

J(0) =
∫ +θ0
−θ0

G(ζei θ )e−niθ dθ, J(1) =
∫ 2π−θ0

θ0

G(ζei θ )e−niθ dθ.

(i ) Tails pruning. By the decay conditionH3, we have a trivial bound, which
suffices for our purposes:

(52) J(1) = o

(
G(ζ )√
b(ζ )

)
.

(i i ) Central approximation. The uniformity of the locality conditionH2 implies

(53) J(0) ∼ G(ζ )
∫ +θ0
−θ0

e−θ
2b(ζ )/2 dθ.

(i i i ) Tails completion.A combination of the locality conditionH2 and the decay
conditionH3 instantiated atθ = θ0, shows thatb(ζ )θ2 → +∞ asn→ +∞. There
results that tails can be completed back, and

(54)
∫ +θ0
−θ0

e−b(r )θ2/2 dθ ∼ 1√
b(r )

∫ +θ0/√b(ζ )

−θ0/
√

b(ζ )
e−t2/2 dt ∼ 1√

b(r )

∫ +∞

−∞
e−t2/2 dt.

From (52), (53), and (54) (or equivalently via an application of Theorem VIII.3),
the conclusion of the theorem follows. �

The usual comments regarding the choice of the functionθ0(r ) apply. Consider-
ing the expansion (46), we must haveα2(r )θ2

0 →∞ andα3(r )θ3
0 → 0. Thus, in order

to succeed, the method necessitatesa priori α3(r )2/α2(r )3 → 0. Then,θ0 should be
taken according to thesaddle-point dimensioning heuristic, which can be figuratively
summarized as6

(55)
1

α2(r )1/2
≪ θ0≪

1

α3(r )1/3
,

a possible choice being the geometric mean of the two boundsθ0 = α−1/4
2 α

−1/6
3 .

The original proof by Hayman [325] contains in addition a general result that
describes theshape of the individual terms gnr n in the Taylor expansion ofG(r ) asr
gets closer to its limit valueρ: these appear to exhibit a bell-shaped profile. Precisely,
for G with non-negative coefficients, define a family of discrete random variablesX(r )
indexed byr ∈ (0, R) as follows:

P(X(r ) = n) = gnr n

G(r )
.

The model in which a randomF structure with GFG(z) is drawn with its size being
the random valueX(r ) is known as aBoltzmann model. Then:

6We occasionally writeA≪ B, equivalently,B≫ A, if A = o(B).
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Figure VIII.7 . The families of Boltzmann distributions associated with involutions,

G(z) = ez+z2/2 with r = 4 . .8, and set partitions,G(z) = eez−1 with r = 2 . .3,
obey an approximate Gaussian profile.

Proposition VIII.5. The Boltzmann probabilities associated to an admissible function
G(z) satisfy, as r→ ρ−, a “local” Gaussian estimate; namely,

(56)
gnr n

G(r )
= 1√

2πb(r )

[
exp

(
− (a(r )− n)2

2b(r )

)
+ ǫn

]
,

where the error term satisfiesǫn = o(1) as r→ ρ uniformly with respect to integers
n; that is,limr→ρ supn |ǫn| = 0.

The proof is entirely similar to that of Theorem VIII.4; see Note VIII.9 and Fig-
ure VIII.7 for a suggestive illustration.

� VIII.9. Admissibility and Boltzmann models.The Boltzmann distribution is accessible from

gnr n = 1

2π

∫ 2π−θ0

−θ0
G(rei θ )e−inθ dθ.

The estimation of this integral is once more based on a fundamental split

gnr n = J(0) + J(1) where J(0) = 1

2π

∫ +θ0
−θ0

, J(1) = 1

2π

∫ 2π−θ0

+θ0
,

andθ0 = θ0(n) is as specified by the admissibility definition. Only the central approximation
and tails completion deserves adjustments. The “locality” conditionH2 gives uniformly inn,

(57)

J(0) = G(r )

2π

∫ +θ0
−θ0

ei (a(r )−n)θ− 1
2b(r )θ2

(1+ o(1))dθ

= G(r )

2π

[∫ +θ0
−θ0

ei (a(r )−n)θ− 1
2b(r )θ2

dθ + o

(∫ +∞

−∞
e−

1
2b(r )θ2

)
dθ

]
.

and setting(a(r )− n)(2/b(r ))1/2 = c, we obtain

(58) J(0) = G(r )

π
√

2b(r )

[∫ +θ0
√

b(r )/2

−θ0
√

b(r )/2
e−t2+ict dt + o(1)

]
.



568 VIII. SADDLE-POINT ASYMPTOTICS

The integral in (58) can then be routinely extended to a complete Gaussian integral, introducing
only o(1) error terms,

(59) J(0) = G(r )

π
√

2b(r )

[∫ +∞

−∞
e−t2+ict dt + o(1)

]
.

Finally, the Gaussian integral evaluates to
√
πe−c2/4, as is seen bycompleting the squareand

shifting vertically the integration line. �

� VIII.10. Hayman’s original.The conditionH1 of Theorem VIII.4 can be replaced by

H′1. [Capture condition] lim
r→ρ b(r ) = +∞.

That is,a(r )→+∞ is a consequence ofH′1, H2, andH3. (See [325, §5].) �

� VIII.11. Non-admissible functions.Singularity analysis andH–admissibility conditions are
in a sense complementary. Indeed, the functionG(z) = (1− z)−1 fails to be be admissible

as the asymptotic form that Theorem VIII.4 would imply is the erroneous [zn]
1

1− z
!!∼ e√

2π
,

corresponding to a saddle-point near 1−n−1. The explanation of the discrepancy is as follows:
Expansion (46) hasαν(r ) of the order of(1− r )−ν , so that the locality condition and the decay
condition cannot be simultaneously satisfied.

Singularity analysis salvages the situation by using a larger contour and by normalizing to
a global Hankel Gamma integral instead of a more “local” Gaussian integral. This is also in
accordance with the fact that the saddle-point formula gives, in the case of [zn](1− z)−1, an
estimate, which is within a constant factor of the true value 1. (More generally, functions of the
form (1− z)−β are typical instances with too slow a growth to be admissible.) �

Closure properties.An important aspect of Hayman’s work is that it leads to
general theorems, which guarantee that large classes of functions are admissible.

Theorem VIII.5 (Closure ofH–admissible functions). Let G(z) and H(z) be admis-
sible functions and let P(z) be a polynomial with real coefficients. Then:

(i ) The product G(z)H(z) and the exponential eG(z) are admissible functions.
(i i ) The sum G(z) + P(z) is admissible. If the leading coefficient of P(z) is

positive then G(z)P(z) and P(G(z)) are admissible.
(i i i ) If the Taylor coefficients of eP(z) are eventually positive, then eP(z) is admis-

sible.

Proof. (Sketch) The easy proofs essentially reduce to making an inspired guess for
the choice of theθ0 function, which may be guided by Equation (55) in the usual
way, and then routinely checking the conditions of the admissibility definition. For
instance, in the case of the exponential,K (z) = eG(z), the conditionsH1,H2,H3 of
Definition VIII.1 are satisfied if one takesθ0(r ) = (G(r ))−2/5. We refer to Hayman’s
original paper [325] for details. �

Exponentials of polynomials.The closure theorem also implies as a very special
case that any GF of the formeP(z) with P(z) a polynomial with positive coefficients
can be subjected to saddle-point analysis, a fact first notedby Moser and Wyman [449,
450].

Corollary VIII.2 (Exponentials of polynomials). Let P(z) = ∑m
j=1 a j z j have non-

negative coefficients and be aperiodic in the sense thatgcd{j | a j 6= 0} = 1. Let
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f (z) = eP(z). Then, one has

fn ≡ [zn] f (z) ∼ 1√
2πλ

eP(r )

r n
, where λ =

(
r

d

dr

)2

P(r ),

and r is a function of n given implicitly by rddr P(r ) = n.

The computations are in this case purely mechanical, since they only involve the
asymptotic expansion (with respect ton) of an algebraic equation.

Granted the basic admissibility theorem and closures properties, many functions
are immediately seen to be admissible, including

ez, eez−1, ez+z2/2,

which have previously served as lead examples for illustrating the saddle-point method.
Corollary VIII.2 also covers involutions, permutations ofa fixed order in the symmet-
ric group, permutations with cycles of bounded length, as well as set partitions with
bounded block sizes: see Note VIII.12 below. More generally, Corollary VIII.2 ap-
plies to any labelled set construction,F = SET(G), when the sizes ofG–components
are restricted to a finite set, in which case one has

F [m] = SET
(
∪r

j=1G j

)
, H⇒ F [m](z) = exp




m∑

j=1

G j
z j

j !


 .

This covers all sorts of graphs (plain or functional) whose connected components are
of bounded size.
� VIII.12. Applications of “exponentials of polynomials”.Corollary VIII.2 applies to the
following combinatorial situations:

Permutations of orderp (σ p = 1) f (z) = exp
(∑

j | p
z j

j

)

Permutations with longest cycle≤ p f (z) = exp
(∑p

j=1
z j

j

)

Partitions of sets with largest block≤ p f (z) = exp
(∑p

j=1
z j

j !

)
.

For instance, the number of solutions ofσ p = 1 in the symmetric group is asymptotic to
(n

e

)n(1−1/p)
p−1/2 exp(n1/p),

for any fixed primep ≥ 3 (Moser and Wyman [449, 450]). �

Complete asymptotic expansions.Harris and Schoenfeld have introduced in [323]
a technical condition of admissibility that is stronger than Hayman admissibility and
is calledH S–admissibility. Under suchH S–admissibility, a complete asymptotic ex-
pansion can be obtained. We omit the definition here due to itstechnical character but
refer instead to the original paper [323] and to Odlyzko’s survey [461]. Odlyzko and
Richmond [462] later showed that, ifg(z) is H–admissible, thenf (z) = eg(z) is H S–
admissible. Thus, takingH–admissibility to mean at least exponential growth,full
asymptotic expansions are to be systematically expected atdouble exponential growth
and beyond. The principles of developing full asymptotic expansions are essentially
the same as the ones explained on p. 557—only the discussion ofthe asymptotic scales
involved becomes a bit intricate, at this level of generality.
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VIII. 5.2. Higher-level structures and admissibility. The concept of admissi-
bility and its surrounding properties (Theorems VIII.4 andVIII.5, Corollary VIII.2)
afford a neat discussion of which combinatorial classes should lead to counting se-
quences that are amenable to the saddle-point method. For simplicity, we restrict
ourselves here to the labelled universe.

Start from thefirst-level structures, namely

SEQ(Z), CYC(Z), SET(Z),

corresponding, respectively, to permutations, circular graphs, and urns, with EGFs

1

1− z
, log

1

1− z
, ez.

The first two are of singularity analysis class; the last is, as we saw, within the reach
of the saddle-point method and isH–admissible.

Next considersecond-level structuresdefined by arbitrary composition of two
constructions taken among SEQ,CYC,SET; see Subsection II. 4.2, p. 124 for a pre-
liminary discussion (In the case of the internal construction, it is understood that, for
definiteness, the number of components is constrained to be≥ 1.) There are three
structures whose external construction is of the sequence type, namely,

SEQ◦SEQ, SEQ◦CYC, SEQ◦SET,

corresponding, respectively, to labelled compositions, alignments, and surjections. All
three have a dominant singularity that is a pole; hence they are amenable to meromor-
phic coefficient asymptotics (Chapters IV and V), or, with weaker remainder esti-
mates, to singularity analysis (Chapters VI and VII).

Similarly there are three structures whose external construction is of the cycle
type, namely,

CYC ◦SEQ, CYC ◦CYC, CYC ◦SET,

corresponding to cyclic versions of the previous ones. In that case, the EGFs have
a logarithmic singularity; hence they are amenable to singularity analysis, or, after
differentiation, to meromorphic coefficient asymptotics again.

The case of an external set construction is of interest. It gives rise to

SET◦SEQ, SET◦CYC, SET◦SET,

corresponding, respectively, to fragmented permutations, the class of all permutations,
and set partitions. The composition SET◦CYC appears to be special, because of the
general isomorphism, valid for any classC,

SET(CYC(C)) ∼= SEQ(C),

corresponding to the unicity of the decomposition of a permutation ofC–objects into
cycles. Accordingly, for generating functions, an exponential singularity “simplifies”,
when combined with a logarithmic singularity, giving rise to an algebraic (here polar)
singularity. The remaining two cases, namely, fragmented permutations and set parti-
tions, characteristically come under the saddle-point method and admissibility, as we
have seen already.
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Closure properties then make it possible to consider structures defined by an arbi-
trary nesting of the constructions in{SEQ,CYC,SET}. For instance, “superpartitions”
defined by

S = SET(SET≥1(SET≥1(Z))), H⇒ S(z) = eeez−1−1,

are third-level structures. They can be subjected to admissibility theory and saddle-
point estimates applya priori. Notes VIII.14 and VIII.15 further examine such third-
level structures.
� VIII.13. Idempotent mappings.Consider functions from a finite set to itself (“mappings” or
“functional graphs” in the terminology of Chapter II) that are idempotent, i.e.,φ ◦ φ = φ. The
EGF isI (z) = exp(zez) since cycles are constrained to have length 1 exactly. The functionI (z)
is admissible and

In ∼
n!√

2πnζ
ζ−ne(n+1)/(ζ+1),

whereζ is the positive solution ofζ(ζ + 1)eζ = n + 1. This example is discussed by Harris
and Schoenfeld in [323]. �

� VIII.14. The number of societies.A society onn distinguished individuals is defined by
Sloane and Wieder [545] as follows: first partition then individuals into non-empty subsets
and then form an ordered set partition [preferential arrangement] intoeach subset. The class of
societies is thus a third-level (labelled) structure, with specification and EGF

S = SET
(
SEQ≥1(SET≥1(Z))

)
H⇒ S(z) = exp

(
1

2− ez − 1

)
.

The counting sequence starts as 1, 1, 4, 23, 173, 1602 (EISA075729); asymptotically

Sn ∼ C
e
√

2n/ log 2

n3/4(log 2)n+1/4
n!, C := 1

4
√
π

(
2

e

)3/4
e1/(4 log 2).

(The singularity is of the type “exponential-of-pole” atz= log 2.) �

� VIII.15. Third-level classes.Consider labelled classes defined from atoms (Z) by three
nested constructions, each either a sequence or a set. All cases can beanalysed, either by saddle-
point and admissibility or by singularity analysis. Here is a table recapitulating structures,
together with their EGF and radius of convergence (ρ):

Saddle-point: SET(SET≥1(SET≥1(Z))) eeez−1−1 ρ = ∞
SET(SET≥1(SEQ≥1(Z))) eez/(1−z)−1 ρ = 1

SET(SEQ≥1(SET≥1(Z))) exp(
ez− 1

2− ez ) ρ = log 2

SET(SEQ≥1(SEQ≥1(Z))) ez/(1−2z) ρ = 1
2 ;

Singularity analysis: SEQ(SET≥1(SET≥1(Z)))
1

2− eez−1
ρ = log log(2e)

SEQ(SET≥1(SEQ≥1(Z)))
1

2− ez/(1−z)
ρ = log 2

1+log 2

SEQ(SEQ≥1(SET≥1(Z)))
2− ez

3− 2ez ρ = log 3
2

SEQ(SEQ≥1(SEQ≥1(Z)))
1− 2z

1− 3z
ρ = 1

3 .

The outermost construction dictates the analytic type and precise asymptoticequivalents can be
developed in all cases. �
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� VIII.16. A Multiple Choice Questionnaire.Classify all the 27 third-level structures built
out of {SEQ,CYC,SET}, according to whether they are of type SA (singularity analysis) or SP
(saddle-point). �

� VIII.17. A meta-MCQ.Among the 3n specifications of leveln, what is the asymptotic pro-
portion of those that are of type SP? �

VIII. 5.3. Analytic depoissonization. We conclude this section on methodology
with a sketch of an approach to the analysis of exponential generating functions,
which has been termedanalytic depoissonization, by its proponents, Jacquet and Sz-
pankowski [346, 564]. This approach, which is based on the saddle-point method, has
affinities with admissibility theory and it plays a rôle in the investigation of several
important models of discrete mathematics.

ThePoisson generating functionof a sequence(an) is defined as

α(z) =
∑

n≥0

ane−z zn

n!
.

It is thus a simple variant of the EGF (multiply bye−z) and, whenz assumes a non-
negative real valueλ, it can be viewed as a sum of thean, weighted by the Poisson
probabilities{e−λλn/n!}. Since the Poisson distribution is concentrated around its
mean valueλ, it is reasonable to expect an approximation

(60) α(λ) ∼ a⌊λ⌋ (λ→∞)
to be valid, providedan, assumed to be known, varies sufficiently “regularly”. A
statement granting us the correctness of (60), based ona priori knowledge of thean,
is an Abelian theorem, in the usual sense of analysis (see Section VI. 11, p. 433, and
e.g., [69, §1.7]); it is easily established using the Laplace method for sums (p. 755),
upon appealing to a Gaussian approximation of Poisson laws of large rateλ (Note IX.19,
p. 643).

What is of interest here is the converse (Tauberian) problem:we seek ways of
translating information on the Poisson generating function α(z) into an asymptotic
expansion of the coefficients(an). Beyond being fully in the spirit of the book (es-
pecially, Chapters VI and VII), this situation is of interest, since it is encountered in
many probabilistic contexts where a Poisson model intervenes. In this subsection,
we stand on the shoulders of Jacquet and Szpankowski [346, 564], who developed a
whole theory.

A sector Sφ , with φ ∈ R, is defined to beSφ = {z : |arg(z)| ≤ φ}. A func-
tion f (z) is said to besmall, away from the positive real axis,if, for someA > 0 and
φ ∈ (0, π/2), one has

∣∣ez f (z)
∣∣ = O

(
e−A|z|

)
, as |z| → ∞, z 6∈ Sφ .

We have [564, Th. 10.6]:

Theorem VIII.6 (Analytic depoissonization). Let the Poisson generating functionα(z)
be small, away from the positive real axis, with sector Sφ . Then one has the following
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correspondence between properties of the individual termsin the expansion ofα(z)
within Sφ and asymptotic terms in the expansion of the coefficient an:

α(z) an

O
(
|z|B| log(z)|C

)
−→ O

(
nB(logn)C

)

zb −→ ∼ nb
[
1− b(b− 1)

2n
+ b(b− 1)(b− 2)(3b− 1)

24n2
− · · ·

]

zb(logz)r −→ ∼ ∂r

∂br

(
nb
[
1− b(b− 1)

2n
+ · · ·

])
.

Proof. (Sketch) Given the assumptions, we regardezα(z) as a variant of the expo-
nential function, to which the saddle-point method is knownto be applicable: see
the derivation of Example VIII.3 (p. 555), which we closely follow. Accordingly, we
appeal to Cauchy’s formula,

an =
n!

2iπ

∫

|z|=n
ezα(z)

dz

zn+1
,

and integrate along the circle|z| = n. The smallness condition onα(z) ensures that
the integral outside ofSφ is exponentially negligible. Settingz = nei θ , we see that,
insideSφ , we can neglect the part corresponding to|θ | ≥ θ0(n) ≡ n−2/5, since it is
again exponentially small. Then, for the central part of thecontour,

a(0)n := n!n−nen

2π
√

n

∫ θ0

−θ0
e−nθ2/2 exp

(
n
[
ei θ − 1− i θ + 1

2
θ2]
)
α(nei θ )dθ,

it suffices to perform the change of variablest = θ
√

n, make careful use of the as-
sumed asymptotic approximation ofα(z) in each of the three cases, and finally con-
clude. �

The estimates of Theorem VIII.6 are thus considerable refinements of (60). (To
some probabilists, it may come as a surprise that one can depoissonize by making
use of Poisson laws ofcomplex rate!) Analytic depoissonization parallels the philos-
ophy underlying singularity analysis as well as admissibility theory. Its merit is to
be well-suited to solving a large number of problems arisingin word statistics, the
analysis of digital trees and distributed algorithms, as well as data compression: see
Szpankowski’s book [564, Ch. 10] and the fundamental study [346] for applications
and advanced results.
� VIII.18. The “Jasz” expansion.Jacquet and Szpankowski prove more generally that

an ∼ α(n)+
∞∑

k=1

k∑

i=1

ci,k+1ni
(
∂k+i

z α(z)
)

z7→n
,

whereci, j = [xi y j ] exp(x log(1+ y)− xy), under suitable conditions onα(z). �

� VIII.19. The converse “Jasz” expansion.Jacquet and Szpankowski also give an Abelian
result:

α(z) ∼ g(n)+
∞∑

k=1

k∑

j=1

di,k+i z
i ∂k+i

z g(z),
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wheredi, j = [xi y j ] exp(x(ey − 1) − xy, the functiong(z) extrapolatesan (i.e., an = g(n))
to C, and suitable smoothness conditions ong are imposed. �

VIII. 6. Integer partitions

We now examine the asymptotic enumeration of integer partitions, where the
saddle-point method serves as the main asymptotic engine. The corresponding gener-
ating function enjoys rich properties, and the analysis, which goes back to Hardy and
Ramanujan in 1917, constitutes, as pointed out in the introduction of this chapter, a
jewel of classical analysis.

Integer partitions represent additive decompositions of integers, when the order
of summands isnot taken into account. When all summands are allowed, the specifi-
cation and ordinary generating function are (Section I. 3, p. 39)

(61) P = MSET(SEQ≥1(Z)) H⇒ P(z) =
∞∏

m=1

1

1− zm
,

which, by the exp–log transformation, admits the equivalent form

(62)

P(z) = exp
∞∑

m=1

log(1− zm)−1

= exp

(
z

1− z
+ 1

2

z2

1− z2
+ 1

3

z3

1− z3
· · ·
)
.

From either of these two forms, it can be seen that the unit circle is a natural boundary,
beyond which the function cannot be continued. The second form, which involves
the quantity exp(z/(1− z)) is reminiscent of the EGF of fragmented permutations,
examined in Example VIII.7, p. 562, to which the saddle-point method could be suc-
cessfully applied.

In what follows, we show (Example VIII.8 below) that the saddle-point method is
applicable, although the analysis ofP(z) near the unit circle is delicate (and pregnant
with deep properties). The accompanying notes point to similar methods being appli-
cable to a variety of similar-looking generating functions, including those relative to
partitions into primes, squares, and distinct summands, aswell as plane partitions: see
Figure VIII.8 for a summary of some of the asymptotic resultsknown.

ExampleVIII.8. Integer partitions.We are dealing here with a famous chapter of both asymp-
totic combinatorics and additive number theory. A problem similar to that of asymptotically
enumerating partitions was first raised by Ramanujan in a letter to Hardy in 1913, and subse-
quently developed in a famous joint work of Hardy and Ramanujan (see the account in Hardy’s
Lectures[321]). The Hardy–Ramanujan expansion was later perfected by Rademacher [22]
who, in a sense, gave an “exact” formula for the partition numbersPn.

A complete derivation with all details would consume more space than we candevote to
this questions. We outline here the proof strategy in such a way that, hopefully, the reader can
supply the missing details by herself. (The cited references provide a complete treatment).

As before, we start with simple saddle-point bounds, already briefly discussed on p. 248.
Let Pn denote the number of integer partitions ofn, with OGF as stated in (61). A form
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Summands specification asymptotics

all, Z≥1 MSET(SEQ≥1(Z))
1

4n
√

3
eπ
√

2n/3 Ex. VIII.8, p. 574

all distinct,Z≥1 PSET(SEQ≥1(Z))
1

4 · 31/4n3/4
eπ
√

n/3 Note VIII.24, p. 579

squares, 1, 4, 9, 16, · · · Cn−7/6eKn1/3
Note VIII.24, p. 579

primes, 2, 3, 5, 7, . . . log P(5)n ∼ c
√

n

logn
Note VIII.26, p. 580

powers of two, 1, 2, 4, . . . log M2n ∼
(logn)2

2 log 2
Note VIII.27, p. 581

plane

(∏

m

(
1− zm)−m

)
c1n−25/36ec2n2/3

Note VIII.25, p. 580

Figure VIII.8 . Asymptotic enumeration of various types of partitions.

amenable to bounds is derived from the exp–log reorganization (62), which yields

P(z) = exp

((
1

1− z

)
·
(

z

1
+ z2

2(1+ z)
+ z3

3(1+ z+ z2)
+ · · ·

))
.

The denominator of the general term in the exponential satisfies, forx ∈ (0,1), the inequalities
mxm−1 < (1+ x + · · · + xm−1) < m, so that

(63)
1

1− x

∑

m≥1

x

m2
> log P(x) >

1

1− x

∑

m≥1

xm

m2
.

This proves for realx→ 1− that

(64) P(x) = exp

(
π2

6(1− x)
(1+ o(1)

)
,

given the elementary identity
∑

m−2 = π2/6. The singularity type atz = 1 resembles that
of fragmented permutations (p. 562), and at least the growth along the real axis is similar. An
approximate saddle-point is then

(65) ζ̂ (n) = 1− π√
6n
,

which gives a saddle-point bound

(66) Pn ≤ exp
(
π
√

2n/3(1+ o(1)
)
.

Proceeding further involves transforming the saddle-point bounds intoa complete saddle-
point analysis. Based on previous experience, we shall integrate alonga circle of radiusr =
ζ̂ (n). To do so, two ingredients are needed:(i ) an approximation in the central range;(i i ) bounds
establishing that the functionP(z) is small away from the central range so that tails can be first
neglected, then completed back. Assuming the expansion (62) to lift to an area of the complex
plane near the real axis, the range of the saddle-point should be analogous to that already found
for exp(z/(1− z)), so thatθ0 = n−7/10 will be adopted. Accordingly, we choose to integrate
along a circle of radiusr = ζ̂ (n) given by (65) and define the central region byθ0 = n−7/10.



576 VIII. SADDLE-POINT ASYMPTOTICS

Under these conditions, the central region is seen under an angle that isO(n−1/5) from the
point z= 1.

(i ) Central approximation. This requires a refinement of (64) tillo(1) terms as well as an
argument establishing a lifting to a region near the real axis. We setz = e−t and start with
t > 0. The function

L(t) := log P(e−t ) =
∑

m≥1

e−mt

m(1− e−mt)

is a harmonic sum which is amenable to Mellin transform techniques (as described in Appen-
dix B.7: Mellin transforms, p. 762; see also p. 248). The base function ise−t/(1− e−t ), the
amplitudes are the coefficients 1/m and the frequencies are the quantitiesm figuring in the expo-
nents. The Mellin transform of the base function, as given in Appendix B (p. 763), isŴ(s)ζ(s).
The Dirichlet series associated to the amplitude frequency pairs is

∑
m−1m−s = ζ(s+ 1), so

that
L⋆(s) = ζ(s)ζ(s+ 1)Ŵ(s).

ThusL(t) is amenable to Mellin asymptotics and one finds

(67) L(t) = π2

6t
+ 1

2
log t − log

√
2π − 1

24
t + O(t2), t → 0+,

from the poles ofL⋆(s) ats= 1, 0,−1. This corresponds to an improved form of (64):

(68) logP(z) = π2

6(1− z)
+ 1

2
log(1− z)− π

2

12
− log

√
2π + O(1− z).

At this stage, we make a crucial observation:The precise estimate (67) extends when t lies
in any sector symmetric about the real axis, situated in the half-planeℜ(t) > 0, and with an
opening angle of the formπ − δ for an arbitrary δ > 0. This is derived from the fact that
the Mellin inversion integral and the companion residue calculations giving rise to (67) extend
to the complex realm as long as|arg(t)| < π

2 −
1
2δ. (See Appendix B.7:Mellin transforms,

p. 762 or the article [234].) Thus, the expansion (68) holds throughout the central region given
our choice of the angleθ0. The analysis in the central region is then practically isomorphic to
that of exp(z/(1− z)) in the previous example, and it presents no special difficulty.

(i i ) Bounds in the non-central region.This is here a non-trivial task since half of the
factors entering the product form (61) ofP(z) are infinite atz = −1, one third are infinite at
z = e±2iπ/3, and so on. Accordingly, the landscape of|P(z)| along a circle of radiusr that
tends to 1 is quite chaotic: see Figure VIII.9 for a rendering. It is possible to extend the analysis
of log P(z) near the real axis by way of the Mellin transform to the casez= e−t−iφ ast → 0
andφ = 2π p

q is commensurate to 2π . In that case, one must operate with

Lφ(t) =
∑

m≥1

1

m

e−m(t+iφ)

1− e−m(t+iφ)
=
∑

m≥1

∑

k≥1

1

m
e−mk(t+iφ),

which is yet another harmonic sum. The net result is that when|z| tends radially towardse2π i p
q ,

thenP(z) behaves roughly like

(69) exp

(
π2

6q2(1− |z|)

)
,

which is a power 1/q2 of the exponential growth asz → 1−. This analysis extends next to
a small arc. Finally, consider a complete covering of the circle by arcs whose centres are of
argument 2π j/N, j = 1, . . . , N − 1, with N chosen large enough. A uniform version of the
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Figure VIII.9 . Integer partitions. Left: the surface|P(z)| with P(z) the OGF of
integer partitions. The plot shows the major singularity atz = 1 and smaller peaks
corresponding to singularities atz = −1, e±2iπ/3 and other roots of unity. Right: a
plot of P(rei θ ) as a function ofθ , for various valuesr = 0.5, . . . , 0.75, illustrates
the increasing concentration property ofP(z) near the real axis.

bound (69) makes it possible to bound the contribution of the non-centralregion and prove it
to be exponentially small. There are several technical details to be filled in order to justify this
approach, so that we switch to a more synthetic one based on transformation properties ofP(z),
following [14, 17, 22, 321]. (Such properties also enter the Hardy–Ramanujan–Rademacher
formula for Pn in an essential way.)

The fundamental identity satisfied byP(z) reads

(70) P(e−2πτ ) = √τ exp

(
π

12

(
1

τ
− τ

))
P(e−2π/τ ),

which is valid whenℜ(τ ) > 0. The proof is a simple rephrasing of a transformation formula of
Dedekind’sη (eta) function, summarized in Note VIII.20 below.

� VIII.20. Modular transformation for the Dedekind eta function.Consider

η(τ) := q1/24
∞∏

m=1

(1− qm), q = e2π i τ ,

with ℑ(τ ) > 0. Thenη(τ) satisfies the “modular transformation” formula,

(71) η

(
−1

τ

)
=
√
τ

i
η(τ).

This transformation property is first proved whenτ is purely imaginary, i.e.,τ = i t , then
extended by analytic continuation. Its logarithmic form results from a residue evaluation of the
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integral
1

2π i

∫

γ
cotπscotπ

s

τ

ds

s
,

with γ a large contour avoiding poles. (This elementary derivation is due to C. L.Siegel. The
functionη(τ) satisfies transformation formulae underS : τ 7→ τ+1 andT : τ 7→ −1/τ , which
generate the group of modular (in fact “unimodular”) transformationsτ 7→ (aτ + b)/(cτ + d)
with ad− bc= 1. Such functions are calledmodular forms.) �

Given (70), the behaviour ofP(z) away from the positive real axis and near the unit circle
can now be quantified. Here, we content ourselves with a representative special case, the situa-
tion whenz→ −1. Consider thusP(z) with z= e−2π t+iπ , where, for our purposes, we may
taket = 1/

√
24n. Then, Equation (70) relatesP(z) to P(z′), with τ = t − i /2 and

z′ = e−2π/τ = exp

(
− 2π t

t2+ 1
4

)
eiφ, φ = − π

t2+ 1
4

.

Thus|z′| → 1 ast → 0 with the important condition that|z′| − 1= O
(
(|z| − 1)1/4

)
. In other

words,z′ has movedawayfrom the unit circle. Thus, since|P(z′)| < P(|z′|), we may apply
the estimate (68) toP(|z′|) to the effect that

log |P(z)| ≤ π

24(1− |z|) (1+ o(1)), (z→−1+).

This is an instance of what was announced in (69) and is in agreement withthe surface plot of
Figure VIII.9. The extension to an arbitrary angle presents no major difficulty.

The two properties developed in(i ) and(i i ) above guarantee that the approximation (68)
can be used and that tails can be completed. We find accordingly that

Pn ∼ [zn]e−π
2/12√1− zexp

(
π2

6(1− z)

)
.

All computations done, this provides:

Proposition VIII.6. The number pn of partitions of integer n satisfies

(72) pn ≡ [zn]
∞∏

k=1

1

1− zk
∼ 1

4n
√

3
eπ
√

2n/3

The singular behaviour along and near the real line is comparable to that of exp((1−z)−1),
which explains a growth of the forme

√
n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

The asymptotic formula (72) is only the first term of a complete expansion involv-
ing decreasing exponentials that was discovered by Hardy and Ramanujan in 1917 and
later perfected by Rademacher (see Note VIII.22 below). Whereas the full Hardy–
Ramanujan expansion necessitates considering infinitely many saddle-points near the
unit circle and require the modular transformation of Note VIII.20, the main term
of (72) only requires the asymptotic expansion of the partition generating function
nearz= 1.

The principles underlying the partition example have been made into a general
method by Meinardus [434] in 1954. Meinardus’ method abstracts the essential fea-
tures of the proof and singles out sufficient conditions under which the analysis of
an infinite product generating function can be achieved. Theconditions, in agree-
ment with the Mellin treatment of harmonic sums, require analytic continuation of the
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Dirichlet series involved in logP(z) (or its analogue), as well as smallness towards
infinity of that same Dirichlet series. A summary of Meinardus’ method constitutes
Chapter 6 of Andrews treatise on partitions [14] to which thereader is referred. The
method applies to many cases where the summands and their multiplicities have a
regular enough arithmetic structure.
� VIII.21. A simple yet powerful formula.Define (cf [321, p. 118])

P⋆n =
1

2π
√

2

d

dn

(
eKλn

λn

)
, K = π

√
2

3
, λn :=

√
n− 1

24
.

Then P⋆n approximatesPn with a relative precision of ordere−c
√

n for somec > 0. For
instance, the error is less than 3· 10−8 for n = 1000. [Hint: The transformation formula makes
it possible to evaluate the central part of the integral givingPn very precisely.] �

� VIII.22. The Hardy–Ramanujan–Rademacher expansion.The number of integer partitions
satisfies theexactformula

Pn =
1

π
√

2

∞∑

k=1

Ak(n)
√

k
d

dn

sinh(πk

√
2
3(n−

1
24))√

n− 1
24

,

where Ak(n) =
∑

h modk,gcd(h,k)=1

ωh,ke−2iπh/k,

ωh,k is a 24th root of unity,ωh,k = exp(π is(h, k)), andsh,k =
k−1∑

µ=1

{{µ
k
}} {{hµ

k
}} is known as a

Dedekind sum, with{{x}} = x − ⌊x⌋ − 1
2 . Proofs are found in [14, 17, 22, 321]. �

� VIII.23. Meinardus’ theorem.Consider the infinite product (an ≥ 0)

f (z) =
∞∏

n=1

(1− zn)−an .

The associated Dirichlet series isα(s) =
∑

n≥1

an

ns . Assume thatα(s) is continuable into a

meromorphic function toℜ(s) ≥ −C0 for someC0 > 0, with only a simple pole at some
ρ > 0 and corresponding residueA; assume also thatα(s) is of moderate growth in the half-
plane, namely,α(s) = O(|s|C1), for someC1 > 0 (as |s| → ∞ in ℜ(s) ≥ −C0). Let
g(z) =∑n≥1 anzn and assume a concentration condition of the form

ℜg(e−t−2iπy)− g(e−t ) ≤ −C2y−ǫ .
Then the coefficientfn = [zn] f (z) satisfies

fn = Cnκ exp
(

Knρ/(ρ+1)
)
, K = (1+ ρ−1)

[
AŴ(ρ + 1)ζ(ρ + 1)

]1/(ρ+1)
.

The constantsC, κ are:

C = eα
′(0)(2π(1+ ρ))−1/2 [ AŴ(ρ + 1)ζ(ρ + 1)](1−2α(0))/(2ρ+2) , κ =

α(0)− 1− 1
2ρ

1+ ρ .

Details of the concentration condition, and error terms are found in [14, Ch 6]. �

� VIII.24. Various types of partitions.The number of partitions into distinct odd summands,
squares, cubes, triangular numbers, are essentially cases of application of Meinardus’ method.
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For instance the method provides, for the numberQn of partitions intodistinctsummands, the
asymptotic form

Qn ≡
∏

m≥1

(1+ zm) ∼ eπ
√

n/3

4 · 31/4n3/4
.

The central approximation is obtained by a Mellin analysis from

L(t) := log Q(e−t ) =
∞∑

m=1

(−1)m−1

m

e−mt

1− e−mt , L⋆(s) = Ŵ(s)ζ(s)ζ(s+ 1)(1− 2−s),

L(t) ∼ π2

12t
− log

√
2+ 1

24
t..

(See the already cited references [14, 17, 22, 321].) �

� VIII.25. Plane partitions. A plane partition of a given numbern is a two-dimensional array
of integersni, j that are non-increasing both from left to right and top to bottom and that add up
to n. The first few terms (EISA000219) are 1, 1, 3,6, 13, 24, 48, 86, 160, 282, 500, 859 and P.
A. MacMahon proved that the OGF is

R(z) =
∞∏

m=1

(1− zm)−m.

Meinardus’ method applies to give

Rn ∼ (ζ(3)2−11)1/36n−25/36exp
(
3 · 2−2/3ζ(3)1/3n2/3+ 2c

)
,

wherec = − e
4π2 (log(2π)+ γ − 1).

(See [14, p. 199] for this result due to Wright [617] in 1931.) �

� VIII.26. Partitions into primes.Let P(5)n be the number of partitions ofn into summands
that are all prime numbers,

P(5)(z) =
∞∏

m=1

1

1− zpm
,

wherepm is themth prime (p1 = 2, p2 = 3, . . . ). The sequence starts as (EISA000607):

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9,10, 12, 14, 17, 19, 23, 26, 30, 35, 40.

Then

(73) logP(5)n ∼ 2π
√

n

3 logn
.

An upper bound of a form consistent with (73) can be derived elementarily as a saddle-point
bound based on the property

∑

n≥1

e−tpn ∼ t

log t
, t → 0.

This last fact results either from the Prime Number Theorem or from a Mellin analysis based
on the fact that5(s) :=∑ p−s

n satisfies, withµ(m) the Möbius function,

5(s) =
∞∑

m=1

µ(m) logζ(ms).

(See Roth and Szekeres’ study [519] as well as the articles by Yang [625] and Vaughan [593]
for relevant references and recent technology.) The present situation is in sharp contrast with
that of compositions into primes (see Chapter V, p. 297), for which the analysis turned out to
be especially easy. �
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� VIII.27. Partitions into powers of2. Let Mn be the number of partitions of integern into
summands that are powers of 2. ThusM(z) = ∏m≥0(1− z2m

)−1. The sequence(Mn) starts
as 1, 1, 2,2, 4, 4, 6, 6, 10 (EISA018819). One has

log M2n =
1

2 log 2

(
log

n

logn

)2
+
(

1

2
+ 1

log 2
+ log log 2

log 2

)
logn+ O(log logn).

De Bruijn [141] determined the precise asymptotic form ofM2n. (See also [179] for related
problems.) �

Averages and moments.Based on the foregoing analysis, it is possible to perform
the analysis of several parameters of integer partitions (see also our general discussion
of moments in Subsection VIII. 9.1, p. 594). In particular, it becomes possible to
justify the empirical observations regarding the profile ofpartitions made in the course
of Example III.7, p. 171.
� VIII.28. Mean number of parts in integer partitions.The mean number of parts (or sum-
mands) in a random integer partition of sizen is

1

K

√
n logn+ O(n1/2), K = π

√
2

3
.

For a partition into distinct parts, the mean number of parts is

2
√

3 log 2

π

√
n+ o(n1/2).

The complex analytic proof starts from the BGFs of Subsection III. 3.3,p. 170 and, analytically,
it only requires the central estimates of logP(e−t ) and logQ(e−t ), given the concentration
properties, as well as the estimates

∑

m≥1

e−mt

1− e−mt ∼
− log t + γ

t
+ 1

4
,

∑

m≥1

(−1)m−1 e−mt

1− e−mt ∼
log 2

t
− 1

4
,

which result from a standard Mellin analysis, the respective transformsbeing

Ŵ(s)ζ(s)2, Ŵ(s)(1− 21−s)ζ(s)2.

Full asymptotic expansions of the mean and of moments of any order canbe determined. In
addition, the distributions are concentrated around their mean. (The first-order estimates are
due to Erd̋os and Lehner [194] who gave an elementary derivation and also obtained the limit
distribution of the number of summands in both cases: they are a double exponential (forP)
and a Gaussian (forQ).) �

VIII. 7. Saddle-points and linear differential equations.

The purpose of this section is to complete theclassification of singularitiesof
linear ordinary differential equations(see Subsection VII. 9.1, p. 518 for the so-called
“regular” case) and briefly point to potentially useful saddle-point connections. What
is given is, once more, a linear differential equation (linear ODE) of the form

(74) ∂r Y(z)+ d1(z)∂
r−1Y(z)+ · · · + dr Y(z) = 0, ∂ ≡ d

dz
(cf Equation (114), p. 519) and a simply connected open domain � where the coef-
ficientsd j (z) are meromorphic. It is assumed that the coefficientsd j (z) have a pole
at a single pointζ ∈ � and are analytic elsewhere. As we know, it is only at such a
point ζ that singularities of solutions may arise.
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Consider for instance the ODE

(75) (1− z)2Y′(z)− (2− z)Y(z) = 0,

in a neighbourhood ofζ = 1. The method of trying to match an approximate solution
of the form(z− 1)θ for someθ ∈ C does not succeed: there is no way to find a value
of θ for which there is a cancellation between two terms in the main asymptotic order.
Accordingly, the conditions of Definition VII.7, p. 519, relative to regular singularities
fail to be satisfied: in such cases, we say that the pointζ is anirregular singularityof
the linear ODE. In fact, the solution of (75), together withy(0) = 1, is explicit (see
also Example VIII.13 and Note VIII.43, p. 597):T(z) = 1/(1− z)exp(z/(1− z)).
Thus, we encounter an exponential-of-pole singularity rather than the plain algebraic–
logarithmic singularity that prevails in the regular case.The general case is hardly
more complicated to state7.

Theorem VIII.7 (Structure theorem for irregular singularities). Let there be given a
differential equation of the form(74), a singular pointζ , and a sector S with vertex
at ζ . Then, for z in a sufficiently small sector S′ of S and for|z − ζ | sufficiently
small, there exists a basis of d linearly independent solutions of (74), such that any
solution Y in that basis admits, as z→ ζ in S′, an asymptotic expansion

(76) Y(z) ∼ exp(P(Z−1/r )) Za
∑

Q j (log Z)Z js, Z := (z− ζ ),
where P is a polynomial, r an integer ofZ≥0, a is a complex number, s is a rational
number ofQ≥0, and the Qj are a family of polynomials of uniformly bounded degree.

Proof. The proof [602, p. 11] starts by constructing a basis of formal solutions, each of
the form (76), by the method of indeterminate coefficients and exponents. It continues
by appealing to a summation mechanism that transforms such formal solutions into
actual analytic ones. (The restriction of the statement to sectors is inherent: it is
related to what is known as the “Stokes phenomenon”8 of ODE theory [602, §15].)�

In particular, if the polynomialP that intervenes in the expansion (76) has a
positive leading coefficient and the sector is large enough,then the intervening quan-
tities are Hayman admissible. In this way, up to (possibly difficult) connection prob-
lems, the coefficients of solutions to meromorphic ODEs canin principlebe analysed,
whether the singularities be of the regular or irregular type. Indeed, proceeding at
least formally (see the analysis of fragmented permutations in Example VIII.7, p. 562
and Note VIII.7, p. 563 for similar computations) suggests that the coefficients of a
solution to a linear ODE with meromorphic coefficients are finite linear combinations
of asymptotic elements of the form

(77) ζ−n exp(R(n1/ρ))nα
∑

Sj (logn)n jσ ,

whereR is a polynomial,ρ an integer ofZ≥0, α is a complex number,σ is a rational
number ofQ≥0, and theSj are a family of polynomials of uniformly bounded degree.

7Singularities at infinity can be transformed into singularities at 0 viaZ := 1/z.
8The Stokes phenomenon is roughly the fact that solutions of anODE with irregular singular points

may involve certaindiscontinuitiesin asymptotic expansions, relatively to different sectors.
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(The case of entire functions with an irregular singularityat infinity further introduces
multipliers in the form of fractional powers ofn!.)

The fact that expansions of the type (77) hold in all generality is probably true,
but far from being accepted as a theorem by experts. Odlyzko [461, p. 1135–1138],
Wimp [610, p. 64], and Wimp–Zeilberger [611] offer a lucid (and prudent) discussion
of these questions. The result (77) was claimed by G.D. Birkhoff and Trjitzinsky [70,
71], based directly on their general theory of analyticdifference equations, but in
Wimp’s words (footnote on p. 64 of [610]):

“Some now believe that the Birkhoff–Trjitzinsky theory has disabling gaps, see
[342]. The alleged deficiencies are difficult to discern by a casual inspection of
the papers [70, 71] since they are extremely long and their arguments are very
laborious. My policy is not to use the theory unless its results can be substantiated
by other arguments.”

A sound strategy consists in basing an analysis of linear ODEs with an irregular singu-
larity on the well-established Theorem VIII.7 and accordingly work out local singular
expansions. Then determine a suitable integration contourfor the Cauchy coefficient
formula that wanders from valley to valley, and estimate thelocal contribution of each
singularity that has an exponential growth by means of the saddle-point method—for
regular singularities, use a Hankel contour, as in Subsection VII. 9.1, p. 518. (As
already noted, this may involve delicateconnection problemsas well as difficulties
related to the Stokes phenomenon.) The positivity attachedto combinatorial problems
can often be used to restrict attention to asymptotically dominant solutions. Estimates
involving asymptotic elements of the form (77) must eventually result, whenever the
strategy is successful. This is in particular applicable toholonomic sequences and
functionsin the sense of Appendix B.4:Holonomic functions, p. 748.

ExampleVIII.9. Symmetric matrices with constant row sums.Let Yk,n be the class ofn× n
symmetric matrices with non-negative integer entries and all row sums (hence also column
sums) equal tok. The problem is to determine the cardinalitiesYk,n for small values ofk. It
is equivalent to determining the number of (regular, undirected) multigraphs, where all vertices
have degree exactlyk. We letYk(z) represent the corresponding EGF.

For all k, the EGFYk(z) is holonomic; that is, it satisfies a linear ODE with polynomial
coefficients. This results from Gessel’s theory of holonomic symmetric functions (p. 748). We
follow here Chyzak, Mishna, and Salvy [122], who developed an original class of effective
algorithms, whichinter alia provide a means of computing theYk. The casesk = 1 andk = 2
succumb to elementary combinatorics, but the problem becomes non-trivial as soon ask ≥ 3.
We consider herek = 1, 2,3.

Case k= 1. A matrix ofY1,n is none other than a symmetric permutation matrix, which is

bijectively associated with an involution, so thatY1(z) = ez+z2/2. In that case, the saddle-point
method applied to the entire functionY1(z) yields (Example VIII.5, p. 558):

(78) Y1,n ∼
1

(8eπ)1/4
n!1/2

e
√

n

n1/4
.

Case k= 2. This one is a classic of combinatorial theory [554, pp. 16–19]. A matrix
of Y2,n is the incidence matrix of a multigraph in which all vertices have degree exactly equal
to 2. A bit of combinatorial reasoning (compare with 2–regular graphs inNote II.22, p. 133)
shows that connected components can be only one of four types:
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single nodes undirected segments 2–cycles undirected cycles of length≥ 3

z
1

2

z2

1− z

z2

2

1

2
log

1

1− z
− z

2
− z2

4
.

(The corresponding EGFs are given by the last line; their sum provideslogY2(z).) Thus, after
simplifications, we obtain

(79) Y2(z) =
1√

1− z
exp

(
z2

4
+ 1

2

z

1− z

)
.

The sequenceY2,n starts as 1, 1, 3, 11, 56, 348 (EISA000985). An asymptotic estimate results
from an analysis entirely similar to that of fragmented permutations (Example VIII.7, p. 562),
since the singularity is of an “exponential-of-pole type”, only modulated bya function of mod-
erate growth(1− z)−1/2. We find:

(80) Y2,n ∼ n!
e
√

2n

2
√
πn
.

Case k= 3. Chyzak, Mishna, and Salvy determined thatY ≡ Y3 satisfies the linear ODE

φ2(z)∂
2
zY(z)+ φ1(z)∂zY(z)+ φ0Y(z) = 0,

where the coefficients are as in the following table:

φ0(z) = z11+ z10− 6z9− 4z8+ 11z7− 15z6+ 8z5− 2z3+ 12z2− 24z− 24
φ1(z) = −3z(z10− 2z8+ 2z6− 6z5+ 8z4+ 2z3+ 8z2+ 16z− 8)
φ2(z) = 9z3(z4− z2+ z− 2).

The first values ofY3,n are 1, 1, 4, 23, 214, 2698. Based on analogy with (78) and (80) supple-
mented by rough combinatorial bounds, we expect the sequenceY3,n to have a growth compa-
rable ton!3/2; that is, the EGFY3(z) has radius 0. The authors of [122] then opt to introduce a
modified GF, obtained by a Hadamard product,

Ŷ3(z) = Y3(z)⊙


∑

n≥0

z2n

2 · 4 · · ·2n
+
∑

n≥0

z2n+1

1 · 3 · · · (2n+ 1)


 ,

whose radius of convergence is finite and non-zero. Thanks to dedicated symbolic computation
algorithms and programs, they determine thatŶ ≡ Ŷ3 satisfies a linear ODE order 29,

z27(3z2− 4)2∂29
z Ŷ(z)+

28∑

j=0

φ̂ j (z)∂
j
z Ŷ(z) = 0,

with coefficientsφ̂ j (z) of degree 37(!). This corresponds to a dominant singularity atζ =
2/
√

3, while the square factor(3z2 − 4)2 betrays anirregular singularity. A local analysis of
the ODE then reveals the existence of exactly one singular solution atζ (up to a multiplicative
constant),

σ(z) ∼ exp

(
3

4Z

)
Z−1/2

(
1− 145

144
Z − 8591

41472
Z2+ · · ·

)
, Z := 1− z/ζ,
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whose form is in general agreement with Theorem VIII.7. We must then haveŶ3(z) ∼ λσ(z)
as z → ζ , for some constantλ > 0, and a similar analysis applies to the conjugate root
ζ ′ = −2/

√
3. The form obtained for̂Y3(z) is of the exponential-of-pole type, hence amenable

to a saddle-point analysis. Omitting intermediate computations, one finds eventually

(81) Y3,n ∼ C3n!3/2
(√

3

2

)n
exp(
√

3n)

n3/4
,

for a connection constantC3 that is determined numerically:C3
.= 0.37720. . . . . . . . . . . . . .�

� VIII.29. An asymptotic pattern.Based on (78), (79), (81), and further (heavier) computations
atk = 4, Chyzaket al. [122] observe the general asymptotic pattern:

Yn,k ∼ Ckn!k/2
(

kk/2

k!

)n
exp(
√

kn)

nk/4
, Ck =

1√
2

ek(k−2)/4

(2π)k/4
.

This asymptotic formula is indeed valid for each fixedk: it results from estimates of Bender
and Canfield [39]. Although it is here limited to small values ofk, the method of Chyzaket
al. still has two advantages:(i ) the exact values of the counting sequence are computable in
a linear number of arithmetic operations;(i i ) complete asymptotic expansions can be obtained
comparatively easily. �

� VIII.30. The number of regular matrices.The asymptotic enumeration of regular (non-
symmetric) matrices is treated by Békéssy, B́ekéssy, and Ḱomlos in [32] and by Bender in [37].
Combining their results with estimates of Bender and Canfield [39] yields the following table
of asymptotic values for the number of regular matrices with row and column sums equal tok:

(0,1)–entries non-negative entries

Symmetric e−(k−1)2/4 · Ikn

(k!)n

[
1√
2

ek(k−2)/4

(2π)k/4

]
· n!k/2

(
kk/2

k!

)n
exp(
√

kn)

nk/4

Non-sym. e−(k−1)2/2 · (nk)! (k!)−2n e(k−1)2/2 · (nk)! (k!)−2n

(There, In is the number of involutions of sizen; see Proposition VIII.2, p. 560.) Thus the
number of regular graphs, either directed or undirected, and with or without multiple edges, is
asymptotically known. �

� VIII.31. Multidimensional integral representations.It is of interest to observe the multidi-
mensional contour integral representation

Yk,n =
1

(2iπ)n

∫
· · ·
∫ ∏

i< j

(
1

1− xi x j

)∏

i

(
1

1− xi

)
dx1 · · ·dxn

xk+1
1 · · · xk+1

n
,

in connection with the advanced saddle-point methods methods of McKay and his coauthors [296,
432]. Find similar integral representations for all the cases of Note VIII.30 above. �

VIII. 8. Large powers

The extraction of coefficients in powers of a fixed function and more generally
in functions of the formA(z)B(z)n constitutes a prototypical and easy application of
the saddle-point method. We will accordingly be concerned here with the problem of
estimating

(82) [zN ] A(z) · B(z)n = 1

2iπ

∮
A(z)B(z)n

dz

zN+1
,
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as bothn and N get large. This situation generalizes directly the exampleof the
exponential and its inverse factorial coefficients, where we have dealt with a coeffi-
cient extraction equivalent to [zn](ez)n (see pp. 549 and 555), as well as the case of
the central binomial coefficients (p. 549), corresponding to [zn](1 + z)2n. General
estimates relative to (82) are derived in Subsections VIII.8.1 (bounds) and VIII. 8.2
(asymptotics). We finally discuss perturbations of the basic saddle-point paradigm in
the case of large powers (Subsection VIII. 8.3):Gaussian approximationsare obtained
in a way that generalizes “local” versions of the Central Limit Theorem for sums of
discrete random variables. This last subsection paves the way for the analysis of limit
laws in the next chapter, where the rich framework of“quasi-powers” will be shown
to play a central r̂ole in so many combinatorial applications.

VIII. 8.1. Large powers: saddle-point bounds. We consider throughout this
section two fixed functions,A(z) andB(z) satisfying the following conditions.

L1: The functionsA(z) = ∑ j≥0 a j z j andB(z) = ∑ j≥0 b j z j are analytic at 0
and have non-negative coefficients; furthermore it is assumed (without loss
of generality) thatB(0) 6= 0.

L2: The functionB(z) is aperiodic in the sense that gcd
{

j
∣∣ b j > 0

}
= 1.

(ThusB(z) is not a function of the formβ(zp) for some integerp ≥ 2 and
someβ analytic at 0.)

L3: Let R≤ ∞ be the radius of convergence ofB(z); the radius of convergence
of A(z) is at least as large asR.

Define the quantityT called thespread:

(83) T := lim
x→R−

x B′(x)
B(x)

.

Our purpose is to analyse the coefficients

[zN ] A(z) · B(z)n,
whenN andn are linearly related. The conditionN < T n will be imposed: it is both
technically needed in our proof and inherent in the nature ofthe problem. (ForB a
polynomial of degreed, the spread isT = d; for a functionB whose derivative at its
dominant positive singularity remains bounded, the spreadis finite; for B(z) = ez and
more generally for (non-polynomial) entire functions, thespread isT = ∞.)

Saddle-point bounds result almost immediately from the previous assumptions.

Proposition VIII.7 (Saddle-point bounds for large powers). Consider functions A(z)
and B(z) satisfying the conditionsL1,L2,L3 above. Letλ be a positive number with
0< λ < T and letζ be the unique positive root of the equation

ζ
B′(ζ )
B(ζ )

= λ.

Then, for N= λn an integer, one has

[zN ] A(z) · B(z)n ≤ A(ζ )B(ζ )nζ−N .
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Proof. The existence and unicity ofζ is guaranteed by an argument already encoun-
tered several times (Note VIII.46, p. 280, and Note VIII.4, p. 550). The conclu-
sion then follows by an application of general saddle-pointbounds (Corollary VIII.1,
p. 549). �

ExampleVIII.10. Entropy bounds for binomial coefficients.Consider the problem of estimat-
ing the binomial coefficients

( n
λn
)

for someλ with 0 < λ < 1 andN = λn. Proposition VIII.7
provides (

n

λn

)
= [zN ](1+ z)n ≤ (1+ ζ )nζ−N ,

where ζ
1+ζ = λ, i.e.,ζ = λ

1−λ . A simple computation then shows that
(

n

λn

)
≤ exp(nH(λ)), where H(λ) = −λ logλ− (1− λ) log(1− λ)

is theentropy function. Thus, forλ 6= 1/2, the binomial coefficients
( n
λn
)

are exponentially
smaller than the central coefficient

( n
n/2
)
, and the entropy function precisely quantifies this

exponential gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� VIII.32. Anomalous dice games.The probability of a score equal toλn in n casts of an
unbiased die is bounded from above by a quantity of the forme−nK where

K = − log 6+ log

(
1− ζ6

1− ζ

)
− (λ− 1) logζ,

andζ is an algebraic function ofλ determined by
∑5

j=0(λ− j )ζ j = 0. �

� VIII.33. Large deviation bounds for sums of random variables.Let g(u) = E(uX) be the
probability generating function of a discrete random variableX ≥ 0 and letµ = g′(1) be the
corresponding mean (assumeµ < ∞). SetN = λn and letζ be the root ofζg′(ζ )/g(ζ ) = λ
assumed to exist within the domain of analyticity ofg. Then, forλ < µ, one has

∑

k≤N

[uk]g(u)n ≤ 1

1− ζ g(ζ )nζ−N .

Dually, for λ > µ, one finds
∑

k≥N

[uk]g(u)n ≤ ζ

ζ − 1
g(ζ )nζ−N .

These are exponential bounds on the probability thatn copies of the variableX have a sum
deviating substantially from the expected value. �

VIII. 8.2. Large powers: saddle-point analysis. The saddle-point bounds for
large powers are technically shallow but useful, whenever only rough order of magni-
tude estimates are sought. In fact, the full saddle-point method is applicable under the
very conditions of the preceding proposition.

Theorem VIII.8 (Saddle-point estimates of large powers). Under the conditions of
Proposition VIII.7, withλ = N/n, one has

(84) [zN ] A(z) · B(z)n = A(ζ )
B(ζ )n

ζ N+1
√

2πnξ
(1+ o(1)),
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whereζ is the unique root ofζ B′(ζ )/B(ζ ) = λ and

ξ = d2

dζ 2 (log B(ζ )− λ logζ ) .

In addition, a full expansion in descending powers of n exists.
These estimates hold uniformly forλ in any compact interval of(0, T), i.e., any

interval [λ′, λ′′] with 0< λ′ < λ′′ < T , where T is the spread.

Proof. We discuss the analysis corresponding to a fixedλ. For any fixedr such that
0 < r < R, the function|B(rei θ )| is, by positivity of coefficientsand aperiodicity,
uniquely maximal atθ = 0 (see The Daffodil Lemma on p. 266). It is also infinitely
differentiable at 0. Consequently there exists a (small) angle θ1 ∈ (0, π) such that

|B(rei θ )| ≤ |B(rei θ1)| for all θ ∈ [θ1, π ],

and at the same time,|B(rei θ )| is strictly decreasing forθ ∈ [0, θ1] (it is given by a
Taylor expansion without a linear term).

We carry out the integration along the saddle-point circle,z = ζei θ , where the
previous inequalities on|B(z)| hold. The contribution for|θ | > θ1 is exponentially
negligible. Thus, up to exponentially small terms, the desired coefficient is given
asymptotically byJ(θ1), where

J(θ1) =
1

2π

∫ θ1

−θ1
A(ζei θ )B(ζei θ )neniθ dθ.

It is then possible to impose asecondrestriction onθ , by introducingθ0 according to
the general heuristic, namely,nθ2

0 →∞, nθ3
0 → 0. We fix here

θ0 ≡ θ0(n) = n−2/5.

By the decrease of|B(ζei θ )| on [θ0, θ1] and by local expansions, the quantityJ(θ1)−
J(θ0) is of the form exp(−cn1/5) for somec > 0, that is, exponentially small.

Finally, local expansions are valid in the central range sinceθ0 tends to 0 asn→
∞. One finds forz= ζei θ and|θ | ≤ θ0,

A(z)B(z)nz−N ∼ A(ζ )B(ζ )nζ−N exp(−nξθ2/2).

Then the usual process applies upon completing the tails, resulting in the stated es-
timate. A complete expansion in powers ofn−1/2 is obtained by extending the ex-
pansion of logB(z) to an arbitrary order (as in the case of Stirling’s formula, p. 557).
Furthermore, by parity, all the involved integrals of odd order vanish so that the ex-
pansion turns out to be in powers of 1/n (rather than 1/

√
n). �

ExampleVIII.11. Central binomials and trinomials, Motzkin numbers.An automatic applica-
tion of Theorem VIII.8 is to the central binomial coefficient

(2n
n
)
= [zn](1+ z)2n. In the same

way, one gets an estimate of the central trinomial number,

Tn := [zn](1+ z+ z2)n satisfies Tn ∼
3n+1/2

2
√
πn

.

The Motzkin numbers count unary–binary trees,

Mn = [zn]M(z) where M = z(1+ M + M2).



VIII. 8. LARGE POWERS 589

The standard approach is the one seen earlier based on singularity analysis as the implicitly
defined functionM(z) has an algebraic singularity of the√ -type, but the Lagrange inversion
formula provides an equally workable route. It gives

Mn+1 =
1

n+ 1
[zn](1+ z+ z2)n+1,

which is amenable to saddle-point analysis via Theorem VIII.8, leading to

Mn ∼
3n+1/2

2
√
πn3

.

See below for more on this theme. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

We have opted for a basic formulation of the theorem with conditions onA andB
that are not minimal. It is easily recognized that the estimates of Theorem VIII.8
continue to hold, provided thatthe function|B(rei θ )| attains a unique maximum on
the positive real axis, when r∈ (0, T) is fixed andθ varies on[−π, π ]. Also, in order
for the statement to hold true, it is only required thatthe function A(z) does not vanish
on (0, T), andA(z) or B(z) could then well be allowed to have negative coefficients:
see Note VIII.36. Finally, ifA(ζ ) = 0, then a simple modification of the argument
still provides precise estimates in this vanishing case; see Note VIII.37 below.
� VIII.34. Middle Stirling numbers.The “middle” Stirling numbers of both kinds satisfy

n!

(2n)!

[
2n

n

]
∼ c1An

1n−1/2
(
1+ O(n−1)

)
,

n!

(2n)!

{
2n

n

}
∼ c2An

2n−1/2
(
1+ O(n−1)

)
,

whereA1
.= 2.45540,A2

.= 1.54413, andA1, A2 are expressible in terms of special values of
the Cayley tree function. Similar estimates hold for

[αn
βn
]

and
{αn
βn
}
. �

� VIII.35. Integral points on high-dimensional spheres.Let L(n, α) be the number of lattice
points (i.e., points with integer coordinates) inn-dimensional space that lieon the sphere of
radius

√
N, whereN = αn is assumed to be an integer. Then,

L(n, α) = [zN ]2(z)n, where 2(z) :=
∑

m∈Z
zm2 = 1+ 2

∞∑

m=1

zm2
.

Mazo and Odlyzko [431] show that there exist computable constantsC, D depending onα,
such thatL(n, α) ∼ Cn−1/2Dn. The number of lattice pointsinsidethe sphere can be similarly
estimated. (Such bounds are useful in coding theory, combinatorial optimization, especially the
knapsack problem, and cryptography [393, 431].) �

� VIII.36. A function with negative coefficients that is minimal along the positive axis.Take
B(z) = 1+ z− z10. By design,B(z) has both negative and positive Taylor coefficients. On
the other hand,|B(rei θ )| for fixed r ≤ 1/10 (say) attains its unique maximum atθ = 0. For
certain values ofN, an estimate of [zN ]B(z)n is provided by (84): discuss its validity. �

� VIII.37. Coalescence of a saddle-point with roots of the multiplier.Fix ζ and take a
multiplier A(z) in Theorem VIII.8 such thatA(ζ ) = 0, butA′(ζ ) 6= 0. The formula (84) is then
to be modified as follows:

[zN ] A(z) · B(z)n =
[
A′(ζ )+ ζ A′′(ζ )

] B(ζ )n

ζ N+1
√

2πn3ξ3
(1+ o(1)).

Higher order cancellations can also be taken into account. �
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Large powers: saddle-points versus singularity analysis.In general, the La-
grange inversion formula establishes an exact correspondence between twoa priori
different problems; namely,

the estimation of coefficients of large order in large powers, and
the estimation of coefficients of implicitly defined functions.

In one direction, the Lagrange Inversion Theorem has the capacity of bringing
the evaluation of coefficients of implicit functions into the orbit of the saddle-point
method. Indeed, letY be defined implicitly byY = zφ(Y), whereφ is analytic at 0
and aperiodic. One has, by Lagrange,

[zn+1]Y(z) = 1

n+ 1
[wn]φ(w)n+1,

which is of the type (84). Then, under the assumption that theequationφ(τ)− τφ′(τ )
has a positive root within the disc of convergence ofφ, a direct application of Theo-
rem VIII.8 yields

[zn]Y(z) ∼ γ ρ−n

2
√
πn3

, ρ := τ

φ(τ)
, γ :=

√
2φ(τ)

φ′′(τ )
.

This last estimate is equivalent to the statement of TheoremVII.2 (p. 453) obtained
there by singularity analysis. (As we know from Chapter VII,this provides the num-
ber of trees in a simple variety, withφ being the degree generating function of the
variety.) This approach is in a few cases more convenient to work with than singu-
larity analysis, especially when explicit or uniform upperbounds are required, since
constructive bounds tend to be more easily obtained on circles than on variable Hankel
contours (Note VIII.38).

Conversely, the Lagrange Inversion Theorem makes it possible to approach prob-
lems relative to large powers by means of singularity analysis of an implicitly defined
function9. This mode of operation can prove quite useful when there occurs a coales-
cence between saddle-points and singularities of the integrand (Note VIII.39).
� VIII.38. An assertion of Ramanujan.In his first letter to Hardy, Ramanujan (1913) an-
nounced that

1

2
en = 1+ n

1!
+ n2

2!
+ · · · + nn−1

(n− 1)!
+ nn

n!
θ,

where θ = 1

3
+ 4

135(n+ k)
,

andk lies between 8/45 and 2/21. Ramanujan’s assertion indeed holds for alln ≥ 1; see [237]
for a proof based on saddle-points and effective bounds. �

� VIII.39. Coalescence between a saddle-point and a singularity.The integral in

In := [yn](1+ y)2n(1− y)−α = 1

2iπ

∫

0+

(1+ y)2n

(1− y)α
dy

yn+1
,

9This is in essence an approach suggested by several sectionsof the original memoir of Darboux [137,
§§3–5], in which “Darboux’s method” discussed in Chapter VI was first proposed. It is also of interest to
note that a Lagrangean change of variables transforms a saddle-point circle into a contour whose geometry
is of the type used in singularity analysis.
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Figure VIII.10 . The coefficients [zN ]enz, normalized bye−n, whenn = 100 is
fixed andN = 0 . .200 varies, have a bell-shaped aspect.

can be treated directly, but this requires a suitable adaptation of the saddle-point method,
given the coalescence between a saddle-point at 1 [the part without the(1− y)α factor] and
a singularity at that same point. Alternatively, it can be subjected to the change of variables
z= y/(1+ y)2. Theny is defined implicitly byy = z(1+ y)2, so that

In =
1

2iπ

∫

0+

1+ y

(1− y)1+α
dz

zn+1
= [zn]

1+ y

(1− y)1+α
.

Sincey(z) has a square-root singularity atz= 1/4, the integrand is of typeZ−(1+α)/2, and

In ∼
22n−α

Ŵ(α+1
2 )

n(α−1)/2.

In general, forφ(y) satisfying the assumptions (relative toB) of Theorem VIII.8, one
finds, withτ : φ(τ)− τφ′(τ ) = 0),

1

2iπ

∫

0+

φ(y)n

(φ(τ)− φ(y))α
dy

yn ∼ c

(
φ(τ)

τ

)n n(α−1)/2

Ŵ(α+1
2 )

.

Van der Waerden discuses this problem systematically in [589]. See also Section VIII. 10 below
for other coalescence situations. �

VIII. 8.3. Large powers: Gaussian forms. Saddle-point analysis has conse-
quences for multivariate asymptotics and it constitutes a direct way of establishing
that many discrete distributions tend to the Gaussian law inthe asymptotic limit. For
large powers, this property derives painlessly from our earlier developments, espe-
cially Theorem VIII.8, by means of a “perturbation” analysis.

First, let us examine a particularly easy problem:How do the coefficients of
[zN ]enz vary as a function of N when n is some large but fixed number?These coef-
ficients are

C(n)
N = [zN ]enz = nN

N!
.
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By the ratio test, they have a maximum whenN ≈ n and are small whenN differs
significantly fromn; see Figure VIII.10. The bell-shaped profile is also apparent on
the figure and is easily verified by elementary real analysis.The situation is then par-
allel to what is already known of the binomial coefficients onthenth line of Pascal’s
triangle, corresponding to [zN ](1+ z)n with N varying.

The asymptotically Gaussian character of coefficients of large powers is actually
universal among a wide class of analytic functions. We provethis within the frame-
work of large powers already investigated in Subsection VIII. 8.1 and consider the
general problem of estimating the coefficients [zN ] (A(z) · B(z)n) asN varies. In ac-
cordance with the conditions on p. 586, we postulate the following: (L1): A(z), B(z)
are analytic at 0, have non-negative coefficients, and are such thatB(0) 6= 0; (L2):
B(z) is aperiodic;(L3) The radius of convergenceR of B(z) is a minorant of the
radius of convergence ofA(z). We also recall that thespreadhas been defined as
T := limx→R− x B′(x)/B(x).

Theorem VIII.9 (Large powers and Gaussian forms). Consider the “large powers”
coefficients:

(85) C(n)
N := [zN ]

(
A(z) · B(z)n

)
.

Assume that the two analytic functions A(z), B(z) satisfy the conditions(L1), (L2),
and(L3). Assume also that the radius of convergence of B satisfies R> 1. Define the
two constants:

(86) µ = B′(1)
B(1)

, σ 2 = B′′(1)
B(1)

+ B′(1)
B(1)

−
(

B′(1)
B(1)

)2

(σ > 0).

Then the coefficients C(n)N for fixed n as N varies admit a Gaussian approximation:
for N = µn+ x

√
n, there holds (as n→∞)

(87)
1

A(1)B(1)n
C(n)

N =
1

σ
√

2πn
e−x2/(2σ2)

(
1+ O(n−1/2)

)
,

uniformly with respect to x, when x belongs to a finite interval of the real line.

Proof. We start with a few easy observations that shed light on the global behaviour
of the coefficients. First, sinceR> 1, we have the exact summation,

∞∑

N=0

C(n)
N = A(1)B(1)n,

which explains the normalization factor in the estimate (87). Next, by definition of the
spread and sinceR> 1, one has

µ = B′(1)
B(1)

< T = lim
x→R−

x B′(x)
B(x)

,

given the general property thatx B′(x)/B(x) is increasing. Thus, the estimation of
the coefficients in the rangeN = µn± O(

√
n) falls into the orbit of Theorem VIII.8

which expresses the results of the saddle-point analysis inthe case of large powers.
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Referring to the statement of Theorem VIII.8, the saddle-point equation is

ζ
B′(ζ )
B(ζ )

= B′(1)
B(1)

+ x√
n
,

with ζ a function ofx andn. Forx in a bounded set, we thus haveζ ∼ 1 asn→∞. It
then suffices to effect an asymptotic expansion of the quantitiesζ, A(ζ ), B(ζ ), ξ in the
saddle-point formula of Equation (84). In other words, the fact thatN is close toµn
induces forζ a small perturbation with respect to the value 1. Withb j := B( j )(1),
one finds mechanically

ζ = 1+ b2
0

b0b2+ b0b1− b1
2

x√
n
+ O(n−1)

B(ζ )

ζµ
= b0+

x2

2n

b3
0

b0b2+ b0b1− b1
2
+ O(n−3/2),

and so on. The statement follows. �

Take firstA(z) ≡ 1. In the particular case whenB(z) is the probability generat-
ing function of a discrete random variableY, one hasB(1) = 1, and the coefficient
µ = B′(1) is the mean of the distribution. The functionB(z)n is then the probability
generating function (PGF) of a sum ofn independent copies ofY. Theorem VIII.9 de-
scribes a Gaussian approximation of the distribution of thesum near the mean. Such
an approximation is called alocal limit law, where the epithet “local” refers to the fact
that the estimate applies to the coefficients themselves. (In contrast, an approximation
of the partial sums of the coefficients by the Gaussian error function is known as a
central limit law or, sometimes, as anintegral limit law.) In the more general case
in which A(z) is also the PGF of a non-degenerate random variable (i.e.,A(z) 6= 1),
similar properties hold and one has:

Corollary VIII.3 (Local limit law for sums). Let X be a random variable with prob-
ability generating function (PGF) A(z) and Y1, . . . ,Yn be independent variables with
PGF B(z), where it is assumed that X and the Yj are supported onZ≥0. Assume that
A(z) and B(z) are analytic in some disc that contains the unit disc in its interior and
that B(z) is aperiodic. Let the coefficientsµ, σ be as in(86). Then the sum,

Sn := X + Y1+ Y2+ · · · + Yn,

satisfies a local limit law of the Gaussian type: for t in any finite interval, one has

P
(
Sn = ⌊µn+ tσ

√
n⌋
)
= e−t2/2

√
2πn

(
1+ O(n−1/2)

)
.

Proof. This is just a restatement of Theorem VIII.9, settingx = tσ and taking into
accountA(1) = B(1) = 1. �

Gaussian forms for large powers admit many variants. As already pointed out
in Section VIII. 4, the positivity conditions can be greatlyrelaxed. Furthermore, es-
timates for partial sums of the coefficients are possible by similar techniques. The
asymptotic expansions can be extended to any order. Finally, suitable adaptations of
Theorems VIII.8 and VIII.9 make it possible to allowx to tend slowly to infinity and
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manage what is known as a “moderate deviation” regime. We do not pursue these as-
pects here since we shall develop a more general framework, that of “Quasi-powers”
in the next chapter.
� VIII.40. An alternative proof of Corollary VIII.3.The saddle-pointζ is near 1 whenN is near

the centreN ≈ µn. It is alternatively possible to recover theC(N)n by Cauchy’s formula upon
integrating along the circle|z| = 1, which is then only anapproximatesaddle-point contour.
This convenient variant is often used in the literature, but one needs to take care of linear terms
in expansions. Its origins go back to Laplace himself in his first proof of the local limit theorem
(which was expressed however in the language of Fourier series as Cauchy’s theory was yet
to be born). See Laplace’s treatiseThéorie Analytique des Probabilités[402] first published in
1812 for much fascinating mathematics related to this problem. �

VIII. 9. Saddle-points and probability distributions

Saddle-point methods are useful not only for estimating combinatorial counts, but
also for extracting probabilistic characteristics of large combinatorial structures. In the
previous section, we have already encountered the large powers framework, giving rise
to Gaussian laws. In this section, we further examine the waya saddle-point analysis
can serve to quantify properties of random structures.

VIII. 9.1. Moment analyses. Univariate applications of admissibility include
the analysis of generating functions relative to moments ofdistributions, which are
obtained by differentiation and specialization of corresponding multivariate generat-
ing functions. In the context of saddle-point analyses, thedominant asymptotic form
of the mean value as well as bounds on the variance usually result, often leading to
concentration of distribution (convergence in probability) properties. In what follows,
we focus on the analysis offirst moments(see also Subsection VII. 10.1, p. 532, for
the “moment pumping” method developed in the context of singularity analysis).

The situation of interest here is that of a counting generating functionG(z), cor-
responding to a classG, which is amenable to the saddle-point method. A parameterχ

on G gives rise to a bivariate GFG(z,u), which is a deformation ofG(z) whenu is
close to 1. Then the GFs

∂uG(z,u)|u=1 , ∂2
uG(z,u)

∣∣∣
u=1

, . . .

relative to successive (factorial) moments, are in many cases amenable to an analysis
that closely resembles that ofG(z) itself. In this way, moments can be estimated
asymptotically.

We illustrate the analysis of moments by two examples:(i ) Example VIII.12 pro-
vides an analysis of the mean number of blocks in a random set partition by bivariate
generating functions;(i i ) Example VIII.13 estimates the mean number of increasing
subsequences in a random permutation by a direct generatingfunction construction.
The first example foreshadows the full treatment of the corresponding limit distribu-
tion in the next chapter (Subsection IX. 8, p. 690).

ExampleVIII.12. Blocks in random set partitions.The function

G(z, u) = eu(ez−1)
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is the bivariate generating function of set partitions, withu marking the number of blocks (or
parts). We setG(z) = G(z, 1) and define

M(z) = ∂

∂u
G(z, u)

∣∣∣∣
u=1
= eez−1(ez− 1).

Thus, the quantity
mn

gn
= [zn]M(z)

[zn]G(z)
represents the mean number of parts in a random partition of [1. .n]. We already know thatG(z)
is admissible and so isM(z) by closure properties. The saddle-point for the coefficient integral
of G(z) occurs atζ such thatζeζ = n, and it is already known thatζ = logn− log logn+o(1).

It would be possible to analyzeM(z) by means of Theorem VIII.4 directly: the analysis
then involves a saddle-point̂ζ 6= ζ that is relative toM(z); an estimation of the mean then
follows, albeit at the expense of some computational effort. It is however more transparent to
appeal to Proposition VIII.5, p. 567, and analyse the coefficients ofM(z) at the saddle-point of
G(z).

Let a(r ),b(r ) and â(r ), b̂(r ) be the functionsα1(r ), α2(r ) of Equation (47), relative to
G(z) andM(z), respectively:

logG(z) = ez− 1 logM(z) = ez+ z− 1
a(r ) = rer â(r ) = rer + r = a(r )+ r
b(r ) = (r 2+ r )er b̂(r ) = (r 2+ r )er + r = b(r )+ r.

Thus, estimatingmn by Proposition VIII.5 with the formula taken atr = ζ , one finds

mn =
eζG(ζ )

ζn
√

2π b̂(ζ )

[
exp

(
− ζ2

2̂b(ζ )

)
+ o(1)

]
,

while the corresponding estimate forgn is

gn =
G(ζ )

ζn
√

2πb(ζ )
(1+ o(1)) .

Given that̂b(ζ ) ∼ b(ζ ) and thatζ2 is of smaller order than̂b(ζ ), one has
mn

gn
= eζ (1+ o(1)) = n

logn
(1+ o(1)).

A similar computation applies to the second moment of the number of parts which is
found to be asymptotic toe2ζ (the computation involves taking a second derivative). Thus, the
standard deviation of the number of parts is of an ordero(eζ ) that is smaller than the mean.
This implies a concentration property for the distribution of the number of parts.

Proposition VIII.8. The variable Xn equal to the number of parts in a random partition of the
set[1 . .n] has expectation

E{Xn} =
n

logn
(1+ o(1)).

The distribution satisfies a “concentration” property: for anyǫ > 0, one has

P

{∣∣∣∣
Xn

E{Xn}
− 1

∣∣∣∣ > ǫ

}
→ 0 as n→+∞.

The calculations are not especially difficult (see Note VIII.41 for the end result) but they re-
quire care in the manipulation of asymptotic expansions: for instance, Salvy and Shackell [530]
who “do it right” report that two discrepant estimates (differing by a factor of e−1) had been
previously published regarding the value of the mean. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .�
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� VIII.41. Moments of the number of blocks in set partitions.Let Xn be the number of blocks
in a random partition ofn elements. Then, one has

E(Xn) =
n

logn
+ n log logn (1+ o(1))

log2 n
, V(Xn) =

n

log2 n
+ n(2 log logn− 1+ o(1))

log3 n
,

which proves concentration. The calculation is best performed in terms of the saddle-pointζ ,
then converted in terms ofn. (See Salvy’śetude [529] and the paper [530].) �

� VIII.42. The shape of random involutions.Consider a random involution of sizen, the EGF

of involutions beingez+z2/2. Then the mean number of 1–cycles and 2-cycles satisfy

E(# 1–cycles) = √n+ O(1), E(# 2–cycles) = 1

2
n− 1

2

√
n+ O(1).

In addition, the corresponding distributions are concentrated. �

ExampleVIII.13. Increasing subsequences in permutations.Given a permutation written in
linear notation asσ = σ1 · · · σn, an increasing subsequence is a subsequenceσi1 · · · σik which
is in increasing order, i.e.,i1 < · · · < ik andσi1 < · · · σik . The question is:What is the mean
number of increasing subsequences in a random permutation?

The problem has a flavour analogous to that of “hidden” patterns in random words, which
was tackled in Chapter V, p. 315, and indeed similar methods are applicablehere. Define a
tagged permutationas a permutation together with one of its increasing subsequence distin-
guished. (We also consider the null subsequence as an increasing subsequence.) For instance,

7 |3 5 2 |6 4 1 |8 9

is a tagged permutation with the increasing subsequence3 6 8that is distinguished. The vertical
bars are used to identify the tagged elements, but they may also be interpreted as decomposing
the permutation into sub-permutation fragments. We letT be the class of tagged permutations,
with T(z) the corresponding EGF, and setTn = n![zn]T(z). Themeannumber of increasing
subsequences in a random permutation of sizen is clearlytn = Tn/n!.

In order to enumerateT , we letP be the class of all permutations andP+ the subclass of
non-empty permutations. Then, one has, up to isomorphism,

T = P ⋆ SET(P+),
since a tagged permutation can be reconstructed from its initial fragment and theset of its
fragments (by ordering the set according to increasing values of initial elements). This combi-
natorial argument gives the EGFT(z) as

T(z) = 1

1− z
exp

(
z

1− z

)
.

The generating functionT(z) can be expanded, so that the quantityTn admits a closed
form,

Tn =
n∑

k=0

(
n

k

)
n!

k!
.

From this, it is possible to analyseTn asymptotically by means of the Laplace method for sums,
as was done by Lifschitz and Pittel in [407]. However, analytically, the function T(z) is a
mere variant of the EGF of fragmented permutations. Saddle-point conditions are again easily
checked, either directly or via admissibility, to the effect that

(88) tn ≡
Tn

n!
∼ e−1/2e2

√
n

2
√
πn1/4

.

(Compare with the closely related estimate (45) on p. 562.)
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The estimate (88) has the great advantage of providing information about an important and
much less accessible parameter. Indeed, letλ(σ) represent thelength of the longest increasing
subsequencein σ . With I (σ ) the number of increasing subsequences, one has the general
inequality,

2λ(σ) ≤ I (σ ),

since the number of increasing subsequences ofσ is at leastas large as the number of subse-
quences contained in thelongestincreasing subsequence. Let nowℓn be the expectation ofλ
over permutations of sizen. Then, convexity of the function 2x implies

(89) 2ℓn ≤ tn, so that ℓn ≤
2

log 2

√
n(1+ o(1)).

In summary:

Proposition VIII.9. The mean number of increasing subsequences in a random permutation
of n elements is asymptotically

e−1/2e2
√

n

2
√
πn1/4

(1+ o(1)) .

Accordingly, the expected length of the longest increasing subsequence in a random permutation
of size n satisfies the inequality

ℓn ≤
2

log 2

√
n(1+ o(1)) ≈ 2.89

√
n.

Note VIII.45 describes an elementary lower bound of the formℓn ≥ 1
2
√

n. In fact, around
1977, Logan and Shepp [411] and, independently, Vershik and Kerov [596] succeeded in estab-
lishing the much more difficult result

ℓn ∼ 2
√

n.

Their proof is based on a detailed analysis of the profile of a random Young tableau. (The bound
obtained here by a simple mixture of saddle-point estimates and combinatorial approximations
at least provides the right order of magnitude.) This has led in turn to attempts at characterizing
the asymptoticdistribution of the length of the longest increasing subsequence. The problem
remained unsolved for two decades, despite many tangible steps forward. J. Baik, P. A. Deift,
and K. Johansson [24] eventually obtained a solution, in 1999, by relatinglongest increasing
subsequences to eigenvalues of random matrix ensembles (see Note VIII.45 for the end result).
We regretfully redirect the reader to relevant presentations of the beautiful theory surrounding
this sensational result, for instance [10, 148]. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� VIII.43. A useful recurrence.A decomposition according to the location ofn yields for tn
the recurrence

tn = tn−1+
1

n

n−1∑

k=0

tk, t0 = 1.

HenceT(z) satisfies the ordinary differential equation,

(1− z)2
d

dz
T(z) = (2− z)T(z), T(0) = 1,

which gives rise to the simpler recurrence

tn+1 = 2tn −
n

n+ 1
tn−1, t0 = 0, t1 = 2,

by whichtn can be computed efficiently in a linear number of operations. �
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� VIII.44. Related combinatorics.The sequenceTn = n!tn starts as 1, 2, 7, 34, 209, 1546, and
is EISA002720. The numberTn counts the following equivalent objects:(i ) then× n binary
matrices with at most one entry1 in each column;(i i ) the partial matchings of the complete
bipartite graphKn,n; (i i i ) the injective partial mappings of [1. .n] to itself. �

� VIII.45. A simple probabilistic lower bound.Elementary probability theory provides a
simple lower bound onℓn. Let X1, . . . , Xn be independent random variables uniformly dis-
tributed over [0, 1]. Assumen = m2. Partition [0,1[ into m subintervals each of the form
[ j − 1/m, j/m[ andX1, . . . , Xn into m blocks, each of the formX(k−1)m+1, . . . , Xkm. There

is a probability 1− (1− m−1)m ∼ 1− e−1 that block numbered 1 contains an element of
subinterval numbered 1, block numbered 2 contains an element of subinterval numbered 2,
and so on. Then, with high probability, at leastm/2 of the blocks contain an element in their
matching subinterval. Consequently,ℓn ≥ 1

2
√

n, for n large enough. (The factor 1/2 can
even be improved a little.) The crisp booklet by Steele [556] describes many similar as well as
more advanced applications to combinatorial optimization. See also the bookof Motwani and
Raghavan [451] for applications to randomized algorithms in computer science. �

� VIII.46. The Baik–Deift–Johansson Theorem.Consider the Painlevé II equation

u′′(x) = 2u(x)3+ xu(x)

and the particular solutionu0(x) that is asymptotic to−Ai(x) asx → +∞, with Ai(x) the
Airy function, which solvesy′′ − xy = 0. Define the Tracy–Widom distribution (arising in
random matrix theory)

F(t) = exp

(∫ ∞

t
(x − t)u0(x)

2 dx

)
.

The distribution of the length of the longest increasing subsequence,λ satisfies

lim
n→∞P

(
λn ≤ 2

√
n+ tn1/6

)
= F(t),

for any fixedt . Thus the discrete random variableλn converges to a well-characterized distri-
bution [24]. (An exact formula for associated GFs is due to Gessel; seep. 753.) �

VIII. 9.2. Families of generating functions. There is an extreme diversity of
possible situations, which partly defy classification, when analysing a family of gener-
ating functions associated with an extremal parameter. Accordingly, we must content
ourselves with the discussion of a single representative example relative to random
allocations. (A good rule of thumb is once more that the saddle-point method is likely
to succeed in cases involving some sort of exponential growth of GFs.) Problems of a
true multivariate nature will be examined in the next chapter specifically dedicated to
multivariate asymptotics and limit distributions.

Random allocations.The example that follows is relative to random allocations,
occupancy statistics, and balls-in-bin models, as introduced in Subsection II. 3.2, p. 111.

ExampleVIII.14. Capacity in occupancy problems.Assume thatn balls are thrown intom
bins, uniformly at random. How many balls does the most filled bin contain?We shall examine
the regimen = αm for some fixedα in (0,+∞); see Example III.10 (p. 177) for a first analysis
and relations to the Poisson law. The size of the most filled bin is called thecapacityand we let
Cn,m denote the random variable, when allmn allocations are taken equally likely. Under our
conditions a random bin contains on average a constant number,α, of balls. The proposition
below proves that the most filled bin has somewhat more, as illustrated by Figure VIII.11. (We
limit ourselves here to saddle-point bounds. The various regimes of thedistribution are well
covered in [388, pp. 94–115].)
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Figure VIII.11 . Three random allocations ofn = 100 balls inm= 100 bins.

Proposition VIII.10. Let n and m tend simultaneously to infinity, with the constraint that
n/m= α for some constantα > 0. Then, the expected capacity satisfies

1

2

logn

log logn
(1+ o(1)) ≤ E{Cn,m} ≤ 2

logn

log logn
(1+ o(1)).

In addition, the probability of capacity to lie outside the interval determined by the lower and
upper bounds tends to 0 as m,n→∞.

Proof. We detail the proof whenα = 1 and abbreviateCn = Cn,m, the generalization toα 6= 1
requiring only simple adjustments. From Chapter II, we know that

(90)





P{Cn ≤ b} = n!

nn [zb](eb(z))
n

P{Cn > b} = n!

nn

(
enz− (eb(z))

n),

whereeb(z) is the truncated exponential:

eb(z) =
b∑

j=0

z j

j !
.

The two equalities of (90) permit us to bound the left and right tails of the distribution. As
suggested by the Poisson approximation of balls-in-bins model, we decideto adopt saddle-point
bounds based onz= 1. This gives (cf Theorem VIII.2, p. 547):

(91)





P{Cn ≤ b} ≤ n!en

nn

(
eb(1)

e

)n

P{Cn > b} ≤ n!en

nn

(
1−

(
eb(1)

e

)n)
.

We set

(92) ρb(n) =
(

eb(1)

e

)n
.

This quantity represents the probability thatn Poisson variables of rate 1 all have valueb or less.
(We know from elementary probability theory that this should be a reasonable approximation of
the problem at hand.) A weak form of Stirling’s formula, namely,n!en/nn < 2

√
πn, for n ≥ 1,

then yields an alternative version of (91),

(93)

{
P{Cn ≤ b} ≤ 2

√
πnρb(n)

P{Cn > b} ≤ 2
√
πn (1− ρb(n)).

For fixedn, the functionρb(n) increases steadily frome−n to 1 asb varies from 0 to∞.
In particular, the “transition region” whereρb(n) stays away from both 0 and 1 is expected to
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play a r̂ole. This suggests definingb0 ≡ b0(n) such that

b0! ≤ n < (b0+ 1)!,

so that

b0(n) =
logn

log logn
(1+ o(1)).

We also observe that, asn, b→∞, there holds

(94)

ρb(n) = (e−1eb(1))
n =

(
1− e−1

(b+ 1)!
+ O(

1

(b+ 2)!
)

)n

= exp

(
− ne−1

(b+ 1)!
+ O(

n

(b+ 2)!
)

)
.

Left tail. We takeb = ⌊1
2b0⌋ and a simple computation from (94) shows that forn large

enough,ρb(n) ≤ exp(− 3√n). Thus, by the first inequality of (93), the probability that the
capacity be less than12b0 is exponentially small:

(95) P{Cn ≤
1

2
b0(n)} ≤ 2

√
πn exp(− 3√n).

Right tail. Takeb = 2b0. Then, again from (94), forn large enough, one has 1− ρb(n) ≤
1− exp(− 1

n ) = 1
n (1+ o(1)). Thus, the probability of observing a capacity that exceeds 2b0 is

vanishingly small, and isO(n−1/2). Taking nextb = 2b0 + r with r > 0, similarly gives the
bound

(96) P{Cn > 2b0(n)+ r } ≤ 2

√
π

n

(
1

b0(n)

)r
.

The analysis of the left and right tails in Equations (95) and (96) now implies

(97)





E{Cn} ≤ 2b0(n)+
∞∑

r=0

2

√
π

n
(b0(n))

−r = 2b0(n)(1+ o(1))

E{Cn} ≥
⌊ 1

2b0(n)⌋∑

r=0

[
1− 2

√
πn exp(− 3√n)

]
= 1

2
b0(n)(1+ o(1)).

This justifies the claim of the proposition whenα = 1. The general case (α 6= 1) follows
similarly from saddle-point bounds taken atz= α. �

The saddle-point bounds described above are obviously not tight: with some care in deriva-
tions, one can show by the same means that the distribution is tightly concentrated around its
mean, itself asymptotic to logn/ log logn. In addition, the saddle-point method may be used
instead of crude bounds. These results, in the context of longest probe sequences in hashing,
were obtained by Gonnet [301] under the Poisson model. Many key estimates regarding random
allocations (including capacity) are to be found in the book by Kolchinet al. [388]. Analyses
of this type are also useful in evaluating various dynamic hashing algorithms by means of
saddle-point methods [217, 504]. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .�

VIII. 10. Multiple saddle-points

We conclude this chapter with a discussion of higher order saddle-points, accom-
panied by brief indications on what are known as phase transitions or critical phenom-
ena in the applied sciences.
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Multiple saddle-point formula.All the analyses carried out so far have been in
terms of simple saddle-points, which represent by far the most common situation. In
order to get a feel of what happens in the case of multiple saddle-points, consider first
the problem of estimating the tworeal integrals,

In :=
∫ 1

0
(1− x2)n dx, Jn :=

∫ 1

0
(1− x3)n dx.

(These examples are illustrative: as a check of the results,note that the integrals can
be evaluated in closed form by way of the Beta function, Note B.10, p. 747.) The con-
tribution of any interval [x0,1] is exponentially small, and the ranges to be considered
on the right of 0 are aboutn−1/2 andn−1/3, respectively. One thus sets

x = t√
n

for In, x = t
3
√

n
for Jn.

Following the guidelines of the method of Laplace (AppendixB.6, p. 755), we proceed
as follows: local expansions are applied, then tails are completed in the usual way, to
the effect that

In ∼
1√
n

∫ ∞

0
e−t2

dt, Jn ∼
1

3
√

n

∫ ∞

0
e−t3

dt.

The last integrals reduce to the Gamma function integral, which provides

In ∼
1

2

Ŵ(1
2)

n1/2
, Jn ∼

1

3

Ŵ(1
3)

n1/3
.

The repeated occurrences of1
2 in the quadratic case and of1

3 in the cubic case stand
out. The situation in the cubic case corresponds to the Laplace method for integrals,
when a multiple critical point is present (Note B.23, p. 759).

What has been just encountered in the case of real integrals istypical of what
to expect forcomplexintegrals and saddle-points of higher orders, as we now ex-
plain. First, we briefly revisit the discussion of landscapes of analytic functions at the
beginning of Section VIII. 1, p. 543. Consider, for simplicity, the case of a double
saddle-point of an analytic functionF(z). At such a pointζ , we haveF(ζ ) 6= 0,
F ′(ζ ) = F ′′(ζ ) = 0, andF ′′′(ζ ) 6= 0. Then, there are three steepest descent lines
emanating from the saddle-point and three steepest ascent lines. Accordingly, one
should think of the landscape of|F(z)| as formed of three “valleys” separated by
three mountains and meeting at the common pointζ . The characteristic aspect is that
of a “monkey saddle” (comparable to a saddle with places for two legs and a tail) and
is displayed in Figure VIII.12.

In order to avoid an unpleasant discussion of the combinatorics of valleys, we
now discuss the case of a multiple saddle-point estimation of an integral

∫ B
A in the case

where the starting pointA coincides with the saddle-pointζ . By a painless surgery of
paths, this entails no loss of generality. We can then enunciate a modified form of the
saddle-point formula of Theorem VIII.3.
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Figure VIII.12 . A double saddle-point or “monkey saddle”.Left: the surface
|exp(z3)| around the double saddle pointz = 0; right: level curves with arrows
pointing towards directions of increase. (Inward pointing arrows indicatevalleys.)

Theorem VIII.10 (Double Saddle-point Algorithm). Consider an integral
∫ B
ζ F(z)dz,

where the integrand F= e f is an analytic function depending on a large parameter
andζ is adoublesaddle-point, which is a root of the saddle-point equations

f ′(ζ ) = 0, f ′′(ζ ) = 0

(or, equivalently, F′(ζ ) = F ′′(ζ ) = 0). The point B is supposed to lie inside one of
the three valleys of the double saddle-point.

Assume that the contourC connectingζ to B can be split intoC = C(0) ∪ C(1)

in such a way that the following conditions are satisfied:(i ) the tail integral
∫
C(1) is

negligible;(i i ) in the central domainC(0), a cubicapproximation holds,

f (z) = f (ζ )+ 1

3!
f ′′′(ζ )(z− ζ )3+ O(ηn), ;

with ηn→ 0 as n→∞ uniformly; (i i i ) tails can be completed back. Then one has

(98)
∫ B

ζ

e f (z) dz∼ ω

3
Ŵ

(
1

3

)
e f (ζ )

3
√
− f ′′′(ζ )/3!

,

whereω is a cube root of unity (ω3 = 1), dependent upon the position of the valley
of B.

Proof. The proof is a simple adaptation of that of Theorem VIII.3. The heart of the
matter is now the integration of

∫

C
exp

(
1

3!
f ′′′(ζ )(z− ζ )3

)
dz,

with C composed of the half-line connectingζ to a point at infinity in the valley of
f ′′(ζ )(z− ζ )3 that containsB. A linear change of variable finally reduces the integral
to the canonical form

∫
e−w

3
. �
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� VIII.47. Higher-order saddle-points.For a saddle-point of orderp + 1, the saddle-point
formula reads ∫ B

ζ
e f (z) dz∼ ω

p
Ŵ

(
1

p

)
e f (ζ )

p
√
− f (p)(ζ )/p!

,

whereωp = 1. �

� VIII.48. Vanishing multipliers and multiple saddle-points.This note supplements Note VIII.47.
For a saddle-point of orderp+1 and an integrand of the form(z− ζ )b · e f (z), the saddle-point
formula must be modified according to

∫ ∞

0
xbe−axp/p! dx = 1

p
Ŵ

(
b+ 1

p

)(
p!

a

)(b+1)/p
.

Thus, the argument of theŴ factor is changed from 1/p to (b + 1)/p, as is the exponent of
f (p)(ζ ) and ofn in the case of large power estimates. �

Forests and coalescence of saddle-points.We give below an application to the
counting of forests of unrooted trees made of a large number of trees. The analysis
precisely involves a double saddle-point in a certain critical region. The problem is
in particular relevant to the analysis of random graphs during the phase where a giant
component has not yet emerged.

ExampleVIII.15. Forests of unrooted trees.The problem here consists in determining the
numberFm,n of ordered forests, i.e., sequences, made ofm (labelled, non-plane) unrooted trees
and comprised ofn nodes in total. The number of unrooted trees of sizen is, by virtue of
Cayley’s formula,nn−2 and its EGF is expressed asU = T −T2/2, whereT is the Cayley tree
function satisfyingT = zeT . Consequently, we have

1

n!
Fm,n = [zn]

(
T(z)− T(z)2

2

)m

= 1

2iπ

∫

0+

(
T − T2

2

)m
dz

zn+1
.

The case of interest here is whenm andn are linearly related. We thus setm= αn, where
a priori α ∈ (0, 1). Then, the integral representation ofFm,n becomes

(99)
1

n!
Fm,n =

1

2iπ

∫

C
enhα(t)(1− t)

dt

t
, hα(t) := α log(1− t

2
)+ t + (α − 1) log t,

whereC encircles 0. This has the form of a “large power” integral. Saddle-pointsare found as
usual as zeros of the derivativeh′α ; there are two of them given by

ζ0 = 2− 2α, ζ1 = 1.

For α < 1/2, one hasζ0 > ζ1 while for α > 1/2 the inequality is reversed andζ0 < ζ1.
In both cases, a simple saddle-point analysis succeeds, based on the saddle-point nearer to the
origin; see Note VIII.49 below. In contrast, whenα = 1/2, the pointsζ0 andζ1 coalesce to
the common value 1. In this last case, we haveh′1/2(1) = h′′1/2(1) = 0 while h′′′1/2(1) = −2 is
non-zero: there is adouble saddle-pointat 1.

The number of forests thus presents two different regimes dependingon whetherα < 1/2
or α > 1/2, and there is a discontinuity of the analytic form of the estimates atα = 1/2
(see Figure VIII.13). The situation is reminiscent of “critical phenomena” and phase transitions
(e.g., from solid to liquid to gas) in physics, where such discontinuities areencountered. This
provides a good motivation to study what happens right at the “critical” valueα = 1/2.

As in the analytic proof of the Lagrange Inversion Theorem it proves convenient to adopt
t = T as an independent variable, so thatz = te−t becomes a dependent variable. Since
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Figure VIII.13 . The functionH(α) governing the exponential rate of the number of
forests exhibits a “phase transition” atα = 1/2 (left); this is reflected by a plot of the
quantity 1

n log(Fm,n/n!), as a function ofα = m/n for n = 200 (right).

dz= (1− t)e−t , this provides the integral representation, a special instance of (99):

1

n!
Fm,n =

1

2iπ

∫

0+

(
t − 1

2
t2
)m

ent(1− t)
dt

tn+1
.

We thus consider the special valueα = 1/2 and seth ≡ h1/2. What is to be determined is
therefore the number of forests of total sizen that are made ofn/2 trees, assuming naturallyn
even. Bearing in mind that the double saddle-point is atζ = ζ0 = ζ1 = 1, one has

h(z) = 1− 1

3
(z− 1)3+ O((z− 1)4) (z→ 1).

Thus, upon neglecting the tails and localizing the integral to a disc centred at 1with radiusδ ≡
δ(n) such that

nδ3→∞, nδ4→ 0

(δ = n−3/10 is suitable), we have the asymptotic equivalence (withy representingz− 1)

(100)
1

n!
Fm,n = −

en(1− 1
2 log 2)

2iπ

∫

D
e−ny3/3y dy+ exponentially small,

whereD is a certain (small) contour containing 0 obtained by transformation fromC.
The discussion so far has left aside the choice of the contourC in (99), hence of the

geometric aspect ofD near 0, which is needed in order to fully specify (100). Because of the
minus sign in the third derivative,h′′′(1) = −2, the three steepest descent half-lines stemming
from 1 have angles 0,e2iπ/3, e−2iπ/3. This suggests the adoption, as original contourC in (99),
of two symmetric segments stemming from 1 connected by a loop left of 0; see Figure VIII.14.
Elementary calculations justify that the contour can be suitably dimensioned so as to remain
always below levelh(1). See also the right-hand drawing of Figure VIII.14, in which the
level curves of the valleysbelow the saddle-point are drawn, together with a legal contour of
integration that winds about 0.

Once the original contour of integration has been fixed, the orientation ofD in (100) is
fully determined. After effecting the further change of variablesy = wn−1/3 and completing
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Figure VIII.14 . Left: a plot ofeh with the double saddle-point at 1. Right: The level
curves ofeh together with a legal integration contour through valleys.

the tails, we find

(101)
1

n!
Fm,n ∼

λ

n2/3
en(1− 1

2 log 2), λ = − 1

2iπ

∫

E
e−y3/3y dy,

whereE connects∞e−2iπ/3 to 0 then to∞e2iπ/3. The evaluation of the integral givingλ is
now straightforward (in terms of the Gamma function), which yields the following corollary.

Proposition VIII.11. The number of forests of total size n comprised of n/2 unrooted Cayley
trees satisfies

1

n!
Fn/2,n ∼ 2 · 3−1/3Ŵ(2/3)en(1− 1

2 log 2)n−2/3.

The numberthreeis characteristically ubiquitous in the formula. (Furthermore, the formula
displays the exponent 2/3 instead of 1/3 in the general case (98) because of the additional factor
(1 − z) present in the integral representation (99), which vanishes at the saddle-point 1; see
Note VIII.48.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

The problem of analysing random forests composed of a large number of trees has
been first addressed by the Russian School, most notably Kolchin and Britikov. We
refer the reader to Kolchin’s book [387, Ch. I] where nearly thirty pages are devoted
to a deeper study of the number of forests and of associated parameters. Kolchin’s
approach is however based on an alternative presentation interms of sums of indepen-
dent random variables and stable laws of index 3/2, so that it is limited to first order
asymptotics. As it turns out there is a striking parallel with the analysis of the growth
of the random graph in the critical region, when the random graph stops resembling a
large collection of disconnected tree components.

An almost sure sign of (hidden or explicit) monkey saddles isthe presence of
Ŵ(1/3) factors in the final formulae and cube roots in expressions involving n. It is in
fact possible to go much further than we have done here with the analysis of forests
(where we have stayed right at the critical point) and provide asymptotic expressions
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that describe the transition between regimes, here fromAnn−1/2, to Bnn−2/3, then
to Cnn−1/2. The analysis then appeals to the theory of coalescent saddle-points well
developed by applied mathematicians (see, e.g., the presentation in [75, 465, 614]) and
the already evoked rôle of the Airy function. We do not pursue this thread furthersince
it properly belongs to multivariate asymptotics. It is developed in a detailed manner
in an article of Banderier, Flajolet, Schaeffer, and Soria [28] relative to the size of the
core in a random map, on which our presentation of forests hasbeen modelled (see
also Example IX.42, p. 713).

The results of several studies conducted towards the end of the previous millen-
nium do suggest that, among threshold phenomena and phase changes, there is a fair
amount of universality in descriptions of combinatorial and probabilistic problems by
means of multiple and coalescing saddle-points. In particular Ŵ(1/3) factors and the
Airy function surface recurrently in the works of Flajolet,Janson, Knuth, Łuczak and
Pittel [241, 354], which are relative to the Erdős–Renyi random graph model in its
critical phase; see also [254] for a partial explanation. The occurrence of the Airy
area distribution (in the context of certain polygon modelsrelated to random walks)
can be related to this orbit of techniques, as first shown by Prellberg [496], and strong
numerical evidence evoked in Chapter V (p. 365) suggests that this might extend to
the difficult problem of self-avoiding walks [509]. Airy-related distributions also ap-
pear in problems relative to the satisfiability of random boolean expressions [77], the
path length of trees (Proposition VII.15, p. 534 and [567, 565, 566]), as well as cost
functionals of random allocations (Note VII.54, p. 534 and [249]). The reasons are
sometimes well understood in separate contexts by probabilists, statistical physicists,
combinatorialist, and analysts, but a global framework is still lacking.
� VIII.49. Forests and simple saddle-points.When 0< α < 1/2, the number of forests
satisfies, for some computableC−(α):

1

n!
Fn,m ∼ C−(α)

eH−(α)

n1/2
, H−(α) = 1− α log 2.

When 1/2< α < 1, the number of forests satisfies, for some computableC+(α):

1

n!
Fn,m ∼ C+(α)

eH+(α)

n1/2
, H+(α) = α logα + 2− 2α + (α − 1) log(2− 2α).

This results from a routinesimple saddle-pointanalysis atζ1 andζ0, respectively. �

VIII. 11. Perspective

One of the pillars of classical analysis, the saddle-point method plays a major
rôle in analytic combinatorics. It provides an approach to coefficient asymptotics and
can handle combinatorial classes that are not amenable to singularity analysis. The
simplest case is that of urns, whose generating functionez has no singularities at a
finite distance. Similar functions commonly arise as composed SET constructions.
Broadly speaking, for the class of generating functions that arise from the combinato-
rial constructions of Part A of this book, singularity analysis is effective for functions
that have moderate growth at their singularities; the saddle-point method is effective
otherwise.
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The essential idea behind the saddle-point method is simple, and it is very easy to
get good bounds on coefficient growth. In effect, for combinatorial generating func-
tions, the Cauchy coefficient integral defines a surface witha well-defined saddle-point
somewhere along the positive real axis, and choosing a circle centred at the origin and
passing through the saddle-point already provides useful bounds by elementary argu-
ments. The essence of the full saddle-point method is the development of more precise
bounds, which are obtained by splitting the contour into twoparts and balancing the
associated errors.

Combinatorial classes that are amenable to saddle-point analysis have so far only
been incorporated into relatively few schemas, compared towhat we saw for singu-
larity analysis. The consistency of the approach certainlyargues for the existence of
many more such schemas. A positive signal in that direction is the fact that several
researchers have developed concepts of admissibility thatserve to delineate classes of
function for which the saddle-point method boils down to verifying simple conditions.

The saddle-point method also provides insights in more general contexts. Most
notably, the general results on analysis of large powers laythe groundwork for distri-
butional analyses and limit laws, which are the subject of the next chapter.

Bibliographic notes. Saddle-point methods take their sources in applied mathematics, one of
them being the asymptotic analysis by Debye (1909) of Bessel functions of large order. (In fact,
there are early signals of its use by Riemann in relation to hypergeometric functions [511] and to
the zeta function, as noted by Edwards [186, p. 139], as well as tracesof it in works of Cauchy
published in 1827: see the scholarly study by Petrova and Solov’ev [483].) Saddle-point ana-
lysis is sometimes called steepest descent analysis, especially when integration contours strictly
coincide with steepest descent paths. Saddle-points themselves are alsocalled critical points
(i.e., points where a first derivative vanishes). Because of its roots in applied mathematics, the
method is well covered by the literature in this area, and we refer to the books by Olver [465],
Henrici [329], or Wong [614] for extensive discussions. A vivid introduction to the subject is to
be found in De Bruijn’s book [143]. We also recommend Odlyzko’s impressive survey [460].

To a large extent, saddle-point methods were introduced into the world of combinatorial
enumerations in the 1950s. Early combinatorial papers were concerned with permutations (in-
volutions) or set partitions: this includes works by Moser and Wyman [448, 449, 450] that are
mostly directed towards entire functions.

Hayman’s approach [325] which we have expounded here (see also[614]) is notable in its
generality as it envisions saddle-point analysis in an abstract perspective, which makes it possi-
ble to develop general closure theorems. A similar thread was followed byHarris and Schoen-
feld who gave stronger conditions allowing for full asymptotic expansions[323]; Odlyzko and
Richmond [462] were successful in connecting these conditions with Hayman admissibility.
Another valuable work is Wyman’s extension to non-positive functions [624].

Interestingly enough, developments that parallel the ones in analytic combinatorics have
taken place in other regions of mathematics. Erwin Schrödinger introduced saddle-point meth-
ods in his lectures [535] at Dublin in 1944 in order to provide a rigorous foundation to some
models of statistical physics that closely resemble balls-in-bins models. Daniels’ publica-
tion [136] of 1954 is a historical source for saddle-point techniques in probability and statistics,
in which refined versions of the central limit theorem can be obtained. (See for instance the
description in Greene and Knuth’s book [310].) Since then, the saddle-point method has proved
a useful tool for deriving Gaussian limiting distributions. We have given here some idea of this
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approach which is to be developed further in Chapter IX, where we shalldiscuss some of Can-
field’s results [101]. Analytic number theory also makes a heavy use ofsaddle-point analysis.
In additive number theory, the works by Hardy, Littlewood, and Ramanujan relative to integer
partitions have been especially influential, see for instance Andrews’ book [14] and Hardy’s
Lectureson Ramanujan [321] for a fascinating perspective. (In multiplicative number theory,
generating functions take the form of Dirichlet series while Perron’s formula replaces Cauchy’s
formula. For saddle-point methods in this context, we refer to Tenenbaum’s book [576] and his
seminar survey [575].)

A more global perspective on limit probability distributions and saddle-point techniques
will be given in the next chapter, since there are strong relations to the quasi-powers framework
developed there, to local limit laws, and to large deviation estimates. General references for
some of these aspects of the saddle-point method are the articles of Bender–Richmond [45],
Canfield [101], Gardy [280, 281, 282], and Gittenberger–Mandlburger [292]. With regard to
multiple saddle-points and phase transitions, we refer the reader to references provided at the
end of Section VIII. 10, on p. 605.
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Analytic combinatorics concerns itself with the elucidation of properties of combina-
torial structures in relation to algebraic and analytic properties of generating functions.
The most basic cases are the enumeration of combinatorial classes and the analysis of
moments of combinatorial parameters. These involve generating functions in one (for-
mal or complex) variable as discussed extensively in previous chapters and represent
essentiallyunivariateproblems.

Many applications, in various sciences as well as in combinatorics itself, require
quantifying the behaviour ofparametersof combinatorial structures. The correspond-
ing problems are now of amultivariatenature, as one typically wants a way to estimate
the number of objects in a combinatorial class having a fixed size anda given param-
eter value. Average-case analyses usually do not suffice, since it is often important to
predict what is likely to be observed in simulations or on actual data that obey a given

1“A problem relative to games of chance proposed to an austereJansenist by a man of the world has
been at the origin of the calculus of probabilities.”Poisson refers here to the fact that questions of betting
and gambling posed by the Chevalier de Méŕe (who was both a gambler and a philosopher) led Pascal (an
austere religious man) to develop some of the first foundationsof probability theory.

611



612 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

randomness model, in terms of possible deviations from the mean—this signifies that
information onprobability distributionsis wanted. Useful but crude estimates are de-
rived from the moment inequalities developed in Section III. 2.2, p. 161. However,
much more is usually true. Indeed, it is frequently observedthat the histograms of
the distribution of a combinatorial parameter (for varyingsize values) exhibit a com-
mon characteristic “shape”, as the size of the random combinatorial structure tends
to infinity. In this case, we say that there exists alimit law. Our goal in this chapter
is precisely to introduce a methodology for distilling limit laws from combinatorial
specifications.

In simpler cases, limit laws arediscreteand, when this happens, they often turn
out to be of the geometric or Poisson type. In many other situations, limit laws are
continuous, a case of prime importance being the Gaussian law associated with the
famous bell-shaped curve, which is found so often to occur inelementary combinato-
rial structures. This chapter develops a coherent set of analytic techniques dedicated
to extracting such discrete and continuous laws by exploiting properties of bivariate
generating functions. The starting point is provided by symbolic methods of Part A
(especially Chapter III), which enable us to derive systematically bivariate generat-
ing functionsfor many natural parameters of combinatorial structures. The methods
presented here then combine complex asymptotic techniquesof Part B with a small se-
lection of fundamental theorems from the analytic side of classical probability theory
recalled in Appendix C (Complements of Probability Theory).

Under the theory to be expounded, bivariate generating functions are processed
analytically as follows. The auxiliary variable marking the combinatorial parameter
of interest is regarded as inducing adeformationof the (univariate) counting gener-
ating function. The way in which such deformations affect the type of singularity of
the counting generating functions can then be studied: aperturbationof univariate
singularity analysis is often sufficient to derive an asymptotic estimate of the proba-
bility generating function of a given parameter, when takenover objects of some large
size. Continuity theorems from probability theory finally allow us to conclude on the
existence of a limit law and characterize it.

An especially important component of this paradigm is the framework of “quasi-
powers”. Large powers tend to occur in the asymptotic form of coefficients of count-
ing generating functions (think of radius of convergence bounds andρ−n factors). The
collection of deformations of a counting generating function is then likely to induce
for the corresponding coefficients a collection of approximations that alsoasymptoti-
cally involve large powers—technically, these are referred to as quasi-powers. From
this, a Gaussian law is derived along lines that are somewhatreminiscent of the classi-
cal Central Limit Theorem of probability theory, which expresses the asymptotically
Gaussian character of sums of independent random variables.

This chapter starts with an informal introduction to limit laws, either discrete or
continuous (Section IX. 1). Sections IX. 2 and IX. 3 then present methods and ex-
amples relative to discrete laws in combinatorics. Continuous limit laws form the
subject of Section IX. 4, dedicated to general methodology,and Section IX. 5 where
the quasi-powers framework is introduced. Three sections,IX. 6, IX. 7, and IX. 8, then
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develop the extension of meromorphic asymptotics, singularity analysis, and saddle-
point methods to the characterization of Gaussian limit laws in combinatorics. Ad-
ditional properties, such as local limits and large deviations, form the subject of Sec-
tions IX. 9 and IX. 10, respectively. The chapter concludes with a discussion of non-
Gaussian limits (in particular stable laws, Section IX. 11)and multivariate problems
(Section IX. 12).

In the business of limit laws in combinatorics, as true elsewhere, the spirit is more
important than the letter. That is, methods are often more important than theorems,
whose statements may involve somewhat intricate technicalconditions. We have made
every effort to expound the former in a “conceptual” manner,but shall try our best to
avoid the latter.

Within the perspective of analytic combinatorics, the direct relation that can be es-
tablished between combinatorial specifications and asymptotic properties, in the form
of limit laws, is striking and is a characteristic feature ofthe theory. In particular, all
theschemaspreviously introduced in this book lead to well-characterized limit laws.
As we shall see throughout this chapter, almost any basic lawof probability theory
and statistics is likely to occur somewhere in combinatorics; conversely, almost any
simple combinatorial parameter is likely to be governed by alimit law.

IX. 1. Limit laws and combinatorial structures

What is given is a combinatorial classF , labelled or unlabelled, and an integer
valued combinatorial parameterχ . There results both a family of probabilistic models,
namely for eachn the uniform distribution overFn that assigns to anyγ ∈ Fn the
probability

P(γ ) = 1

Fn
, with Fn = card(Fn),

and a corresponding family of random variables obtained by restrictingχ to Fn. Un-
der the uniform distribution overFn, we then have

PFn(χ = k) = 1

Fn
card

{
γ ∈ Fn

∣∣ χ(γ ) = k
}
.

We writePFn to indicate the probabilistic model relative toFn, but also freely abbre-
viate it toPn or write the probability distribution asP(χn = k), wheneverF is clear
from context.

As n increases, the histograms of the distribution ofχn often share a common
profile; see Example IX.1 and Figure IX.1 for two elementary parameters, one leading
to a discrete law, the other to a continuous limit. It is from such observations that the
notion of alimit law is abstracted.

Example IX.1. Binary words: elementary approach.Consider the classW of binary words
over {a,b}. We examine two parameters purposely chosen simple enough, so that explicit
expressions are available for the probability distributions at stake. Definethe parameters

χ(w) := number of initiala in w, ξ(w) := total number ofa in w,

and the corresponding counts,

Wχ
n,k := card{w ∈Wn | χ(w) = k}, Wξ

n,k := card{w ∈Wn | ξ(w) = k}.
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Figure IX.1 . Histograms of probability distributions for the number of initiala in a
random binary string forn = 10 (χ : left) and the total number ofa for n = 20 (ξ :
right). The histogram corresponding toχ is not normalized and direct convergence to
a discrete geometric law is apparent; forξ , the horizontal axis is scaled ton, and the
histogram closely matches the bell-shaped curve that is characteristic of acontinuous
Gaussian limit.

Explicit expressions result from elementary combinatorics: for 0≤ k ≤ n, we have

Wχ
n,0 = 2n−1, Wχ

n,1 = 2n−2, · · · ,Wχ
n,n−1 = 1, Wχ

n,n = 1; Wξ
n,k =

(
n

k

)
.

The probability distributions are accordingly ([[· ]] is Iverson’s notation for the indicator func-
tion): 




PWn(χ = k) = 1

2k+1
[[0 ≤ k < n]] + 1

2n [[k = n]] ,

PWn(ξ = k) = 1

2n

(
n

k

)
.

The probabilities relative toχ then resemble, in the asymptotic limit of largen, the geo-
metric distribution. Indeed, one has, for eachk,

lim
n→∞PWn(χ = k) = 1

2k+1
and lim

n→∞PWn(χ ≤ k) = 1− 1

2k+1
.

We say that there is adiscrete limit lawof the geometric type forχ .
In contrast, the parameterξ taken overWn has meanµn := n/2 and standard deviation

σn := 1
2
√

n. One should then centre and scale the parameterξ , introducing the “standardized”
(or “normalized”) random variable

(1) X⋆n := ξn − E(ξn)√
V(ξn)

= ξn − n/2
1
2
√

n
.

It then becomes possible to examine the (cumulative) distribution functionP(X⋆n ≤ y) for fixed
values ofy. In terms ofξ itself, we are consideringP(ξn ≤ µn+yσn) for real values ofy. Then,
the classical approximation of the binomial coefficients yields the approximation (Note IX.1):

(2) lim
n→∞P(ξn ≤ µn + yσn) =

1√
2π

∫ y

−∞
e−t2/2 dt.

We now say that there is acontinuous limit lawof the Gaussian type forξ . . . . . . . . . . . . . . . .�
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� IX.1. Local and central approximations of the binomial law.Equation (2) is classically
derived by summation from the “local” approximation,

(3)
1

2n

(
n

1
2n+ 1

2 y
√

n

)
= e−y2/2
√
πn/2

(
1+ O

(
y3
√

n

))
,

valid for y = o(n1/6). A proof of (3) can be obtained by the method of De Moivre (1721), see
Note III.3, p. 160, or by Stirling’s formula. �

Combinatorial distributions and limit laws.In accordance with the general no-
tion of convergence in distribution (or weak convergence, see Appendix C.5:Con-
vergence in law, p. 776), we shall say that alimit law exists for a parameter if there
is convergenceof the corresponding family ofcumulative distribution functions. In
virtually all cases2 encountered in this book, there are, like in Example IX.1, two
major types of convergence that thea priori discrete distribution of a combinatorial
parameter may satisfy:

Discrete−→ Discrete and Discrete−→ Continuous.

Regarding the discrete-to-discrete case, convergence is established without standard-
izing the random variables involved. In the discrete-to-continuous case, the parameter
is to be centred at its mean and scaled by its standard deviation, as in (1).

There is also interest in obtaining alocal limit law, which, when available, quan-
tifies individual probabilities (rather than the cumulative distribution functions). In
the discrete-to-discrete case, the distinction between local and “global” limits is im-
material, since the existence of one type of law implies the other. In the discrete-to-
continuous case, the local limit is expressed in terms of a fixed probability density, as
in (3), and is technically more demanding to derive, since stronger analytic properties
are required.

Thespeed of convergencein a limit law describes the way the finite combinatorial
distributions approach their asymptotic limit. It provides useful information on the
quality of asymptotic approximations for finiten models.

Finally, quantifying the “risk” of extreme configurations,far away from the mean,
necessitates estimates on thetails of the distributions. Such estimates belong to the
theory of large deviationand they constitute a useful complement to the study of
central and local limits. These various notions are summarized in Figure IX.2.

Classical probability theory has elaborated highly usefultools for analysing limit
distributions. For each of the major two types, acontinuity theoremprovides condi-
tions under which convergence in law can be established fromconvergence of trans-
forms. The transforms in question areprobability generating functions (PGFs)for the
discrete case,characteristic functionsor Laplace transformsotherwise. Refinements,
known as the Berry–Esseen inequalities relate speed of convergence of the combina-
torial distributions to their limit on the one hand, and a distance between transforms
on the other. Put otherwise, distributions are close if their transforms are close. Large
deviation estimates are finally obtained by a technique of “shifting the mean”, which
is otherwise familiar in probability and statistics.

2See, however, the case of longest runs in words in Example V.4,p. 308, for a family of discrete
distributions that need centring.
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Limit law : An asymptotic approximation of thecumulative distribution functionof a combi-
natorial parameter in terms of the cumulative distribution function of a fixedrandom variable,
called the “limit”. Thus one estimatesPn(χ ≤ k). Centring and scaling, a process called
standardization, is needed in the case of a continuous limit.
Local limit law : A direct asymptotic estimate of “local values” of the combinatorial probabili-
ties,Pn(χ = k). In the discrete case, existence of basic and local limits are logically equivalent
properties. In the continuous case, standardization is needed and the resulting estimate is ex-
pressed in terms of thedensityof a fixed continuous random variable.
Tail estimates and large deviations: For a given distribution, tail estimates are asymptotic
estimates of the probability of deviating from the mean by a large quantity. Large deviation
estimates quantify the tail probabilities of a family of distributions, when these decay at an
exponential rate (in a suitable scale).
Speed of convergence: An upper bound on the error in asymptotic estimates.

Figure IX.2 . An informal summary of the main notions of relevance to the analysis
of combinatorial distributions.

Limit laws and bivariate generating functions.In this chapter, the starting point
of a distributional analysis is invariably a bivariate generating function

F(z,u) =
∑

n,k

fn,kukzn,

where fn,k represents (up to a possible normalization factor) the number of structures
of sizen in some classF . What is sought is asymptotic information relative to the
array of coefficients

fn,k = [znuk]F(z,u).

Thus, adouble coefficient extractionis to be effected. This task could in principle be
approached by an iterated use of Cauchy’s coefficient formula,

[znuk]F(z,u) =
(

1

2iπ

)2 ∫

γ

∫

γ ′
F(z,u)

dz

zn+1

du

uk+1
,

but this approach is hard to carry out3 and, under our current stage of knowledge, it
appears to be less general than the path taken in this chapter.

Here is a broad outline of the principles behind the theory tobe developed in the
next few sections of this chapter. First, as we know all too well, the specialization at
u = 1 of F(z,u) gives the counting generating function ofF , that is,F(z) = F(z,1).
Next, as seen repeatedly starting from Chapter III, the moments of the combinatorial
distribution{ fn,k} for fixed n and varyingk are attainable through the partial deriva-
tives atu = 1, namely

first moment↔ ∂

∂u
F(z,u)

∣∣∣∣
u=1

, second moment↔ ∂2

∂u2
F(z,u)

∣∣∣∣∣
u=1

,

3A collection of recent works by Pemantle and coauthors [474, 475, 476] shows, however, that a
well-defined class of bivariate asymptotic problems can be attacked by the theory of functions of several
complex variables and a detailed study of the geometry of a singular variety.
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Problem GF u-region Reference
counting F(z, 1) u = 1 Ch. I and II

moments
∂r

∂ur F(z, u)

∣∣∣∣
u=1

u = 1± o(1) Ch. III

Discrete laws
limit law F(z, u) u ∈ � ⊆ {|u| ≤ 1} Th. IX.1, p. 624
tails F(z, u) |u| = r, r > 1 Th. IX.3, p. 627
Continuous laws
limit law, Gaussian F(z, u) u ∈ �; � ⊂ C, 1 ∈ � Th. IX.8, p. 645
local Limit Law F(z, u) u ∈ � ∪ {|u| = 1} Th. IX.14, p. 696
large deviations F(z, u) u ∈ [1− δ, 1+ δ′] Th. IX.15, p. 700

Figure IX.3 . A summary of the correspondence between analytic properties of bi-
variate generating functions (BGFs) and probabilistic properties of combinatorial dis-
tributions.

and so on. In summary:Counting is provided by the bivariate generating function
F(z,u) takenat u = 1; moments result from the bivariate generating function taken
in an infinitesimalneighbourhood of u= 1.

Our approach to limit laws will then be as follows. The goal isto estimate the
“horizontal” generating function

fn(u) :=
∑

k

fn,kuk ≡ [zn]F(z,u),

which is proportional to theprobability generating functionof χ taken overFn,
sinceEFn(u

χ ) = fn(u)/ fn(1). The problem is viewed as a single coefficient ex-
traction (extracting the coefficient ofzn) but parameterizedby u—see our paragraph
on “singularity perturbation” below for a brief discussion. Thanks to the availability
of continuity theorems, the following can then be proved fora great many cases of
combinatorial interest:The existence and the shape of the limit law are derived from
an asymptotic estimate of fn(u), when u is taken in afixedneighbourhood of1, which
estimate depends on the behaviour of the generating function z 7→ F(z,u), for u ≈ 1.
This is the basic paradigm of analysis explored throughout most of the chapter.

In addition, thanks to Berry–Esseen inequalities,the quality of auniform as-
ymptotic estimate for fn(u) translates into a speed of convergence estimate for the
corresponding limit law.Also, for the discrete-to-continuous case, as we shall see
in Section IX. 9 based on the saddle-point method,local limit lawsare derived from
consideration of the generating functionz 7→ F(z,u), whenu is assignedvalues on
the unit circle, |u| = 1. In that case, the secondary inversion, with respect tou, is
effected by the saddle-point method, rather than by continuity theorems—the princi-
ples extend the analysis of large powers presented in Section VIII. 8, p. 585. Finally,
large deviationestimates are found to arise from estimates offn(u) whenu is real and
eitheru < 1 (left tail) or u > 1 (right tail), this property being simply a reflection of
saddle-point bounds; see Section IX. 10.
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The correspondence between analytic properties of bivariate generating functions
and probabilistic properties of distributions is summarized in Figure IX.3; see also the
diagram of Figure IX.9 (p. 649) specialized to continuous limit laws.

Singularity perturbation. As seen throughout Chapters IV–VIII, analytic combi-
natorics approaches the univariate problem of counting objects of sizen starting from
the Cauchy coefficient integral,

[zn]F(z) = 1

2iπ

∫

γ

F(z)
dz

zn+1
.

The singularities ofF(z) can be exploited, whether they are of a polar type (Chap-
ters IV and V), algebraic–logarithmic of singularity analysis class (Chapters VI
and VII) or essential and amenable to the saddle-point method (Chapter VIII).

From the discussion above, crucial information on combinatorial distributions
is accessible from the bivariate generating functionF(z,u) whenu varies in some
domain containing 1. This suggests to considerF(z,u) not so much as an analytic
function of two complex variables, wherez andu would play a symmetric r̂ole, but
rather as a collection of functions ofz indexed by a secondary parameteru. In other
words,F(z,u) is considered as adeformationof F(z) ≡ F(z,1) whenu varies in a
domain containingu = 1. Cauchy’s coefficient integral gives

fn(u) ≡ [zn]F(z,u) = 1

2iπ

∫

γ

F(z,u)
dz

zn+1
.

For u = 1, an asymptotic form offn(1) = [zn]F(z,1) is obtained by suitable
contour integration techniques of Part B. We can then examine the way the parame-
teru affects the asymptotic coefficient extraction process4, with the goal of deriving an
asymptotic estimate offn(u), whenu is close to 1. Such an approach is called asingu-
larity perturbation analysis. For instance, a singularity ofF(z,1) at z = ρ typically
implies for the coefficients ofF(z,1) an estimate of the formfn(1) ≈ ρ−nnα, and,
in lucky cases (of which there are many, see Sections IX. 6 andIX. 7), this univariate
analysis can be extended, resulting in an estimate of the form fn(u) ≈ ρ(u)−nnα.
Under such circumstances, the probability generating function of the parameterχ as-
sociated toF(z,u) satisfies the estimate

(4) EFn(u
χ ) ≡ fn(u)

fn(1)
≈
(
ρ(u)

ρ(1)

)−n

.

This analytical form is reminiscent of the central limit theorem of probability theory,
according to which large powers of a fixed PGF (correspondingto sums of a large
number of independent random variables) entail convergence to a Gaussian law5—
such a law is indeed obtained here. In this chapter, we are going to see numerous
applications of this strategy, which we now briefly illustrate by revisiting the case of
binary words from Example IX.1.

4The essential feature of the analysis of coefficients of GFs by means of complex analytic techniques,
as developed in Chapters IV–VIII, is to be robust: being based on contour integrals, it is usually amenable
to smooth perturbations and providesuniformerror terms.

5See also Section VIII. 8, p. 585.
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Example IX.2. Binary words: the BGF approach.Regarding binary words and the two
parametersχ (initial run of a’s) andξ (total number ofa’s), the general strategy of singularity
perturbation starts from the BGFs,





Wχ = SEQ(ua)SEQ(b SEQ(a)) H⇒ Wχ (z, u) = 1

1− uz

1

1− z
1−z

Wξ = SEQ(ua+ b) H⇒ Wξ (z, u) = 1

1− (zu+ z)
,

and it instantiates as follows.
Consider the secondary variableu fixed at some valueu0. In the case ofWχ , there are two

components in the BGF

Wχ (z, u0) =
1

1− u0z
· 1− z

1− 2z
,

and the dominant singular part, with a simple pole atz = 1/2, arises from the second factor as
long as|u0| < 2. Accordingly, one has

Wχ (z, u0) ∼
z→1/2

1/2

1− u0/2
W(z) implying [zn]Wχ (z, u0) ∼

1/2

1− u0/2
2n.

The probability generating function ofχ overWn is then obtained upon dividing by 2−n,

EWn

(
uχ0
)
= 1

2n [zn]Wχ (z, u0) ∼
1/2

1− u0/2
=
∞∑

k=0

1

2k+1
uk

0,

where the last expression is none other than the probability generating function of a discrete law,
namely, the geometric distribution of parameter 1/2. As we shall see in section IX. 2 where we
enunciate a continuity theorem for probability generating functions, this is enough to conclude
that the distribution ofχ converges to a geometric law.

In the second case, that ofWξ , the auxiliary parameter modifies the location of the singu-
larity,

Wξ (z, u0) =
1

1− z (1+ u0)
.

Then, the (unique) singularity smoothly moves,

ρ(u0) =
1

(1+ u0)

as u0 varies, while the type of singularity (here a simple pole) remains the same—we thus
encounter an extremely simplified form of (4). Accordingly, the coefficients [zn]Wξ (z, u0) are
described by a “large power” formula (here of an exact type, as in Section VIII. 8, p. 585). As
regards the probability generating function ofξ overWn, one has

EWn

(
uξ
)
= 1

2n [zn]Wξ (z, u0) =
(

1

2ρ(u0)

)n
.

In the perspective of the present chapter, this last form (here especially simple) is amenable to
continuity theorems for integral transforms (Section IX. 4). There results a continuous limit law
of the Gaussian type in this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

It is typical of the approach taken in this chapter that, onceequipped with suitably
general theorems, it is hardly more difficult to discuss the number of leaves in a non-
plane unlabelled tree or the number of summands in a composition into primes.
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F(z, u) for u ≈ 1 type of law method and schemas
Sing. + exp. fixed Discrete limit Subcritical composition §IX. 3

(Neg. bin., Poisson, . . . ) Subcritical Seq., Set, . . . §IX. 3
Sing. moves, exp. fixed Gaussian(n, n) Supercritical composition
— — Meromorphic perturb. §IX. 6
— — (Rational functions) §IX. 6
— — Sing. analysis perturb. §IX. 7
— — (Alg., implicit functions) §IX. 7.3
Sing. fixed, exp. moves Gaussian(logn, logn) (Exp-log structures) §IX. 7.1
— — (Differential eq.) §IX. 7.4
Sing. + exp. move Gaussian [Gao–Richmond [277]]
Essential singularity often Gaussian Saddle-point perturb. §IX. 8
Discontinuous type non-Gaussian Various cases §IX. 11
— stable Critical composition §IX. 11.2

Figure IX.4 . A rough typology of bivariate generating functionsF(z, u) and limit
laws studied in this chapter, based on the way singularities and exponents evolve for
u ≈ 1.

The foregoing discussion rightly suggests that a “minor” perturbation of bivariate
generating function that affects neither the location nor the nature of the singular-
ity points to a discrete limit law. A “major” change, in location or in exponent, is
conducive to a continuous limit law, of which the prime example is the normal dis-
tribution. Figure IX.4 outlines a typology of limit laws summarizing the spirit of this
chapter: a bivariate generating functionF(z,u) is to be analysed; the deformation
induced byu affects the type of singularity ofF(z,u) in various ways, and an adapted
complex coefficient extraction provides corresponding limit laws.

IX. 2. Discrete limit laws

This section provides the basic analytic–probabilistic technology needed for the
discrete-to-discrete situation, where the distribution of a (discrete) combinatorial pa-
rameter tends (without normalization) to a discrete limit.The corresponding no-
tion of convergence is examined in Subsection IX. 2.1. Probability generating func-
tions (PGFs) are important since, by virtue of a continuity theorem stated in Subsec-
tion IX. 2.2, convergence in distribution is implied by convergence of PGFs. At the
same time, the fact that PGFs of two distributions are close implies that the origi-
nal distribution functions are close. Finally, tail estimates for a distribution can be
easily related to analytic continuation of the PGFs, a basicproperty discussed in Sub-
section IX. 2.3. This section organizes some general tools and accordingly we limit
ourselves to a single combinatorial application, that of the number of cycles of some
fixed size in a random permutation. The next section will provide a number of appli-
cations to random combinatorial structures.

This and the next section feature three classical discrete laws described in Appen-
dix C.4: Special distributions, p. 774. For our reader’s convenience, their definitions
are recalled in Figure IX.5,
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Distribution probabilities PGF

geometric (q) (1− q)qk 1− q

1− qu

negative binomial[m] (q)

(
m+ k− 1

k

)
qk(1− q)m

(
1− q

1− qu

)m

Poisson (λ) e−λ
λk

k!
eλ(1−u)

Figure IX.5 . The three major discrete laws of analytic combinatorics: the geomet-
ric, negative binomial, and Poisson laws.

IX. 2.1. Convergence to a discrete law.In order to specify precisely what a
limit law is, we base ourselves on the general context described in Appendix C.5:
Convergence in law, p. 776. The principles presented there provide for what must be
the “right” notion convergence of a family of discrete distributions to a limit discrete
distribution. Here is a self-standing definition, particularized to the cases of interest
here.

Definition IX.1 (Discrete-to-discrete convergence). The discrete random variables
Xn supported byZ≥0 are said toconverge in law, or converge in distribution, to a
discrete variable Y supported byZ≥0, a property written as Xn ⇒ Y , if, for each k≥
0, one has

(5) lim
n→∞P(Xn ≤ k) = P(Y ≤ k).

Convergence is said to take place atspeedǫn if

(6) sup
k
|P(Xn ≤ k)− P(Y ≤ k)| ≤ ǫn,

The condition in (5) can be expressed in terms of the distribution functions
Fn(k) = P(Xn ≤ k) andG(k) = P(Y ≤ k) as

lim
n→∞ Fn(k) = G(k),

pointwise for eachk, in which case it is written asFn ⇒ G and is known asweak
convergence. One also says that theXn (or theFn) admit alimit law of typeY (or G).

In addition to limit laws in the sense of (5), there is also interest in examining the
convergence of individual probability values. One says that there exists alocal limit
law if

(7) lim
n→∞P(Xn = k) = P(Y = k),

for eachk ≥ 0, andδn is called alocal speed of convergenceif

sup
k
|P(Xn = k)− P(Y = k)| ≤ δn.

By differencing or summing, it is easily seen that the conditions (5) and (7) imply one
another. In other words:For the convergence of discrete random variables (RVs) to
a discrete RV, there is complete equivalence between the existence of a limit law in
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the sense of(5) and of a local limit law(7). Note IX.2 below shows elementarily that
there always exists a speed of convergence thattends to0 asn tends to infinity. In
other words, plain convergence of distribution functions or of individual probabilities
impliesuniformconvergence.

In the following, the random variablesXn are meant to represent a combinatorial
parameterχ taken over some classF and restricted toFn, that is,

P(Xn = k) := PFn(χ = k).

The limit variableY, i.e., its probability distributionG, is to be determined in each
particular case. A highly plausible indication of the occurrence of a discrete law is
the fact that the meanµn and varianceσ 2

n of Xn remain bounded, i.e., they satisfy
µn = O(1) andσ 2

n = O(1). Examination of initial entries in the table of values of
the probabilities will then normally permit one to detect whether a limit law holds.

ExampleIX.3. Singleton cycles in permutations.The case of the number of singleton cycles
(cycles of length 1) in a random permutation of sizen illustrates the basic notions, while it can
be studied with minimal analytic apparatus. The exponential BGF is

(8) P = SET(uZ + CYC≥2(Z)) H⇒ P(z,u) = exp(z(u− 1))

1− z
,

which determines the meanµn = 1 (for n ≥ 1) and the standard deviationσn = 1 (for n ≥ 2).
The table of numerical values of the probabilitiespn,k := [znuk] P(z, u) immediately tells what
goes on:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 4 0.375 0.333 0.250 0.000 0.041
n = 5 0.366 0.375 0.166 0.083 0.000 0.008
n = 10 0.367 0.367 0.183 0.061 0.015 0.003
n = 20 0.367 0.367 0.183 0.061 0.015 0.003

The exact distribution is easily extracted from the bivariate GF,

(9) pn,k ≡ [znuk] P(z, u) = [zn]
zk

k!

e−z

1− z
= dn−k

k!
,

wheren!dn is the number of derangements of sizen, that is,

dn = [zn]
e−z

1− z
=

n∑

j=0

(−1) j

j !

Asymptotically, one hasdn ∼ e−1. Thus, for fixedk, we have a local form of a limit law:

lim
n→∞ pn,k = pk, where pk =

e−1

k!
.

As a consequence:the distribution of the number of singleton cycles in a random permutation
of large size tends to a Poisson law of rateλ = 1.

Convergence is quite fast. Here is a table of differences,δn,k = pn,k − e−1/k!:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 10 2.3 10−8 −2.5 10−7 1.2 10−6 −3.7 10−6 7.3 10−6 1.0 10−5

n = 20 1.8 10−20 −3.9 10−19 3.9 10−18 −2.4 10−17 1.1 10−16 −3.7 10−16
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The speed of convergence is easily bounded. Indeed, one hasdn = e−1 + O(1/n!) by the
alternating series property, so that, uniformly,

pn,k =
e−1

k!
+ O

(
1

k! (n− k)!

)
= e−1

k!
+ O

(
1

n!

(
n

k

))
= e−1

k!
+ O

(
2n

n!

)
.

As a consequence, one obtains local (δn) and central (ǫn) speed estimates

δn = O

(
2n

n!

)
, ǫn = O

(
n2n

n!

)
.

These bounds are quite tight. For instance one computes that the best speed isδ50
.= 1.5 10−52,

while the quantity 2n/n! evaluates to 3.7 10−50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� IX.2. Uniform convergence.Local and global convergences to a discrete limit law are always
uniform. In other words, there always exist speedsǫn, δn tending to 0 asn→∞.
Proof. Set pn,k := P(Xn = k) andqk := P(Y = k). Assume simply the condition (5) and its
equivalent form (7). Fix a smallǫ > 0. First dispose of the tails: there exists ak0 such that∑

k≥k0
qk ≤ ǫ, so that

∑
k<k0

qk > 1− ǫ. Now, by simple convergence, for all large enough
n ≥ n0, there holds|pn,k−qk| < ǫ/k0, for eachk < k0. Thus, we have

∑
k<k0

pn,k > 1−2ǫ,
hence

∑
k≥k0

pn,k ≤ 2ǫ. At this stage, we have proved that
∑

k≥k0
qk and

∑
k≥k0

pn,k are
both in [0, 2ǫ]. This shows that convergence of distribution functions is uniform, with speed
ǫn ≤ 3ǫ. Furthermore, a local speed exists, which satisfiesδn ≤ 2ǫ. �

� IX.3. Speed in local and global estimates.Let Mn be the spread ofχ on Fn defined as
Mn := maxγ∈Fn χ(γ ). Then, a speed of convergence in (6) is given by

ǫn := Mnδn +
∑

k>Mn

qk.

(Refinements of these inequalities can be obtained from tail estimates detailedon p. 627.) �

� IX.4. Total variation distance.Thetotal variation distancebetweenX andY is classically

dT V(X,Y) := sup
E⊆Z≥0

|PY(E)− PX(E)| =
1

2

∑

k≥0

|P(Y = k)− P(X = k)| .

(Equivalence between the two forms is established elementarily by considering the particular
E for which the supremum is attained.) The argument of Note IX.2 shows that convergence
in distribution also implies that the total variation distance betweenXn and X tends to 0. In
addition, by Note IX.3, one hasdT V(Xn, X) ≤ Mnδn +

∑
k>Mn

pk. �

� IX.5. Escape to infinity.The sequenceXn, where

P{Xn = 0} = 1/3, P{Xn = 1} = 1/3, P{Xn = n} = 1/3,

does not satisfy a discrete limit law in the sense above, although limn→∞ P{Xn = k} exists for
eachk. Some of the probability mass escapes to infinity—in a way, convergence takes place in
Z ∪ {+∞}. �

IX. 2.2. Continuity theorem for PGFs. A high level approach to discrete limit
laws in analytic combinatorics is based on asymptotic estimates of the PGFpn(u) of
a random variableXn arising from a parameterχ over a classCn. If, for sufficiently
many values ofu, one has

pn(u)→ q(u) (n→+∞),
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one can infer that the coefficientspn,k = [uk] pn(u) (for any fixedk) tend to the limit
qk = [uk]q(u). A generalcontinuity theoremfor PGFs describes precisely the condi-
tions under which convergence of PGFs to a limit entails convergence of coefficients
to a limit, that is to say, the occurrence of a discrete limit law.

Theorem IX.1 (Continuity Theorem, discrete laws). Let� be an arbitrary set con-
tained in the unit disc and having at least one accumulation point in the interior of
the disc. Assume that the probability generating functionspn(u) =

∑
k≥0 pn,kuk and

q(u) =∑k≥0 qkuk are such that there is convergence,

lim
n→+∞

pn(u) = q(u),

pointwisefor each u in�. Then a discrete limit law holds in the sense that, for each k,

lim
n→+∞

pn,k = qk and lim
n→+∞

∑

j≤k

pn, j =
∑

j≤k

q j .

Proof. The pn(u) area priori analytic in |u| < 1 and uniformly bounded by 1 in
modulus throughout|u| ≤ 1. Vitali’s Theorem, a classical result of analysis (see [577,
p. 168] or [329, p. 566]), is as follows:

Vitali’s theorem. Let F be a family of analytic functions defined in a re-
gion S (an open connected set) and uniformly bounded on everycompact
subset of S. Let{ fn} be a sequence of functions ofF that converges on a set
� ⊂ S having a point of accumulation q∈ S. Then{ fn} converges in all
of S, uniformly on every compact subset T⊂ S.

Here, we takeS to be the open unit disc on which all thepn(u) are bounded
(since pn(1) = 1). The sequence in question is{pn(u)}. By assumption, there is
convergence ofpn(u) to q(u) on�. Vitali’s theorem implies that this convergence
is uniform in any compact subdisc of the unit disc, for instance, |u| ≤ 1/2. Then,
Cauchy’s coefficient formula provides

(10)

qk = 1

2iπ

∫

|u|=1/2
q(u)

du

uk+1

= lim
n→∞

1

2iπ

∫

|u|=1/2
pn(u)

du

uk+1

= lim
n→∞ pn,k,

where uniformity granted by Vitali’s theorem is combined with continuity of the con-
tour integral (with respect to the integrand). �

Feller gives the sufficient set of conditionspn(u) → q(u) pointwise for all real
u ∈ (0,1), which in our terminology corresponds to the special case� = (0,1);
see [205, p. 280] for a proof that only involves elementary real analysis. It is perhaps
surprising that very different sets� can be taken, for instance,

� =
[
−1

3,−1
2

]
, � = {1n}, � =

{√
−1
2 + 1

2n

}
.

The next statement relates a measure of distance between twoPGFS,p(u) and
q(u) to the distance between distributions. It is naturally of interest when quantifying
speed of convergence to the limit in the discrete-to-discrete case.
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Theorem IX.2 (Speed of convergence, discrete laws). Consider two random variables
supported byZ≥0, with distribution functions F(x),G(x) and probability generating
functions p(u),q(u).

(i ) Assume the existence of first moments. Then, for any T∈ (0, π), one has,
(11)

sup
k
|F(k)− G(k)| ≤ 1

4

∫ +T

−T

∣∣∣∣
p(ei t )− q(ei t )

t

∣∣∣∣ dt + 1

2πT
sup

T≤|t |≤π

∣∣∣p(ei t )− q(ei t )
∣∣∣ .

(i i ) Assume that p(u) and q(u) are analytic in|u| < ρ, for someρ > 1. Then,
for any r satisfying1< r < ρ, one has

(12) sup
k
|F(k)− G(k)| ≤ 1

r − 1
sup
|u|=r
|p(u)− q(u)| .

Proof. (i )Observe first thatp(1) = q(1) = 1, so that the integrand is of the form00 at
t = 0, corresponding tou ≡ et = 1. By Appendix C.3:Transforms of distributions,
p. 772, the existence of first moments, sayµ for F and ν for G, implies that, for
small t , one hasp(ei t )− q(ei t ) = (µ− ν)t + o(t), so that the integral is indeed well
defined.

For any givenk, Cauchy’s coefficient formula provides
(13)

F(k)− G(k) = 1

2iπ

∫

γ

p(u)− q(u)

1− u

du

uk+1
= 1

2π

∫ +π

−π

p(ei t )− q(ei t )

1− ei t
e−ki t dt,

whereγ is taken to be the circle|u| = 1, and the trigonometric form results from
settingu = ei t . (The factor(1−u)−1 sums coefficients.) In the trigonometric integral,
split the interval of integration according as|t | ≤ T and|t | ≥ T . For t ∈ [−π, π ],
one has elementarily ∣∣∣∣

t

ei t − 1

∣∣∣∣ ≤
π

2
.

For |t | ≤ T , this inequality makes it possible to replace|1− u|−1 by 1/|t |, up to a
constant multiplier and get as a majorant the first term on theright of (11). For|t | ≥ T ,
trivial upper bounds provide the second term on the right of (11).

(i i ) Start from the contour integral in (13), but now integrate along |u| = r .
Trivial bounds provide (12). �

The first form holds with strictly minimal assumptions (existence of expecta-
tions); the second form isa priori only usable for distributions that have exponential
tails, as discussed in Subsection IX. 2.3 below. The first form relates the distance on
the unit circle between the PGFpn(u) of a combinatorial parameter and the limit PGF
q(u) to the speed of convergence to the limit law—it prefigures the Berry–Esseen
inequalities discussed in the continuous context on p. 641.

Example IX.4. Cycles of length m in permutations.Let us first revisit the numberχ of
singleton cycles (m = 1) in this new light. The BGFP(z, u) = ez(u−1)/(1− z), given by
Equation (8) in Example IX.3, has for eachu a simple pole atz = 1 and is otherwise analytic
in C \ {1}. Thus, a meromorphic analysis provides instantly, pointwise for any fixed u,

[zn] P(z, u) = e(u−1) + O(R−n),
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Figure IX.6 . The PGFs of singleton cycles in random permutations of sizen =
4, 8, 12 (left to right and top to bottom) illustrate convergence to the limit PGF of the
Poisson(1) distribution (bottom right). The modulus of each PGF is displayed, for
|ℜ(u)|, |ℑ(u)| ≤ 3.

with any R> 1. This, by the continuity theorem, Theorem IX.1, implies convergence toa limit
law, which is Poisson.

Next, in order to obtain a speed of convergence, one should estimate a distance between
PGFs over the unit circle. One has, forpn(u) andq(u), respectively, the PGF ofχ overPn and
the PGF of a Poisson variable of parameter 1:

pn(u)− q(u) = [zn]
ez(u−1) − e(u−1)

1− z
.

There is a removable singularity atz= 1. Thus, integration over the circle|z| = 2 in thez-plane
is permissible, and

pn(u)− q(u) = 1

2iπ

∫

|z|=2

ez(u−1) − eu−1

1− z

dz

zn+1
.

Trivial bounds applied to the last integral then yield

|pn(u)− q(u)| ≤ 2−n sup
|z|=2

∣∣∣ez(u−1) − e(u−1)
∣∣∣ = O

(
2−n|1− u|

)
,

uniformly for u in any compact set ofC. One can then apply Theorem IX.2, Part(i ). The
valueT = π

2 is suitable, to the effect that a speed of convergence to the limit is found to be
O(2−n). (Any O(R−n) is furthermore possible by a similar argument.) Numerical aspects of
the convergence are illustrated in Figure IX.6.
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This approach generalizes straightforwardly to the number ofm–cycles in a random per-
mutation (m keptfixed). The exponential BGF is

F(z,u) = e(u−1)zm/m

1− z
.

Then, singularity analysis of the meromorphic function ofz (for u fixed) gives immediately

lim
n→∞[zn]F(z, u) = e(u−1)/m.

The right-hand side of this equality is none other than the PGF of a Poisson lawof rateλ = 1/m.
The continuity theorem and the first form of the speed of convergence theorem then imply:
The number of m–cycles in a random permutation of large size converges in law to a Poisson
distribution of rate1/m with speed of convergence O(R−n) for any R> 1. This last result
appreciably generalizes our previous observations on singleton cycles. . . . . . . . . . . . . . . . . . . .�

� IX.6. A quiz. Figure IX.6 tacitly assumes that the property|pn(u)| → |p(u)| suffices to
conclude thatpn(u) → p(u). Can you justify it? [Hint: for an analytic function, if we know
|φ(u)|, we know log|φ(u)| = ℜ(logφ(u)). But then we can reconstructℑ(logφ(u)) by the
Cauchy-Riemann equations (p. 742). Hence, we know logφ(u), henceφ(u) itself.] �

� IX.7. Poisson law for rare events.Consider the binomial distribution with PGF(q + pu)n.
If p depends onn in such a way thatp = λ/n for some fixedλ, then the limit law of the
binomial random variable is Poisson of rateλ. (This “law of small numbers” explains the
Poisson character of activity in radioactive decay as well as the occurrence of accidental deaths
of soldiers in the Prussian army resulting from the kick of a horse [Bortkiewicz, 1898].) �

IX. 2.3. Tail estimates. Tail estimates quantify the rate of decrease of probabil-
ities away from the central part of the distribution. In the case of a discrete limit law
having a finite mean, what one needs is information regardingP(X > k) ask gets
large. A simple, but often effective, approach consists in appealing to saddle-point
bounds. We give here a general statement which is nothing buta rephrasing of such
bounds adapted to discrete probability distributions.

Theorem IX.3 (Tail bounds, discrete laws). Let p(u) = E(uX) be a probability
generating function that is analytic for|u| ≤ r where r is some number satisfying
r > 1. Then, the following “local” and “global” tail bounds hold:

P(X = k) ≤ p(r )

r k
, P(X > k) ≤ p(r )

r k(r − 1)
.

Proof. The local estimate is a direct consequence of trivial bounds applied to Cauchy’s
integrals, namely

P(X = k) = 1

2iπ

∫

|u|=r
p(u)

du

uk+1
≤ p(r )

r k
.

The cumulative bound is derived from the useful integral representation

P(X > k) = 1

2iπ

∫

|u|=r
p(u)

(
1+ 1

u
+ 1

u2
+ · · ·

)
du

uk+2

= 1

2iπ

∫

|u|=r
p(u)

du

uk+1(u− 1)
,

upon applying again trivial bounds. (Alternatively, summation from the local bounds
can be used.) �
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The bounds provided always exhibit a geometric decay in the value ofk—this is
both a strength and a limitation on the method. In accordancewith the theorem and as
is easily checked directly, the geometric and the negative binomial distributions have
exponential tails; the Poisson law even has a “superexponential” tail, being O(R−k)

for any R > 1, since its PGF is entire. By their nature, the bounds can also be simul-
taneously applied to a whole family of probability generating functions, as shown
by the characteristic example below. Hence their use in obtaining uniform estimates
in the context of limit laws, in a way that prefigures the studyof large deviations
in Section IX. 10.

ExampleIX.5. Permutations with a large number of singleton cycles.The problem here is to
quantify the probability that a permutation of sizen has more thank = logn singleton cycles,
a quantity that is far from the mean value 1. The elementary treatment of Example IX.3 is
certainly applicable but it has the disadvantage of not easily generalizing toother situations. In
the perspective of applying Theorem IX.3, we seek instead to boundpn(u) for u > 0, where
pn(u) := [zn]ez(u−1)/(1− z), by Equation (8). We have, foru > 0 and anys ∈ (0,1),

pn(u) ≡ [zn]euz e−z

1− z
≤ eus e−s

1− s
s−n,

as found from saddle-point bounds (in thez–plane) applied to the BGFP(z, u). Takings =
1−1/n, which is suggested by the usual scaling of singularity analysis as well as by the saddle-
point principles, gives the following bound on the PGF,

pn(u) ≤ 2neu,

valid for all n ≥ 2. (Better estimates are available from the precise analysis of Example IX.4,
but the improvement regarding tail bounds would be marginal.) Choosing nowr = logn in the
statement of Theorem IX.3 value provides an approximate saddle-point bound, and we get for
n ≥ 10 (say)

∑

j≥logn

pn, j ≤
2n2

nlog logn
.

Thus the probability of observing more than logn singleton cycles is asymptotically smaller
than any inverse power ofn. Note that, in this example, we have made use of Theorem IX.3,
while opting to estimate the PGFs plainly by saddle-point bounds taken with respect to the
principal variablez of the corresponding bivariate generating function. . . . . . . . . . . . . .. . . . . �

IX. 3. Combinatorial instances of discrete laws

In this section, we focus our attention on the general analytic schema based on
compositions (p. 411), and more specifically on its subcritical case (Definition IX.2
below). It is such that the perturbations induced by the secondary variable (u) affects
neither the location nor the nature of the basic singularityinvolved in the univariate
counting problem. The limit laws are then of the discrete type. In particular, for
the labelled universe and for subcritical sequences, sets,and cycles, these limit laws
are invariably of the negative binomial, Poisson, and geometric type, respectively.
Additionally, it is easy to describe the profiles of combinatorial objects resulting from
such subcritical constructions.
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Subcritical compositions.First, we consider the generalcomposition schema,

F = G ◦ (uH) H⇒ F(z,u) = g(uh(z)).

This schema expresses over generating functions the combinatorial operationG ◦H of
substitutionof componentsH enumerated byh(z) inside “templates”G enumerated
by g(z). (See Chapters I, p. 86 and II, p. 137, for the unlabelled and labelled versions,
and Chapter III, p. 199, for the bivariate versions.) The variablez marks size as usual,
and the variableu marks the size of theG–template.

We assume globally thatg andh have non-negative coefficients and thath(0) = 0
so that the compositiong(h(z)) is well-defined. We letρg andρh denote the radii of
convergence ofg andh, and define

(14) τg = lim
x→ρ−g

g(x) and τh = lim
x→ρ−h

h(x).

The (possibly infinite) limits exist due to the non-negativity of coefficients. As already
discussed in Section VI. 9, p. 411, three cases are to be distinguished.

Definition IX.2. The composition schema F(z,u) = g(uh(z)) is said to besubcritical
if τh < ρg, critical if τh = ρg, supercriticalif τh > ρg.

In terms of singularities, the behaviour ofg(h(z)) at its dominant singularity is
dictated by the dominant singularity ofh (subcritical case), or by the dominant singu-
larity of g (supercritical case), or else it involves a mixture of the two (critical case).
This section is concerned with thesubcriticalcase6.

Proposition IX.1 (Subcritical composition, number of components). Consider the
bivariate composition schema F(z,u) = g(uh(z)). Assume that g(z) and h(z) satisfy
thesubcriticalityconditionτh < ρg, and that h(z) has a unique singularity atρ = ρh

on its disc of convergence, which, in a1–domain, is of the type

h(z) = τ − c

(
1− z

ρ

)λ
+ o

((
1− z

ρ

)λ)
,

whereτ = τh, c ∈ R+, 0< λ < 1. Then, a discrete limit law holds for the number of
H–components: with fn,k := [znuk]F(z,u) and fn = [zn]F(z,1), one has

lim
n→∞

fn,k
fn
= qk, where qk =

kgkτ
k−1

g′(τ )
.

The probability generating function of the limit distribution (qk) is

q(u) = ug′(τu)

g′(τ )
.

Proof. First, we examine the univariate counting problem. Sinceg(z) is analytic atτ ,
the functiong(h(z)) is singular atρh and is analytic in a1–domain. Its singular ex-
pansion is obtained by composing the regular expansion ofg(z) atτ with the singular

6By contrast with the discrete laws encountered here, the case of a supercritical composition leads
to continuous limit laws of the Gaussian type (Section IX. 6).The critical case involves a confluence of
singularities, which induces stable laws (Section IX. 11).
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expansion ofh(z) atρh:

F(z) ≡ g(h(z)) = g(τ )− cg′(τ )(1− z/ρ)λ(1+ o(1)).

Thus,F(z) satisfies the conditions of singularity analysis, and

(15) fn ≡ [zn]F(z) = − cg′(τ )
Ŵ(−λ)ρ

−nn−λ−1(1+ o(1)).

By similar devices, the mean and variance of the distribution are found to be
eachO(1).

Next, for the bivariate problem, fix anyu with, say, u ∈ (0,1). The BGF
F(z,u) is also seen to be singular atz = ρ, and its singular expansion obtained
from F(z,u) = g(uh(z)) by composition, is

(16)
F(z,u) = g(uh(z)) = g(uτ − cu(1− z/ρ)λ + o((1− z/ρ)λ))

= g(uτ)− cug′(uτ)(1− z/ρ)λ + o((1− z/ρ)λ).

Thus, singularity analysis implies immediately:

lim
n→∞

[zn]F(z,u)

[zn]F(z,1)
= ug′(uτ)

g′(τ )
.

By the continuity theorem for PGFs, this is enough to imply convergence to the dis-
crete limit law with PGFug′(τu)/g′(τ ), and the proposition is established. �

What stands out in the statement of Proposition IX.1 is the following general fact:
In a subcritical composition, the limit law is a direct reflection of the derivative of the
outer function involved in the composition.
� IX.8. Tail bounds for subcritical compositions.Under the subcritical composition schema,
it is also true that the tails have a uniformly geometric decay. Letu0 be any number of the
interval(1, ρg/τh). Then the functionz 7→ F(z, u0) is analytic near the origin with a dominant
singularity atρh again obtained by composing the regular expansion ofg with the singular
expansion ofh, and Equation (16) remains valid atu = u0. There results the asymptotic
estimate

pn(u0) =
[zn]F(z,u0)

[zn]F(z, 1)
∼ g′(u0τh).

Thus, for some constantK ≡ K (u0), one haspn(u0) < K . It is also easy to verify thatpn(u)
is analytic atu0, so that, by Theorem IX.3,

pn,k ≤ K (u0) · u−k
0 ,

∑

j>k

pn, j ≤
K (u0)

u0− 1
u−k

0 .

Therefore, the combinatorial distributions satisfy, uniformly with respect to n, a tail bound. In
particular the probability that there are more than a logarithmic number of components satisfies

(17) Pn(χ > logn) = O(n−θ ) and θ = logu0.

Such tail estimates may additionally serve to evaluate the speed of convergence to the limit law
(as well as the total variation distance) in the subcritical composition schema. �

� IX.9. Semi-small powers and singularity analysis.Let h(z) satisfy the stronger singular
expansion

h(z) = τ − c(1− z/ρ)λ + O(1− z/ρ)ν ,
for 0< λ < ν < 1. Then, fork ≤ C logn (someC > 0), the results of singularity analysis can
be extended (under the form proved in Chapter VI, they are only valid for fixed k)

[zn]h(z)k = kcρ−nn−λ−1
(
1+ O(n−θ1)

)
,
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for someθ1 > 0, uniformly with respect tok. [The proof recycles the Hankel contour Chap-
ter VI, with some care needed in checking uniformity with respect tok; see also p. 709.] �

� IX.10. Speed of convergence in subcritical compositions.Combining the exponential tail
estimate (17) and local estimates deriving from the singularity analysis of “semi-small” powers
in the previous note, one obtains for the distribution functions associated withpn,k and pk the
speed estimate

sup
k
|Fn(k)− F(k)| ≤ L

nθ2
.

There,L andθ2 are two positive constants. �

Subcritical constructions.The functional composition schema encompasses the
sequence, set, and cycle constructions of the labelled universe. We state the following
proposition.

Proposition IX.2 (Subcritical constructions, number of components). Consider the
labelled constructions ofsequence, set, andcycle. Assume the subcriticality condi-
tions of the previous proposition, namelyτ < 1, τ < ∞, τ < 1, respectively, where
τ is the singular value of h(z). Then, the distribution of the numberχ of compo-
nents determined by fn,k/ fn, is such thatχ − 1 admits a discrete limit law that is of
type, respectively, negative binomial N B[2], Poisson, and geometric: the limit forms
qk = limn→∞ Pn(χ = k) satisfy, respectively, for k≥ 0,

qSEQ
k+1 = (1− τ)2(k+ 1)τ k, qSET

k+1 = e−τ
τ k

k!
, qCYC

k+1 = (1− τ)τ k.

Proof. It suffices to take for the outer functiong in the compositiong◦h the quantities

(18) Q(w) = 1

1− w, E(w) = ew, L(w) = log
1

1− w.

According to Proposition IX.1 and Equation (18) above, the PGF of the discrete limit
law involves the derivatives

Q′(w) = 1

(1− w)2 , E′(w) = ew, L ′(w) = 1

1− w.

By definition of the classical discrete laws in Figure IX.5, p. 621, it is seen that the
last two cases precisely give rise to the classical Poisson and geometric law. The first
case gives rise to the negative binomial lawN B[2], or equivalently the sum of two
independent geometrically distributed random variables. �

The technical simplicity with which limit laws are extracted is worthy of note.
Naturally, the statement also coversunlabelled sequences, since translation into GFs
is the same in both universes. (Other unlabelled constructions usually lead to discrete
laws, as long as they are subcritical; see Note IX.14 for a particular instance.) Also,
subcriticality of a compositiong ◦ h necessarily entails thatτh is finite (since one has
τh < ρg ≤ +∞, by definition). Primary cases of applications of Proposition IX.2
are thus in the realm of “treelike” structures, for which theGFs remain finite at their
radius of convergence, as we have learnt in Chapter VII.

The example that follows illustrates the application of Proposition IX.1 to the
analysis of root degrees in classical varieties of trees. Itis especially interesting to ob-
serve the way limit laws directly reflect the combinatorial specifications. For instance,
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the root degree in a large random plane tree (a Catalan tree) is found to obey, in the
asymptotic limit, a negative binomial (N B[2]) distribution, which, in a precise sense,
echoes the sequence construction that expresses planarity. For labelled non-plane trees
(Cayley tree), a Poisson law echoes the set construction attached to non-planarity.

ExampleIX.6. Root degrees in trees.Consider first the number of components in a sequence
(ordered forest) of general Catalan trees. The bivariate OGF is

F(z, u) = 1

1− uh(z)
, h(z) = 1

2

(
1−
√

1− 4z
)
.

We haveτh = 1/2 < ρg = 1, so that the composition schema is subcritical. Thus, for a forest
of total sizen, the numberXn of tree components satisfies

lim
n→∞P{Xn = k} = k

2k+1
(k ≥ 1).

Since a tree is equivalent to a node appended to a forest, this asymptotic estimate also holds for
the root degree of a general Catalan tree.

Consider next the number of components in a set (unordered forest)of Cayley trees. The
bivariate EGF is

F(z, u) = euh(z), h(z) = zeh(z).

We haveτh = 1 < ρg = +∞, again a subcritical composition schema. Thus the numberXn
of tree components in a random unordered forest of sizen admits the limit distribution

lim
n→∞P{Xn = k} = e−1/(k− 1)!, (k ≥ 1),

a shifted Poisson law of parameter 1; asymptotically, the same property also holds for the root
degree of a random Cayley tree

The same method applies more generally to a simple variety of treesV (see Section VII. 3,
p. 452) with generatorφ, under the condition of the existence of a rootτ of the characteristic
equationφ(τ) − τφ′(τ ) = 0 at a point interior to the disc of convergence ofφ. The BGF
satisfies

V(z,u) = zφ(uV(z)), V(z) = 1− γ
√

1− z/ρ + O(1− z/ρ).

so that

V(z, u) ∼
z→ρ ρφ(uτ)− γ

uφ′(uτ)
φ′(τ )

√
1− /zρ.

The PGF of the distribution of root degree is accordingly

uφ′(τu)

φ′(τ )
=
∑

k≥1

kφkτ
k

φ′(τ )
uk.

This limit law was established under its local form in Chapter VII, p. 456, bymeans of univaraite
asymptotics; the present example shows the synthetic character of a derivation based on the
continuity theorem for PGFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

A further direct application of the continuity of PGFs is thedistribution of the
number ofH–components of a fixed sizem in a compositionG ◦H with GF g(h(z)),
again under thesubcriticalitycondition. In the terminology of Chapter III, we are thus
characterizing theprofile of combinatorial objects, as regards components of some
fixed size. The bivariate GF is then

F = G ◦ (H \Hm+ uHm) H⇒ F(z,u) = g(h(z)+ (u− 1)hmzm),
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with hm = [zm]h(z). The singular expansion atz= ρ is

F(z,u) = g(τ + (u−1)hmρ
m)−cg′(τ + (u−1)hmρ

m)(1− z/ρ)λ)+o((1− z/ρ)λ).

Thus, the PGFpn(u) for objects of sizen satisfies

(19) lim
n→∞ pn(u) =

g′(τ + (u− 1)hmρ
m)

g′(τ )
.

As before this calculation specializes to the case of sequences, sets, and cycles giving
a result analogous to Proposition IX.1.

Proposition IX.3 (Subcritical constructions, number of fixed-size components). Un-
der the subcriticality conditions of Proposition IX.2, thenumber of components of a
fixed size m in a labelled sequence, set, or cycle construction applied to a class with
GF h(z) admits a discrete limit law. Let hm := [zm]h(z) and letρ be the radius of
convergence of h(z), with τ := h(ρ). For sequences, sets, and cycles, the limit laws
are, respectively, negative binomial N B[2](a), Poisson(λ), and geometric(b), with
parameters

a = hmρ
m

1− τ + hmρm
, λ = hmρ

m, b = hmρ
m

1− τ + hmρm
.

Proof. Instantiate (19) withg, one of the three functions of (18). �

ExampleIX.7. Root subtrees of size m.In a Cayley tree, the number of root subtrees of some
fixed sizem has, in the limit, a Poisson distribution,

pk = e−λ
λk

k!
, λ := mm−1e−m

m!
.

In a general Catalan tree, the distribution is a negative binomialN B[2]

pk = (1− a)2(k+ 1)ak, a−1 := 1+ m22m−1

(2m−2
m−1

) .

Generally, for a simple variety of trees under the usual conditions of existence of a solution to
the characteristic equation,V = zφ(V), one finds“en deux coups de cuillèreà pot”,

V(z,u) = zφ(V(z)+ Vmzm(u− 1))
V(z,u) ∼ ρφ(τ + Vmρ

m(u− 1))− ργφ′(τ + Vmρ
m(u− 1))

√
1− z/ρ

limit PGF = φ′(τ + Vmρ
m(u− 1))

φ′(τ )
.

(Notations are the same as in Example IX.6.) . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�

We shall see later that similar discrete distributions (thePoisson and negative
binomial law of Proposition IX.3) also arise incritical set constructions of the exp–
log type (Example IX.23, p. 675), whilesupercritical sequences lead to Gaussian
limits (Proposition IX.7, p. 652). Furthermore, given the generality of the methods
and the analytic diversity of functional compositions, it should be clear that schemas
leading to discrete limit laws can be listedad libitum—in essence, conditions are
that the auxiliary variableu does not affect the location nor the nature of the dominant
singularity ofF(z,u). The notes below provide a small sample of the many extensions
of the method that are possible.
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� IX.11. The product schema.Define

F(z, u) = A(uz) · B(z),
that corresponds to a product construction,F = A × B, with u marking the size of theA–
component in the product. Assume that the radii of convergence satisfy ρA > ρB and thatB(z)
has a unique dominant singularity of the algebraic–logarithmic type. Then,the size of theA
component in a randomF–structure has a discrete limit law with PGF,

p(u) = A(ρu)

A(ρ)
.

The proof follows by singularity analysis. (Alternatively, an elementary derivation can be given
under the weaker requirement that thebn = [zn]B(z) satisfybn+1/bn→ ρ−1.) �

� IX.12. Bell number distributions.Consider the “set-of-sets” schema

F = SET(SET≥1(H)) H⇒ F(z,u) = exp(euh(z) − 1),

assuming subcriticality. Then the numberχ of components satisfies asymptotically a “derivative
Bell” law:

lim
n→+∞

Pn(χ = k) = 1

K

kSkτ
k

k!
, K = e−eτ−τ−1,

whereSk = k![zk]eez−1 is a Bell number. There exist parallel results: for sequence-of-sets,
involving the surjection numbers; for set-of-sequences involving the fragmented permutation
numbers. �

� IX.13. High levels in Cayley trees.The number of nodes at level 5 (i.e., at distance 5 from
the root) in a Cayley tree has the nice PGF

u
d

du


e−1+ e−1+ e−1+ e−1+ e−1+u


 ,

so that the distribution involves “super-duper-hyper-Bell numbers”. �

� IX.14. Root degree in non-plane unlabelled trees.Discrete laws may also arise from an unla-
belled set construction, but their form is complicated, reflecting the presence of Ṕolya operators.
Consider the class of non-plane unlabelled trees (p. 71)

H = Z ×MSET(H) H⇒ H(z) = zexp


∑

k≥1

1

k
H(zk)


 .

The OGFH(z) is of singularity analysis class (Section VII. 5, p. 475), andH(z) ∼ 1− γ (1−
z/ρ)1/2. Then the distribution with PGF

q(u) = uρ exp


∑

k≥1

uk

k
H(ρk)




is the limit law of root degree in non-plane unlabelled trees. �

Lattice paths.As a last example here, we discuss the length of the longest initial
run ofa’s in random binary words satisfying various types of constraints. This discus-
sion completes the informal presentation of Section IX. 1, Examples IX.1 and 2. The
basic combinatorial objects are the setW = {a,b}⋆ of binary words. A wordw ∈W

can also be viewed as describing a walk in the plane, providedone interpretsa and
b as the vectors(+1,+1) and (+1,−1), respectively. Such walks in turn describe
fluctuations in coin-tossing games, as described by Feller [205].
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Figure IX.7 . Walks, excursions, bridges, and meanders of Dyck type: from left to
right and top to bottom, random samples of length 50.

The combinatorial decompositions of Section V. 4, p. 318, form the basis of our
combinatorial treatment. What is especially interesting here is to observe the complete
chain where a specific constraint leads in succession to a combinatorial decomposi-
tion, a specific analytic type of BGF, and a local singular structure that is eventually
reflected by a particular limit law.

ExampleIX.8. Initial runs in random walks.We consider here walks in the right half-plane
that start from the origin and are made of stepsa = (1,1), b = (1,−1). According to the
discussion of Chapter VII (p. 506), one can distinguish four major types of walks (Figure IX.7).

— Unconstrained walks(W) corresponding to words and freely described byW =
SEQ(a, b);

— Dyck paths(D), which always have a non-negative ordinate and end at level 0; the
closely related classG = Db represents the collection of gambler’s ruin sequences.
In probability theory, Dyck paths are also referred to asexcursions.

— Bridges(B), which are walks that may have negative ordinates but must finish at
level 0.

— Meanders(M), which always have a non-negative altitude and may end at an arbi-
trary non-negative altitude.

The parameterχ of interest is in all cases the length of the (longest) initial run ofa’s.
First,unconstrained walksobey the decomposition

W = SEQ(a)SEQ(b SEQ(a)),

already repeatedly employed. Thus, the BGF is

W(z,u) = 1

1− zu

1

1− z(1− z)−1
.

By singularity analysis of the pole atρ = 1/2, the PGF ofχ on random words ofWn satisfies

pn(u) ∼
1/2

1− u/2
,

for all u such that|u| < 2. This asymptotic value of the PGF corresponds to a limit law, which is
a geometric with parameter 1/2, in agreement with what was found in Examples IX.1 and IX.2.

Next, considerDyck paths. Such a path decomposes into “arches” that are themselves
Dyck paths encapsulated by a paira,b, namely,

D = SEQ(aDb),
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which yields a GF of the Catalan domain,

D(z) = 1

1− z2D(z)
, D(z) = 1−

√
1− 4z2

2z2
.

In order to extract the initial run ofa’s, we observe that a word whose initiala-run isak con-
tainsk components of the formbD. This corresponds to a decomposition in terms of the first
traversals of altitudesk− 1, . . . , 1, 0,

D =
∑

k≥0

ak(bD)k

(a special “first passage decomposition” in the sense of p. 321), illustrated by the following
diagram:

Thus, the BGF is

D(z,u) = 1

1− z2uD(z)
,

which is an even function ofz. In terms of the singular element,δ = (1− 4z)1/2, one finds

D(z1/2,u) = 2

2− u
− 2u

(2− u)2
δ + O(δ2),

asz→ 1/4. Thus, the PGF ofχ on random words ofD2n satisfies

p2n(u) ∼
u

(2− u)2
,

which is the PGF of a negative binomialN B[2] of parameter 1/2 shifted by 1. (Naturally, in
this case, explicit expressions for the combinatorial distribution are available, as this counting
is equivalent to the classical ballot problem.)

A bridgedecomposes into a sequence of arches, either positive or negative,

B = SEQ(aDb+ bDa),

whereD is like D, but with the r̂oles ofa andb interchanged. In terms of OGFs, this gives

B(z) = 1

1− 2z2D(z)
= 1√

1− 4z2
.

The setB+ of non-empty walks that start with at least onea admits a decomposition similar to
that ofD,

B+(z) =


∑

k≥1

akb(Db)k−1


 · B,

since the paths factor uniquely as aD component that hits 0 for the first time followed by aB
oscillation. Thus,

B+(z) = z2

1− z2D(z)
B(z).
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The remaining casesB− = B\B+ consist of either the empty word or of a sequence of positive
or negative arches starting with a negative arch, so that

B−(z) = 1+ z2D(z)

1− 2z2D(z)
.

The BGF results from these decompositions:

B(z, u) = z2u

1− z2uD(z)
B(z)+ 1+ z2D(z)

1− 2z2D(z)
.

Again, the singular expansion is obtained mechanically,

B(z1/2, u) = 1

(2− u
)

1

δ
+ O(1), whereδ = (1− 4z)1/2.

Thus, the PGF ofχ on random words ofB2n satisfies

p2n(u) ∼
1

2− u
.

The limit law is now geometric of parameter 1/2.
A meanderdecomposes into an initial runak, a succession of descents with their compan-

ion (positive) arches in some numberℓ ≤ k, and a succession of ascents with their correspond-
ing (positive) arches. The computations are similar to the previous cases, more intricate but still
“automatic”. One finds that

M(z, u) =
(

XY

(1− X)(1− Y)
− XY2

(1− XY)(1− Y)

)
1

1− Y
+ 1

1− X
,

with X = zu, Y = zW1(z), so that

M(z,u) = 2
1− u− 2z+ 2uz2+ (u− 1)

√
1− 4z2

(1− zu)
(
1− 2z−

√
1− 4z2

) (
2− u+ u

√
1− 4z2

) .

There are now two singularities atz= ±1/2, with singular expansions,

M(z,u) =
z→1/2

u
√

2

(2− u)2
1√

1− 2z
+ O(1), M(z,u) =

z→−1/2

4− u

4− u2
+ o(1),

so that only the singularity at 1/2 matters asymptotically. Then, we have

pn(u) ∼
u

(2− u)2
,

and the limit law is a shifted negative binomialN B[2] of parameter 1/2. In summary:

Proposition IX.4. The length of the initial run of a’s in unconstrained walks and bridges is
asymptotically distributed as a geometric; in Dyck excursions and meanders it is distributed as
a negative binomial N B[2].

Similar analyses can be applied to walks with a finite set of step types [27]. . .. . . . . . . . �

� IX.15. Left-most branch of a unary–binary (Motzkin) tree.The class of unary–binary trees
(or Motzkin trees) is defined as the class of unlabelled rooted plane trees where (out)degrees
of nodes are restricted to the set{0, 1, 2}. The parameter equal to the length of the left-most
branch has a limit law that is a negative binomialN B[2]. Find its parameter. �
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IX. 4. Continuous limit laws

Throughout this chapter, our goal is to quantify sequences of random variables
Xn that arise from an integer-valued combinatorial parameterχ defined on a combi-
natorial classF . It is a fact that, when the meanµn and the standard deviationσn

of Xn both tend to infinity asn gets large, then a limit law that iscontinuoususually
holds. That limit law arises not directly from theXn themselves (as was the case for
discrete-to-discrete convergence in the previous section) but rather from theirstan-
dardizedversions:

X⋆n =
Xn − µn

σn
.

In this section, we provide definitions and major theorems needed to deal with such
a discrete-to-continuous situation7. Our developments largely parallel those of Sec-
tion IX. 2 relative to the discrete case, with integral transforms serving as the continu-
ous analogue of probability generating functions.

IX. 4.1. Convergence to a continuous limit.A real random variableY is in all
generality specified by itsdistribution function,

P{Y ≤ x} = F(x).

It is said to becontinuousif F(x) is continuous (see Appendix C.2:Random variables,
p. 771). In that case,F(x) has no jump, and there is no single value in the range of
Y that bears a non-zero probability mass. If in additionF(x) is differentiable, the
random variableY is said to have adensity, g(x) = F ′(x), so that

P(Y ≤ x) =
∫ x

−∞
g(x)dx, P{x < Y ≤ x + dx} = g(x)dx.

A particularly important case for us here is the standardGaussianor normalN (0,1)
distribution function,

8(x) = 1√
2π

∫ x

−∞
e−w

2/2 dw,

also called theerror function(erf), the corresponding density being

ξ(x) ≡ 8′(x) = 1√
2π

e−x2/2.

This section and the next ones are relative to the existence of limit laws of the con-
tinuous type, with Gaussian limits playing a prominent rôle. The general definitions of
convergence in law (or in distribution) and of weak convergence (see Appendix C.5:
Convergence in law, p. 776) instantiate as follows.

Definition IX.3 (Discrete-to-continuous convergence). Let Y be acontinuousrandom
variable with distribution function FY(x). A sequence of random variables Yn with

7Probability theory has elaborated a unified way of dealing with discrete and continuous laws alike,
as well as with mixed cases; see Appendix C.1:Probability spaces and measure, p. 769. For analytic
combinatorics, it seems, however, preferable to develop the two branches of the theory in a parallel fashion.
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distribution functions FYn(x) is said to converge in distribution to Y if,pointwise, for
each x,

lim
n→∞ FYn(x) = FY(x).

In that case, one writes Yn⇒Y and FYn⇒ FY. Convergence is said to take place with
speedǫn if

sup
x∈R

∣∣FYn(x)− FY(x)
∣∣ ≤ ǫn.

The definition does nota priori impose uniform convergence. It is a known fact,
however, thatconvergence of distribution functions to a continuous limit is always
uniform. This uniformity property means that there always exists a speedǫn that tends
to 0 asn→∞.

IX. 4.2. Continuity theorems for transforms. Discrete limit laws can be es-
tablished via convergence of PGFs to a common limit, as asserted by the continuity
theorem for PGFs, Theorem IX.1, p. 624. In the case of continuous limit laws, one
has to resort to integral transforms (see Appendix C.3:Transforms of distributions,
p. 772), whose definitions we now recall.

— TheLaplace transform, also called themoment generating function, λY(s)
is defined by

λY(s) := E{esY} =
∫ +∞

−∞
esx d F(x).

— TheFourier transform, also called thecharacteristic function, φY(t) is de-
fined by

φY(t) := E{ei tY } =
∫ +∞

−∞
ei t x d F(x).

(Integrals are taken in the sense of Lebesgue–Stieltjes or Riemann–Stieltjes; cf Ap-
pendix C.1:Probability spaces and measure, p. 769.)

There are two classical versions of the continuity theorem,one for characteris-
tic functions, the other for Laplace transforms. Both may beviewed as extensions
of the continuity theorem for PGFs. Characteristic functions always exist and the
corresponding continuity theorem gives anecessary and sufficient conditionfor con-
vergence of distributions. As they are a universal tool, characteristic functions are
therefore often favoured in the probabilistic literature.In the context of this book,
strong analyticity properties go along with combinatorialconstructions so that both
transforms usually exist and both can be put to good use (Figure IX.8).

Theorem IX.4 (Continuity of integral transforms). Let Y,Yn be random variables
with Fourier transforms (characteristic functions)φ(t), φn(t), and assume that Y has
a continuous distribution function. A necessary and sufficient condition8 for the con-
vergence in distribution, Yn⇒Y , is that,pointwise, for each real t ,

lim
n→∞φn(t) = φ(t).

8The first part of this theorem is also known asLévy’s continuity theoremfor characteristic functions.
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Figure IX.8 . The standardized distribution functions of the binomial law (top), the
corresponding Fourier transforms (right), and the Laplace transforms (bottom), for
n = 3, 6, 9, 12, 15. The distribution functions centred around the meanµn = n/2
and scaled according to the standard deviationσn =

√
n/4 converge to a limit which

is the Gaussian error function,8(x) = 1√
2π

∫ x

−∞
e−w

2/2 dw. Accordingly, the

corresponding Fourier transforms (or characteristic functions) converge toφ(t) =
e−t2/2, while the Laplace transforms (or moment generating functions) converge to

λ(s) = es2/2.

Let Y,Yn be random variables with Laplace transformsλ(s), λn(s) that exist in a
common interval[−s0, s0], with s0 > 0. If, pointwisefor each real s∈ [−s0, s0],

lim
n→∞ λn(s) = λ(s),

then the Yn converge in distribution to Y : Yn⇒Y .

Proof. See Billingsley’s book [68, Sec. 26] for Fourier transforms and [68, p. 408],
for Laplace transforms. �
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� IX.16. Laplace transforms need not exists.Let Yn be a mixture of a Gaussian and a Cauchy
distribution:

P(Yn ≤ x) =
(

1− 1

n

)∫ x

−∞
e−w

2/2
√

2π
dw + 1

πn

∫ x

−∞
dw

1+ w2
.

ThenYn converges in distribution to a standard Gaussian limitY, althoughλn(s) only exists for
ℜ(s) = 0. �

In the discrete case, the continuity theorem for PGFs (Theorem IX.1, 624) even-
tually relies on continuity of the Cauchy coefficient formula that realizes the inversion
needed in recovering coefficients from PGFs. In an analogousmanner, the continuity
theorem for integral transforms may be viewed as expressingthe continuity of Laplace
or Fourier inversion in the specific context of probability distribution functions.

The next theorem, called theBerry–Esseen inequality, is an effective version of
the Fourier inversion theorem that proves especially useful for characterizing speeds of
convergence. It bounds in a constructive manner the sup-norm distance between two
distribution functions in terms of a special metric distance between their characteristic
functions. Recall that|| f ||∞ := supx∈R | f (x)|.
Theorem IX.5 (Berry–Esseen inequality). Let F,G be distribution functions with
characteristic functionsφ(t), γ (t). Assume that G has a bounded derivative. There
exist absolute constants c1, c2 such that for any T> 0,

||F − G||∞ ≤ c1

∫ +T

−T

∣∣∣∣
φ(t)− γ (t)

t

∣∣∣∣ dt + c2
||G′||∞

T
.

Proof. See Feller [206, p. 538] who gives

c1 =
1

π
, c2 =

24

π

as possible values for the constants. �

This theorem is typically used withG being the limit distribution function (often
a Gaussian for which||G′||∞ = (2π)−1/2) andF = Fn a distribution that belongs to
a sequence converging toG. The quantityT may be assigned an arbitrary value; the
one giving the best bound in a specific application context isthen naturally chosen.
� IX.17. A general version of Berry–Esseen.Let F,G be two distributions functions. Define
Lévy’s “concentration function”,QG(h) := supx(G(x + h) − G(x)), for h > 0. There exists
an absolute constantC such that

||F − G||∞ ≤ C QG(
1

T
)+ C

∫ +T

−T

∣∣∣∣
φ(t)− γ (t)

t

∣∣∣∣ dt.

See Elliott’s book [191, Lemma 1.47] and the article by Stef and Tenenbaum for a discus-
sion [557]. The latter provides inequalities analogous to Berry–Esseen,but relative to Laplace
transforms on the real line (distance bounds tend to be much weaker dueto the smoothing nature
of the Laplace transform). �

Large powers and the central limit theorem.Here is the simplest conceivable
illustration of how to use the continuity theorem, Theorem IX.4. The unbiased bino-
mial distribution Bin(n,1/2) is defined as the distribution of a random variableXn

with PGF

pn(u) ≡ E(uXn) =
(

1

2
+ u

2

)n

,
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and characteristic function,

φn(t) ≡ E(ei t Xn) = pn(e
i t ) = 1

2n

(
1+ ei t

)n
.

The mean isµn = n/2 and the variance isσ 2
n = n/4. Therefore, the standardized

variableX⋆n = (Xn − µn)/σn has characteristic function

(20) φ⋆n(t) ≡ E(ei t X⋆
n) =

(
cosh

i t√
n

)n

=
(

cos
t√
n

)n

.

The asymptotic form is directly found by taking logarithms,and one gets

(21) logφ⋆n(t) = n log

(
1− t2

2n
+ t4

6n2
+ · · ·

)
= − t2

2
+ O

(
1

n

)
,

pointwise, for any fixedt , asn → ∞. Thus, we haveφ⋆n(t) → e−t2/2, asn → ∞.
This establishes convergence to the Gaussian limit. In addition, upon choosing
T = n1/2, the Berry–Esseen inequalities (Theorem IX.5) show that the speed of con-
vergence isO(n−1/2).
� IX.18. De Moivre’s Central Limit Theorem.Characteristic functions extend the normal limit
law to biased binomial distributions with PGF(p+ qu)n, wherep+ q = 1. (Of course, the
result is also accessible from elementary asymptotic calculus, which constitutes De Moivre’s
original derivation; see Note IX.1, p. 615.) �

The Central Limit Theorem, known as theCLT (the term was coined by Pólya
in 1920, originally because of its “zentralle Rolle” [central rôle] in probability the-
ory), expresses the asymptotically Gaussian character of sums of random variables. It
was first discovered9 in the particular case of binomial variables by De Moivre. The
general version is due to Gauss (who, around 1809, had realized from his works on
geodesy and astronomy the universality of the “Gaussian” law but had only unsatis-
factory arguments) and to Laplace (in the period 1812–1820). Laplace in particular
uses Fourier methods and his formulation of the CLT is highlygeneral, although some
of the precise validity conditions of his arguments only became apparent more than a
century later.

Theorem IX.6 (Basic CLT). Let Tj be independent random variables supported by
R with a common distribution of (finite) meanµ and (finite) standard deviationσ . Let
Sn := T1+ · · · + Tn. Then the standardized sum S⋆

n converges to the standard normal
distribution,

S⋆n ≡
Sn − µn

σ
√

n
⇒N (0,1).

Proof. The proof is based on local expansions of characteristic functions, much like
those in Equations (20) and (21). First, by a general theorem(see the summary in
Figure B.2, p. 777 and [424, p. 22], for a proof), the existence of the first two moments
implies thatφT1 is twice differentiable at 0, so that

φT1(t) = 1+ iµt − 1

2
(µ2+ σ 2)t2+ o(t2), t → 0.

9For a perspective on historical aspects of CLT, we refer to Hans Fischer’s well-informed mono-
graph [213].
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By shifting, it suffices to consider the case of zero-mean variables (µ = 0). We then
have, pointwise for eacht asn→∞,

(22) φT1

(
t

σ
√

n

)n

=
(

1− t2

2n
+ o

(
t2

2n

))n

→ e−t2/2,

as in Equations (20) and (21). The conclusion follows from the continuity theorem.
(This theorem is in virtually any basic book on probability theory, e.g., [206, p. 259]
or [68, Sec. 27].) �

It is important to observe what happens if theTj are discrete and given by their
common PGFp(u) ≡ pT1(u) (a case otherwise discussed in Subsection VIII. 8.3,
p. 591, under a different angle). The proof above makes use ofcharacteristic functions,
that is, we setu = ei t , so thatu = 1 corresponds tot = 0. Since there is a scaling
of t by 1/

√
n in the crucial estimate (22), we only need information onp(u) relatively

to a small neighbourhood ofu = 1. What this discussion brings is the following
general fact:in establishing continuous limit laws from discrete distributions, it is the
behaviour near1 of the discrete probability generating functions that matters.We are
going to make abundant use of this observation in the next section.
� IX.19. Poisson distributions of large parameter.Let Xλ be Poisson with rateλ. Asλ tends to
infinity, Stirling’s formula provides easily convergence to a Gaussian limit. The error terms can
then be compared to what the Berry–Esseen bounds provide. (In terms of speed of convergence,
such Poisson variables of large parameters sometimes yield better approximations to combina-
torial distributions than the standard Gaussian law; see Hwang’s comprehensive study [341] for
a general analytic approach.) �

� IX.20. Extensions of the CLT.The central limit theorem in the independent case is the sub-
ject of Petrov’s comprehensive monographs [481, 482]. There are many extensions of the CLT,
to variables that are independent but not necessarily identically distributed (the Lindeberg–
Lyapunov conditions) or variables that are only dependent in some weak sense (mixing con-
ditions); see the discussion by Billingsley [68, Sec. 27]. In the particular case where theTs
are discrete, a stronger “local” form of the Theorem results from the saddle-point method; see
our earlier discussion in Section VIII. 8, p. 585, the classic treatment byGnedenko and Kol-
mogorov [294], and extensions in Section IX. 9 below. �

IX. 4.3. Tail estimates. Contrary to what happens with characteristic functions
that are always defined, the mere existence of the Laplace transform of a distribution
in a non-empty interval containing 0 implies interesting tail properties. We quote here:

Theorem IX.7 (Exponential tail bounds). Let Y be a random variable such that its
Laplace transformλ(s) = E(esY) exists in an interval[−a,b], where−a < 0 < b.
Then the distribution of Y admitsexponential tails, in the sense that, as x→ +∞,
there holds

P(Y < −x) = O(e−ax), P(Y > x) = O(e−bx).

Proof. By symmetry (changeY to −Y), it suffices to establish the right-tail bounds.
We have, for anys such that 0≤ s ≤ b,

(23)

P(Y > x) = P(esY > esx)

= P

[
esY >

esx

λ(s)
E(esY)

]

≤ λ(s)e−sx,
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where the last line results from Markov’s inequality (Appendix A.3: Combinatorial
probability, p. 727). It then suffices to chooses= b. �

Like its discrete counterpart, Theorem IX.3, this theorem is technically quite shal-
low but still useful, since it sets the stage for the ulteriordevelopment of large devia-
tion estimates, in Section IX. 10.

IX. 5. Quasi-powers and Gaussian limit laws

The central limit theorem of probability theory admits a fruitful extension in the
context of analytic combinatorics. As we show in this section, it suffices that the PGF
of a combinatorial parameterbehavesnearlylike a large powerof a fixed function to
ensure convergence to a Gaussian limit—this is thequasi-powersframework. We first
illustrate this point by considering the Stirling cycle distribution.

ExampleIX.9. The Stirling cycle distribution. The numberχ of cycles in a permutation is
described by the BGF

P = SET(u CYC(Z)) H⇒ P(z, u) = exp

(
u log

1

1− z

)
= (1− z)−u.

Let Xn be the random variable corresponding toχ taken overPn. The PGF ofXn is

pn(u) =
(

n+ u− 1

n

)
= u(u+ 1)(u+ 2) · · · (u+ n− 1)

n!
= Ŵ(u+ n)

Ŵ(u)Ŵ(n+ 1)
.

We find foru near 1,

(24) pn(u) ≡ E(uXn) = nu−1

Ŵ(u)

(
1+ O

(
1

n

))
= 1

Ŵ(u)

(
e(u−1)

)logn
(

1+ O

(
1

n

))
.

The last estimate results from Stirling’s formula for the Gamma function (orfrom singularity
analysis of [zn](1− z)−u, Chapter VI), with the error term being uniformlyO(n−1), provided
u stays in a small enough neighbourhood of 1, for instance|u− 1| ≤ 1/2. Thus, asn→ +∞,
the PGFpn(u) approximatelyequals a large power ofeu−1, taken with exponent logn and
multiplied by the fixed function,Ŵ(u)−1. By analogy with the Central Limit Theorem, we may
reasonably expect a Gaussian law to hold.

The mean satisfiesµn = logn+γ+o(1) and the standard deviation isσn =
√

logn+o(1).
We then consider the standardized random variable,

X⋆n =
Xn − L − γ√

L
, where L := logn.

The characteristic function ofX⋆n, namelyφ⋆n(t) = E

(
ei t X⋆

n

)
, then inherits the estimate (24)

of pn(u):

φ⋆n(t) =
e−i t (L1/2+γ L−1/2)

Ŵ(ei t /
√

L )
exp

(
L(ei t /

√
L − 1)

) (
1+ O

(
1

n

))
.

For fixedt , with L →∞, the logarithm is then found mechanically to satisfy

(25) logφ⋆n(t) = −
t2

2
+ O

(
(logn)−1/2

)
,
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so thatφ⋆n(t) ∼ e−t2/2. This is sufficient to establish a Gaussian limit law,

(26) lim
n→∞P

{
Xn ≤ logn+ γ + x

√
logn

}
= 1√

2π

∫ x

−∞
e−w

2/2 dw.

Proposition IX.5 (Goncharov’s Theorem). The Stirling cycle distribution,P(Xn = k) =
1
n!

[n
k
]
, describing the number of cycles (equivalently, the number of records) in a random per-

mutation of size n is asymptotically normal.

This result was obtained by Goncharov as early as 1944 (see [299]),albeit without an error
term, as his investigations predate the Berry–Esseen inequalities. Our treatment quantifies the
speed of convergence to the Gaussian limit asO((logn)−1/2), by virtue of Equation (25) and
Theorem IX.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

The cycle example is characteristic of the occurrence of Gaussian laws in analytic
combinatorics. What happens is that the approximation (24) by a power with “large”
exponentβn = logn leads after normalization, to the characteristic functionof a
Gaussian variable, namelye−t2/2. From this, the limit distribution (26) results by the
continuity theorem. This is in fact a very general phenomenon, as demonstrated by
a theorem of Hsien-Kuei Hwang [337, 340] that we state next and that builds upon
earlier statements of Bender and Richmond [44].

The following notations will prove especially convenient:given a functionf (u)
analytic atu = 1 and assumed to satisfyf (1) 6= 0, we set

(27) m( f ) = f ′(1)
f (1)

, v( f ) = f ′′(1)
f (1)

+ f ′(1)
f (1)

−
(

f ′(1)
f (1)

)2

.

The notationsm, v suggest their probabilistic counterparts while neatly distinguishing
between the analytic and probabilistic realms: Iff is the PGF of a random variableX,
then f (1) = 1 andm( f ), the mean, coincides with the expectationE(X); the quantity
v( f ) then coincides with the varianceV(X). Accordingly, we callm( f ) andv( f ),
respectively, theanalytic meanandanalytic varianceof function f .

Theorem IX.8 (Quasi-powers Theorem). Let the Xn be non-negative discrete random
variables (supported byZ≥0), with probability generating functions pn(u). Assume
that, uniformly in a fixed complex neighbourhood of u= 1, for sequencesβn, κn →
+∞, there holds

(28) pn(u) = A(u) · B(u)βn

(
1+ O

(
1

κn

))
,

where A(u), B(u) are analytic at u= 1 and A(1) = B(1) = 1. Assume finally that
B(u) satisfies the so-called “variability condition”,

v(B(u)) ≡ B′′(1)+ B′(1)− B′(1)2 6= 0.

Under these conditions, the mean and variance of Xn satisfy

(29)
µn ≡ E(Xn) = βn m(B(u))+m(A(u))+ O

(
κ−1

n

)

σ 2
n ≡ V(Xn) = βn v(B(u))+ v(A(u))+ O

(
κ−1

n

)
.
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The distribution of Xn is, after standardization, asymptotically Gaussian, and the
speed of convergence to the Gaussian limit is O(κ−1

n + β−1/2
n ):

(30) P

{
Xn − E(Xn)√

V(Xn)
≤ x

}
= 8(x)+ O

(
1

κn
+ 1√

βn

)
,

where8(x) is the distribution function of a standard normal,

8(x) = 1√
2π

∫ x

−∞
e−w

2/2 dw.

This theorem is a direct application of the following lemma,also due to
Hwang [337, 340], that applies more generally to arbitrary discrete or continuous
distributions (see also Note IX.22, p. 647), and is thus entirely phrased in terms of
integral transforms.

Lemma IX.1 (Quasi-powers, general distributions). Assume that the Laplace trans-
formsλn(s) = E{esXn} of a sequence of random variables Xn are analytic in a disc
|s| < ρ, for someρ > 0, and satisfy there an expansion of the form

(31) λn(s) = eβnU (s)+V(s)
(

1+ O

(
1

κn

))
,

with βn, κn → +∞ as n→ +∞, and U(s),V(s) analytic in |s| ≤ ρ. Assume also
the variability condition, U′′(0) 6= 0.

Under these assumptions, the mean and variance of Xn satisfy

(32)
E(Xn) = βnU ′(0)+ V ′(0)+ O(κ−1

n ),

V(Xn) = βnU ′′(0)+ V ′′(0)+ O(κ−1
n ).

The distribution of X⋆n := (Xn − βnU ′(0))/
√
βnU ′′(0) is asymptotically Gaussian,

the speed of convergence to the Gaussian limit being O(κ−1
n + β−1/2

n ).

Proof. First, we estimate the mean and variance. The variables is a priori restricted
to a small neighbourhood of 0. By assumption, the function logλn(s) is analytic at 0
and it satisfies

logλn(s) = βnU (s)+ V(s)+ O

(
1

κn

)

This asymptotic expansion carries over, with the same type of error term, to deriva-
tives at 0 because of analyticity: this can be checked directly from Cauchy integral
representations,

1

k!

dr

dsr
logλn(s)

∣∣∣∣
s=0
= 1

2iπ

∫

γ

logλn(s)
ds

sr+1
,

upon using a small but fixed integration contourγ and taking advantage of the basic
expansion of logλn(s). In particular, the mean and variance are seen to satisfy the
estimates of (32).

Next, we consider the standardized variable,

X⋆n =
Xn − βnU ′(0)√

βnU ′′(0)
, λ⋆n(s) = E{esX⋆n}.
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We have

logλ⋆n(s) = −
βnU ′(0)√
βnU ′′(0)

s+ logλn(
s√

βnU ′′(0)
).

Local expansions to third order based on the assumption (31), with λn(0) ≡ 1, yield

(33) logλ⋆n(s) =
s2

2
+ O

(
|s| + |s|3

β
1/2
n

)
+ O

(
1

κn

)
,

uniformly with respect tos in a disc of radiusO(β1/2
n ), and in particular in any fixed

neighbourhood of 0. This is enough to conclude as regards convergence in distribution
to a Gaussian limit, by the continuity theorem of either Laplace transforms (restrict-
ing s to be real) or of Fourier transforms (takings= i t ).

Finally, the speed of convergence results from the Berry–Esseen inequalities.
Take T ≡ Tn = cβ1/2

n , wherec is taken sufficiently small but non-zero, in such a
way that the local expansion ofλn(s) at 0 applies. Then, the expansion (33) instanti-
ated ats= i t entails that

1n :=
∫ Tn

−Tn

∣∣∣∣∣
λ⋆n(i t )− e−t2/2

t

∣∣∣∣∣ dt + 1

Tn

satisfies1n = O(β−1/2
n + κ−1

n ). The statement now follows from the Berry–Esseen
inequality, Theorem IX.5. �

Theorem IX.8 under either form (28) or (31) can be readformally as expressing
the distribution of a (pseudo)random variable

Z = Y0+W1+W2+ · · · +Wβn,

whereY0 “corresponds” toeV(s) (or A(u)) and eachWj to eU (s) (or B(u)). However,
there is noa priori requirement thatβn should be an integer, nor thateU (s),eV(s) be
Laplace transforms of probability distribution functions(usually theyaren’t). In a
way, the theorem recycles the intuition that underlies the classical proof of the central
limit theorem and makes use of the analytic machinery behindit.

It is of particular importance to note that the conditions ofTheorem IX.8 and
Lemma IX.1 are purely local:what is required islocal analyticity of the quasi-power
approximation at u= 1 for PGFs or, equivalently, s= 0 for Laplace–Fourier trans-
forms. This important feature ultimately owes to the standardization of random vari-
ables and the corresponding scaling of transforms that goesalong with continuous
limit laws
� IX.21. Mean, variance and cumulants.With the notations of (27), one has also

m( f ) = d

dt
log f (et )

∣∣∣∣
t=0

, v( f ) = d2

dt2
log f (et )

∣∣∣∣∣
t=0

;

the higher order derivatives give rise to quantities known ascumulants. �

� IX.22. Two equivalent forms of standardization.By simple real analysis, one has also, under
the assumptions of Lemma IX.1:

P

{
Xn − E(Xn)√

V(Xn)
≤ x

}
= 8(x)+ O

(
1

κn
+ 1√

βn

)
.
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Thus, main approximations in the convergence to the Gaussian limit are notaffected by the way
standardization is done, either with theexactvalues of the mean and variance ofXn or with
their first-order asymptoticapproximations. The same is true for Theorem IX.8. �

� IX.23. Higher moments under quasi-powers conditions.Following Hwang [340], one has
also, under the conditions of the Quasi-powers Theorem and for each fixedk,

E(Xk
n) = ̟k(βn)+ O

(
1

κn

)
, ̟k(x) := k![sk]exU(s)+V(s).

Thus, a polynomial̟ k, of exact degreek, describes the asymptotic form of higher moments.
(Hint: make use of differentiability properties of asymptotic expansions ofanalytic functions,
as in Subsection VI. 10.1, p. 418.) �

Singularity perturbation and Gaussian laws.The main thread of this chapter is
that ofbivariate generating functions. In general, we are given a BGFF(z,u) and aim
at extracting a limit distribution from it. The quasi-powerparadigm in the form (28)
is what one should look for, when the mean and the standard deviation both tend to
infinity with the sizen of the combinatorial model.

We proceed heuristically in the following informal discussion, which expands on
the brief indications of p. 618 relative to singularity perturbation—precise develop-
ments are given in the next sections. Start from a BGFF(z,u) and consideru as a
parameter. If a singularity analysis of sorts is applicableto the counting generating
function F(z,1), it leads to an approximation,

fn ≈ C · ρ−nnα,

whereρ is the dominant singularity ofF(z,1) andα is related to the critical expo-
nent of F(z,1) at ρ. A similar type of analysis is often applicable toF(z,u) for u
near 1. Then, it is reasonable to hope for an approximation ofthe coefficients in the
z-expansion of the bivariate GF,

fn(u) ≈ C(u)ρ(u)−nnα(u).

In this perspective, the corresponding PGF is of the form

pn(u) ≈
C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

nα(u)−α(1).

The strategy envisioned here is thus a perturbation analysis of singular expansions
with the auxiliary parameteru being restricted to a small neighbourhood of 1.

In particular if onlythe dominant singularity moveswith u, we have a rough form

pn(u) ≈
C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

,

suggesting a Gaussian law with mean and variance that are both O(n), by the Quasi-
powers Theorem. If onlythe exponent varies, then

pn(u) ≈
C(u)

C(1)
nα(u)−α(1) = C(u)

C(1)

(
eα(u)−α(1)

)logn
,

suggests again a Gaussian law, but with mean and variance that are now bothO(logn).
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u ∈ [α, β] Large deviations

Figure IX.9 . The correspondence between regions of theu–plane when considering
a combinatorial BGFF(z, u) and asymptotic properties of combinatorial distribu-
tions.

These cases point to the fact that a rather simple perturbation of a univariate ana-
lysis is likely to yield a limiting Gaussian distribution. Each major coefficient extrac-
tion method of Chapters IV–VIII then plays a rôle, and the present chapter illustrates
this important point in the following contexts.

— Meromorphic analysisfor functions with polar singularities (Section IX. 6
below, based on a perturbation of methods of Chapters IV and V);

— Singularity analysisfor functions with algebraic–logarithmic singularity
(Section IX. 7 below, based on a perturbation of methods of Chapters VI
and VII);

— Saddle-point analysisfor functions with fast growth at their singularity (Sec-
tion IX. 8 below, based on a perturbation of methods of Chapters VIII).

In essence, the decomposable character of many elementary combinatorial structures
is reflected by strong analyticity properties of bivariate GFs that, after perturbation
analysis, lead, via the Quasi-powers Theorem (Theorem IX.8), to Gaussian laws. The
coefficient extraction methods being based on contour integration supply the necessary
uniformity conditions.

We shall also see that several other properties often supplement the existence of
Gaussian limit laws in combinatorics:

— Local limit laws[developed in Section IX. 9, p. 694 below] arise from quasi-
power approximations, whenever these remain valid for all values ofu on
the unit circle. In that case, it is possible to express the combinatorial prob-
ability distribution directly in terms of the Gaussian density, by means of
the saddle-point method (in a form similar to that of SectionVIII. 8, p. 585,
dedicated lo large powers) replacing the Continuity Theorem to effect the
secondary coefficient extraction in [ukzn]F(z,u).

— Large deviation estimates[developed in Section IX. 10, p. 699 below] quan-
tify the probabilities of rare events, away from the mean value. As could be
anticipated from Subsection IX. 4.3 relative to tail bounds, they are obtained
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by considering [zn]F(z,u0) for some value ofu0 away from 1, via what are
essentially saddle-point bounds applied to [zn]F(z,u0).

The correspondence betweenu–domains and properties of combinatorial distributions
is summarized in Figure IX.9. The next sections will copiously illustrate this paradigm
for each of the main complex asymptotic methods of Part B.

IX. 6. Perturbation of meromorphic asymptotics

Once equipped with the general Quasi-powers Theorem, Theorem IX.8 (p. 645),
it becomes possible to proceed and analyse broad classes of analytic schemas, along
the lines of the principles of singularity perturbation informally presented in the previ-
ous section. We commence by investigating the effect of the secondary variableu on
a bivariate generating function, whose univariate restriction F(z,1) can be subjected
to a meromorphic analysis (Chapters IV and V), that is, its dominant singularities are
poles. For basic parameters arising from the constructionsexamined there, Gaussian
laws are the rule.

In what follows, we first examine supercritical compositions and sequences and
establish the Gaussian character of the number of components. In this way, one gets
precise information on the profile of supercritical sequences, which greatly refines the
mean value estimates of Section V. 2, p. 293. We next enunciate a powerful state-
ment widely applicable to meromorphic functions, with typical applications to runs in
permutations, parallelogram polyominoes, and coin fountains. The section concludes
with an investigation of the elementary perturbation theory of linear systems, whose
applications are in the area of paths in graphs, finite automata, and transfer matrix
models (Sections V. 5 and V. 6).

This section is largely based on works of Bender who, starting with his seminal
article [35], was the first to propose abstract analytic schemas leading to Gaussian laws
in analytic combinatorics. Our presentation also relies onsubsequent works of Ben-
der, Flajolet, Hwang, Richmond, and Soria [44, 258, 260, 337, 338, 339, 340, 547].
The essential philosophy here is that (almost) any univariate problem studied in Chap-
ter V relative to rational and meromorphic asymptotics is susceptible to singularity
perturbation, to the effect that limit Gaussian laws hold for basic parameters.

Supercritical compositions and sequences.Our first application of the quasi-
powers framework is to supercritical compositions (p. 411), whenever the outer func-
tion has a dominant pole. This covers in particular supercritical sequences, for which
asymptotic enumeration and moments have been worked out in Section V. 2, p. 293.
In this way, we get access to distributions arising in surjections, alignments, and com-
positions of various sorts. Our reader is encouraged to study the proof that follows,
since it constitutes the technically simplest, yet characteristic, instance of asingularity
perturbation process.

Proposition IX.6 (Supercritical compositions). Consider the bivariate composition
schema F(z,u) = g(uh(z)). Assume that g(z) and h(z) satisfy thesupercriticality
conditionτh > ρg, that g is analytic in|z| < R for some R> ρg, with a unique
dominant singularity atρg, which is a simple pole, and that h is aperiodic. Then the
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numberχ of H–components in a randomFn–structure, corresponding to the proba-
bility distribution [ukzn]F(z,u)/[zn]F(z,1) has a mean and variance that are asymp-
totically proportional to n; after standardization, the parameterχ satisfies a limiting
Gaussian distribution, with speed of convergence O(1/

√
n).

Proof. We start as usual with univariate analyses. Letρ be such thath(ρ) = ρg

with 0 < ρ < ρh. (Existence and unicity ofρ are guaranteed by the supercriticality
condition.) The expansions,

g(z) = C

1− z/ρg
+ D+o(1), h(z) = ρg+ h′(ρ)(z− ρ)+ 1

2
h′′(ρ)(z− ρ)2+ · · · ,

result from the hypotheses. Clearly,F(z) ≡ F(z,1) has a simple pole atz = ρ and,
by composition of the expansions ofg andh:

F(z) = Cρg

ρh′(ρ)
1

1− z/ρ
+ O(1).

Aperiodicity of h also implies thatρ is the unique dominant singularity ofF(z,1).
The usual process of meromorphic coefficient analysis then provides

[zn]F(z) = Cρg

ρh′(ρ)
ρ−n(1+ o(1)),

whereo(1) represents an exponentially small error term. Moments can be obtained
by differentiation, to the effect that the GF associated to the moment of orderr has
a pole of order(r + 1) and is amenable to singularity analysis. (This mimics the
univariate analysis of supercritical compositions in Section V. 2, p. 293.) However,
moment estimates also result from subsequent developments, so that this phase of the
analysis can be bypassed.

Now comes the singularity perturbation process. In what follows, we repeatedly
restrictu to a sufficiently small neighbourhood of 1. The equation inρ(u),

uh(ρ(u)) = ρg

admits a unique root nearρ, whenu is sufficiently close to 1, and by the analytic
inversion lemma (Lemma IV.2, p. 275), the functionρ(u) is analytic atu = 1. The
function z 7→ F(z,u) then has a simple pole atz = ρ(u), and, by composition of
expansions, we obtain:

(34) F(z,u) ∼ Cρg

uρ(u)h′(ρ(u))
1

1− z/ρ(u)
(z→ ρ(u)).

Next, for u again close enough to 1, we claim that the functionz 7→ F(z,u)
admitsρ(u) as unique dominant singularity. The proof of this fact depends on the
aperiodicity ofh(z), which grants us the inequality|h(z)| < h(ρ) = ρg for |z| = ρ,
z 6= ρ; also, forz nearρ, the equationh(z) = ρg admits locally a unique solution, as
already seen above. Thus, there exists a quantityr > ρ such that the equationh(z) =
ρ admits in|z| < r the unique solutionz = ρ. But then, by keepingu close enough
to 1, one can findS with ρ < S < r , such that, in|z| ≤ S, the unique solution to
the equationuh(z) = ρg is ρ(u) (see the continuity argument used in the proof of the
Analytic Inversion Theorem of Appendix B.5:Implicit Function Theorem, p. 753).
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We can now conclude. Let us takeS as in the previous paragraph and restrictu
to a suitably small complex neighbourhood of 1, as the need arises. We then revisit
the proof by contour integration of coefficient extraction in meromorphic functions,
Theorem IV.10, p. 258. We have, by residues,

1

2iπ

∫

|z|=S
F(z,u)

dz

zn+1
= [zn]F(z,u)+ Res(g(uh(z))z−n−1, z= ρ(u)),

and, sinceF(z,u) = g(uh(z)) is analytic, hence uniformly bounded, for|z| = S, we
get via (34) the mainuniformestimate

[zn]F(z,u) = C(u) · ρ(u)−n (1+ O(K−n)
)
, C(u) := Cρg

uρ(u)h′(ρ(u))
,

for some K > 1. Thus, the PGF ofχ over Fn, which is pn(u) =
[zn]F(z,u)/[zn]F(z,1) satisfies

pn(u) = A(u) · B(u)n
(
1+ O(K−n)

)
, A(u) = C(u)

C(1)
, B(u) = ρ(1)

ρ(u)
.

We are then precisely within the conditions of the Quasi-powers Theorem (Theo-
rem IX.8, p. 645), and the statement follows. �

A prime application of the last proposition is to supercritical sequences, where the
properties elicited in Section V. 2, p. 293, are seen to be supplemented by Gaussian
laws.

Proposition IX.7 (Supercritical sequences). Consider a sequence schemaF =
SEQ(uH)) that is supercritical, i.e., the value of h at its dominant positive singu-
larity satisfiesτh > 1. Assuming h to be aperiodic and h(0) = 0, the number Xn
of H–components in a randomFn–structure of large size n is, after standardization,
asymptotically Gaussian with

E(Xn) ∼
n

ρh′(ρ)
, V(Xn) ∼ n

h′′(ρ)+ h′(ρ)− h′(ρ)2

ρh′(ρ)3
,

whereρ is the positive root of h(ρ) = 1.

The number X(m)n of components of some fixed size m is asymptotically Gaussian
with mean∼ θmn, whereθm = hmρ

m/(ρh′(ρ)).
Proof. The first part is a direct consequence of Proposition IX.6 with g(z) = (1−z)−1

andρg replaced by 1. The second part results from the BGF

F = SEQ(uHm+H \Hm) H⇒ F(z,u) = 1

1− (u− 1)hmzm− h(z)
,

and from the fact thatu ≈ 1 induces a smooth perturbation of the pole ofF(z,1) atρ,
corresponding tou = 1. �

The examples and notes that follow present two different types of applications
of Propositions IX.6 and IX.7. The first batch deals with cases already encountered
in Chapter V, namely, surjections (Example IX.10), alignments, and compositions—
Figure V.1 (p. 297) and Figure IX.10 illustrate typical profiles of these structures. The
second batch shows some purely probabilistic applicationsto closely related renewal
problems (Example IX.11).
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Figure IX.10. When components are sorted by size and represented by vertical seg-
ments of corresponding length, supercritical sequences present various profiles de-
scribed by Proposition IX.7. The diagrams display thelimit mean profiles of large
compositions, surjections, and alignments, for component sizes≤ 5.

ExampleIX.10. The surjection distribution.We revisit the distribution of image cardinality in
surjections for which the concentration property has been established in Chapter V. This exam-
ple serves to introduce bivariate asymptotics in the meromorphic case. Consider the distribution
of image cardinality in surjections,

F = SEQ(u SET≥1(Z)) H⇒ F(z, u) = 1

1− u(ez− 1)
.

Restrictu near 1, for instance|u − 1| ≤ 1/10. The functionF(z, u), as a function ofz, is
meromorphic with singularities at

ρ(u)+ 2ikπ, ρ(u) = log

(
1+ 1

u

)
.

The principal determination of the logarithm is used (withρ(u) near log 2 whenu is near 1). It
is then seen thatρ(u) stays within 0.06 from log 2, for|u− 1| ≤ 1/10. Thusρ(u) is the unique
dominant singularity ofF , the next nearest one beingρ(u)±2iπ with modulus certainly larger
than 5.

From the coefficient analysis of meromorphic functions (Chapter IV),the quantities
fn(u) = [zn]F(z, u) are estimated as follows,

(35)
fn(u) = −Res

(
F(z, u)z−n−1

)
z=ρ(u)

+ 1

2iπ

∫

|z|=5
F(z, u)

dz

zn+1

= 1

uρ(u)eρ(u)
ρ(u)−n + O(5−n).

It is important to note that the error term isuniform with respect tou, onceu has been con-
strained to (say)|u − 1| ≤ 0.1. This fact is derived from the coefficient extraction method,
since, in the remainder Cauchy integral of (35), the denominator ofF(z, u) stays bounded
away from 0.

The second estimate in Equation (35), constitutes a prototypical case of application of the
quasi-powers framework. Thus, the numberXn of image points in a random surjection of sizen
obeys in the limit a Gaussian law. The local expansion ofρ(u),

ρ(u) ≡ log(1+ u−1) = log 2− 1

2
(u− 1)+ 3

8
(u− 1)2+ · · · ,
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yields
ρ(1)

ρ(u)
= 1+ 1

2 log 2
(u− 1)− 3 ln(2)− 2

8(log 2)2
(u− 1)2+ O

(
(u− 1)3

)
,

so that the mean and standard deviation satisfy

(36) µn ∼ C1n, σn ∼
√

C2 n, C1 := 1

2 log 2
, C2 := 1− log 2

4(log 2)2
.

In particular, the variability condition is satisfied. Finally, one obtains, with8 the Gaussian
error function,

P{Xn ≤ C1n+ x
√

C2n} = 8(x)+ O

(
1√
n

)
.

This estimate can alternatively be viewed as a purely asymptotic statement regarding Stirling
partition numbers.

Proposition IX.8. The surjection distribution defined ask!
Sn

{n
k
}
, with Sn =

∑
k k!

{n
k
}

a surjec-
tion number, satisfiesuniformly for all realx and C1,C2 given by(36):

1

Sn

∑

k≤C1n+x
√

C2n

k!

{
n

k

}
= 1√

2π

∫ x

−∞
e−w

2/2 dw + O

(
1√
n

)
.

This result already appears in Bender’s foundational study [35]. . .. . . . . . . . . . . . . . . . . . . . . .�

� IX.24. Alignments and Stirling cycle numbers.Alignments are sequences of cycles (Chap-
ter II, p. 119), with exponential BGF given by

F = SEQ(u CYC(Z)) H⇒ F(z, u) = 1

1− u log(1− z)−1
.

The functionρ(u) is explicit,ρ(u) = 1− e−1/u, and the number of cycles in a random align-
ment is asymptotically Gaussian. This yields an asymptotic statement on Stirlingcycle num-
bers:Uniformly for all real x, with On =

∑
k k!

[n
k
]

the alignment number, there holds

1

On

∑

k≤C1n+x
√

C2n

k!

[
n

k

]
= 1√

2π

∫ x

−∞
e−w

2/2 dw + O

(
1√
n

)
,

where the two constants C1,C2 are C1 =
1

e− 1
, C2 =

1

(e− 1)2
. �

� IX.25. Summands in constrained integer compositions.Consider integer compositions where
the summands are constrained to belong to a setŴ ⊆ Z≥1, and let Xn be the number of
summands in a random composition of integern. The ordinary BGF is

F(z,u) = 1

1− uh(z)
, h(z) :=

∑

γ∈Ŵ
zγ .

Assume thatŴ contains at least two relatively prime elements, so thath(z) is aperiodic. The
radius of convergence ofh(z) can only be∞ (when h(z) is a polynomial) or 1 (whenh(z)
comprises infinitely many terms but is dominated by(1 − z)−1). In all cases, the sequence
construction is supercritical, so that the distribution ofXn is asymptotically normal. For in-
stance, a Gaussian limit law holds for compositions into prime (or even twin-prime) summands
enumerated in Chapter V (p. 297). �



IX. 6. PERTURBATION OF MEROMORPHIC ASYMPTOTICS 655

ExampleIX.11. The Central Limit Theorem and discrete renewal theory.Let g(u) be any PGF
(g(1) = 1) of a random variable supported byZ≥0 that is analytic at 1 and non-degenerate (i.e.,
v(g) > 0). Then

F(z, u) = 1

1− zg(u)

has a singularity atρ(u) := 1/g(u) that is a simple pole. Theorem IX.9 then applies to give
the special form of the central limit theorem (p. 642) that is relative to discrete probability
distributions with PGFs analytic at 1.

Under the same analytic assumptions ong, consider now the “dual” BGF,

G(z,u) = 1

1− ug(z)
,

where the r̂oles ofz andu have been interchanged. In addition, we must impose for consistency
that g(0) = 0. There is a simple probabilistic interpretation in terms ofrenewal processesof
classical probability theory, wheng(1) = 1. Assume a light bulb has a lifetime ofm days with
probability gm = [zm]g(z) and is replaced as soon as it ceases to function. LetXn be the
number of light bulbs consumed inn days assuming independence, conditioned upon the fact
that a replacement takes place on thenth day. Then the PGF ofXn is [zn]G(z,u)/[zn]G(z,1).
(The normalizing quantity [zn]G(z, 1) is precisely the probability that a renewal takes place on
dayn.) Theorem IX.9 applies. The functionG has a simple dominant pole atz = ρ(u) such
thatg(ρ(u)) = 1/u, with ρ(1) = 1 sinceg is by assumption a PGF. One finds

1

ρ(u)
= 1+ 1

g′(1)
(u− 1)+ 1

2

g′′(1)+ 2g′(1)− 2g′(1)2

g′(1)3
(u− 1)2+ · · · .

Thus the limit distribution ofXn is normal with mean and variance satisfying

E(Xn) ∼
n

µ
, V(Xn) ∼ n

σ2

µ3
,

whereµ := m(g) andσ2 := v(g) are the mean and variance attached tog. (This calcula-
tion checks the variability conditionen passant.) The mean value result certainly conforms to
probabilistic intuition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

� IX.26. Renewals every day.In the renewal scenario, no longer condition on the fact that a
bulb breaks down on dayn. Let Yn be the number of bulbs consumed so far. Then the BGF of
Yn is found by expressing that there is a sequence of renewals followed bya last renewal that is
to be credited to all intermediate epochs:

∑

n≥1

E(uYn)zn = 1

1− ug(z)

g(u)− g(zu)

1− z
.

A Gaussian limit also holds forYn. �

� IX.27. A mixed CLT–renewal scenario.ConsiderG(z,u) = 1/(1− g(z, u)) whereg has
non-negative coefficients, satisfiesg(1,1) = 1, and is analytic at(z, u) = (1, 1). This models
the situation where bulbs are replaced but a random cost is incurred, depending on the duration
of the bulb. Under general conditions, a limit law holds and it is Gaussian. This applies for
instance toH(z,u) = 1/(1− a(z)b(u)), wherea andb are non-degenerate PGFs (a random
repairman is called). �



656 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

Singularity perturbation for meromorphic functions.The following analytic
schema vastly generalizes the case of supercritical compositions.

Theorem IX.9 (Meromorphic schema). Let F(z,u) be a function that is bivariate
analytic at(z,u) = (0,0) and has non-negative coefficients. Assume that F(z,1) is
meromorphic in z≤ r with only a simple pole at z= ρ for some positiveρ < r .
Assume also the following conditions.

(i ) Meromorphic perturbation:there existsǫ > 0 and r > ρ such that in the
domain,D = {|z| ≤ r } × {|u− 1| < ǫ} , the function F(z,u) admits the
representation

F(z,u) = B(z,u)

C(z,u)
,

where B(z,u),C(z,u) are analytic for(z,u) ∈ D with B(ρ,1) 6= 0. (Thus
ρ is a simple zero of C(z,1).)

(i i ) Non-degeneracy:one has∂zC(ρ,1) · ∂uC(ρ,1) 6= 0, ensuring the existence
of a non-constantρ(u) analytic at u= 1, such that C(ρ(u),u) = 0 and
ρ(1) = ρ.

(i i i ) Variability: one has

v

(
ρ(1)

ρ(u)

)
6= 0.

Then, the random variable Xn with probability generating function

pn(u) =
[zn]F(z,u)

[zn]F(z,1)

after standardization, converges in distribution to a Gaussian variable, with a speed
of convergence that is O(n−1/2). The mean and the standard deviation of Xn are
asymptotically linear in n.

Proof. First we offer a few comments. Given the analytic solutionρ(u) of the implicit
equationC(ρ(u),u) = 0, the PGFE(uXn) satisfies a quasi-power approximation of
the form A(u)(ρ(1)/ρ(u))n, as we prove below. The meanµn and varianceσ 2

n are
then of the form

(37) µn = m

(
ρ(1)

ρ(u)

)
n+ O(1), σ 2

n = v

(
ρ(1)

ρ(u)

)
n+ O(1).

The variability condition of the Quasi-powers Theorem is precisely ensured by condi-
tion (i i i ). Set

ci, j := ∂ i+ j

∂zi ∂u j
C(z,u)

∣∣∣∣
(ρ,1)

.

The numerical coefficients in (37) can themselves be solely expressed in terms of
partial derivatives ofC(z,u) by series reversion,
(38)

ρ(u) = ρ− c0,1

c1,0
(u−1)−

c2
1,0c0,2− 2c1,0c1,1c0,1+ c2,0c2

0,1

2c3
1,0

(u−1)2+O((u−1)3).
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In particular the fact thatρ(u) is non-constant, analytic, and is a simple root corre-
sponds toc0,1c1,0 6= 0 (by the analytic Implicit Function Theorem). The variance
condition is then computed to be equivalent to the cubic inequality in theci, j :

(39) ρ c1,0
2c0,2− ρ c1,0c1,1c0,1+ ρ c2,0c0,1

2+ c0,1
2c1,0+ c0,1c1,0

2ρ 6= 0.

We can now proceed with asymptotic estimates. Fix au–domain|u−1| ≤ δ such
that B,C are analytic. Then, one has

fn(u) := [zn]F(z,u) = 1

2iπ

∮
F(z,u)

dz

zn+1
,

where the integral is taken along a small enough contour encircling the origin. We
use the analysis of polar singularities described in Chapter IV, exactly as in (35). As
F(z,u) has at most one (simple) pole in|z| ≤ r , we have

(40) fn(u) = Res

(
B(z,u)

C(z,u)
z−n−1

)

z=ρ(u)
+ 1

2iπ

∫

|z|=r
F(z,u)

dz

zn+1
,

where we may assumeu suitably restricted by|u − 1| < δ in such a way that|r −
ρ(u)| < 1

2(r − ρ).
The modulus of the second term in (40) is bounded from above by

(41)
K

r n
where K =

sup|z|=r,|u−1|≤δ |B(z,u)|
inf|z|=r,|u−1|≤δ |C(z,u)|

.

Since the domain|z| = r, |u− 1| ≤ δ is closed,C(z,u) attains its minimum that must
be non-zero, given the unicity of the zero ofC. At the same time,B(z,u) being
analytic, its modulus is bounded from above. Thus, the constant K in (41) is finite.

Trivial bounds applied to the integral of (40) then yield

fn(u) =
B(ρ(u),u)

C′z(ρ(u),u)
ρ(u)−n−1+ O(r−n),

uniformly for u in a small enough fixed neighbourhood of 1. The mean and variance
then satisfy (37), with the coefficient in the leading term ofthe variance term that is,
by assumption, non-zero. Thus, the conditions of the Quasi-powers Theorem in the
form (28), p. 645, are satisfied, and the law is Gaussian in theasymptotic limit. �

Some form of condition, such as those in(i i ) and(i i i ), is a necessity. For in-
stance, the functions

1

1− z
,

1

1− zu
,

1

1− zu2
,

1

1− z2u
,

each fail to satisfy the non-degeneracy and the variabilitycondition, the variance of
the corresponding discrete distribution being identically 0. The variance isO(1) for a
related function such as

F(z,u) = 1

1− z(u+ 2)+ 2z2u
= 1

(1− 2z)(1− zu)
,
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which is excluded by the variability condition of the theorem—there, a discrete limit
law (a geometric) is known to hold (p. 614). Yet another situation arises when consid-
ering

F(z,u) = 1

(1− z)(1− zu)
.

There is now a double pole at 1 whenu = 1 that arises from “confluence” atu = 1
of two analytic branchesρ1(u) = 1 andρ2(u) = 1/u. In this particular case, the limit
law is continuous but non-Gaussian; in fact, this limit is the uniform distribution over
the interval [0,1], since

F(z,u) = 1+ z(1+ u)+ z2(1+ u+ u2)+ z3(1+ u+ u2+ u3)+ · · · .
In addition, for this case, the mean isO(n) but the variance isO(n2). Such situations
are examined in Section IX. 11, p. 703, at the end of this Chapter.
� IX.28. Higher order poles.Under the conditions of Theorem IX.9, a limit Gaussian law holds
for the distributions generated by the BGFF(z, u)m. More generally, the statement extends to
functions with anmth order pole. See [35]. �

The next four applications of Theorem IX.9 are relative to runs in permutations,
patterns in words, the perimeter of parallelogram polyominoes, and finally the analysis
of Euclid’s algorithm on polynomials. It is of interest to note that, for runs and pat-
terns, the BGFs were each deduced in Chapter III by an inclusion–exclusion argument
that involves sequences in an essential way.

Example IX.12. Ascending runs in permutations and Eulerian numbers.The exponential
BGF of Eulerian numbers (that count runs in permutations) is, by Example III.25, p. 209,

F(z, u) = u(1− u)

e(u−1)z− u
,

where, foru = 1, we haveF(z, 1) = (1− z)−1. The roots of the denominator are then

(42) ρ j (u) = ρ(u)+
2i j π

u− 1
, where ρ(u) := logu

u− 1
,

and j is an arbitrary element ofZ. As u approaches 1,ρ(u) is close to 1, whereas the other
polesρ j (u) with j 6= 0 escape to infinity. This fact is also consistent with the limit form

F(z, 1) = (1− z)−1 which has only one (simple) pole at 1. If one restrictsu to |u| ≤ 2, there
is clearly at most one root of the denominator in|z| ≤ 2, given byρ(u). Thus, we have foru
close enough to 1,

F(z, u) = 1

ρ(u)− z
+ R(z, u),

with z 7→ R(z, u) analytic in|z| ≤ 2, and

[zn]F(z, u) = ρ(u)−n−1+ O(2−n).

The variability conditions are satisfied since

ρ(u) = logu

(u− 1)
= 1− 1

2
(u− 1)+ 1

3
(u− 1)2+ · · · ,

so thatv(1/ρ(u)) = 1
12 is non-zero.

Proposition IX.9. The Eulerian distribution is, after standardization, asymptotically Gaussian,
with mean and variance given byµn = (n+1)/2, σ2

n = (n+1)/12. The speed of convergence
is O(n−1/2).
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Figure IX.11. The diagram of poles of the BGFz 7→ F(z, u) associated to the pat-
ternabaawith correlation polynomialc(z) = 1+z3, whenu varies on the unit circle.
The denominator is of degree 4 inz: one branch,ρ(u) clusters near the dominant sin-
gularityρ = 1/2 of F(z, 1), whereas three other singularities stay away from the disc
|z| ≤ 1/2 and escape to infinity asu→ 1.

This example is a famous one (see also ourInvitation, p. 9) and our derivation follows
Bender’s paper [35]. The Gaussian character of the distribution has been known for a long
time; it is for instance to be found in David and Barton’sCombinatorial Chance[139] published
in 1962. There are in this case interesting connections with elementary probability theory: if
U j are independent random variables that are uniformly distributed over the interval [0, 1], then
one has

[znuk]F(z, u) = P{⌊U1+ · · · +Un⌋ < k}.
Because of this fact, the normal limit is thus often derived as a consequence of the Central Limit
Theorem, after one takes care of unimportant details relative to the integer part ⌊·⌋ function;
see [139, 524]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleIX.13. Patterns in strings.Consider the classF of binary strings (the “texts”), and
fix a “pattern”w of lengthk. Let χ be the number of (possibly overlapping) occurrences of
w. (The patternw occurs if it is a factor,i.e., if its letters occur contiguously in the text.) Let
F(z, u) be the BGF relative to the pair(F , χ). The Guibas–Odlyzko correlation polynomial10

relative tow is denoted byc(z) ≡ cw(z). We know, from Chapter I, that the OGF of words
with patternw excluded is

F(z,0) = c(z)

zk + (1− 2z)c(z)
.

By the inclusion–exclusion argument of Chapter III (p. 212), the BGF is

F(z, u) = 1− (c(z)− 1)(u− 1)

1− 2z− (u− 1)(zk + (1− 2z)(c(z)− 1))
.

10The correlation polynomial, as defined in Chapter I (p. 60), has coefficients in{0,1}, with [z j ]c(z) =
1 iff w matches its image shifted to the right byj positions.
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Let D(z,u) be the denominator. ThenD(z, u) depends analytically onz, for u near 1 andz near
1/2. In addition, the partial derivativeD′z(1/2, 1) is non-zero. Thus,ρ(u) is analytic atu = 1,
with ρ(1) = 1/2 (see Figure IX.11). The local expansion of the rootρ(u) of D(ρ(u),u) follows
from local series reversion,

2ρ(u) = 1− 2−k(u− 1)+ (k2−2k − 2−kc(1/2)) (u− 1)2+ O
(
(u− 1)3

)
.

Theorem IX.9 applies.

Proposition IX.10. The number of occurrences of a fixed pattern in a large string is, after
standardization, asymptotically normal. The meanµn and varianceσ2

n satisfy

n

2k
+ O(1), σ2

n =
(
2−k(1+ 2c(1/2))+ 2−2k(1− 2k)

)
n+ O(1),

and the speed of convergence to the Gaussian limit is O(n−1/2).

(The mean does not depend on the order of letters in the pattern, only the variance does.) Propo-
sition IX.10 has been derived independently by many authors and it hasbeen generalized in
many ways, see for instance [43, 455, 506, 564, 603] and references therein. . . . . . . . . . . . . .�

� IX.29. Patterns in Bernoulli texts.Asymptotic normality also holds when letters in strings
are chosen independently but with an arbitrary probability distribution. It suffices to use the
weighted correlation polynomial described in Note III.39, p. 213. �

ExampleIX.14. Parallelogram polyominoes.Polyominoes are plane diagrams that are closely
related to models of statistical physics, while having been the subject of a vast combinatorial
literature. This example has the merit of illustrating a level of difficulty somewhat higher than
in previous examples and typical of many “real-life” applications. Our presentation follows an
early article of Bender [38] and a more recent paper of Louchard [419]. We consider here the
variety of polyominoes calledparallelograms. A parallelogram is a sequence of segments,

[a1, b1], [a2, b2], . . . , [am, bm], a1 ≤ a2 · · · ≤ am, b1 ≤ b2 ≤ · · · ≤ bm,

where thea j andb j are integers withb j − a j ≥ 1, and one takesa1 = 0 for definiteness. A
parallelogram can thus be viewed as a stack of segments (with [a j+1, b j+1] placed on top of
[a j , b j ]) that leans smoothly to the right:

The quantitym is called the height, the quantitybm − a1 the width, their sum is called the
(semi)perimeter, and the grand total

∑
j (b j −a j ) is called the area. (This instance has area 39,

width 13, height 9, and perimeter 13+ 9= 22.) We examine here parallelograms offixed area
and investigate thedistribution of perimeter.
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The ordinary BGF of parallelograms, withz marking area andu marking perimeter is11,
as we shall prove momentarily

(43) F(z, u) = u
J1(z, u)

J0(z, u)
,

whereJ0, J1 belong to the realm of “q–analogues” and generalize the classical Bessel functions,

J0(q,u) :=
∑

n≥0

(−1)nunqn(n+1)/2

(q; q)n(uq; q)n
, J1(q, u) :=

∑

n≥1

(−1)n−1unqn(n+1)/2

(q; q)n−1(uq; q)n
,

with the “q–factorial” notation being used:

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Combinatorially, the BGF stated by (43), is obtained in a way that is reminiscent of Exam-
ple III.22, p. 199. Its expression results from a simple construction: aparallelogram is either an
interval, or it is derived from an existing parallelogram by stacking on top anew interval. Let
G(w) ≡ G(x, y, z, w) be the OGF withx, y, z, w marking width, height, area, and length of
top segment, respectively. The GF of a parallelogram made of a single non-zero interval is

a(w) ≡ a(x, y, z, w) = xyzw

1− xzw
.

The operation of piling up a new segment on top of a segment of lengthm that is represented
by a termwm is described by

y

(
zmwm

1− xzw
+ · · · + zw

1− xzw

)
= yzw

1− zmwm

(1− zw)(1− xzw)
.

Thus,G satisfies the functional equation,

(44) G(w) = xyzw

1− xzw
+ xyzw

(1− zw)(1− xzw)
[G(1)− G(xzw)] .

This is the method of “adding a slice” introduced in Chapter III, p. 199, which is reflected by
the relation (44). Now, an equation of the form,

G(w) = a(w)+ b(w)[G(1)− G(λw)],

is solved by iteration:

G(w) = a(w)+ b(w)G(1)− b(w)G(λw)

=
(
a(w)− b(w)a(λw)+ b(w)b(λw)a(λ2w)− · · ·

)

+G(1)
(
b(w)− b(w)b(λw)+ b(w)b(λw)b(λ2w)− · · ·

)
.

One then isolatesG(1) by settingw = 1. This expressesG(1) as the quotient of two similar
looking series (formed with sums of products ofb values). Here, this givesG(x, y, z, 1), from
which the form (43) ofF(z, u) derives, sinceF(z, u) = G(u,u, z, 1).

Analytically, one should first estimate [zn]F(z, 1), the number of parallelograms of size
(i.e., area) equal ton. We haveF(z, 1) = J1(z, 1)/J0(z, 1), where the denominator is

J0(z,1) = 1− z

(1− z)2
+ z3

(1− z)2(1− z2)2
− z6

(1− z)2(1− z2)2(1− z3)2
+ · · · .

11Thus,F(z,1) = z+2z2+4z3+9z4+20z5+46z6+· · · , corresponding toEISA006958(“staircase
polyominoes”).
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Clearly, J0(z, 1) and J1(z, 1) are analytic in|z| < 1, and it is not hard to see thatJ0(z,1)
decreases from 1 to about−0.24 whenz varies between 0 and 1/2, with a root at

ρ
.= 0.43306 19231 29252,

whereJ′0(ρ,1)
.= −3.76 6= 0, so that the zero is simple12. SinceF(z, 1) is by construction

meromorphic in the unit disc andJ1(ρ,1)
.= 0.48 6= 0, the number of parallelograms satisfies

[zn]F(z,1) ∼ J1(ρ,1)

ρ J′0(ρ,1)

(
1

ρ

)n
= α1 · αn

2,

where

α1
.= 0.29745 35058 07786, α2

.= 2.30913 85933 31230.

As is common in meromorphic analyses, the approximation of coefficientsis quite good; for
instance, the relative error is only about 10−8 for n = 35.

We are now ready for bivariate asymptotics. Take|z| ≤ r = 7/10 and|u| ≤ 11/10.

Because of the form of their general terms that involvezn2/2un in the numerators while the
denominators stay bounded away from 0, the functionsJ0(z,u) and J1(z, u) remain analytic
there. Thus,ρ(u) exists and is analytic foru in a sufficiently small neighbourhood of 1 (by
Weierstrass preparation or implicit functions). The non-degeneracy conditions are easily veri-
fied by numerical computations. There results that Theorem IX.9 applies.

Proposition IX.11. The perimeter of a random parallelogram polyomino of area n admits a
limit law that is Gaussian with mean and variance that satisfyµn ∼ µn, σn ∼ σ

√
n, with

µ
.= 0.84176 20156, σ

.= 0.42420 65326.

This indicates that a random parallelogram is most likely to resemble a slantedstack of
fairly short segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� IX.30. Width and height of parallelogram polyominoes are normal. Similar perturbation
methods show that the expected height and width are eachO(n) on average, again with Gauss-
ian limit laws. �

� IX.31. The base of a coin fountain.A coin fountain (Example V.9, p. 330) is defined as a
vectorv = (v0, v1, . . . , vℓ), such thatv0 = 0,v j ≥ 0 is an integer,vℓ = 0 and|v j+1−v j | = 1.
Take as size thearea, n = ∑

v j . Then the distribution of the base lengthℓ in a random coin
fountain of sizen is asymptotically normal. (This amounts to considering all ruin sequences
of a fixed area as equally likely, and regarding the number of steps in the game as a random
variable.) Similarly the number of “arches” is asymptotically Gaussian. �

ExampleIX.15. Euclid’s GCD Algorithm over polynomials.We revisit the classP ⊂ Fp[X]
of monic polynomials in a variableX and coefficients in a prime fieldFp (Example I.20, p. 90).
Size of a polynomial is identified with degree. Euclidean division applies to any pair of poly-
nomials(u, v), with v 6= 0: it provides a quotient (q) and a remainder (r ), such that

u = vq + r, with r = 0 or deg(r ) < degv.

12As usual, such computations can be easily validated by carefully controlled numerical evaluations
coupled with Rouch́e’s theorem (see Chapter IV, p. 263).



IX. 6. PERTURBATION OF MEROMORPHIC ASYMPTOTICS 663

Euclid’s Greatest Common Divisor (GCD) Algorithm applies to any pair of polynomials
(u1, u0) satisfying deg(u1) < deg(u0), proceeding by successive divisions [379]:

(45)





u0 = q1u1 + u2
u1 = q2u2 + u3
...

...
...

uh−2 = qh−1uh−1 + uh
uh−1 = qhuh + 0.

The numberh is thenumber of stepsof the algorithm. (It also corresponds to theheightof
the continued fraction representation ofu1/u0: write u1/u0 = 1/(q1 + 1/ · · · ).) The quotient
polynomialsq j , for 1 ≤ j ≤ h are each of degree at least 1 and one can always normalize
things so that theu j are monic. The last polynomialuh is thegcd of the pair(u1, u0). (By
convention, deg(0) = −∞, the gcd of(0,u0) is 1 and its height is 0.)

Together with the classP, we introduce the classG of “general” (non-necessarily monic)
polynomials and the subclassG+ of those of degree at least 1. The classF of fractionsconsists
of all the pairs(u1, u0) such that: (i ) the polynomialu0 is monic; (i i ) either u1 = 0 or
deg(u1) < deg(u0). (View the pair as representingu1/u0.) Thesizeof a fraction is by definition
the degree ofu0. The corresponding OGF are instantly found to be:

(46) P(z) = 1

1− pz
, G+(z) = p(p− 1)z

1− pz
, F(z) = 1

1− p2z
.

The simple but startling fact that renders the analysis easy is the following:Euclid’s al-
gorithm yields a combinatorial isomorphism betweenF–fractions and pairs composed of a
sequence ofG+–polynomials (the quotients) and aP–polynomial (the gcd).In symbols:

(47) F ∼= SEQ(G+)× P.

A direct consequence of (47) is the BGF ofF , with u marking the number of steps:

(48) F(z, u) = 1

1− uG+(z)
· 1

1− pz
= 1

1− u p(p−1)z
1−pz

· 1

1− pz
.

Similarly, with u marking the number of quotients of some fixed degreek, one obtains the BGF

(49) F̂(z, u) = 1

1− p(p−1)z
1−pz − zk(u− 1)pk(p− 1)

· 1

1− pz
.

Both cases give rise to direct applications of Theorem IX.9, p. 656, relative to the meromorphic
schema. A simple computation then gives:

Proposition IX.12. When applied to a random polynomial fraction of degree n, the number of
steps of Euclid’s algorithm is asymptotically normal with mean

E(# steps) = p− 1

p
n+ O(1),

and variance O(n). The number of quotients of a fixed degree k is also asymptotically Gaussian,
with mean∼ ckn and variance O(n), where ck = p−k−1(p− 1)2.

Similar considerations and the methods of Section IX. 2 show that the degree of the gcd
itself is asymptotically geometric, with ratep−1. Original analyses are due to Knopfmacher–
Knopfmacher [371] and Friesen–Hensley [270]. In such a case, the transparent character of the
analytic–combinatorial proofs is worthy of note. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .�
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� IX.32. Euclid’s integer-gcd algorithm is Gaussian.This spectacular and deep result is orig-
inally due to Hensley [331], with important improvements brought by Baladi–Vallée [25]. The
reference set is now the pair of integers in [1. .n], to which Euclid’s algorithm is applied. The
number of steps has expectation

12 log 2

π2
logn+ o(logn),

as first established by Dixon [166] and Heilbronn [327]; see Knuth’s book [379, pp. 356–373]
for a good story. The proof of the Gaussian limit, following [25, 331], makes use of thetransfer
operatorGs associated with the transformationx 7→ {1/x} ≡ 1/x − ⌊1/x⌋; namely,

Gs[ f ](x) :=
∞∑

n=1

1

(n+ x)2s
f

(
1

n+ x

)
.

It is then proved that a bivariate Dirichlet series describing the number of steps of Euclid’s
algorithm can be expressed in terms of the quasi-inverse(I−uGs)

−1; compare with (48).
Perturbation theory of the dominant eigenvalueλ1(s) of Gs in conjunction with the Mellin–
Perron formula, an adapted form of singularity analysis, and the Quasi-powers Theorem (and
hard work, as well) eventually yield the result. An operator analogue of (49) also holds, from
which the frequency of quotient values can be quantified: the asymptotic frequency ofk is
log2(1+ 1/(k(k+ 1))). See Valĺee’s surveys [583, 584], Hensley’s book [332], and references
therein for a review of these methods and many other applications. �

Perturbation of linear systems.There is usually a fairly transparent approach
to the analysis of BGFs defined implicitly as solutions of functional equations. One
should start with the analysis atu = 1 and then examine the effect on singularities
whenu varies in a very small neighbourhood of 1. In accordance withwhat we have
already seen many times, the process involves a perturbation analysis of the solution
to a functional equation near a singularity, here one thatmoves.

We consider here functions defined implicitly by alinear systemof positive equa-
tions, nonlinear systems being discussed in the next section. Positive linear systems
arise in connection with problems specified by finite state devices, paths in graphs,
and finite Markov chains, and transfer matrix models (Sections V. 5, p. 336 and V. 6,
p. 356). The bivariate problem is then expressed by a linear equation

(50) Y(z,u) = V(z,u)+ T(z,u) · Y(z,u),
whereT(z,u) is anm× m matrix with entries that are polynomial inz,u with non-
negative coefficients,Y(z,u) is anm× 1 column vector of unknowns, andV(z,u) is
a column vector of non-negative initial conditions.

Regarding the univariate problem,

(51) Y(z) = V(z)+ T(z) · Y(z),
whereY(z) = Y(z,1) and so on, we place ourselves under the assumptions of Corol-
lary V.1, p. 358. This means that properness, positivity, irreducibility, and aperiodicity
are assumed throughout. In this case (see the developments of Chapter V), Perron–
Frobenius theory applies to the univariate matrixT(z). In other words, the function

C(z) = det(I − T(z))

has a unique dominant rootρ > 0 that is a simple zero. Accordingly, any component
F(z) = Yi (z) of a solution to the system (50) has a unique dominant singularity
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at z= ρ that is a simple pole,

F(z) = B(z)

C(z)
,

with B(ρ) 6= 0.
In the bivariate case, each component of the solution to the system (50) can be

put under the form

F(z,u) = B(z,u)

C(z,u)
, C(z,u) = det(I − T(z,u)).

Since B(z,u) is a polynomial, it does not vanish for(z,u) in a sufficiently small
neighbourhood of(ρ,1). Similarly, by the analytic Implicit Function Theorem, there
exists a functionρ(u) locally analytic nearu = 1, such that

C(ρ(u),u) = 0, ρ(1) = ρ.

Thus, it is sufficient that the variability conditions (38) be satisfied in order to infer a
limit Gaussian distribution.

Theorem IX.10 (Positive rational systems). Let F(z,u) be a bivariate function that
is analytic at(0,0) and has non-negative coefficients. Assume that F(z,u) coincides
with the component Y1 of a system of linear equations in Y= (Y1, . . . ,Ym)

T ,

Y = V + T · Y,

where V = (V1(z,u), . . . ,Vm(z,u)), T =
(
Ti, j (z,u)

)m
i, j=1, and each of Vj , Ti, j

is a polynomial in z,u with non-negative coefficients. Assume also that T(z,1) is
transitive, proper, and primitive, and letρ(u) be the unique solution of

det(I − T(ρ(u),u)) = 0,

assumed to be analytic at 1, such thatρ(1) = ρ. Then, provided the variability
condition,

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F(z,u) with mean and
variance that are O(n) and speed of convergence that is O(n−1/2).

ExampleIX.16. Tilings. (This prolongs the enumerative discussion of Example V.18, p. 360.)
Take a(2× n) chessboard of 2 rows andn columns, and consider coverings with “monomer
tiles” that are(1 × 1)-pieces, and “dimer tiles” that are either of the horizontal(1 × 2) or
vertical (2 × 1) type. The parameter of interest is the (random) number of tiles. Consider
next the collection of all “partial coverings” in which each column is covered exactly, except
possibly for the last one. The partial coverings are of one of four types and the legal transitions
are described by a compatibility graph. For instance, if the previous column started with one
horizontal dimer and contained one monomer, the current column has one occupied cell, and
one free cell that may then be occupied either by a monomer or a dimer. This finite state
description corresponds to a set of linear equations over BGFs (withz marking the area covered
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andu marking the total number of tiles), with the transition matrix found to be

T(z,u) = z




u u2 u2 u2

1 0 0 0
u 0 0 0
u 0 0 0


 .

In particular, we have

det(I − T(z, u)) = 1− zu− z2(u2+ u3).

Then, Theorem IX.10 applies: the number of tiles is asymptotically normal.The method clearly
extends to(k× n) chessboards, for any fixedk (see Benderet al. [35, 46]). . . . . . . . . . . . . . .�

ExampleIX.17. Limit theorem for Markov chains.Assume thatM is the transition matrix of
an irreducible aperiodic Markov chain, and consider the parameterχ that records the number of
passages through state 1 in a path of lengthn that starts in state 1. Then, Theorem IX.10 applies
with

V = (1,0, . . . , 0)T , Ti, j (z, u) = zMi, j + z(u− 1)Mi,1δ j,1.

We therefore derive a classical limit theorem for Markov chains:

Proposition IX.13. In an irreducible and aperiodic (finite) Markov chain, the number of times
that a designated state is reached when n transitions are effected is asymptotically Gaussian.

The conclusion also applies to paths in any strongly connected aperiodic digraph as well
as to paths conditioned by their source and/or destination. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .�

� IX.33. Sets of patterns in words.This note extends Example IX.13 (p. 659) relative to the
occurrence of asinglepattern in a random text. Given the classW = SEQ(A) of words over
a finite alphabetA, fix a finite set of “patterns”S ⊂ W and defineχ(w) as the total number
of occurrences of members ofS in the wordw ∈ W. It is possible to build finite automaton
(essentially a digital tree built onSequipped with return edges) that records simultaneously the
number of partial occurrences of each pattern. Then, the limit law ofχ is Gaussian; see Bender
and Kochman’s paper [43], the papers [240, 263] for an approach based on the de Bruijn graph,
[30, 457] for an inclusion–exclusion treatment, and [564] for a perspective. �

� IX.34. Constrained integer compositions.Consider integer compositions where consecutive
summands add up to at least 4. The number of summands in such a composition is asymptoti-
cally normal [46]. Similarly for a Carlitz composition (p. 201). �

� IX.35. Height in trees of bounded width.Consider general Catalan trees of width less than a
fixed boundw. (The width is the maximum number of nodes at any level in the tree.) In such
trees, the distribution of height is asymptotically Gaussian. �

IX. 7. Perturbation of singularity analysis asymptotics

In this central section, we examine analytic–combinatorial schemas that arise
when generating functions contain algebraic–logarithmicsingularities. The under-
lying machinery is the method of singularity analysis detailed in Chapters VI and VII,
on which suitable perturbative developments are grafted.

An especially important feature of the method of singularity analysis, stemming
from properties of Hankel contours, is the fact that it preserves uniformity of expan-
sions13. This feature is crucial in analysing bivariate generatingfunctions, where we

13For instance, Darboux’s method discussed in Section VI. 11, p. 433, only providesnon-effective
error terms, since it is based on the Riemann–Lebesgue lemma, so that it cannot be conveniently employed
for bivariate asymptotics. A similar comment applies to Tauberian theorems.
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need to estimateuniformlya coefficientfn(u) = [zn]F(z,u) that depends on the para-
meteru, given some (uniform) knowledge on the singular structure of F(z,u), as a
function ofz. It is from such estimates that limit Gaussian laws can typically be de-
rived via quasi-power approximations and the Quasi-powersTheorem (Theorem IX.8,
p. 645).

In this section, we shall encounter two different types of situations, depending on
the way the deformation induced by the secondary parameter affects the singularity
of the functionz 7→ F(z,u), whenu is near 1. In accordance with the preliminary
discussion of singularity perturbation and Gaussian laws,on p. 648, regarding the PGF
pn(u) := fn(u)/ fn(1), there is a fundamental dichotomy, depending on whether it is
the singular exponent that varies or the dominant singularity that moves.

— Variable exponent.This corresponds to the case where the dominant singu-
larity of z 7→ F(z,u) remains a constantρ, but the singular exponentα(u)
in the approximationF(z,u) ≈ (1−z/ρ)−α(u) varies smoothly, to the effect
that pn(u) ≈ nα(u)−α(1). We then have a Gaussian limit law in the scale of
logn for the mean and the variance.

— Movable singularity.This is the case where the singular exponent retains
a constant valueα, but the dominant singularityρ(u) in the approximation
F(z,u) ≈ (1−z/ρ(u))−α moves smoothly withu, to the effect thatpn(u) ≈
(ρ(1)/ρ(u))n. There is again a Gaussian limit law, but a mean and variance
that are now of the order ofn.

The case of a variable exponent typically arises from the setconstruction, in the
context of the exp–log schema introduced in Section VII. 2 (p. 445), which covers the
cycle decomposition of permutations, connected components in random mappings, as
well as the factorization of polynomials over finite fields. The mean value analyses
of Chapter VII are then nicely supplemented by limit Gaussian laws, as we prove in
Subsection IX. 7.1. Trees often lead to singularities that are of the square-root type
and such a singular behaviour persists for a number of bivariate generating functions
associated to additively inherited parameters (for instance the number of leaves). In
that case, the singular exponent remains constant (equal to1/2), while the singularity
moves. The basic technology adequate for such movable singularities is developed
in Subsection IX. 7.2, where it is illustrated by means of simple examples relative to
trees.

A notable feature of complex analytic methods is to be applicable to functions
only known implicitly through a functional equation of sorts. We study implicit sys-
tems and algebraic functions in Subsection IX. 7.3: there, movable singularities are
found, resulting in Gaussian limits in the scale ofn. Differential systems display a
broader range of singular behaviours, as discussed in Subsection IX. 7.4, to the effect
that Gaussian laws can arise, both in the scale of logn and ofn.

IX. 7.1. Variable exponents and the exp–log schema.The organization of this
subsection is as follows. First, we state an easy but cruciallemma (Lemma IX.2)
that takes care of the remainder terms in the expansions and hence enables the use of
singularity analysis in a perturbed context. Then, we statea general theorem relative
to the case of a fixed singularity and a variable exponent (Theorem IX.11). The major
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application is to the analysis of the exp–log schema as introduced in Section VII. 2,
p. 445: Gaussian laws in the scale of logn are found to hold true for the number of
components in several of the most classical structures of combinatorial theory.

Uniform expansions.The basis of the developments in this section is a unifor-
mity lemma obtained from a simple re-examination of basic singularity analysis in the
perspective of bivariate asymptotics.

Lemma IX.2 (Uniformity lemma, singularity analysis). Let fu(z) be a family of func-
tions analytic in a common1–domain1, with u a parameter taken in a set U. Sup-
pose that there holds

(52) | fu(z)| ≤ K (u)
∣∣∣(1− z)−α(u)

∣∣∣ , z ∈ 1, u ∈ U,

where K(u) and α(u) remain absolutely bounded: K (u) ≤ K and |α(u)| ≤ A,
for u ∈ U. Let B be such thatℜ(α(u)) ≤ −B. Then, there exists a constantλ
(computable from A, B,1) such that

(53)
∣∣[zn] fu(z)

∣∣ < λKnB−1.

Proof. It suffices to revisit the proof of the Big-Oh Transfer Theorem (Theorem VI.3,
p. 390), paying due attention to uniformity. The proof starts from Cauchy’s formula,

fu,n ≡ [zn] fu(z) =
1

2iπ

∫

γ

fu(z)
dz

zn+1
,

whereγ =⋃ j γ j is the Hankel contour displayed in Figure VI.6, p. 390. This contour
is comprised of an inner circular arc(γ1), an outer arc(γ4), and two connecting linear
parts (γ2, γ3); its half-angle isθ .

Decomposeα(u) into its real and imaginary parts and setα(u) = σ(u) + i τ(u).
Also, setz = 1+ t/n, so thatt lies on an image contour̃γ = −1+ n1 and write
t = ρei ξ . We have

(54)
∣∣∣(1− z)−α(u)

∣∣∣ =
∣∣∣(1− z)−σ(u)

∣∣∣ ·
∣∣∣∣∣

(
− t

n

)−i τ(u)
∣∣∣∣∣ ,

with |τ(u)| ≤ A. As t varies alongγ̃ , its argumentξ decreases continuously
from 2π − θ to θ . Thus, the second factor on the right of (54) remains bounded
independently ofn:

∣∣∣∣∣

(
− t

n

)−i τ(u)
∣∣∣∣∣ ≡

∣∣∣∣∣

(
−ρei ξ

n

)−i τ(u)
∣∣∣∣∣ ≤ λ1,

for some computableλ1 > 0. In summary, we have found, forz onγ ,

(55)
∣∣∣(1− z)−α(u)

∣∣∣ ≤ λ1

∣∣∣(1− z)−σ(u)
∣∣∣ ,

whereσ(u) is real and−σ(u) ≥ B.
At this final stage, making use of (55), we can bound [zn] fu(z) by a curvilinear

integral:
∣∣[zn] fu(z)

∣∣ ≤ λ1

2π

∫

γ

∣∣∣(1− z)−σ(u)
∣∣∣ |dz|
|z|n+1

.



IX. 7. PERTURBATION OF SINGULARITY ANALYSIS ASYMPTOTICS 669

A direct application of the majorizations used in the proof of Theorem VI.3 then es-
tablishes the statement. �

� IX.36. Uniformity in the presence of logarithmic multipliers.Similar estimates hold when
f (z) is multiplied by a power ofL(z) = − log(1− z): if the condition(52) is replaced by

| fu(z)| ≤ K (u)
∣∣∣(1− z)−α(u)

∣∣∣ |L(z)|β ,
for someβ ∈ R, then one has

∣∣[zn] fu(z)
∣∣ < λ̃KnB−1(logn)β ,

for somẽλ = λ̃(A, B,1, β) (compare with (53)). �

The prototypical instance of a bivariate GF with a fixed singularity and a variable
exponent is that ofF(z,u) := C(z)−α(u). We can in fact state a slightly more general
result guaranteeing the presence of a Gaussian limit law in this and similar cases.

Theorem IX.11 (Variable exponent perturbation). Let F(z,u) be a bivariate func-
tion that is analytic at(z,u) = (0,0) and has non-negative coefficients. Assume the
following conditions.

(i ) Analytic exponents.There existǫ > 0 and r > ρ such that, with the domainD
defined by

D =
{
(z,u)

∣∣ |z| ≤ r, |u− 1| ≤ ǫ
}
,

the function F(z,u) admits the representation

(56) F(z,u) = A(z,u)+ B(z,u)C(z)−α(u)

where A(z,u), B(z,u) are analytic for(z,u) ∈ D. Suppose also that the function
α(u) is analytic in|u − 1| ≤ ǫ with α(1) 6∈ {0,−1,−2, . . .} and C(z) is analytic for
|z| ≤ r , with the equation C(z) = 0 having a unique rootρ ∈ (0, r ) in the disc|z| ≤ r
that is simple and such that B(ρ,1) 6= 0.

(i i ) Variability: one has

α′(1)+ α′′(1) 6= 0.

Then the variable with probability generating function

pn(u) =
[zn]F(z,u)

[zn]F(z,1)

converges in distribution to a Gaussian variable with a speed of convergence
O((logn)−1/2). The corresponding meanµn and varianceσ 2

n satisfy

µn ∼ α′(1) logn, σ 2
n ∼ (α′(1)+ α′′(1)) logn.

Proof. Clearly, for the univariate problem, by singularity analysis, one has

(57) [zn]F(z,1) = B(ρ,1)(−ρC′(ρ))−α(1)ρ−n nα(1)−1

Ŵ(α(1))

(
1+ O

(
1

n

))
.

For the bivariate problem, the contribution to [zn]F(z,u) arising from [zn] A(z,u) is
uniformly exponentially smaller thanρ−n, sinceA(z,u) is z–analytic in|z| ≤ r .

Write next
B(z,u) = (B(z,u)− B(ρ,u))+ B(ρ,u).
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The first term satisfies

B(z,u)− B(ρ,u) = O((z− ρ)),
uniformly with respect tou, since

B(z,u)− B(ρ,u)

z− ρ
is analytic for(z,u) ∈ D (as seen by division of power series representations). Let
A be an upper bound on|α(u)| for |u − 1| ≤ ǫ. Then, by singularity analysis and its
companion uniformity lemma,

(58) [zn](B(z,u)− B(ρ,u))C(z)−α(u) = O(ρ−nnA−2).

By suitably restricting the domain ofu, one may freely assume thatA < α(1) + 1/2
(say), ensuring thatA− 2 ≤ α(1) − 3/2. Thus, the contribution arising from (58) is
uniformly polynomially small (by a factorO(n−1/2)).

It only remains to analyse

[zn]B(ρ,u)C(z)−α(u).

This is done exactly like in the univariate case: we have, uniformly for u in a small
neighbourhood of 1,

(59) C(z)−α(u) = (−ρC′(ρ))−α(u)(1− z/ρ)−α(u) (1+ O(1− z/ρ)) ,

and, taking once more advantage of the uniformity afforded by singularity analysis,
we find by (58) and (59):

[zn]F(z,u) = B(ρ,u)ρ−n

Ŵ(α(u))
(−ρC′(ρ))−α(u)nα(u)−1

(
1+ O(n−1/2)

)
.

Thus, the Quasi-powers Theorem applies and the law is Gaussian in the limit. �

The exp–log schema.The next proposition covers the exponential–logarithmic
(“exp–log”) schema of Section VII. 2, p. 445, which is amenable to singularity pertur-
bation techniques.

Proposition IX.14 (Sets of labelled logarithmic structures). Consider the labelled set
constructionF = SET(G). Assume that G(z) has radius of convergenceρ and is
1–continuable with a singular expansion of the form

G(z) = κ log
1

1− z/ρ
+ λ+ O

(
1

log2(1− z/ρ)

)
.

Then, the limit law of the number ofG–components in a largeF–structure is asymp-
totically Gaussian with mean and variance each asymptotic to κ logn and with speed
of convergence O((logn)−1/2).

Proof. Use the enhanced version of the uniformity lemma in Note IX.36. A quasi-
power approximation of the formpn(u) ≈ nα(u)−α(1), with α(u) ≡ κu, results from
developments of the same type as in the proof of Theorem IX.11. �

Clearly, all the labelled structures of Section VII. 2 (p. 445) are covered by this
proposition. A few examples, related to permutations, 2–regular graphs, and map-
pings, follow.
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ExampleIX.18. Cycles in derangements.The bivariate EGF forpermutationswith u marking
the number of cycles is given by the specification

F = SET(u CYC(Z)) H⇒ F(z, u) =
∑[

n

k

]
uk zn

n!
= exp

(
u log

1

1− z

)
,

so that we are in the simplest case of an exp–log schema. Proposition IX.14 implies immediately
that the number of cycles in a random permutation of size n converges to a Gaussian limiting
distribution. (This classical result stating the asymptotically normality distribution of the Stir-
ling cycle numbers could be derived directly in Proposition IX.5, p. 645,thanks to the explicit
character of the horizontal generating functions—the Stirling polynomials—in this particular
case.)

Similarly, the number of cycles is asymptotically normal in generalized derangements (Ex-
amples II.14, p. 122 and VII.1, p. 448) where a finite setSof cycle lengths are forbidden. This
results immediately from Proposition IX.14, given the BGF

F = SET(u CYCZ≥1\S(Z)) H⇒ F(z, u) = exp


u


log

1

1− z
−
∑

s∈S

zs

s




 .

The classical derangement problem corresponds toS= {1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleIX.19. 2–regular graphs.A 2–regular graph is an undirected graph such that each ver-
tex has degree exactly 2. Any 2–regular graph may be decomposed intoa product of connected
components that areundirectedcycles of length at least 3 (Note II.22, p. 133 and Example VII.2,
p. 449). Hence the bivariate EGF for 2–regular graphs, withu marking the number of connected
components, is given by

F = SET(u UCYC≥3(Z)) H⇒ F(z, u) = exp

(
u

[
1

2
log

1

1− z
− z

2
− z2

4

])
.

By the logarithmic character of the function inside the exponential, the number of connected
components in a 2–regular graph, has a Gaussian limit distribution. . . . . .. . . . . . . . . . . . . . . . .�

Example IX.20. Connected components in mappings.Mappings from a finite set to itself
can be represented as labelled functional graphs. Withu marking the number of connected
components, the specification is (Subsection II. 5.2, p. 129 and Example VII.3, p. 449)

F = SET(u CYC(T )) H⇒ F(z,u) = exp

(
u log

1

1− T(z)

)
,

whereT(z) is the Cayley tree function defined implicitly by the relationT(z) = zexp(T(z)).
By the inversion theorem for implicit functions (Example VI.8, p. 403), we have a square-root
singularity,

T(z) = 1−
√

2(1− ez)+ O(1− ez),

so that

F(z,u) = exp

(
u

[
1

2
log

1

1− ez
+ O((1− ez)1/2)

])
.

From Proposition IX.14, we obtain a theorem originally due to Stepanov [559]: The number of
components in functional digraphs has a limiting Gaussian distribution.

This approach extends to functional digraphs satisfying various degree constraints as con-
sidered in [18]. This analysis and similar ones are relevant to integer factorization, using Pol-
lard’s “rho” method [247, 379, 538]. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�
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Unlabelled constructions.In the unlabelled universe, the class of all finite mul-
tisets over a classG has ordinarybivariategenerating function given by

F = MSET(uG) H⇒ F(z,u) = exp

(
u

1
G(z)+ u2

2
G(z2)+ u3

3
G(z3)+ · · ·

)
.

whereu marks the number ofG–components (Chapter III).
The functionF(z,u) is consequently of the formF(z,u) = euG(z)B(z,u), where

B(z,u) collects the contributions arising fromG(z2),G(z3), . . .. If the radius of con-
vergenceρ of G(z) is assumed to be strictly less than 1, then, as it is easily checked,
the functionB(z,u) is bivariate analytic in|u| < 1+ ǫ, |z| < R for someǫ > 0
and R > ρ. Here, we are interested in structures such thatG(z) has a logarithmic
singularity, in which case the conclusions of Proposition IX.14 relative to the con-
structionF = MSET(uG) hold (this is verified by a simple combination of the proofs
of Proposition IX.14 and Theorem IX.11). In summary:

For the constructionF = MSET(G), under the assumption thatρ < 1 and
G(z) is logarithmic, the number ofG–components in a randomFn structure
is asymptotically Gaussian in the scale oflogn, with speed O((logn)−1/2).

The same property also holds for the unlabelled powerset constructionF = PSET(G).
In what follows, we present two illustrations, one relativeto the factorization of

polynomials over finite fields, the other to unlabelled functional graphs.

Example IX.21. Polynomial factorization.Fix a finite fieldFp and consider the classP of
monic polynomials (having leading coefficient 1) in the polynomial ringFp[z], with I the sub-
class of irreducible polynomials. The algebraic analysis has been performed in Example I.20,
p. 90. One hasPn = pn and

P(z) = (1− pz)−1.

Because of the unique factorization property, a polynomial is a multiset ofirreducible polyno-
mials, whence the relation

P(z) = exp

(
I (z)

1
+ I (z2)

2
+ I (z3)

3
+ · · ·

)
.

The preceding relation can be inverted using Möbius inversion. WithL(z) = log P(z), we have

I (z) =
∑

k≥1

µ(k)
L(zk)

k
= log

1

1− pz
+
∑

k≥2

µ(k)
L(zk)

k
,

whereµ is the Möbius function.
As it is apparent,I (z) is logarithmic (it is indeed the sum of a logarithmic term and a

function analytic for|z| < p−1/2; see Example VII.4, p. 449). We have yet another instance of
the exp–log schema (withκ = 1). Hence:

Proposition IX.15. Let �n be the random variable representing the number of irreducible
factors of a random polynomial of degree n overFp, each factor being counted with its order
of multiplicity. Then as n tends to infinity, we have, for any real x:

lim
n→+∞

P{�n < logn+ x
√

logn} = 1√
2π

∫ x

−∞
e−t2/2 dt.
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This statement, which originally appears in [258], constitutes a counterpart of the famous
Erdös–Kac Theorem (1940) for the number of prime divisors of naturalnumbers (with here
logn that replaces log logn when dealing with integers at mostn; see [576]). The speed of
convergence is once moreO((logn)−1/2). Also, by the same devices, the same property holds
for the parameterωn that represents the number ofdistinct irreducible factors in a random
polynomial of degreen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .�

It is perhaps instructive to re-examine this last example atan abstract level, in the
light of general principles of analytic combinatorics.

A polynomial over a finite field is determined by thesequenceof its coeffi-
cients. Hence, the class of all polynomials, as a sequence class, has a polar
singularity. On the other hand, unique factorization entails that a polyno-
mial is also amultisetof irreducible factors (“primes”). Thus, the class of
irreducible polynomials, that is implicitly determined, is logarithmic, since
the multiset construction to be inverted is in essence an exponential oper-
ator. As a consequence of the exp–log schema, the number of irreducible
factors is asymptotically Gaussian.

Example IX.22. Unlabelled functional graphs (mapping patterns).These are unlabelled di-
rected graphs in which each vertex has outdegree equal to 1 (Chapter VII, p. 480). The specifi-
cation of the classF of such digraphs is

F = MSET(L), L = CYC(H)), H = Z ×MSET(H),

corresponding to multisets of cycles of rooted unlabelled treesH.
Analytically, we know from Section VII. 5 (p. 475) relative to non-plane trees thatH(z)

has a dominant square-root singularity:

H(z) = 1− γ
√
(1− z/η)+ O(1− z/η),

whereη
.= 0.33832 andγ is some positive constant. As a consequence,L(z), which is obtained

by translating an unlabelled cycle construction, is logarithmic with parameterκ = 1/2. Thus:
The number of components in a mapping pattern has a Gaussian limit distribution, with mean
and variance each of the form12 logn+ O(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� IX.37. Arithmetical semigroups.Knopfmacher [370] defines an arithmetical semigroup as a
semigroup with unique factorization, together with a size function (or degree) such that

|xy| = |x| + |y|,
and the number of elements of a fixed size is finite. IfP is an arithmetical semigroup andI its
set of ‘primes’ (irreducible elements), axiomA# of Knopfmacher asserts the condition

card{x ∈ P / |x| = n} = cqn + O(qαn) (α < 1),

with q > 1. It is shown in [370] that several algebraic structures forming arithmetical semi-
groups satisfy axiomA#, and thus the conditions of Theorem IX.11 are automatically verified.
Therefore, the results deriving from Theorem IX.11 fit into the framework of Knopfmacher’s
“abstract analytic number theory”—they provide general conditions under which theorems of
the Erd̈os–Kac type must hold true. Examples of application mentioned in [370] are Galois
polynomial rings (the case of polynomial factorization), finite modules orsemi-simple finite
algebras over a finite fieldK = Fq, integral divisors in algebraic function fields, ideals in the
principal order of a algebraic function field, finite modules, or semi-simple finite algebras over
a ring of integral functions. �
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Figure IX.12. Small components of size≤ 20 in random permutations (left) and
random mappings (right) of size 1 000: each object corresponds to a line and each
component is represented by a square of proportional area (for some of the mappings,
such components may be lacking).

� IX.38. A Central Limit Theorem on GLn(Fq). The title of this note is that of an article by
Goh and Schmutz [297] who prove asymptotic normality for the number ofirreducible factors
that the characteristic polynomial of a randomn × n matrix with entries inFq has. [Some
linear algebra relative to the canonical decomposition of matrices and dueto Kung and Stong
is needed.] The topic of random matrix theory over finite fields is blossoming: see Fulman’s
survey [272]. �

Number of fixed-size components in the exp–log schema.As we know all too
well, the cycle structure of permutations is a typical instance of the exp–log schema,
where everything is as explicit as can be. The Gaussian law for the total number of
cycles actually summarizes information relative to the number of 1–cycles, 2–cycles,
and so on. These can be analysed separately, and we learnt in Example IX.4 (p. 625)
that, form fixed, the number ofm–cycles is asymptotically Poisson(1/m)—in a way,
the Gaussian law for cycles appears as the resultant of a large number of Poisson
variables of slowly decreasing rates. As a matter of fact, similar properties hold true
for any labelled class that belongs to the exp–log schema, namely, the number of
m–components is in general asymptotically Poisson(λm), where the rateλm is com-
putable and satisfiesλm = O(1/m); see Figure IX.12 for an illustration. (The alert
reader may have noticed that we already obtained this property directly in Proposi-
tion VII.1 on p. 451, relative to profiles of exp–log structures, and that it is similar in
spirit to what happens in subcritical constructions of Proposition IX.3, p. 633, although
now the exp–log schema iscritical!) Here we briefly indicate how such properties can
be obtained by singularity perturbation: no quasi-power approximation is involved
since a discrete-to-discrete convergence occurs, but the uniformity properties of the
singularity analysis process, Lemma IX.2, p. 668, remains acentral ingredient of the
synthetic analysis to be developed below.
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Example IX.23. Fixed-size components in sets of logarithmic structures14. The number of
components of some fixed sizem in a set construction corresponds to the specification

F = SET (uGm+ (G \ Gm)) H⇒ F(z,u) = exp
(
G(z)+ (u− 1)gmzm) ,

whereF(z, u) is an exponential BGF,G(z) is an EGF, andgm := [zm]G(z). As a consequence:

F(z,u) = exp
(
(u− 1)gmzm) F(z).

Under the assumption thatG(z) is logarithmic, one has, foru in a small neighbourhood
of 1, asz→ ρ in a1–domain,

F(z, u) = eλw(u)(1−z/ρ)−κ
(
1+ O(log−2(1− z/ρ))

)
, w(u) = exp

(
(u− 1)gmρ

m) ,
the uniformity of the expansion with respect tou being granted by the same argument as in
Proposition IX.14. By singularity analysis, it is seen that

[zn]F(z, u) = eλw(u)

Ŵ(κ)
ρ−nnκ−1

(
1+ o(log−1 n)

)
.

Given the particular shape ofw(u), this last estimate tells us thatthe number of m–components
in a randomF–structure of large size tends to a Poisson distribution with parameterµ :=
gmρ

m.
This result applies for anym less than some arbitrary fixed boundB. In addition, truly

multivariate methods evoked at the end of this chapter enable one to provethat the number
of components of sizes 1, 2, . . . , B areasymptotically independent. This gives a very precise
model of the probabilistic profile of small components in randomF–objects as a product of
independent Poisson laws of parametergmρ

m for m = 1, . . . , B. Similar results hold for
unlabelled multisets, but with the negative binomial law replacing the Poisson law. . . . . . . . .�

� IX.39. Random mappings.The number of components of some fixed sizem in a large
random mapping (functional graph) is asymptotically Poisson(λ) whereλ = Kme−m/m! and
Km = m![zm] log(1 − T)−1 enumerates connected mappings. (ThereT is the Cayley tree
function.) The fact thatKme−m/m! ≈ 1/(2m) explains the fact that small components are
somewhat sparser for mappings than for permutations (Figure IX.12). �

The last example concludes our detailed investigation of exp–log structures, and
we may legitimately regard the most basic phenomena as well understood. Exam-
ple IX.23 quantifies the distribution of the number of “small” components, whose
presence is fairly sporadic (Figure IX.12) and for which an asymptotically indepen-
dent Poisson structure prevails. Panario and Richmond [470] have further succeeded
in proving that the size of thesmallestcomponent is asymptoticallyO(logn) on av-
erage. “Large” components also enjoy a rich set of properties. They cannot be in-
dependently distributed, since, for instance, a permutation can have only one cycle
larger thann/2, two cycles larger thann/3, etc. As shown by Gourdon [305] under
general exp–log conditions, the size of the largest component is2(n) on average and
in probability, and the limit law involves the Dickman function otherwise known to
describe the distribution of the largest prime divisor of a random integer over a large
interval. A general probabilistic theory of the joint distribution of largest compo-
nents in exp–log structures has been developed by Arratia, Barbour, and Tavaré [20],
some of the initial developments of that theory drawing their inspiration from earlier

14This example revisits the analysis of Proposition VII.1, p. 451, under the perspective of continuity
theorems for PGFs.
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combinatorial–analytic studies. The joint distribution of large components appears to
be characterized in terms of what is known as the Poisson–Dirichlet process.

IX. 7.2. Movable singularities. In accordance with the preliminary discussion
offered at the beginning of the section (p. 666), we now examine BGFsF(z,u) such
that, for the functionz 7→ F(z,u), the exponent at the singularity retains a constant
value, while the location of the singularityρ(u) moves smoothly withu, for u kept
in a sufficiently small neighbourhood of 1. A prototypical instance is a BGF involv-
ing a termC(z,u)−α, whenC(z,u) is bivariate analytic andC(z,1) has an isolated
zero at the pointρ ≡ ρ(1). The developments in the present subsection can then be
seen as extending the perturbative analysis of meromorphicfunctions in Theorem IX.9
(p. 656), where the latter corresponds to exponents restricted toα = 1,2, . . . .

This subsection provides the general machinery for addressing such fixed-
exponent movable-singularity situations, and it is once more based on the uniformity
afforded by singularity analysis (Lemma IX.2, p. 668). We illustrate it by means of a
few simple examples related to trees, where BGFs are explicitly known. (The next two
subsections will explore further applications where BGFs are only accessible indirect-
ly, via implicit analytic (especially, algebraic) equations and differential equations.)
Our starting point is the following general statement, which parallels Theorem IX.9,
p. 656.

Theorem IX.12 (Algebraic singularity schema). Let F(z,u) be a function that is
bivariate analytic at(z,u) = (0,0) and has non-negative coefficients. Assume the
following conditions:

(i ) Analytic perturbation:there exist three functions A, B,C, analytic in a do-
mainD = {|z| ≤ r }×{|u−1| < ǫ}, such that, for some r0 with 0< r0 ≤ r ,
andǫ > 0, the following representation15 holds, withα 6∈ Z≤0,

(60) F(z,u) = A(z,u)+ B(z,u)C(z,u)−α;
furthermore, assume that, in|z| ≤ r , there exists a unique rootρ of the
equation C(z,1) = 0, that this root is simple, and that B(ρ,1) 6= 0.

(i i ) Non-degeneracy: one has∂zC(ρ,1) ·∂uC(ρ,1) 6= 0, ensuring the existence
of a non-constantρ(u) analytic at u= 1, such that C(ρ(u),u) = 0 and
ρ(1) = ρ.

(i i i ) Variability: one has

v

(
ρ(1)

ρ(u)

)
6= 0.

Then, the random variable with probability generating function

pn(u) =
[zn]F(z,u)

[zn]F(z,1)

converges in distribution to a Gaussian variable with a speed of convergence that is
O(n−1/2). The meanµn and the standard deviationσn are asymptotically linear in n.

15By unicity of analytic continuation, the representation ofF(z, u) only needs to be established ini-
tially near(z, u) = (0, 1), that is, for|z| < r0, for some (arbitrarily small) positiver0.
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Proof. We start with the asymptotic analysis of the univariate counting problem. By
the assumptions made, the functionF(z,1) is analytic in|z| < ρ and continuable to
a1–domain. It admits a singular expansion of the form

(61)
F(z,1) = (a0+ a1(z− ρ)+ · · · )

+ (b0+ b1(z− ρ)+ · · · )
(
c1(z− ρ)+ c2(z− ρ)2+ · · ·

)−α
.

There, thea j ,b j , c j represent the coefficients of the expansion inz of A, B,C for
z nearρ whenu is instantiated at 1. (We may considerC(z,u) normalized by the
condition thatc1 is positive real, and take, e.g.,c1 = 1.) Singularity analysis then
implies the estimate

(62) [zn]F(z,1) = b0(−c1ρ)
−αρ−n nα−1

Ŵ(α)

(
1+ O

(
1

n

))
.

All that is needed now is auniform lifting of relations (61) and (62), foru in a small
neighbourhood of 1.

First, we observe that, by the analyticity assumption onA, the coefficient
[zn] A(z,u) is exponentially small compared toρ−n, for u close enough to 1. Thus,
for our purposes, we may freely restrict attention to [zn]B(z,u)C(z,u)−α. (The func-
tion A is only needed in some cases so as to ensure non-negativity ofthe first few
coefficients ofF .)

Next, we observe that there exists foru sufficiently near to 1, a unique simple root
ρ(u) nearρ of the equation

C(ρ(u),u) = 0,

which is an analytic function ofu and satisfiesρ(1) = ρ. This results from the
Analytic Implicit Function Theorem or, if one prefers, the Weierstrass Preparation
Theorem: see Appendix B.5:Implicit Function Theorem, p. 753.

At this stage, due to the changing geometry of1–domains asu varies, it proves
convenient to operate with afixed rather than movable singularity. This is simply
achieved by considering the normalized function

9(z,u) := B (zρ(u),u)C (zρ(u),u)−α .

Providedu is restricted to a suitably small neighbourhood of 1 andz to |z| < R for
someR > 1, the functionsB(zρ(u),u) andC(zρ(u),u) are analytic in bothz andu
(by composition of analytic functions), whileC(zρ(u),u) now has a fixed (simple)
zero atz= 1. There results that the function

1

1− z
C (zρ(u),u)

has a removable singularity atz = 1 (by division of series expansions) and hence is
analytic in|z| < R and |u − 1| < δ, for someδ > 0. In particular, nearz = 1, 9
satisfies an expansion of the form

(63) 9(z,u) = (1− z)−α
∑

n≥0

ψn(u)(1− z)n,

that is convergent and such that each coefficientψ j (u) is an analytic function ofu for
|u− 1| < δ.
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We can finally return to the analysis of [zn]F(z,u) and undo what has been done.
We have

[zn]F(z,u) = ρ(u)−n[zn]9(z,u)+ [zn] A(z,u),

where the second term in the sum is (exponentially) negligible. Now, as we know
from (63) and surrounding considerations, the functionz 7→ 9(z,u) is analytic in a
fixed1–domain, in which it admits a uniform singular approximation obtained by a
simplification of (63),

9(z,u) = ψ0(u)(1− z)−α + O
(
(1− z)α−1

)
.

An application of the uniformity property of singularity analysis, Lemma IX.2, then
provides the estimate

(64) [zn]F(z,u) = ψ0(u)ρ(u)
−n nα−1

Ŵ(α)

(
1+ O

(
1

n

))
,

uniformly, for u restricted to a small neighbourhood of 1.
Equation (64) shows thatpn(u) = fn(u)/ fn(1), where fn(u) := [zn]F(z,u), sat-

isfies precisely the conditions of the Quasi-powers Theorem, Theorem IX.8. There-
fore, the law with PGFpn(u) is asymptotically normal with a mean and a standard
deviation that are bothO(n). Since the error term in (64) isO(1/n), the speed of
convergence to the Gaussian limit isO(1/

√
n). �

The remarks following the statement of Theorem IX.9 apply. Accordingly, the
meanµn and varianceσ 2

n are computable by the general formula (37), and the vari-
ability condition is expressible in terms of the values ofC and its derivatives at(ρ,1)
by means of Equation (39), p. 657.
� IX.40. Logarithmic multipliers. The conclusions of Theorem IX.12 extend to functions
representable under the more general form (k ∈ Z≥0)

F(z, u) = A(z, u)+ B(z, u)C(z,u)−α (logC(z, u))k .

(The proof follows the same pattern, based on Note IX.36, p. 669.) �

In the remainder of this subsection, we illustrate the use ofTheorem IX.12 by
means of examples involving an explicitfractionalpower of a bivariate analytic func-
tion. Privileged cases of application of the theorem are thenumber of leaves in clas-
sical varieties of trees, such as Cayley trees, general or binary Catalan trees, and
Motzkin trees, for which the GFs lead to an explicit square-root expression.

ExampleIX.24. Leaves in general Catalan trees.We revisit here under a complex asymp-
totic angle the analysis of the number of leaves in general Catalan treesG, a problem already
introduced in Example III.13, p. 182. The specification is

G = Zu+ Z × SEQ≥1(G) H⇒ G(z,u) = zu+ zG(z, u)

1− G(z, u)
,

with u marking the number of leaves. The solution of the implied quadratic equationthen yields
the explicit form

G(z,u) = 1

2

(
1+ (u− 1)z−

√
1− 2(u+ 1)z+ (u− 1)2z2

)
,
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Figure IX.13. A display of the family of GFsz 7→ F(z, u) corresponding to leaves
in general Catalan trees whenu ∈ [1/2, 3/2]. It can be observed that the singularities
are all of the square-root type, with a movable singularity atρ̃(u) = (1+ u1/2)−2

(represented by the dashed line).

which is readily verified to be amenable to Theorem IX.12. Indeed, we have, in the notations of
that theorem,

A(z, u) = 1

2
(1+ (u− 1)z), B(z, u) ≡ −1

2
, C(z, u) = 1− 2(u+ 1)z+ (u− 1)2z2,

whose analyticity is obvious, together with the fixed exponentα = −1/2. The factorization

C(z, u2) = (1− z(1+ u)2) · (1− z(1− u)2),

implies that the zeros ofz 7→ C(z, u) are at(1±√u)−2. In particular, if|u− 1| < 1/10 (say),
then the dominant singularity ofG(z, u) is atρ(u) = (1+√u)−2 andρ ≡ ρ(1) = 1/4, as it
should be.

The analytic perturbation assumption of Theorem IX.12 (Condition(i )) is then satisfied,
with (say)r = 1/3. We next verify that∂zC(ρ,1) = −4 and∂uC(ρ,1) = −1, which en-
sures non-degeneracy (Condition(i i )). Finally, variability (Condition(i i i )) is satisfied since
v(ρ(1)/ρ(u)) = 1/8. Thus the theorem is applicable and the number of leaves is asymptoti-
cally normal.

The smooth displacement of singularities induced by the secondary variable u, which lies
at the basis of such a Gaussian limit result, is illustrated in Figure IX.13. (Compare also with
Figure 0.6 of ourInvitation, p. 10.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . �

ExampleIX.25. Leaves in classical varieties of trees.First, for leaves in binary Catalan trees,
we have (Example III.14, p. 182)

B = Zu+ 2(B × Z)+ (B ×Z × B) H⇒ B(z, u) = z(u+ 2zB(z, u)+ B(z, u)2),
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so that

B(z, u2) = 1

2z

(
1− 2z−

√
(1− 2z(1+ u))(1− 2z(1− u))

)
.

This is almost the same as the BGF of leaves in general Catalan trees. The dominant singularity
of z 7→ B(z, u) is atρ(u) = 1

2(1+√u)
and one findsv(ρ(1)/ρ(u)) = 1/16, so that the limit

law is Gaussian. The asymptotic form of the mean and variance are also provided byρ(u):
the number of leavesXn in a binary Catalan tree of sizen satisfiesE{Xn} = 1

4n + O(1) and

σ{Xn} = 1
4
√

n+ O(n−1/2); the limit law is Gaussian.
Next, comes the case of Cayley trees (Note III.17, p. 183):

T = Zu+ SET≥1(T ) H⇒ T(z, u) = z(u− 1+ eT(z,u)).

(The distribution is closely related to the Stirling partition numbers.) By simple algebra, it is
seen that the functional equation admits an explicit solution in terms of the Cayley tree function
itself (T = zeT ): we find

T(z,u) = z(u− 1)+ T(zez(u−1)).

As we know, the functionT(z) has a dominant singularity of the square-root type ate−1, so

(65) ρ(u) = 1

1− u
T(e−1(1− u)),

and we getρ(1) = e−1, as we should. Accordingly, the functionz 7→ T(z, u) has a singularity
of the square-root type atρ(u), to which Theorem IX.12 can be applied. The expansion near
u = 1 then comes automatically from (65):

ρ(u)

ρ(1)
= 1− e−1(u− 1)+ 3

2
e−2(u− 1)2+ O((u− 1)3).

Hence the mean and the variance of the numberXn of leaves in a random tree of sizen satisfy
E{Xn} ∼ e−1 n ≈ 0.36787n andσ2{Xn} ∼ e−2(e− 2) n ≈ 0.09720n, the limit law being
Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

Example IX.26. Patterns in binary Catalan trees. We present here a more sophisticated
example that generalizes the problem of counting leaves in trees. It arises from the analysis of
pattern matching and of compact representations of trees [257, 561].The BGF of the number of
(pruned) binary trees withz marking size andu marking the number of occurrences of a pattern
of sizem is

(66) F(z, u) = 1

2z

(
1−

√
1− 4z− 4(u− 1)zm+1

)
,

as seen in Note III.40 (p. 213) and Note III.41 (p. 214).
The quantity under the square-root in (66) has a unique root atρ = 1/4 whenu = 1,

while it hasm+ 1 roots foru 6= 1. By general properties of implicit and, specifically, algebraic
functions (Implicit Function Theorem, Weierstrass Preparation), asu tends to 1, one of these
roots, call itρ(u) tends to 1/4, while all the others{ρ j (u)}mj=1 escape to infinity. We have

H(z,u) := 1− 4z− 4zm+1(u− 1)

1− z/ρ(u)
=

m∏

j=1

(1− z/ρ j (u)),
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which is an analytic function in(z, u) for (z, u) in a complex neighbourhood of(1/4, 1). (This
results from the fact that the algebraic functionρ(u) is analytic atu = 1.) The singular expan-
sion ofG(z, u) = zF(z, u) is then given by

G(z, u) = 1

2
− 1

2

√
H(z, u)

√
1− z/ρ(u).

Thus, we are under the conditions of Theorem IX.12. Accordingly, thenumber of occurrences
taken over a random binary tree of sizen + 1 has mean and variance given asymptotically
by m((4ρ(u))−1)n andv((4ρ(u))−1)n, respectively. The expansion ofρ(u) at 1 is computed
easily by iteration (“bootstrapping”) from the defining equation,

z= 1

4
− zm+1(u− 1) = 1

4
−
(

1

4
− zm+1(u− 1)

)m+1
(u− 1) = · · · ,

to the effect that

ρ(u) = 1

4
− 1

4m+1
(u− 1)+ m+ 1

42m+1
(u− 1)2+ · · · .

Proposition IX.16. The number of occurrences of a pattern of size m in a random Catalan tree
of size n+ 1 admits a Gaussian limit distribution, with meanµn and varianceσ2

n that satisfy

µn ∼
n

4m , σ2
n ∼ n

(
1

4m −
2m+ 1

42m

)
.

In particular, the probability of occurrence of a pattern at a random node of a random trees
decreases fast (the factor of 4−m in the estimate of averages) with the size of the pattern, a
property that parallels the one already known for strings (p. 659). Thepaper of Steyaert and
Flajolet [561] shows that similar properties hold for any simply generatedfamily, at least in
an expected value sense. Flajolet, Sipala, and Steyaert [257] build uponthe foregoing analysis
to show that the minimal “dag representation” of a random tree (where identical subtrees are
“shared” and represented only once) is of average sizeO(n(logn)−1/2). . . . . . . . . . . . . . . . .�

� IX.41. Leaves in Motzkin trees.The number of leaves in a unary–binary (Motzkin) tree is
asymptotically Gaussian. �

� IX.42. Patterns in classical varieties of trees.Patterns in general Catalan trees and Cayley
trees can be similarly analysed. �

IX. 7.3. Algebraic and implicit functions. Under the univariate counting sce-
nario, we have encountered in Chapter VII many analytic–combinatorial conditions
leading to singular exponents that are non-integral. For instance, many implicitly
defined functions, including important algebraic cases, have a dominant singularity
that is of the square-root type (the exponent isα = −1/2 in the notations of The-
orem IX.12). If a corresponding specification is enriched bymarkers, there is a fair
chance that the square-root singularity property will persist (as in Figure IX.13, p. 679)
when the marking variableu remains close to 1, so that, by Theorem IX.12, a Gaussian
law results in the scale ofn. Similar comments apply to functions defined implicitly by
systems of equations, including algebraic functions, provided suitable non-degeneracy
conditions16 are satisfied. Here, we only state a single proposition, which is meant to
illustrate in a simple situation the type of treatment to which implicitly defined BGFs
can be subjected.

16Subsection IX. 11.2 (p. 707) below examines cases where a confluence of singularities induces a
stable law instead of the customary Gaussian distribution.
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Proposition IX.17 (Perturbation of algebraic functions). Let F(z,u) be a bivari-
ate function that is analytic at(0,0) and has non-negative coefficients. Assume that
F(z,u) is one of the solutions y of a polynomial equation

y−8(z,u, y) = 0,

where8 is a polynomial of degree d≥ 2 in y, such that8(z,1, y) satisfies the
conditions of thesmooth implicit function schemaof Section VII.4, p. 467, with
G(z, w) := 8(z,1, w). Let ρ, τ be the solutions of the characteristic system (rel-
ative to u= 1), so that y(z) := F(z,1) is singular at z= ρ and y(ρ) = τ . Define the
resultant polynomial (Appendix B.1: Algebraic elimination, p. 739),

1(z,u) = R
(

y−8(z,u, y),1− ∂

∂y
8(z,u, y), y

)
,

so thatρ is a simple root of1(z,1). Letρ(u) be the unique root of the equation

1(ρ(u),u),

analytic at 1, such thatρ(1) = ρ. Then, provided the variability condition

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F(z,u).

Proof. By the developments of Theorem VII.3, p. 468, the functiony(z) = F(z,1)
has a square-root singularity atz = ρ. The polynomialy − 8(ρ,1, y) has a double
(not triple) zero aty = τ , so that

(
∂

∂y
8(ρ,1, y)

)

y=τ
= 0,

(
∂2

∂y2
8(ρ,1, y)

)

y=τ
6= 0.

Thus, the Weierstrass Preparation Theorem gives the local factorization

y−8(z,u, y) = (y2+ c1(z,u)y+ c2(z,u))H(z,u, y),

whereH(z,u, y) is analytic and non-zero at(ρ,1, τ ) while c1(z,u), c2(z,u) are ana-
lytic at (z,u) = (ρ, τ ).

From the solution of the quadratic equation, we must have locally

y = 1

2

(
−c1(z,u)±

√
c1(z,u)2− 4c2(z,u)

)
.

Consider first(z,u) restricted by 0≤ z < ρ and 0≤ u < 1. SinceF(z,u) is real
there, we must havec1(z,u)2− 4c2(z,u) also real and non-negative. SinceF(z,u) is
continuous and increasing withz for fixed u, and since the discriminantc1(z,u)2 −
4c2(z,u) vanishes at 0, the determination with the minus sign has to beconstantly
taken. In summary, we have

(67) F(z,u) = 1

2

(
−c1(z,u)−

√
c1(z,u)2− 4c2(z,u)

)
.

SetD(z,u) := c1(z,u)2− 4c2(z,u). The functionD(z,1) has a simple real zero
atz= ρ. Thus, by the Analytic Inverse Function Theorem (or Weierstrass preparation
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again), there is locally a unique analytic branch of the solution toC(ρ(u),u) = 0 such
thatρ(1) = ρ, andD(z,u) factorizes as

D(z,u) = (ρ(u)− z)K (z,u),

for some analyticK satisfyingK (ρ,1) 6= 0. The conditions of Theorem IX.12 there-
fore hold. The stated Gaussian law follows. �

The last proposition asserts that, under certain conditions, the only possible dom-
inant singularity of the functionz 7→ F(z,u) is a smooth lifting of the singularity
of the univariate GFF(z,1), while the nature of the singularity does not change—it
remains of the square-root type. Similar results, established by similar methods, hold
true for more general equations and systems, under suitablenon-degeneracy and vari-
ability conditions. Indeed, one can go all the way from algebraic functions defined by
a single polynomial equation, as above, to functions implicitly defined bysystems of
analytic equations. This has been done by Drmota in an important paper [172]. Fora
systemy = 8(z,u, y), the approach consists of looking at the Jacobian of the trans-
formation, as in Subsection VII. 6.1 (p. 482) and imposing conditions that allow for a
smooth singularity displacement. The Weierstrass Preparation Theorem normally pro-
vides the needed permanence of analytic relations that imply a persistent square-root
singularity

The scope of Theorem IX.12, Proposition IX.17, and their derivative products
is enormous—potentially, all the recursive combinatorial structures examined in Sec-
tions VII. 3–VII. 8 (pp. 452–518) are concerned. This includes trees of various sorts,
mappings, lattice paths and their generalizations, planarmaps, as well as languages
and classes described by context-free specifications, to name a few.

Example IX.27. A pot-pourri of Gaussian laws. In the list that follows, all the mentioned
parameters obey a Gaussian limit distribution in the scale ofn. The proofs (omitted) involve in
each case a precise investigation of the perturbation of univariate singular expansions induced
by the secondary parameter, in a way similar to Theorem IX.12.

Simple varieties of trees, p. 452. The number of leaves is Gaussian (see Examples IX.24
and IX.25 above) and the property extends to the number of nodes of any fixed degreer as well
as to the number of occurrences of any fixed pattern (see Example IX.26). This property also
holds true for simple varieties of trees introduced in Section VII. 3, and it extends to unlabelled
non-plane trees [121].

Mappings, p. 462. The number of points withr predecessors is Gaussian, as is the car-
dinality of the image set, the property being also true for mappings defined by degree restric-
tions [18, 247].

Irreducible context-free structures, p. 482. Examples given in the paper of Drmota [172]
are the number of independent sets in a random tree and the number of patterns in a context-free
language.

Non-crossing graphs, p. 485. The number of connected components and the number of
edges in either forests or general non-crossing graphs is Gaussian [245]. (These properties are
thus in sharp contrast with those of the usual random graph model of Erdős and Ŕenyi [76].)

Walks in the discrete plane, p. 506. The number of steps of any fixed kind is Gaussian
for walks, excursions, bridges and meanders. An extension of the known methods shows that
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the number of occurrences of any fixed pattern (made of contiguous letters) is also asymptoti-
cally normal. For instance, the number of occurrences of the pattern up-down-up-up-down in a
random Dyck word (excursion) satisfies this property.

Planar maps, p. 513. The number of occurrences of any fixed submap is asymptotically
Gaussian (see [278] for a proof based on moment methods). Thus,maps are like words and
trees: any fixed collection of patterns occurs in a large enough random object with high proba-
bility (Borges’ Theorem, p. 61). . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .�

IX. 7.4. Differential equations. We have encountered in this book sporadic
combinatorial classes whose GFs are determined as solutions of ordinary differen-
tial equations(ODEs), and we have presented in Section VII. 9 (p. 518) several such
structures that are amenable to singularity analysis. Basic parameters are then likely
still to lead to ODEs, but ones that are now parameterized by the secondary vari-
ableu. (By contrast,partial differential equationshave so far been only scarcely used
in analytic combinatorics.) In such cases, a singularity perturbation analysis is often
feasible. Both situations, that of a variable exponent and that of a movable singularity,
can occur, as we now illustrate, largely by means of examples. The partial treatment
given here should at least convey the spirit of the singularity perturbation process, in
the context of differential equations.

Linear differential equations.ODEs in one variable, whenlinear and when hav-
ing analytic coefficients, admit solutions whose singularities occur at well-defined
places, namely those that entail a reduction of order (see Subsection VII. 9.1, p. 518,
and Section VIII. 7, p. 581, for the so-called “regular and “irregular cases, respec-
tively). The possible singular exponents of solutions are then obtained as roots of a
polynomial equation, the indicial equation. Such ordinarydifferential equations are
usually a reflection of a combinatorial decomposition of sorts, so that suitably param-
eterized versions open access to a number of combinatorial parameters. In the cases
considered here, the ODE satisfied by a BGFF(z,u) remains an ODE in the main
variablez that records size, while the auxiliary variableu only affects coefficients.
We start with a simple example, Example IX.28, relative to node levels in increas-
ing binary trees, continue with a general statement, Proposition IX.18 relative to the
case of a variable exponent in a linear ODE, and conclude withan application to node
levels in quadtrees in Example IX.29.

ExampleIX.28. Node levels in increasing binary trees.Increasing binary trees are labelled
(pruned) binary trees, such that any branch from the root has monotonically increasing labels.
As explained in Example II.17 (p. 143), these trees are an important representation of permuta-
tions. Their specification, in terms of the boxed product of Chapter II, is

(68) F = 1+
(
Z� ⋆ F ⋆ F

)
H⇒ F(z) = 1+

∫ z

0
F(t)2 dt,

and, accordingly, their EGF is

F(z) = 1

1− z
=
∑

n≥0

n!
zn

n!
,

Let F(z, u) be the BGF of trees whereu records the depth of external nodes. In other
words, fn,k = [znuk]F(z,u) is such that 1

n+1 fn,k represents the probability that a random
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external node in a random tree of sizen is at depthk. (The probability space is then a product
set of cardinality(n+ 1) · n!, as there aren! trees each containing(n+ 1) external nodes. By
a standard equivalence principle, the quantity1n+1 fn,k also give the probability that a random
unsuccessful search in a random binary search tree of sizen necessitatesk comparisons.)

Since the depth of a node is inherited from subtrees, the functionF(z, u) satisfies the
linear integral equation derived from (68) (see also Equation (VI.67), p. 429 in relation to the
BST recurrence),

(69) F(z, u) = 1+ 2u
∫ z

0
F(t,u)

dt

1− t
,

or, after differentiation,

∂

∂z
F(z,u) = 2u

1− z
F(z,u), F(0, u) = 1.

This equation is nothing but a linear ODE, withu entering as a parameter in thecoefficients,

d

dz
y(z)− 2u

1− z
y(z) = 0, y(0) = 0,

the solution of any such separable first-order ODE being obtained by quadratures:

F(z, u) = 1

(1− z)2u
.

From singularity analysis, providedu avoids{0,−1/2,−1, . . .}, we have

fn(u) := [zn]F(z, u) = n2u−1

Ŵ(2u)

(
1+ O

(
1

n

))
,

and a uniform approximation holds, provided (say)|u−1| ≤ 1/4. Thus, Theorem IX.11 applies,
to the effect thatthe distribution of the depth of a random external node in a random increasing
binary tree, with PGF fn(u)/ fn(1), admits a Gaussian limit law.

Naturally, explicit expressions are available in such a simple case,

fn(u)

fn(1)
= 2u · (2u+ 1) · · · (2u+ n− 1)

(n+ 1)!
,

so a direct proof of the Gaussian limit in the line of Goncharov’s theorem (p. 645) is clearly
possible; see Mahmoud’s book [429, Ch. 2], for this result originally due to Louchard. What is
interesting here is the fact thatF(z, u) viewed as a function ofz has a singularity atz = 1 that
does not move and, in a way, originates in the combinatorics of the problem, through the EGF
of permutations,(1− z)−1. The auxiliary parameteru appears here directly in the exponent, so
that the application of singularity analysis or of the more sophisticated Theorem IX.11, (p. 669)
is immediate.

A similar Gaussian law holds for levels of internal nodes, and is proved bysimilar devices.
The Gaussian profile is even perceptible on single instance. In particular,Figure III.18 (p. 203)
suggests a much stronger “functional limit theorem” for these objects (namely, almost all trees
have an approximate Gaussian profile): this property, which seems currently beyond the scope
of analytic combinatorics, has been proved by Chauvin and Jabbour [114] using martingale
theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

Proposition IX.18 (Linear differential equations). Let F(z,u) be a bivariate generat-
ing function with non-negative coefficients that satisfies alinear differential equation

a0(z,u)
∂r F

∂zr
+ a1(z,u)

(ρ − z)

∂r−1F

∂zr−1
+ · · · + ar (z,u)

(ρ − z)r
F = 0,
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with aj (z,u) analytic atρ, and a0(ρ,1) 6= 0. Let fn(u) = [zn]F(z,u), and assume
the following conditions:

• [Non-confluence]The indicial polynomial

(70) J(α) = a0(ρ,1)(α)(r ) + a1(ρ,1)(α)(r−1) + · · · + ar (ρ,1)

has a unique rootσ > 0 which is simple and such that all other rootsα 6= σ
satisfyℜ(α) < σ ;
• [Dominant growth] fn(1) ∼ C · ρ−nnσ−1, for some C> 0.
• [Variability condition]

sup
v( fn(u))

logn
> 0.

Then the coefficients of F(z,u) admit a limit Gaussian law.

Proof. (See the paper by Flajolet and Lafforgue [243] for a detailed analysis and the
books by Henrici [329] and Wasow [602] for a general treatment of singularities of lin-
ear ODEs.) We assume in this proof that no two roots of the indicial polynomial (70)
differ by an integer. Consider first the univariate problem,for which we summarize
the discussion started on p. 518. A differential equation,

(71) a0(z)
dr F

dzr
+ a1(z)

(ρ − z)

dr−1F

dzr−1
+ · · · + ar (z)

(ρ − z)r
F = 0,

with the a j (z) analytic atρ anda1(ρ) 6= 0 has a basis of local singular solutions
obtained by substituting(ρ − z)−α and cancelling the terms of maximum order of
growth. The candidate exponents are thus roots of theindicial equation,

J(α) ≡ a0(ρ)(α)(r ) + a1(ρ)(α)(r−1) + · · · + ar (ρ) = 0.

If there is a unique (simple) root of maximum real part,α1, then there exists a solution
to (71) of the form

Y1(z) = (ρ − z)−α1h1(ρ − z),

whereh1(w) is analytic at 0 andh1(0) = 1. (This results easily from a solution by
indeterminate coefficients.) All other solutions are then of smaller growth and of the
form

Yj (z) = (ρ − z)−α j h j (ρ − z) (log(z− ρ))k j ,

for some integersk j and some functionsh j (w) analytic atw = 0. Then,F(z) has the
form

F(z) =
r∑

j=1

c j Yj (z).

Then, providedc1 6= 0,

[zn]F(z) = c1

Ŵ(σ)
ρ−nnα1−1(1+ o(1)).

Under the assumptions of the theorem, we must haveσ = α1, andc1 6= 0. (The reality
assumption onσ is natural for a seriesF(z) that has real coefficients.)

Whenu varies in a neighbourhood of 1, we have a uniform expansion

(72) F(z,u) = c1(u)(ρ − z)−σ(u)H1(ρ − z,u)(1+ o(1)),
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for some bivariate analytic functionH1(w,u) with H1(0,u) = 1, whereσ(u) is the
algebraic branch that is a root of

J(α,u) ≡ a0(ρ,u)(α)(r ) + a1(ρ,u)(α)(r−1) + · · · + ar (ρ,u) = 0,

and coincides withσ atu = 1. By singularity analysis, this entails

(73) [zn]F(z,u) = c1(u)

Ŵ(σ )
ρ−nnσ(u)−1(1+ o(1)),

uniformly for u in a small neighbourhood of 1, with the error term beingO(n−a) for
somea > 0. Thus Theorem IX.11 (p. 669) applies and the limit law is Gaussian.

The crucial point in (72) and (73) is the uniform character ofexpansions with
respect tou. This results from two facts:(i ) the solution to (71) may be specified
by analytic conditions at a pointz0 such thatz0 < ρ and there are no singularities
of the equation betweenz0 andρ; and(i i ) there is a suitable set of solutions with an
analytic component inz andu and singular parts of the form(ρ − z)−α j (u), as results
from the matrix theory of differential systems and majorantseries. (This last point is
easily verified if no two roots of the indicial equation differ by an integer; otherwise,
see [243] for an alternative basis of solutions foru near 1,u 6= 1.) �

Example IX.29. Node levels in quadtrees.Quadtrees defined in Example VII.23 (p. 522)
are one of the most versatile data structures known for managing collections of points in multi-
dimensional space. They are based on a recursive decomposition similar to that of binary search
trees and increasing binary trees of the previous example.

This example is borrowed from [243]. We fix the dimensiond ≥ 2 of the ambient data
space. Letfn,k be the number of external nodes at levelk in a quadtree of sizen grown by
random insertions, and letF(z,u) be the corresponding BGF. Two integral operators play an
essential r̂ole,

I g(z) =
∫ z

0
g(t)

dt

1− t
J g(z) =

∫ z

0
g(t)

dt

t (1− t)
.

The basic equation that reflects the recursive splitting process of quadtrees is then (see [243]
and Chapter VII, p. 522 for similar techniques)

(74) F(z, u) = 1+ 2duJd−1I F(z,u).

The integral equation (74) satisfied byF then transforms into a differential equation of orderd,

I−1J1−d F(z, u) = 2duF(z, u),

where
I−1g(z) = (1− z)g′(z), J−1g(z) = z(1− z)g′(z).

The linear ODE version of (74) has an indicial polynomial that is easily determined by
examination of the reduced form of the ODE (74) atz= 1. There, one has

J−1g(z) = I−1g(z)− (z− 1)2g′(z) ≈ (1− z)g′(z).
Thus,

I−1J1−d(1− z)−θ = θd(1− z)−θ + O((1− z)−θ+1),

and the indicial polynomial is
J(α,u) = αd − 2du.

In the univariate case, the root of largest real part isα1 = 2; in the bivariate case, we have

α1(u) = 2u1/d,



688 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

where the principal branch is chosen. Thus,

fn(u) = γ (u)nα1(u)(1+ o(1)).

By the combinatorial origin of the problem,F(z, 1) = (1− z)−2, so that the coefficientγ (1)
is non-zero. Thus, the conditions of Proposition IX.18 are satisfied:The depth of a random
external node in a randomly grown quadtree is Gaussian in the limit, with meanand variance

µn ∼
2

d
logn, σ2

n ∼
2

d
logn.

The same result applies to the cost of a (fully specified) random search, either successful or not,
as shown in [243] by an easy combinatorial argument. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .�

From the global point of view of analytic combinatorics, it is of interest to place
the last two examples in perspective. Simple varieties of trees, as considered in ear-
lier subsections, are “square-root trees”, where height and depth of a random node are
each of order

√
n (on average, in distribution), while the corresponding univariate GFs

satisfy algebraic or implicit equations and have a square-root singularity. Trees that
in some way arise from permutations (increasing trees, binary search trees, quadtrees)
are “logarithmic trees”: they are specified by order-constrained constructions that cor-
respond to integro-differential operators, and their depth appears to be logarithmic
with Gaussian fluctuations, as a reflection of a perturbativesingularity analysis of
ODEs.

Nonlinear differential equations.Although nonlinear differential equations defy
classification in all generality, there are a number of examples in analytic combina-
torics that can be treated by singularity perturbation methods. We detail here the
typical analysis of “paging” in binary search trees (BSTs),or equivalently increasing
binary trees, taken from [235]. The Riccati equation involved reduces, by classical
techniques, to a linear second-order equation whose perturbation analysis is particu-
larly transparent and akin to earlier analyses of ODEs. In this problem, the auxiliary
parameter induces a movable singularity that leads to a Gaussian limit law in the scale
of n.

ExampleIX.30. Paging of binary search trees and increasing binary trees.Fix a “page size”
parameterb ≥ 2. Given a treet , itsb–indexis a tree constructed by retaining only those internal
nodes oft which correspond to subtrees of size> b. As a computer data structure, such an index
is well-suited to “paging”, where one has a two-level hierarchical memory structure: the index
resides in main memory and the rest of the tree is kept in pages of capacityb on peripheral
storage, see for instance [429]. We letι[t ] = ιb[t ] denote the size —number of nodes— of the
b–index oft .

We consider here the analysis of paging in binary search trees, whose model is known to
be equivalent to that of increasing binary trees. The bivariate generating function

F(z, u) :=
∑

t

λ(t)uι[t ]z|t |

satisfies a Riccati equation that reflects the root decomposition of trees (see (68)),

(75)
∂

∂z
F(z, u) = uF(z, u)2+ (1− u)

d

dz

(
1− zb+1

1− z

)
, F(0, u) = 1,

where the quadratic relation has to be adjusted in its low-order terms.
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The GFs of moments are rational functions with a denominator that is a power of (1− z),
as results from differentiation atu = 1. Mean and variance follow:

µn =
2(n+ 1)

b+ 2
− 1, σ2

n =
2

3

(b− 1)b(b+ 1)

(b+ 2)2
(n+ 1).

(The result for the mean is well-known, refer to quantityAn in the analysis of quicksort on
p. 122 of [378].)

Multiplying both sides of (75) byu now gives an equation satisfied byH(z,u) :=
uF(z,u),

∂

∂z
H(z,u) = H(z,u)2+ u(1− u)

d

dz

(
1− zb+1

1− z

)
,

that may as well be taken as a starting point sinceH(z,u) is the bivariate GF of parameter 1+ιb
(a quantity also equal to the number of external pages). The classical linearization transforma-
tion of Riccati equations,

H(z,u) = − X′z(z,u)
X(z,u)

,

yields

(76)
∂2

∂z2
X(z, u)+ u(u− 1)A(z)X(z, u) = 0, A(z) = d

dz

(
1− zb+1

1− z

)
,

with X(0,u) = 1, X′z(0, u) = −u. By the classical existence theorem of Cauchy, the solution
of (76) is an entire function ofz for each fixedu, since the linear differential equation has
no singularity at a finite distance. Furthermore, the dependency ofX on u is also everywhere
analytic; see the remarks of [602, §24], for which a proof derives by inspection of the classical
existence property, based on indeterminate coefficients and majorant series. Thus,X(z, u) is
actually an entire function ofbothcomplex variablesz andu. As a consequence, for any fixed
u, the functionz 7→ H(z, u) is a meromorphic function whose coefficients are amenable to
singularity analysis.

In order to proceed further, we need to prove that, in a sufficiently smallneighbourhood of
u = 1, X(z, u) has only one simple root, corresponding forH(z, u) to a unique dominant and
simple pole. This fact derives from the usual considerations surrounding the analytic Implicit
Function Theorem and the Weierstrass Preparation Theorem (AppendixB.5: Implicit Function
Theorem, p. 753). Here, we haveX(z,1) ≡ 1− z. Thus, asu tends to 1, all solutions inz
of X(z, u) = 0 must escape to infinity, except for one (analytic) branchρ(u) that satisfies
ρ(1) = 1.

The argument is now complete: the BGFF(z,u) and its companionH(z,u) = uF(z,u)
have a movable singularity atρ(u), which is a pole. Theorem IX.9 (p. 656) relative to the
meromorphic case applies, and a Gaussian limit law results. . . . . . . . . . .. . . . . . . . . . . . . . . . . .�

As shown in [235], a similar analysis applies to patterns in binary search trees.
The corresponding properties are (somewhat) related to theanalysis of local or-
der patterns in permutations, for which Gaussian limit lawshave been obtained by
Devroye [159] using extensions of the central limit theoremto weakly dependent ran-
dom variables.

� IX.43. Leaves in varieties of increasing trees.Similar displacements of singularity arise for
the number of nodes of a given type in varieties of increasing trees (Example VII.24, p. 526).
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For instance, ifφ(w) is the degree generator of a family of increasing trees, the nonlinear ODE
satisfied by the BGF of the number of leaves is

∂

∂z
F(z, u) = (u− 1)φ(0)+ φ(F(z,u)).

Wheneverφ is a polynomial, there is a spontaneous singularity at someρ(u) that depends
analytically onu. Thus, the number of leaves is asymptotically Gaussian [49]. A similar result
holds for nodes of any fixed degreer . �

IX. 8. Perturbation of saddle-point asymptotics

The saddle-point method, which forms the subject of ChapterVIII, is also
amenable to perturbation. For instance, we already know that the number of parti-
tions of a domain of cardinalityn into classes (set partitions enumerated by thenth
Bell number) can be estimated by this method; a suitable perturbative analysis can
then be developed, to the effect that the number of classes ina random set partition
of large size is asymptotically Gaussian. Given the nature of univariate saddle-point
expansions and their diversity (they do not reduce to theρ−nnα paradigm), the Quasi-
powers Theorem ceases to be applicable, and a more flexible framework is needed.
In what follows, we base our brief discussion on a theorem taken from Sachkov’s
book [524].

Theorem IX.13 (Generalized quasi-powers). Assume that, for u in a fixed neighbour-
hood� of 1, the generating function pn(u) of a non-negative discrete random variable
(supported byZ≥0) Xn admits a representation of the form

(77) pn(u) = exp(hn(u)) (1+ o(1)) ,

uniformly with respect to u, where each hn(u) is analytic in�. Assume also the
conditions,

(78) h′n(1)+ h′′n(1)→∞ and
h′′′n (u)

(h′n(1)+ h′′n(1))3/2
→ 0,

uniformly for u∈ �. Then, the random variable

X⋆n =
Xn − h′n(1)

(h′n(1)+ h′′n(1))1/2

converges in distribution to a Gaussian with mean 0 and variance 1.

Proof. See [524, §1.4] for details. Setσ 2
n = h′n(1) + h′′n(1), and expand the char-

acteristic function ofXn at t/σn. Thanks to the form (77) and the conditions (78),
inequalities implied by the Mean Value Theorem (Note IV.18,p. 249) give

hn(e
i t /σn) = h′n(1)

i t

σn
− t2

2
+ o(1).

Thus, the characteristic function ofX⋆n converges to the transform of a standard Gauss-
ian. The statement follows from the continuity theorem of characteristic functions.�

� IX.44. Real neighbourhoods.The conditions of Theorem IX.13 can be relaxed by postulating
only that� is a real interval containingu = 1. (Hint: use the continuity theorem for Laplace
transforms of distributions.) �
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� IX.45. Effective speed bounds.When� is a complex neighbourhood of 1 (as stated in
Theorem IX.13), a metric version of the theorem, with speed of convergence estimates, can
be developed assuming effective error bounds in (77) and (78). (Hint: use the Berry–Esseen
inequalities.) �

The statement above extends the Quasi-powers Theorem, and,in order to stress
the parallel, we have opted for a complex neighbourhood condition, which has the
benefit of providing better error bounds in applications (Note IX.45). In effect, to see
the analogy, note that if

hn(u) = βn log B(u)+ A(u),

then the second quantity in (78) isO(β−1/2
n ), uniformly. The application of this

theorem to saddle-point integrals is in principle routine,although the manipulation of
asymptotic scales associated with expressions involving the saddle-point value may
become cumbersome. The fact that information for positive real values ofu is suf-
ficient (Note IX.44) may, however, help, since in applications, the GFz 7→ F(z,u)
specialized for positiveu stands a good chance of being an admissible function in
the sense of Chapter VIII (p. 565), whenF(z,1) is itself admissible. General condi-
tions have been stated by Bender, Drmota, Gardy, and coauthors [174, 279, 280, 281].
Broadly speaking, such situations constitute thesaddle-point perturbation process.
Once more, uniformity of expansions is an issue, which can betechnically demanding
(one needs to revisit the dependency of univariate analyseson the secondary parameter
u ≈ 1), but is not conceptually difficult.

We first detail here the case of singletons in random involutions for which the
saddle-point is an explicit algebraic function ofn andu. Then, we prove the Gaussian
character of the Stirling partition numbers, which is a classic result first obtained by
Harper [322] in 1967. We continue with a pot-pourri of Gaussian laws, which can
be obtained by the saddle-point method, and conclude with a note that provides brief
indications on BGFs only indirectly accessible through functional equations,

ExampleIX.31. Singletons in random involutions.The exponential BGF of involutions, withu
marking the number of singleton cycles, is given by

F = SET (u CYC1(Z)+ CYC2(Z)) H⇒ F(z, u) = exp

(
zu+ z2

2

)
.

The saddle-point equation (Theorem VIII.3, p. 553) is then

d

dz

(
uz+ z2

2
− (n+ 1) logz

)

z=ζ
= 0.

This defines the saddle-pointζ ≡ ζ(n,u),

ζ(n,u) = −u

2
+ 1

2

√
4n+ 4+ u2

= √
n− u

2
+ u2+ 4

8

1√
n
+ O(n−1),

where the error term is uniform foru near 1. By the saddle-point formula, one has

[zn]F(z, u) ∼ 1√
2πD(n,u)

F(ζ(n,u),u)ζ(n,u)−n.
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The denominator is determined in terms of second derivatives, according to the classical saddle-
point formula (p. 553),

D(n,u) = ∂2

∂z2

(
uz+ z2

2
− (n+ 1) logz

)

z=ζ(n,u)
,

and its main asymptotic order does not change whenu varies in a sufficiently small neighbour-
hood of 1,

D(n, u) = 2n− u
√

n+ O(1),

again uniformly. Thus, the PGF of the number of singleton cycles satisfies

(79) pn(u) =
F(ζ(n,u), u)

F(ζ(n,1), 1)

(
ζ(n,u)

ζ(n,1)

)−n
(1+ o(1)).

This is of the form
pn(u) = exp(hn(u)) (1+ o(1)),

and local expansions then yield the centring and scaling constants

an := h′n(1) =
√

n− 1

2
+ O(n−1/2), b2

n := h′n(1)+ h′′n(1) =
√

n− 1+ O(n−1/2).

Uniformity in (79) can be checked by returning to the original Cauchy coefficient integral and
to bounds relative to the saddle-point contour. Theorem IX.13 then applies to the effect that
the variable 1

bn
(Xn − an) is asymptotic to a standard normal. (With a little additional care,

one can verify that the meanµn and the standard deviationσn are asymptotic toan andbn,
respectively.) Therefore:

Proposition IX.19. The number of singletons in a random involution of size n has meanµn ∼
n1/2 and standard deviationσn ∼ n1/4; it admits a limit Gaussian law.

A random involution thus has, with high probability, a small number of singletons. . . . . . . . .�

ExampleIX.32. The Stirling partition numbers.The numbers
{n

k
}

correspond to the BGF

F = SET
(
u SET≥1(Z)

)
H⇒ F(z, u) = exp

(
u(ez− 1)

)
.

The saddle-pointζ ≡ ζ(n,u) is determined as the positive root nearn/ logn of the equation
ζeζ = (n+1)/u. The derivatives occurring in the saddle-point approximation are computed as
derivatives of inverse functions in a standard way. The conditions of Theorem IX.13, together
with the required uniformity, can then be checked. Hence:

Proposition IX.20. The Stirling partition distribution defined by1Sn

{n
k
}
, with Sn a Bell number,

is asymptotically normal, with mean and variance that satisfy

µn ∼
n

logn
, σ2

n ∼
n

(logn)2
.

(See also p. 594 for first moments.) We refer once more to Sachkov’s book [524, 526] for
computational details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .�

� IX.46. Harper’s analysis of Stirling behaviour.Harper’s original derivation [322] of
Proposition IX.20 is of independent interest. Consider the Stirling polynomials defined by
σn(u) := n![zn] exp(u(ez − 1)). Each such polynomial has roots that are real, distinct, and
non-positive. Then, for some positiveβn,k, one has

σn(u) = u
n−1∏

k=1

(
1+ u

βn,k

)
.
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Thus,σn(u)/σn(1) can be viewed as the PGF of the sum of a large number of independent (but
not identical) Bernoulli variables. One then can conclude by a suitable version of the Central
Limit Theorem. �

ExampleIX.33. A pot-pourri of saddles and Gaussian laws.Theorem IX.13 combined with
a uniformly controlled use of the saddle-point method yields Gaussian lawsfor most of the
structures examined in Chapter VIII. We leave the following cases as exercises to the reader.

Section VIII. 4 (p. 558) has examined three classes, (involutions, setpartitions, and frag-
mented permutations), of which the first two have already been identified as leading to Gaussian
laws. Fragmented permutations (p. 562) also have a number of components (fragments) that is
Gaussian in the asymptotic limit. In this case, we have a singularity at a finite distance, which
is of the exponential-of-a-pole type. (This last result can be rephrased as the fact that the coef-
ficients of the classical Laguerre polynomials are asymptotically normal.)

Saddle-point perturbation applies to the field of exponentials-of-polynomials (p. 568),
which vastly generalizes the case of involutions: this field has been pioneered by Canfield [101]
in 1977. The number of components is Gaussian in permutations of orderp, permutations with
longest cycle≤ p, and set partitions with largest block≤ p, with p a fixed parameter. The
number of connected components in idempotent mappings (p. 571) is also Gaussian.

Integer partitions have been asymptotically enumerated in VIII. 6 (p. 574). As regards
unconstrained integer partitions, the Gaussian law for the number of summands is originally
due to Erd̋os and Lehner [194]. By contrast, the number of summands in partitionswith distinct
summands isnot Gaussian (it is a double-exponential distribution [194]). Subtle phenomena
are at stake in these cases, which involve Pólya operators and functions having the unit circle as
a natural boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

� IX.47. Saddle-points and functional equations.The average-case analysis of the number of
nodes in random digital trees or “tries” can be carried out using the Mellin transform technol-
ogy. The corresponding distributional analysis is appreciably harder and due to Jacquet and
Régnier [344]. A complete description is offered in Section 5.4 of Mahmoud’s book which we
follow. What is required is to analyse the BGF

F(z,u) = ezT(z, u),

where the Poisson generating functionT(z,u) satisfies the nonlinear difference equation,

T(z, u) = uT
( z

2
, u
)2
+ (1− u)(1+ z)e−z.

This equation is a direct reflection of the problem specification. Atu = 1, one hasT(z,1) = 1,
F(z, 1) = ez. The idea is thus to analyse [zn]F(z, u) by the saddle-point method.

The saddle-point analysis ofF requires asymptotic information onT(z, u) for u = ei t

(the original treatment of [344] is based on characteristic functions). The main idea is to quasi-
linearize the problem, setting

L(z, u) = logT(z,u),

with u a parameter. This function satisfies the approximate relationL(z, u) ≈ 2L(z/2, u), and a
bootstrapping argument shows that, in suitable regions of the complex plane, L(z, u) = O(|z|),
uniformly with respect tou. The functionL(z, u) is then expanded with respect tou = ei t

at u = 1, i.e., t = 0, using a Taylor expansion, its companion integral representation, andthe
bootstrapping bounds. The moment-like quantities,

L j (z) =
∂ j

∂t j
L(z, ei t )

∣∣∣∣∣
t=0

,
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can be subjected to Mellin analysis forj = 1, 2 and bounded forj ≥ 3. In this way, it is shown
that

L(z, ei t ) = L1(z)t +
1

2
L2(z)t

2+ O(zt3),

uniformly. The Gaussian law under a Poisson model immediately results from the continuity
theorem of characteristic functions. Under the original Bernoulli model,the Gaussian limit
follows from a saddle-point analysis of

F(z, ei t ) = ezeL(z,ei t ).

An even more delicate analysis has been carried out by Jacquet and Szpankowski [345]
by means of analytic depoissonization (Subsection VIII. 5.3, 572). Itis relative to path length
in digital search trees and involves the formidable nonlinear bivariate difference-differential
equation

∂

∂z
F(z,u) = F

( z

2
, u
)2
.

See Szpankowski’s book [564] for this and similar results that play an important r̂ole in the
analysis of data compression algorithms (the Lempel–Ziv schemes). �

At this stage, by making use of the material expounded in Sections IX. 5–IX. 8,
we can avail ourselves of a fairly large arsenal of techniques dedicated to extracting
Gaussian limit laws from BGFs. For instance, we now have the property thatall four
Stirling distributions,

(80)
1

n!

[
n

k

]
,

k!

On

[
n

k

]
,

1

Sn

{
n

k

}
,

k!

Rn

{
n

k

}
,

associated with permutations, alignments, set partitions, and surjections are, after
standardization, asymptotically Gaussian.The method is in each case a reflection
of the underlying combinatorics. Typically, for the four cases of (80), we have
used, respectively:(i ) singularity analysis perturbation (the exp–log schema forthe
SET◦CYC construction of permutations);(i i ) meromorphic perturbation (for align-
ments that are of type SEQ◦CYC); (i i i ) saddle-point perturbation (for set partitions
that are of type SET◦SET and whose BGF is entire);(i v) meromorphic perturbation
again (for surjections that are of type SEQ◦SET).

IX. 9. Local limit laws

The occurrence of continuous limit laws has been examined sofar from the angle
of convergence of (cumulative) distribution functions. Combinatorially, regarding the
random variableXn that represents some parameterχ taken over a classFn, we then
quantify thesums ∑

j≤k

Fn, j .

Specifically, we have focused our attention in previous sections on the case in which
these sums (once normalized by 1/Fn) are approximated by the Gaussian “error func-
tion”, i.e., the (cumulative) distribution function of a standard normal variable. Com-
binatorialists would often rather have a direct estimate oftheindividualcounting quan-
tities, Fn,k, which is then a true bivariate asymptotic estimate.

Assume that we have already obtained the existence of a convergence in law,
Xn⇒Y, and the standard deviationσn of Xn tends to infinity while the distribution
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Figure IX.14. The histogram of the Eulerian distribution scaled to(n + 1) on the
horizontal axis, forn = 3 . .60. (The distribution is seen to quickly converge to a

bell-shaped curve corresponding to the Gaussian densitye−x2/2/(2π)1/2.)

of Y admits adensity g(x). (Here, typically,g(x) will be the Gaussian density.) If
the Fn,k vary smoothly enough, one may expect each of them to share about 1/σn of
the total probability mass, and, in addition, somehow anticipate that their profile could
resemble the curvex 7→ g(x). In that case, we expect an approximation of the form

Fn,k ≈
1

σn
g(x), where x := k− µn

σn
,

andµn is the expectation ofXn. Informally speaking, we say that aLocal Limit Law
(LLL) holds in this case.

We examine here the occurrence of local limit laws of theGaussian type, which
means convergence of a discrete probability distribution to theGaussian density func-
tion. Figure IX.14 reveals that, at least for the Eulerian distribution (rises in permuta-
tions), such a local limit law holds, and we know, from De Moivre’s original Central
Limit Theorem (Note IX.1, p. 615) that a similar property holds for binomial coeffi-
cients as well. As a matter of fact, for reasons soon to be presented, virtually all the
Gaussian limit laws obtained in Sections IX. 5–IX. 8 admit a local version.

Definition IX.4. A sequence of discrete probability distributions, pn,k = P{Xn =
k}, with meanµn and standard deviationσn is said to obey alocal limit law of the
Gaussian typeif, for a sequenceǫn→ 0,

(81) sup
x∈R

∣∣∣∣σn pn,⌊µn+xσn⌋ −
1√
2π

e−x2/2
∣∣∣∣ ≤ ǫn.

The local limit law is said to hold withspeedǫn.

Note carefully, that a local limit law does not logically follows from a convergence
in distribution in the usual sense, upon taking differences(the individual probabilities
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appear as differences at nearly identical points of values of a distribution function,
hence they are “hidden” behind the error terms). Some additional regularity assump-
tions are needed. Here, we are naturally concerned with distilling local limit laws
from BGFsF(z,u). It turns out, rather nicely, that the Quasi-powers Theorem(Theo-
rem IX.8, p. 645) can be amended by imposing constraints on the way the secondary
variable affects the asymptotic approximation of [zn]F(z,u), when u variesglobally
on the whole of the unit circle(rather than just in a complex neighbourhood of 1). In
that case, thesaddle-point methodis effective to effect the inversion with respect to
the secondary variableu.

Theorem IX.14 (Quasi-powers, Local Limit Law). Let Xn be a sequence of non-
negative discrete random variables with probability generating function pn(u). As-
sume that the pn(u) satisfy the conditions of the Quasi-powers Theorem, in particular,
the quasi-power approximation,

pn(u) = A(u) · B(u)βn

(
1+ O

(
1

κn

))
,

holds uniformly in a fixed complex neighbourhood� of 1. Assume in addition the
existence of a uniform bound,

(82) |pn(u)| ≤ K−βn,

for some K> 1 and all u in the intersection of the unit circle and the complement
C \�. Under these conditions, the distribution of Xn satisfies a local limit law of the
Gaussian type with speed of convergence O(β

−1/2
n + κ−1

n ).

Proof. Note first that the Quasi-powers Theorem (Theorem IX.8, p. 645) provides the
mean and variance of the distribution ofXn as quantities asymptotically proportional
to βn. Furthermore, the standardized version ofXn converges to a standard Gaussian
(in the sense of cumulative distribution functions).

The idea is to use Cauchy’s formula andintegrate along the unit circle. We have

(83) pn,k ≡ [uk] pn(u) =
1

2iπ

∫

|u|=1
pn(u)

du

uk+1
.

We propose to appeal to the saddle-point method as a replacement for the continuity
theorem of integral transforms used in the case of the central limit law (p. 645).

We first estimatepn,k whenk is at a fixed number of standard deviations from the
meanµn, namely,k = µn + xσn, and accordingly restrictx to some arbitrary com-
pact set of the real line. We can then importverbatimthe treatment of large powers
given in Section VIII. 8, p. 585. The integration circle in (83) is split into the “central
range”, near the real axis, where|arg(u)| ≤ θ0 with θ0 = n−2/5, and the remainder of
the contour. The remainder integral is exponentially small, as is verified by the argu-
ments of the proof of Theorem VIII.8, p. 587and the condition (82). The perturbative
analysis conducted in Theorem IX.14 then shows the existence of a uniform local
Gaussian approximation (in the sense of (81)), withβn replacingn in the statement of
Theorem IX.14.

We are almost done. It suffices to observe that, asx increases unboundedly, both
the pn,k and the Gaussian density are fast decreasing functions ofx, that is, the tails
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of the combinatorial distribution and of the limit Gaussiandistribution, are both small.
(For thepn,k, this results from the Large Deviation Theorem, Theorem IX.15 below.)
Thus Equation (81) actually holds when the supremum is takenoverall realx (not just
values ofx restricted to compact sets). A careful revisitation of the arguments used in
the proof then shows that the speed of convergence is, like inthe central limit case, of
the order ofκ−1

n + β−1/2
n . �

This theorem applies in particular to the case of a movable singularity in a BGF
F(z,u), whenever the dominant singularityρ(u), of the functionz 7→ F(z,u), asu
ranges over the unit circle|u| = 1, uniquely attains its minimum modulus atu = 1.
Given the positivity inherent in combinatorial GFs, we may expect this situation to oc-
cur frequently. Indeed, for a BGFF(z,u) with non-negative coefficients, we already
know that the property|ρ(u)| ≤ ρ(1) holds foru 6= 1 andu on the unit circle—only
a strengthening to the strict inequality|ρ(u)| < ρ(1) is needed. Similar comments
apply to the case of variable exponents (whereℜ(α(u)) should be uniquely minimal)
and, with adaptation, to the generalized quasi-powers framework of Theorem IX.13
(p. 690), which is suitable for the saddle-point method. These are the ultimate reasons
why essentially all our previous central limit results can be supplemented by a local
limit law.

Example IX.34. Local limit laws for sums of discrete random variables.The simplest ap-
plication is to the binomial distribution, for whichB(u) = (1+ u)/2. In a precise technical
sense, the local limit arises from the BGF,F(z, u) = 1/(1− z(1+u)/2), because the dominant
singularityρ(u) = 2/(1+u) exists on the whole of the unit circle,|u| = 1, and attains uniquely
its minimum modulus atu = 1, so thatB(u) = ρ(1)/ρ(u) is uniquely maximal atu = 1.

More generally, Theorem IX.14 applies to any sumSn = T1+· · ·+Tn of independent and
identically distributeddiscreterandom variables whose maximal span is equal to 1 and whose
PGF is analytic on the unit circle. In that case, the BGF is

F(z, u) = 1

1− zB(u)
,

the PGF ofSn is a pure power,pn(u) = B(u)n, and the fact that the minimal span of theX j
is 1 entails thatB(u) attains uniquely its maximum at 1 (by the Daffodil Lemma IV.1, p. 266).
Such cases have been known for a long time in probability theory. See Chapter 9 of [294]. .�

ExampleIX.35. Local limit law for the Eulerian distribution.This example relative to Euler-
ian numbers shows the case of a movable singularity, subjected to a meromorphic analysis on
p. 658, which we now revisit. The approximation obtained there is

pn(u) = B(u)−n−1+ O(2−n),

whenu is close enough to 1, with

B(u) = ρ(u)−1 = u− 1

logu
.

A rendering of the function|B(u)| whenu ranges over the unit circle is given in Figure IX.15.
The analysis leading to (42), p. 658, also characterizes the complete setof polesρ j (u)} j∈Z

of the associated BGFF(z, u). From it, we can deduce, by simple complex geometry, thatρ(u)
is the unique dominant singularity, whenℜ(u) ≥ 0. the other ones remaining at distance at
leastπ/

√
8
.= 1.110721. Also, it is not hard to see that all the poles, including the dominant
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Figure IX.15. The values of the function|B(u)| relative to the Eulerian distribution
when|u| = 1, as represented by a polar plot of|B(ei θ )| on the ray of angleθ . (The
dashed contour represents the unit circle, for comparison.) The maximum is uniquely
attained atu = 1, whereB(1) = 1, which entails a local limit law.

one, remain in the region|z| > 11/10, whenℜ(u) < 0 and|u| = 1. Thus,pn(u) satisfies an es-
timate which is either of the quasi-powers type (whenℜ(u) ≥ 0) or of the formO((10/11)−n)

(whenℜ(u) ≤ 0). As a consequence:a local limit law of the Gaussian type holds for the
Eulerian distribution. (This result appears in [35, p. 107].) . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .�

� IX.48. Congruence properties associated to runs.Fix an integerd ≥ 2. Let P( j )
n be the

number of permutations whose number of runs is congruent toj modulod. Then, there exists

a constantK > 1 such that, for allj , one has:|P( j )
n −n!/d| ≤ K−n. Thus, the number of runs

is in a strong sense almost uniformly distributed over all residue classes modulod. [Hint: use
properties of the BGF for values ofu = ωd, with ω a primitivedth root of unity.] �

Example IX.36. A pot-pourri of local limit laws.The following combinatorial distributions
admit a local limit law (LLL).

The number of components in random surjections (p. 653) corresponds to the array of
Stirling2 numbersk!

{n
k
}
. In that case, we have a movable singularity atρ(u) = log(1+ u−1),

all the other singularities remaining at distance at least 2π , and escaping to infinity asu→−1.
This ensures the validity of condition (82), hence an LLL (withβn = n). Similarly for align-
ments (p. 654) associated to the array of Stirling1 numbersk!

[n
k
]
, various types of constrained

compositions (p. 654), and more generally, the number of componentsin supercritical compo-
sitions, including compositions into prime summands.

Variable exponents also lead to an LLL under normal circumstances. Prototypically, the
Stirling cycle distribution (p. 671) associated to the array

[n
k
]

satisfies

pn(u) ∼
e(u−1) logn

Ŵ(u)
,

and a suitably uniform version results from the Uniformity Lemma (p. 668), hence an LLL
(this fact was already observed in [35, p. 105]). The property extends to the exp–log schema
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including the number of components in mappings (p. 671) and the numberof irreducible factors
in polynomials over finite fields (p. 672).

Cases of structures amenable to singularity perturbation with a movable singularity include
leaves in Catalan and other classical varieties of trees (p. 678), patternsin binary trees (p. 680),
as well as the mean level profile of increasing trees (p. 684), whose BGF is given by a differential
equation.

Finally, central limit laws resulting from the saddle-point method and Theorem IX.13
(p. 690) can often be supplemented by an LLL. An important case is thatof the number of
blocks in set partitions, which is associated to the Stirling2 array

{n
k
}
. (The result appears in

Bender’s paper [35, p. 109], where it is derived from log-concavity considerations.) . . . . . . .�

� IX.49. Non-existence of a local limit.Consider a binomial RV conditioned to assume only
even values, so thatpn,2k = 21−n( n

2k
)

and pn,2k+1 = 0. The BGF

F(z,u) = 1

2

1

1− z(1+ u)/2
+ 1

2

1

1− z(1− u)/2

has two poles, namelyρ1(u) = 2/(1+ u) andρ2(u) = 2/(1− u), and it is simply not true that
a single one dominates throughout the domain|u| = 1. Accordingly, the PGF satisfies

pn(u) = 2−n [(1+ u)n + (1− u)n
]
,

and smallness away from the positive real line cannot be guaranteed allalong the unit circle
(one has for instancepn(1) = pn(−1)). �

IX. 10. Large deviations

The termlarge deviation principle17 is loosely defined as an exponentially small
bound on the probability that a collection of random variables deviate substantially
from their mean value. It thus quantifies rare events in an appropriate scale. Mo-
ment inequalities, although useful in establishing concentration of distribution (Sub-
section III. 2.2, p. 161), usually fall short of providing such exponentially small es-
timates, and the improvement over Chebyshev inequalities afforded by the methods
presented here can be dramatic. For instance, for runs in permutations (the Eulerian
distribution), the probability of deviating by 10% or more from the mean appears to
be of the order of 10−6 for n = 1 000 and 10−65 for n = 10 000, with a spectac-
ular 10−653 for n = 100 000. (By contrast, the Chebyshev inequalities would only
bound from above the last probability by a quantity about 10−3.) Figure IX.16 pro-
vides a plot of the logarithms of the individual probabilities associated to the Eulerian
distribution, which is characteristic of the phenomena at stake here.

Definition IX.5. Letβn be a sequence tending to infinity andξ a non-zero real num-
ber. A sequence of random variables(Xn) havingE(Xn) ∼ ξβn, satisfies alarge
deviation propertyrelative to the interval[x0, x1] containingξ if a function W(x)
exists, such that W(x) > 0 for x 6= ξ and, as n tends to infinity:

(84)





1

βn
logP(Xn ≤ xβn) = −W(x)+ o(1) x0 ≤ x ≤ ξ (left tails)

1

βn
logP(Xn ≥ xβn) = −W(x)+ o(1) ξ ≤ x ≤ x1 (right tails).

17Large deviation theory is introduced nicely in the book of den Hollander [153].
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Figure IX.16. The quantities logpn,xn relative to the Eulerian distribution illustrate
an extremely fast decay away from the mean, which corresponds toξ ≡ 1

2 . Here, the
diagrams are plotted forn = 10, 20, 30, 40 (top to bottom). The common shape of
the curves indicates a large deviation principle.

The function W(x) is called therate functionandβn is thescaling factor.

Figuratively, a large deviation property, in the case of left tails (x < ξ ), expresses
an exponential approximation of the rough form

P(Xn ≤ xβn) ≈ e−βnW(x),

for the probability of being away from the mean, and similarly for right tails. Under
the conditions of the Quasi-powers Theorem, a large deviation principle invariably
holds, a fact first observed by Hwang in [338].

Theorem IX.15 (Quasi-powers, large deviations). Consider a sequence of discrete
random variables(Xn) with PGF pn(u). Assume the conditions of the Quasi-powers
Theorem (Theorem IX.8, p. 645); in particular, there exist functions A(u), B(u), which
are analytic over some interval[u0,u1] with 0 < u0 < 1 < u1, such that, withκn →
∞, one has

(85) pn(u) = A(u)B(u)βn
(
1+ O(κ−1

n )
)
,

uniformly. Then the Xn satisfy a large deviation property, relative to the interval
[x0, x1], where x0 = u0B′(u0)/B(u0), x1 = u1B′(u1)/B(u1); the scaling factor isβn

and the large deviation rate W(x) is given by

(86) W(x) = − min
u∈[u0,u1]

log

(
B(u)

ux

)
.

Proof. We examine the case of the left tails,P(Xn ≤ xβn) with x < ξ and ξ =
B′(1), the case of right tails being similar. It proves instructive to start with a simple
inequality that suggests the physics of the problem, then refine it into an equality by a
classical technique known as “shifting of the mean”.



IX. 10. LARGE DEVIATIONS 701

Inequalities. The basic observation is that, iff (u) = ∑
k fkuk is a function

analytic in the unit disc with non-negative coefficients at 0, then, for positiveu ≤ 1,
we have

(87)
∑

j≤k

f j ≤
f (u)

uk
,

which belongs to the broad category of saddle-point bounds (see also our discussion
of tail bounds on p. 643). The combination of (87), applied topn(u) := E(uXn), and
of assumption (85) yields

(88) P(Xn ≤ xβn) ≤ O(1)

(
B(u)

ux

)βn

,

which is usablea priori for any fixedu ∈ [u0,1]. In particular the value ofu that
minimizesB(u)/ux can be used, provided that this value ofu exists, is less than 1,
and also the minimum itself is less than 1.

The required conditions are granted by developments closely related to Boltz-
mann models and associated convexity properties, as developed in Note IV.46, p. 280,
which we revisit here. Simple algebra with derivatives shows that

(89)
d

du

(
B(u)

ux

)
=
[

uB′(u)
B(u)

− x

]
B(u)

ux+1
,

d

du

(
uB′(u)
B(u)

)
= 1

u
vt (B(ut)),

where byvt (B(ut)) is meant the analytic variance of the functiont 7→ B(ut): u
is treated as a parameter andv( f ) is taken in the sense of (27), p. 645. From the
non-negativity of variances, we see by the second relation of (89) that the function
uB′(u)/B(u) is increasing. This grants us the existence of a root of the equation
uB′(u)/B(u) = x, at which point, by the first relation of (89), the quantityB(u)/ux

attains its minimum. SinceB(1) = 1, that minimum is itself strictly less than 1, so
that an inequality,

(90) logP(Xn ≤ xβn) ≤ −βnW(x)+ O(1),

results, withW(x) as stated in (86).
Equalities. The family Xn,λ of random variables, with PGF

pn,λ(u) := pn(λu)

pn(λ)
,

whenλ varies, is known as anexponential family(or as a family of exponentially
shifted versions ofXn). Fix nowλ to be the particular value ofu at which the mini-
mum of B(u)/ux is attained, so thatλB′(λ)/B(λ) = x. The PGFspn,λ(u) satisfy a
quasi-power approximation

(91) pn,λ(u) =
A(λu)

A(λ)

(
B(λu)

B(λ)

)βn (
(1+ O(κ−1

n )
)
,

so that a central limit law (of Gaussian type) holds for thesespecificXn,λ. By elemen-
tary calculus, we haveE(Xn,λ) = xβn + O(1). Thus, by the Quasi-powers Theorem
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applied to the centre of the Gaussian distribution, we find

(92) lim
n→∞P(Xn,λ ≤ xβn) =

1

2
.

Fix now an arbitraryǫ > 0. We have a useful refinement of (92):

(93) P((x − ǫ)βn < Xn,λ ≤ xβn) =
1

2
+ o(1).

We can then write

(94)

P(Xn ≤ xβn) ≥ P((x − ǫ)βn < Xn ≤ xβn)

≥ pn(λ)

λ(x−ǫ)βn
P((x − ǫ)βn < Xn,λ ≤ xβn)

≥
(

1

2
+ o(1)

)
B(λ)βn

λ(x−ǫ)βn
A(λ) (1+ o(1)) ,

where the second line results from the definition of exponential families and the third
from (93) and the quasi-powers assumption. Then, since the last line of (94) is valid
for anyǫ > 0, we get, in the limitǫ → 0, the desired lower bound:

(95) logP(Xn ≤ xβn) ≥ −βnW(x)+ O(1),

Hence, Equation (95) combined with its converse (90), yields the statement relative to
left tails. �

The proof above yields an explicit algorithm tocomputethe rate functionW(x)
from B(u) and its derivatives. Indeed, the quantityλ ≡ λ(x) is obtained by inversion
of uB′(u)/B(u),

(96) λ(x)
B′(λ(x))
B(λ(x))

= x,

and the large deviation rate function is

(97) W(x) = − log B(λ(x))− x logλ(x).

� IX.50. Extensions.Speed of convergence estimates can be developed by making use of the
Quasi-powers Theorem, with error terms. Also “local” forms of the large deviation princi-
ple (concerning logpn,k) can be derived under additional properties similar to those of Theo-
rem IX.14 (p. 696) relative to local limit laws. (Hint: see [338, 339].) �

Example IX.37. Large deviations for the Eulerian distribution.In this case, the BGF has
a unique dominant singularity foru with ǫ < u < 1/ǫ, and anyǫ > 0. Thus, there is a
quasi-power expansion with

B(u) = u− 1

logu
,

valid on any compact subinterval of the positive real line. Then,λ(x) is computable as the
inverse function of

h(u) = u

u− 1
− 1

logu
.

(The functionh(u) maps increasinglyR>0 to the interval(0,1), so that its inverse function is
always defined.) The functionW(x) is then computable by (96) and (97). Figure IX.17 presents
a plot ofW(x) that explains the data of Figure IX.16, p. 700, as well as the estimates given in
the introduction of this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�
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Figure IX.17. The large deviation rate function−W(x) relative to the Eulerian dis-
tribution, forx ∈ [0.3, 0.7], with scaling sequenceβn = n andξ = 1/2.

All the distributions mentioned in previouspot-pourris(Example IX.27, p. 683
and IX.36, p. 698) that result either from meromorphic perturbation or from sin-
gularity perturbation satisfy a large deviation principle, as a consequence of Theo-
rem IX.15. For distributions amenable to the saddle-point method (Example IX.33,
p. 693) tail probabilities also tend to be very small: their approximations are not ex-
pressed as simply as in Definition IX.5, but depend on the particulars of the asymp-
totic scale at play in each case. The interest of large deviation estimates in probability
theory stems from their robustness with respect to changes in randomness models or
under composition with non-mass-preserving transformations. In combinatorics, they
have been most notably used to analyse depth and height in several types of increasing
trees and search trees by Devroye and his coauthors [95, 160,161].

IX. 11. Non-Gaussian continuous limits

Previous sections of this chapter have stressed two basic paradigms for bivariate
asymptotics:

— a “minor” change in singularities, leading to discrete laws, which occurs
when the nature and location of the dominant singularity remains unaffected
by small changes in the values of the secondary parameteru;

— a “major” singularity perturbation mode leading to the Gaussian law, which
arises from a variable exponent and/or a movable singularity.

However, it has been systematically the case, so far, that the collection of singular
expansions parameterized by the auxiliary variable all belong to a sufficiently gentle
analytic type (eventually leading to a quasi-power approximation) and, in particu-
lar, exhibit no sharp discontinuity when the secondary parameter traverses the special
valueu = 1. In this section we first illustrate, by means of examples, the way dis-
continuities in singular behaviour induce non-Gaussian laws (Subsection IX. 11.1),
then examine a fairly general case of confluence of singularities, corresponding to the
critical composition schema (Subsection IX. 11.2). The discontinuities observed in
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such situations are reminiscent of what is known asphase-transitionphenomena in
statistical physics, and we have found it suggestive to import this terminology here.

IX. 11.1. Phase-transition diagrams.Perhaps the simplest case of discontinu-
ity in singular behaviour is provided by the BGF,

F(z,u) = 1

(1− z)(1− zu)
,

whereu records the parameter equal to the number of initial occurrences ofa in a
random word ofF = SEQ(a)SEQ(b). Clearly the distribution is uniform over the
discrete set of values{0,1, . . . n}. The limit law is then continuous: it is theuniform
distributionover thereal interval [0,1]. From the point of view of the singular struc-
ture of z 7→ F(z,u), summarized by a formula of the type(1− z/ρ(u))−α(u), three
distinct cases arise, depending on the values ofu:

— u < 1: simple pole atρ(u) = 1, corresponding toα(u) = 1;
— u = 1: double pole atρ(1) = 1, corresponding toα(u) = 2;
— u > 1: simple pole atρ(u) = 1/u, corresponding toα(u) = 1.

Here, both the location of the singularityρ(u) and the singular exponentα(u) experi-
ence a non-analytic transition atu = 1. This situation arises from a collapsing of two
singular terms, whenu = 1.

In order to visualize such cases, it is useful to introduce a simplified diagram
representation, called aphase-transition diagramand defined as follows. WriteZ =
ρ(u) − z and summarize the singular expansion by its dominant singular termZα(u).
Then, the diagram corresponding toF(z,u) is

u = 1− ǫ u = 1 u = 1+ ǫ
ρ(u) = 1 ρ(1) = 1 ρ(u) = 1/u

Z−1 Z−2 Z−1
Z := ρ(u)− z.

A complete classification of such discontinuities is lacking (see, however, Mari-
anne Durand’s thesis [181] for several interesting schemas), and is probably beyond
reach given the vast diversity of situations to be encountered in a combinatorialist’s
practice. We provide here two illustrations: the first example is relative to the classical
theory of coin-tossing games (the arcsine distribution); the second one is relative to
area under excursions and path length in trees (the Airy distribution of the area type).
Both are revisited here under the perspective of phase transition diagrams, which pro-
vide a useful way to approach and categorize non-Gaussian limits.

Example IX.38. Arcsine law for unbiased random walks.This problem is studied in detail
by Feller [205, p. 94] who notes, regarding gains in coin-tossing games: “Contrary to intuition,
the maximum accumulated gain is much more likely to occur towards the very beginning or the
very end of a coin-tossing game than somewhere in the middle.” See Figure IX.18.

We let χ be the time of first occurrence of the maximum in a random game (that is, a
walk with±1 steps) and writeXn for the RV representingχ restricted to the setWn of walks
of durationn. The BGFW(z,u), whereu marksχ , results from the standard decomposition
of positive walks. Essentially, there is a sequence of steps ascending to the (non-negative)
maximum accompanied by “arches” (the left factor) followed by a mirror excursion back to
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Figure IX.18. Histograms of the distribution of the location of the maximum of a
random walk forn = 10. .60 (left) and the density of the arcsine law (right).

the maximum, followed by a sequence of descending steps with their companion arches. This
construction translates directly into an equation satisfied by the BGFW(z, u) of the location of
the first maximum

(98)

W(z,u) = 1

1− zuD(zu)
· D(z) · 1

1− zD(z)
,

which involves the GF of a gambler’s ruin sequences (equivalently Dyckexcursions, Exam-
ple IX.8, p. 635), namely,

(99) D(z) = 1−
√

1− 4z2

2z2
.

In such a simple case, explicit expressions are available from (98), when we expand first with
respect tou, then toz. We obtain in this way the ultra-classical result that the probability that
Xn equals eitherk = 2r or k = 2r + 1 is 1

2u2r u2ν−2r , whereu2ν := 2−2ν(2ν
ν

)
. The usual

approximation of central binomial coefficients,u2ν ∼ (πν)−1/2, followed by a summation
then leads to the following statement.

Proposition IX.21 (Arcsine law). For any x∈ (0,1), the position Xn of the first maximum in
a random walk of even length n satisfies a limitarcsine law:

lim
n→∞Pn(Xn < xn) = 2

π
arcsin

√
x.

It is instructive to compare this to the way singularities evolve asu crosses the value 1.
The dominant positive singularity is atρ(u) = 1/2 if u < 1, whileρ(u) = 1/(2u), if u > 1.



706 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

0.2

0.1

0
0.48

z

0.540.50.460.4 0.42

0.3

0.520.44

-0.1

-1

1.210.80.6
-0.5

u
1.210.80.6

0.5

0.4

Figure IX.19. A plot of 1/W(z,u) for z ∈ [0.4, 0.55] whenu is assigned values
between 1/2 and 5/4 (left); The exponent functionα(u) (top right) and the singular
valueρ(u) (bottom right), foru ∈ [0.5, 0.55].

Local expansions show that, withc<(u), c>(u) two computable functions, there holds:

W(z,u) ∼ c<(u)
1√

1− 2z
, W(z,u) ∼ c>(u)

1√
1− 2zu

.

Naturally, atu = 1, all sequences are counted andW(z,1) = 1/(1−2z). Thus, the correspond-
ing phase-transition diagram is (see Figure IX.19):

u = 1− ǫ u = 1 u = 1+ ǫ
ρ(u) = 1/2 ρ(1) = 1/2 ρ(u) = 1/(2u)

Z−1/2 Z−1 Z−1/2

The point to be made here is that the arcsine law could be expected when a similar phase-
transition diagram occurs. There is indeed universality in this singular viewof the arcsine law,
which extends to walks with zero drift (Chapter VII). This analytic kind of universality is a
parallel to the universality of Brownian motion, which is otherwise familiar to probabilists. �

� IX.51. Number of maxima and other stories.The construction underlying (98) also serves
to analyse;(i ) the number of times the maximum is attained.(i i ) the difference between the
maximum and the final altitude of the walk;(i i i ) the duration of the period following the last
occurrence of the maximum. �

ExampleIX.39. Path length in trees.A final example is the distribution of path length in trees,
whose non-Gaussian limit law has been originally characterized by Louchard and Taḱacs [416,
417, 567, 569]. The distribution is recognizednot to be asymptotically Gaussian, as it is verified
from a computation of the first few moments. In the case of general Catalan trees, the analysis
is equivalent to that of area under Dyck paths (Examples V.9, p. 330,and VII.26, p. 533) and is
closely related to our discussion of coin fountains and parallelogram polyomino models, earlier
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in this chapter (p. 662). It reduces to that of the functional equation

F(z, u) = 1

1− zF(zu, u)
,

which determines F(z,u) as a formal continued fraction, and settingF(z, u) =
A(z, u)/B(z,u), we found (p. 331)

B(z, u) = 1+
∞∑

n=1

(−1)n
un(n−1)zn

(1− u)(1− u2) · · · (1− un)
,

with a very similar expression forA(z, u). Because of the quadratic exponent involved in the
powers ofu, the functionz 7→ F(z, u) has radius of convergence 0 whenu > 1, and is thus
non-analytic. By contrast, whenu < 1, the functionz 7→ B(z, u) is an entire function, so that
z 7→ F(z, u) is meromorphic. Hence the singularity diagram:

u = 1− ǫ u = 1 u = 1+ ǫ
ρ(u) > 1

4 ρ(1) = 1
4 ρ(u) = 0

Z−1 Z1/2 —

The limit law is theAiry distribution of the area type[244, 352, 416, 417, 567, 569], which
we have encountered in Chapter VII, p. 533. By an analyticaltour de force, Prellberg [496]
has developed a method based on contour integral representations andcoalescing saddle-points
(Chapter VIII, p. 603) that permits us to make precise the phase transition diagram above and
obtain uniform asymptotic expansions in terms of the Airy function. Since similar problems
occur in relation to connectivity of random graphs under the Erdős–Ŕenyi model [254], and
conjecturally in self-avoiding walks (p. 363), future years might see more applications of Prell-
berg’s methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

IX. 11.2. Semi-large powers, critical compositions, and stable laws. We con-
clude this section by a discussion of critical compositionsthat typically involve con-
fluences of singularities and lead to a general class of continuous distributions closely
related tostable lawsof probability theory. We start with an example where every-
thing is explicit, that of zero contacts in random bridges, then state a general theorem
on “semi-large” powers of functions of singularity analysis type, and finally return to
combinatorial applications, specifically trees and maps.

ExampleIX.40. Zero-contacts in bridges.Consider once more fluctuations in coin tossings,
and specifically bridges, corresponding to a conditioning of the game by the fact that the final
gain is 0 (negative capitals are allowed). These are sequences of arbitrary positive or negative
“arches”, and the number of arches in a bridge is exactly equal to the number of intermediate
steps at which the capital is 0. From the arch decomposition, it is found thatthe ordinary BGF
of bridges withz marking length andu marking zero-contacts is

B(z, u) = 1

1− 2uz2D(z)

with D(z) as in (99), p. 705. Analysing this function is conveniently done by introducing

F(z, u) ≡ B

(
1

2

√
z, u

)
= 1

1− u(1−
√

1− z)
.
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The phase-transition diagram is then easily found to be:

u = 1− ǫ u = 1 u = 1+ ǫ
ρ(u) = 1 ρ(1) = 1 ρ(u) = 1− (1− u−1)2

Z1/2 Z−1/2 Z−1

Thus, there are discontinuities, both in the location of the singularity and the exponent, but of a
different type from that which gives rise to the arcsine law of random walks.

The problem of the limit law is here easily solved since explicit expressions are provided
by the Lagrange Inversion Theorem. One finds:

(100)
[uk][zn]F(z, u) = [zn]

(
1−
√

1− z
)k

= k

n
[wn−k](2− w)−n = 2k−2n k

n

(
2n− k− 1

n− 1

)
.

A random variable with density and distribution function given by

(101) r (x) = x

2
e−x2/4, R(x) = 1− e−x2/4,

is called aRayleigh law. Then Stirling’s formula easily provides the following proposition.

Proposition IX.22. The number Xn of zero-contacts of a random bridge of size2n satisfies, as
n→∞ a local limit law of the Rayleigh type:

lim
n→∞P(Xn = x

√
n) = x

2
√

n
e−x2/4.

The explicit character of (100) makes the analysis transparently simple.. . . . . . . . . . . . . . . . . .�

� IX.52. The number of cyclic points in mappings.The number of cyclic points in mappings
has exponential BGF(1− uT(z))−1, with T the Cayley tree function. The singularity diagram
is of the same form as in Example IX.40. Explicit forms are derived from Lagrange inversion:
the limit law is again Rayleigh. This property extends to the number of cyclic points in a
simple variety of mappings (e.g., mappings defined by a finite constrainton degrees, as in
Example VII.10, p. 464): see [18, 175, 176]. �

Both Example IX.40 and Note IX.52 above exemplify the situation of an analytic
composition scheme of the form(1− uh(z))−1 which is critical, since in each caseh
assumes value 1 at its singularity. Both can be treated elementarily since they involve
powers that are amenable to Lagrange inversion, eventuallyresulting in a Rayleigh
law. As we now explain, there is a family of functions that appear to play a universal
rôle in problems sharing similar singular types. What followsis largely borrowed
from an article by Banderieret al. [28].

We first introduce a functionS that otherwise naturally surfaces in the study of
stable18 distributions in probability theory. For any parameterλ ∈ (0,2), define the
entire function

18In probability theory, stable laws are defined as the possible limit laws of sums of independent
identically distributed random variables. The functionS is a trivial variant of the density of the stable law
of indexλ; see Feller’s book [206, p. 581–583]. Valuable informationsregarding stable laws may be found
in the books by Breiman [93, Sec. 9.8], Durrett [182, Sec. 2.7], and Zolotarev [629].
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Figure IX.20. The S-functions forλ = 0.1 . .0.8 (left; from bottom to top) and for
λ = 1.2 . .1.9 (right; from top to bottom); the thicker curves represent the Rayleigh
law (left, λ = 1/2) and the Airy map law (right,λ = 3/2).

(102) S(x, λ) :=





1

π

∑

k≥1

(−1)k−1xkŴ(1+ λk)

Ŵ(1+ k)
sin(πkλ) (0< λ < 1)

1

πx

∑

k≥1

(−1)k−1xkŴ(1+ k/λ)

Ŵ(1+ k)
sin(πk/λ) (1< λ < 2)

The function S(x; 1/2) is a variant of the Rayleigh density (101). The function
S(x; 3/2) constitutes the density of the “Airy map distribution” found in random maps
as well as in other coalescence phenomena, as discussed below; see (109).

Theorem IX.16 (Semi-large powers). The coefficient of zn in a power H(z)k of a1–
continuable function H(z) with singular exponentλ admits the following asymptotic
estimates.

(i ) For 0 < λ < 1, that is, H(z) = σ − hλ(1− z/ρ)λ + O(1− z/ρ), and when
k = xnλ, with x in any compact subinterval of(0,+∞), there holds

(103) [zn]Hk(z) ∼ σ kρ−n 1

n
S

(
xhλ
σ
, λ

)
.

(i i ) For 1< λ < 2, that is, H(z) = σ − h1(1− z/ρ)+ hλ(1− z/ρ)λ + O((1−
z/ρ)2), when k= σ

h1
n + xn1/λ, with x in any compact subinterval of(−∞,+∞),

there holds

(104) [zn]Hk(z) ∼ σ kρ−n 1

n1/λ
(h1/hλ)

1/λS

(
xh1+1/λ

1

σh1/λ
λ

, λ

)
.

(i i i ) For λ > 2, a Gaussian approximation holds. In particular, for2 < λ < 3,
that is, H(z) = σ − h1(1− z/ρ)+ h2(1− z/ρ)2− hλ(1− z/ρ)λ + O((1− z/ρ)3) ,
when k= σ

h1
n+ x

√
n, with x in any compact subinterval of(−∞,+∞), there holds

(105) [zn]Hk(z) ∼ σ kρ−n 1√
n

σ/h1

a
√

2π
e−x2/2a2

with a= 2(h2
h1
− h1

2σ )σ
2/h2

1.
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The term “semi-large” refers to the fact that the exponentsk in case(i ) are of the
form O(nθ ) for someθ < 1 chosen in accordance with the region where an “interest-
ing” renormalization takes place and dependent on each particular singular exponent.
When the interesting region reaches theO(n) range in case(i i i ), the analysis of large
powers, as detailed in Chapter VIII (p. 591), takes over and Gaussian forms result.

Proof. The proofs are somewhat similar to the basic ones in singularity analysis, but
they require a suitable adjustment of the geometry of the Hankel contour and of the
corresponding dimensioning.

Case(i ). A classical Hankel contour, with the change of variablez= ρ(1− t/n),
yields the approximation

[zn]Hk(z) ∼ −σ
kρ−n

2iπn

∫
et− hλx

σ tλ dt

The integral is then simply estimated by expanding exp(−hλx
σ tλ) and integrating

termwise

(106) [zn]Hk(z) ∼ −σ
kρ−n

n

∑

k≥1

(−x)k

k!

(
hλ
σ

)k 1

Ŵ(−λk)
,

which is equivalent to Equation (103), by virtue of the complement formula for the
Gamma function.

Case(i i ). When 1< λ < 2, the contour of integration in thez-plane is chosen
to be a positively oriented loop, made of two rays of angleπ/(2λ) and−π/(2λ) that
intersect on the real axis at a distance 1/n1/λ left of the singularity. The coefficient
integral ofHk is rescaled by settingz= ρ(1− t/n1/λ), and one has

[zn]Hk(z) ∼ − σ kρ−n

2iπn1/λ

∫
e

hλ
h1

tλ
e−

xh1
σ t dt.

There, the contour of integration in thet-plane comprises two rays of angleπ/λ and
−π/λ, intersecting at−1. Settingu = tλhλ/h1, the contour transforms into a clas-
sical Hankel contour, starting from−∞ over the real axis, winding about the origin,
and returning to−∞. So, withα = 1/λ, one has

[zn]Hk(z) ∼ −σ
kρ−n

2iπnα
α

(
h1

hλ

)α ∫
eu e
− xhα+1

1
σhα
λ

uα
uα−1 du .

Expanding the exponential, integrating termwise, and appealing to the complement
formula for the Gamma function finally reduces this last formto (104).

Case(i i i ). This case is only included here for comparison purposes, but, as
recalled before the proof, it is essentially implied by the developments of Chapter VIII
based on the saddle-point method. When 2< λ < 3, the angleφ of the contour of
integration in thez–plane is chosen to beπ/2, and the scaling is

√
n: under the change

of variablez = ρ(1− t/
√

n), the contour is transformed into two rays of angleπ/2
and−π/2 (i.e., a vertical line), intersecting at−1, and

[zn]Hk(z) ∼ − σ
kρ−n

2iπ
√

n

∫
ept2− h1x

σ t dt ,
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with p = h2
h1
− h1

2σ . Complementing the square, and lettingu = t − h1x
2pσ , we get

[zn]Hk(z) ∼ − σ
kρ−n

2iπ
√

n
e
− h2

1
4pσ2 x2

∫
epu2

du ,

which gives Equation (105). By similar means, such a Gaussian approximation can
be shown to hold for any non-integral singular exponentλ > 2. �

� IX.53. Zipf distributions. Zipf’s law, named after the Harvard linguistic professor George
Kingsley Zipf (1902–1950), is the observation that, in a language like English, the frequency
with which a word occurs is roughly inversely proportional to its rank—thekth most frequent
word has frequency proportional to 1/k. Thegeneralized Zipf distributionof parameterα > 1
is the distribution of a random variableZ such that

P(Z = k) = 1

ζ(α)

1

kα
.

It has infinite mean forα ≤ 2 and infinite variance forα ≤ 3. It was proved in Chapter VI
(p. 408) that polylogarithms are amenable to singularity analysis. Consequently, the sum of a
large number of independent Zipf variables satisfies a local limit law of thestable type with
indexα − 1 (for α 6= 2). �

Example IX.41. Mean level profiles in simple varieties of trees.Consider the RV equal to
the depth of a random node in a random tree taken from a simple varietyY that satisfies the
smooth inverse-function schema (Definition VII.3, p. 453). The problem of quantifying the
corresponding distribution is equivalent to that of determining themeanlevel profile, that is
the sequence of numbersMn,k representing the mean number of nodes at distancek from the
root. (Indeed, the probability that a random node lies at levelk is Mn,k/n.) The first few levels
have been characterized in Example VII.7 (p. 458) and the analysis ofChapter VII can now be
completed thanks to Theorem IX.16. (The problem was solved by Meir and Moon [435] in an
important article that launched the analytic study of simple varieties of trees.Meir and Moon
base their analysis on a Lagrangean change of variable and on the saddle-point method, along
the lines of our remarks in Chapter VIII, p. 590.) As usual, we letφ(w) be the generator of the
simple varietyY, with Y(z) satisfyingY = zφ(Y), and we designate byτ the positive root of
the characteristic equation:

τφ′(τ )− φ(τ) = 0.

It is known from Theorem VII.3 (p. 468) that the GFY(z) has a square root singularity atρ =
τ/φ(τ). For convenience, we also assume aperiodicity ofφ. Meir and Moon’s major result
(Theorem 4.3 of [435]) is as follows

Proposition IX.23 (Mean level profiles). The mean profile of a large tree in a simple variety
obeys a Rayleigh law in the asymptotic limit: for k/

√
n in any bounded interval ofR≥0, the

mean number of nodes at altitude k satisfies asymptotically

Mn,k ∼ Ake−Ak2/(2n),

where A= τφ′′(τ ).
The proof goes as follows. For eachk, defineYk(z, u) to be the BGF withu marking the

number of nodes at depthk. Then, the root decomposition of trees translates into the recurrence:

Yk(z,u) = zφ(Yk−1(z, u)), Y0(z, u) = zuφ(Y(z)) = uY(z).

By construction, we have

Mn,k =
1

Yn
[zn]

(
∂

∂u
Yk(z, u)

)

u=1
.
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On the other hand, the fundamental recurrence yields
(
∂

∂u
Yk(z, u)

)

u=1
=
(
zφ′(Y(z))

)k Y(z).

Now, φ′(Y) has, likeY, a square-root singularity. The semi-large powers theorem applies
with λ = 1

2 , and the result follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .�

� IX.54. The width of trees.The expectation of the widthW of a tree in a simple variety
satisfies

C1
√

n ≤ EYn(W) ≤ C2
√

n logn,

for someC1,C2 > 0. (This is due to Odlyzko and Wilf [463], a possible approach consisting in
suitably bounding the level profile of random trees. Better bounds are known, now thatWn/

√
n

has been recognized to be related to Brownian excursion. In particular,the expected width is
∼ c
√

n; see Example V.17, p. 359 and the references there.)
�

Critical compositions.Theorem IX.16 provides useful information on composi-
tions of the form

F(z,u) = G(uH(z)),

providedG(z) andH(z) are of singularity analysis class. As we know, combinatori-
ally, this represents a substitution between structures,F = G ◦H, and the coefficient
[znuk]F(z,u) counts the number ofM–structures of sizen whoseG–component, also
calledcore in what follows, has sizek. Then the probability distribution of core-size
Xn in F–structures of sizen is given by

P(Xn = k) = [zk]G(z)

[zn]G(H(z))
[zn]H(z)k.

The case where the schema is critical, in the sense thatH(r H ) = rG with r H , rG

the radii of convergence ofH,G, follows as a direct consequence of Theorem IX.16.
What comes out is the following informally stated general principle (details would
closely mimic the statement of Theorem IX.16 and are omitted: see [28]).

Proposition IX.24 (Critical compositions). In a composition schema F(z,u) =
G(uH(z)) where H and G have singular exponentsλ, λ′ with λ′ ≤ λ:

(i ) for 0< λ < 1, the normalized core-size Xn/nλ is spread over(0,+∞) and it
satisfies a local limit law whose density involves a stable law of indexλ; in particular,
λ = 1

2 corresponds to a Rayleigh law.
(i i ) for 1 < λ < 2, the distribution of Xn is bimodal and the “large region”

Xn = cn+ xn1/λ involves a stable law of indexλ;
(i i i ) for 2 < λ, the standardized version of Xn admits a local limit law that is of

Gaussian type.

Similar phenomena occur whenλ′ > λ, but with a greater preponderance of
the “small” region. Many instances have already appeared scattered in the literature.
especially in connection with rooted trees. For instance, this proposition explains well
the occurrence of the Rayleigh law (λ = 1/2) as the distribution of cyclic points
in random mappings and of zero-contacts in random bridges. The caseλ = 3/2
appears in forests of unrooted trees (see the discussion in Chapter VIII, p. 603, for an
alternative approach based on coalescing saddle-points) and it is ubiquitous in planar
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maps, as attested by the article of Banderieret al. on which this subsection is largely
based [28]. We detail one of the cases in the following example, which explains the
meaning of the term “large region” in Proposition IX.24.

ExampleIX.42. Biconnected cores of planar maps.The OGF of rooted planar maps, with size
determined by the number ofedges, is, by Subsection VII. 8.2 (p. 513),

(107) M(z) = − 1

54z2

(
1− 18z− (1− 12z)3/2

)
,

with a characteristic 3/2 exponent. Define a separating vertex orarticulation point in a map
to be a vertex whose removal disconnects the graph. LetC denote the class of non-separable
maps, that is, maps without an articulation point (also known as biconnected maps). Starting
from the root edge, any map decomposes into a non-separable map, called the “core” on which
are grafted arbitrary maps, as illustrated by the following diagram:

There results the equation:

(108) M(z) = C(H(z)), H(z) = z(1+ M(z))2.

Since we knowM , henceH , this last relation gives by inversion the OGF of non-separable
maps as an algebraic function of degree 3 specified implicitly by the equation

C3+ 2C2+ (1− 18z)C + 27z2− 2z= 0,

with expansion at the origin (EISA000139):

C(z) = 2z+ z2+ 2z3+ 6z4+ 22z5+ 91z6+ · · · , Ck+1 = 2
(3k)!

(k+ 1)!(2k+ 1)!
.

(The closed form results from a Lagrangean parameterization.) Now the singularity ofC is also
of theZ3/2 type as seen by inversion of (108) or from the Newton diagram attached tothe cubic
equation. We find in particular

C(z) = 1

3
− 4

9
(1− 27z/4)+ 8

√
3

81
(1− 27z/4)3/2+ O((1− 27z/4)2),

which is reflected by the asymptotic estimate,

Ck ∼
2

27

√
3

π

(
17

4

)k
k−5/2.

The parameter considered here is the distribution of the sizeXn of the core (containing
the root) in a random map of sizen. The composition relation isM = C ◦ H , whereH =
Z(1+M)2. The BGF is thusM(z,u) = C(uH(z)) where the compositionC ◦ H is of the
singular typeZ3/2 ◦ Z3/2. What is peculiar here is the “bimodal” character of the distribution
of core-size (see Figure IX.21 borrowed from [28]), which we nowdetail.
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Figure IX.21. Left: The standard “Airy map distribution”. Right: Observed frequen-
cies of core-sizesk ∈ [20; 1000] in 50 000 random maps of size 2 000, showing the
bimodal character of the distribution.

First straight singularity analysis shows that, forfixed k,

P(Xn = k) = Ck
[zn]H(z)k

Mn
∼

n→∞ kCkhk−1
0 ,

whereh0 = 4/27 is the value ofH(z) at its singularity. In other words, there is local con-
vergence of the probabilities to a fixeddiscretelaw. The estimate above can be proved to
remain uniform as long ask tends to infinity sufficiently slowly. We shall call this the “small
range” ofk values. Now, summing the probabilities associated to this small range givesthe
valueC(h0) = 1/3. Thus,one-third of the probability mass of core-size arises from the small
range, where a discrete limit law is observed.

The other part of the distribution constitutes the “large range” to which Theorem IX.16
applies. It contains asymptotically 2/3 of the probability mass of the distribution ofXn. In that
case, the limit law is related to a stable distribution with densityS(x; 3/2) and is also known as
the “Airy map” distribution: one finds fork = 1

3n+ xn2/3, the local limit approximation:

(109) P(Xn = k) ∼ 1

3n2/3
A

(
3

4
22/3x

)
, A(x) := 2e−2x2/3

(
x Ai(x2)− Ai ′(x2)

)
.

There Ai(x) is the Airy function (defined in the footnote on p. 534) andA(x) specifies the Airy
map distribution displayed in Figure IX.21.

The bimodal character of the distribution of core-sizes can now be betterunderstood [28].
A random map decomposes into biconnected components and the largestbiconnected compo-
nent has, with high probability, a size that isO(n). There are also a large number (O(n)) of
“dangling” biconnected components. In a rooted map, the root is in a sense placed “at random”.
Then, with a fixed probability, it either lies in the large component (in which case, the distri-
bution of that large component is observed, this is the continuous part ofthe distribution given
by the Airy map law), or else one of the small components is picked up by theroot (this is the
discrete part of the distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .�

� IX.55. Critical cycles. The theory adapts to logarithmic factors. For instance the critical
compositionF(z, u) = − log(1− ug(z)) leads to developments similar to those of the critical
sequence. In this way, it becomes possible for instance to analyse the number of cyclic points
in a random connected mapping. �

� IX.56. The base of supertrees.Supertrees defined in Chapter VI (p. 412) are trees grafted on
trees. Consider the bicoloured variantK = G(2ZG), with G the class of general Catalan trees.
Then, the law of the externalG–component is related to a stable law. �
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IX. 12. Multivariate limit laws

Combinatorics can take advantage of the enumeration of objects with respect to a
whole collection of parameters. The symbolic methods of Part A are well suited and
we have seen in Chapter III ways to solve problems like: how many permutations are
there of sizen with n1 singleton cycles andn2 cycles of length 2? In combinatorial
terms we are seeking information about a multivariate (rather than plainly bivariate)
sequence, sayFn,k1,k2. In probabilistic terms, we aim at characterizing thejoint dis-

tribution, say(X(1)n , X(2)n ), of a family of random variables. Methods developed in
this chapter adapt well to multivariate situations. Typically, there exist natural exten-
sions of continuity theorems, both for PGFs and for integraltransforms and the most
abstract aspects of the foregoing discussion regarding central and local limit laws as
well as tail estimates and large deviations can be recycled.

Consider for instance the joint distribution of the numbersχ1, χ2 of singletons
and doubletons in random permutations. Then, the parameterχ = (χ1, χ2) has a
trivariate EGF

F(z,u1,u2) =
exp((u1− 1)z+ (u2− 1)z2/2)

1− z
.

Thus, the bivariate PGF satisfies, by meromorphic analysis,

pn(u1,u2) = [zn]F(z,u1,u2) ∼ e(u1−1) e(u2−1)/2,

uniformly when the pair(u1,u2) ranges over a compact set ofC×C. As a result, the
joint distribution of(χ1, χ2) is a product of a Poisson(1) and a Poisson(1/2) distribu-
tion; in particularχ1 andχ2 are asymptotically independent.

Consider next the joint distribution ofχ = (χ1, χ2), whereχ j is the number
of summands equal toj in a random integer composition. Each parameter individu-
ally obeys a limit Gaussian law, since the sequence construction is supercritical. The
trivariate GF is

F(z,u1,u2) =
1

1− z(1− z)−1− (u1− 1)z− (u2− 1)z2
.

By meromorphic analysis, a higher dimensional quasi-powerapproximation may be
derived:

[zn]F(z,u1,u2) ∼ c(u1,u2)ρ(u1,u2)
−n,

for some third-degree algebraic functionρ(u1,u2). In such cases, multivariate ver-
sions of the continuity theorem for integral transforms canbe applied. (See the book
by Gnedenko and Kolmogorov [294] and especially the treatment of Bender and Rich-
mond in [44].) As a result, the joint distribution is, in the asymptotic limit, a bivariate
Gaussian distribution with a covariance matrix that is computable fromρ(u1,u2).
Such generalizations are typical and involve essentially no radically new concept, just
natural technical adaptations.

A highly interesting approach to multivariate problems is that of functional limit
theorems. The goal is now to characterize the joint distribution of an unbounded
collection of parameters. The limit process is then astochastic process, essentially an
object that lives in someinfinite-dimensional space. For instance, the joint distribution
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of all altitudes in random walks is accounted for by Brownianmotion. The joint distri-
bution of all cycle lengths in random permutations is described explicitly by Cauchy’s
formula (p. 188) and DeLaurentis and Pittel [149] have showna convergence to the
standard Brownian motion process, after a suitable renormalization. A rather spectac-
ular application of this circle of ideas was provided in 1977by Logan, Shepp, Vershik
and Kerov [411, 596]. These authors established that the shape of the pair of Young
tableaux associated to a random permutation conforms, in the asymptotic limit and
with high probability, to a deterministic trajectory defined as the solution to a varia-
tional problem. In particular, the width of a Young tableau associated to a permutation
gives the length of the longest increasing sequence of the permutation. By special-
izing their results, the authors were then able to show that the expected length in a
random permutation of sizen is asymptotic to 2

√
n, a long-standing conjecture at the

time (see also our remarks on p. 597 for subsequent developments). There is currently
a flurry of activity on these questions, with methods rangingfrom purely probabilistic
to purely analytic.

Among extensions of the standard approach presented in thisbook to analytic
combinatorics, we single out a few, which seem especially exciting. Lalley [397] has
extended the framework of the important Drmota–Lalley–Woods Theorem (p. 489)
to certain infinite systems of equations, by appealing to Banach space theory—this
has applications in the theory of random walks on groups. Vallée and coauthors (see
Note IX.32, p. 664, and the survey [584]) have developed a broad theory based on
transfer operators from dynamical systems theory, where generating operators replace
generating functions and operate on certain infinite dimensional functional spaces—
there are surprising applications both in information theory and in analytic number
theory (e.g., the analysis of Euclidean algorithms). McKay[432] has shown how
to extend the one-dimensional saddle-point theory presented in Chapter VIII in a
highly non-trivial way in order to treat certain counting problems where a problem
of sizen is represented by ad(n)-dimensional integral, withd(n) tending to infinity
with n—this is especially important since a great many hard combinatorial problems
can be represented in this manner, including for instance the celebrated random SAT-
problem [77, 486].

We hope that the fairly complete treatment of standard aspects of the theory of-
fered in this book will help our reader to master and enrich a field, which is extremely
vast, blooming, and pregnant with fascinating problems at the crossroads of discrete
and continuous mathematics.

IX. 13. Perspective

The study of parameters of combinatorial structures ideally culminates in an un-
derstanding of the distribution of the parameter’s values,typically under the assump-
tion that each instance of a given size in a combinatorial class appears with equal
likelihood.

First, as we have already seen in Chapter III, we can extend the basic combi-
natorial constructions of Chapters I and II to include bivariate generating functions
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(BGFs) whose second variable carries information about theparameter. Our combi-
natorial constructions then provide a systematic way to develop succinct BGFs for a
broad range of combinatorial classes and parameters, whichare of interest in combi-
natorics, computer science, and other applied sciences.

Next, the various methods considered in Chapters IV–VIII (Part B) of this book
can be extended to develop asymptotic results for BGFs by studying slight perturba-
tions of the singularities, controlled by the second variable. The uniform precision of
the asymptotic results that we develop in Part B is a criticalcomponent in our ability
to do this, by contrast with other classical methods for coefficient asymptotics (Dar-
boux’s method and Tauberian theorems) which are, to a large extent, non-constructive.

These asymptotic results take the form oflimit laws: the distribution governing
the behaviour of parameters converge to a fixed discrete distribution, or appropriately
scaled, to a continuous distribution. Whereas BGFs are purely formal objects, to de-
termine whether the distribution is discrete or continuousrequires analysis of them as
functions of complex variables. In a preponderance of cases, the limit laws say that
parameter values approach a single distribution, the well-known Gaussian (normal)
distribution. The well-known central limit theorem is but one example (not the ex-
planation) of this phenomenon, whose breadth is truly remarkable. For example, we
have encountered numerous examples where the occurrence ofa given fixed pattern in
a large random object is almost certain, with the number of occurrences governed by
Gaussian fluctuations. This property holds true for strings, uniform tree models, and
increasing trees. The associated BGFs are rational functions, algebraic functions, and
solutions to nonlinear differential equations, respectively, but the approach of extend-
ing the methods of Part B to study local perturbations of singularities is effective in
each case—the proofs eventually reduce to establishing an extremely simple property,
a singularity that smoothly moves.

Such studies are an appropriate conclusion to this book, because they illustrate the
power of analytic combinatorics. We are able to use formal methods to develop suc-
cinct formal objects that encapsulate the combinatorial structure (BGFs), then, treat-
ing those BGFs as objects of analysis (functions of one, thentwo complex variables)
we are able to obtain wide encompassing asymptotic information about the original
combinatorial structure. Such an approach has serendipitous consequences. Combi-
natorial problems can then be organized into broadschemas, covering infinitely many
combinatorial types and governed by simple asymptotic laws—the discovery of such
schemas and of the associateduniversalityproperties constitutes the very essence of
analytic combinatorics.

Bibliographic notes. This chapter is primarily inspired by the studies of Bender and Rich-
mond [35, 44, 46], Canfield [101], Flajolet, Soria, and Drmota [171, 172, 175, 176, 258, 260,
547] as well as Hwang [337, 338, 339, 340]. Bender’s seminal study [35] initiated the study
of bivariate analytic schemes that lead to Gaussian laws and the paper [35] may rightly be con-
sidered to be at the origin of the field. Canfield [101], building upon earlierstudies showed the
approach to extend to saddle-point schemas.

Tangible progress was next made possible by the development of the singularity analysis
method [248]. Earlier research was mostly restricted to methods based on subtraction of sin-
gularities, as in [35], which is in particular effective for meromorphic cases. The extension to
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algebraic–logarithmic singularities was, however, difficult given that theclassical method of
Darboux does not provide for uniform error terms. In contrast, singularity analysisdoesap-
ply to classes of analytic functions, since it allows for uniformity of estimates. The papers by
Flajolet and Soria [258, 260] were the first to make clear the impact of singularity analysis on
bivariate asymptotics. Gao and Richmond [277] were then able to extend the theory to cases
where both a singularity and its singular exponent are allowed to vary.

From there, Soria developed the framework of schemas considerablyin her doctor-
ate [547]. Hwang extracted the very important concept of “quasi-powers” in his thesis [337]
together with a wealth of properties such as full asymptotic expansions, speed of convergence,
and large deviations. Drmota established general existence conditions leading to Gaussian laws
in the case of implicit, especially algebraic, functions [171, 172]. The “singularity perturbation”
framework for solutions of linear differential equations first appearsunder that name in [243].
Finally, the books by Sachkov, see [525] and especially [526] (basedon the 1978 edition [524])
offer a modern perspective on bivariate asymptotics applied to classical combinatorial struc-
tures.

(“But beyond this, my son, be warned: the writing of many books

is endless; and excessive devotion to books is wearying to the body.”))

— Tanakh (The Bible), Qohelet (Ecclesiastes) 12:12.
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APPENDIX A

Auxiliary Elementary Notions

We combine in the three appendices definitions and theorems related to key mathematical con-
cepts not covered directly in the text. Generally, the entries in the appendices are independent,
intended for reference while addressing the main text. Our ownIntroduction to the Analy-
sis of Algorithms[538] is a gentle introduction to many of the concepts underlying analytic
combinatorics at a level accessible to any college student and is reasonable preparation for un-
dergraduates or anyone undertaking to read this book for self-study.

This appendix contains entries that are arranged in alphabetical order,regarding the fol-
lowing topics:

Arithmetical functions; Asymptotic notations; Combinatorial probability; Cycle
construction; Formal power series; Lagrange inversion; Regular languages; Stir-
ling numbers; Tree concepts.

The corresponding notions and results are used throughout the book,and especially in Part A
relative toSymbolic Methods. Accessible introductions to the subject of this appendix are the
books by Graham–Knuth–Patashnik [307], and Wilf [608], regardingcombinatorial enumer-
ation, and De Bruijn’s vivid booklet [142], regarding asymptotic analysis. Reference works
in combinatorial analysis are the books by Comtet [129], Goulden–Jackson [303], and Stan-
ley [552, 554].

A.1. Arithmetical functions

A general reference for this section is Apostol’s book [16].First, theEuler totient
functionϕ(k) intervenes in the unlabelled cycle construction (pp. 27, 84, 165, as well
as 729 below). It is defined as the number of integers in [1. . k] that are relatively
prime to k. Thus, one hasϕ(p) = p − 1 if p ∈ {2,3,5, . . .} is a prime. More
generally when the prime number decomposition ofk is k = pα1

1 · · · p
αr
r , then

ϕ(k) = pα1−1
1 (p1− 1) · · · pαr−1

r (pr − 1).

A number is squarefree if it is not divisible by the square of aprime. TheMöbius
functionµ(n) is defined to be 0 ifn is not squarefree and otherwise is(−1)r if n =
p1 · · · pr is a product ofr distinct primes.

Many elementary properties of arithmetical functions are easily established by
means of aDirichlet generating functions(DGF). Let(an)n≥1 be a sequence; its DGF
is formally defined by

α(s) =
∞∑

n=1

an

ns
.

In particular, the DGF of the sequencean = 1 is the Riemann zeta function,ζ(s) =∑
n≥1 n−s. The fact that every number uniquely decomposes into primesis reflected

721
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by Euler’s formula,

(1) ζ(s) =
∏

p∈P

(
1− 1

ps

)−1

,

where p ranges over the setP of all primes. (As observed by Euler, the fact that
ζ(1) = ∞ in conjunction with (1) provides a simple analytic proof that there are
infinitely many primes! See Note IV.1, p. 228)

Equation (1) implies that the DGF of the M̈obius function satisfies

(2) M(s) :=
∑

n≥1

µ(n)

ns
=
∏

p∈P

(
1− 1

ps

)
= 1

ζ(s)
.

(Verification: expand the infinite product and collect the coefficient of 1/ns.)
Finally, if (an), (bn), (cn) have DGFα(s), β(s), γ (s), then one has the equiva-

lence
α(s) = β(s)γ (s) ⇐⇒ an =

∑

d | n
bdcn/d.

In particular, takingcn = 1 (γ (s) = ζ(s)) and solving forβ(s) shows (using (2)) the
implication

(3) an =
∑

d | n
bd ⇐⇒ bn =

∑

d | n
µ(d)an/d,

which is known asMöbius inversion. This relation is used in the enumeration of
irreducible polynomials (Section I. 6.3, p. 88).

A.2. Asymptotic notations

Let S be a set ands0 ∈ S a particular element ofS. We assume a notion of
neighbourhood to exist onS. Examples areS = Z>0 ∪ {+∞} with s0 = +∞, S = R

with s0 any point inR; S = C or a subset ofC with s0 = 0, and so on. Two functions
φ andg from S \ {s0} to R or C are given.

— O–notation: write
φ(s) =

s→s0
O(g(s))

if the ratioφ(s)/g(s) stays bounded ass→ s0 in S. In other words, there
exists a neighbourhoodV of s0 and a constantC > 0 such that

|φ(s)| ≤ C |g(s)| , s ∈ V, s 6= s0.

One also says that“ φ is of order at most g”, or “ φ is big–Oh of g” (ass
tends tos0).

— ∼–notation: write
φ(s) ∼

s→s0
g(s)

if the ratioφ(s)/g(s) tends to 1 ass→ s0 in S. One also says that“ φ and
g are asymptotically equivalent”(ass tends tos0).



A.2. ASYMPTOTIC NOTATIONS 723

— o–notation: write
φ(s) =

s→s0
o(g(s))

if the ratioφ(s)/g(s) tends to 0 ass → s0 in S. In other words, for any
(arbitrarily small)ε > 0, there exists a neighbourhoodVε of s0 (depending
on ε), such that

|φ(s)| ≤ ε |g(s)| , s ∈ Vε, s 6= s0.

One also says that“ φ is of order smaller than g, orφ is little–oh of g” (ass
tends tos0).

These notations are due to Bachmann and Landau towards the end of the nineteenth
century. See Knuth’s note for a historical discussion [381,Ch. 4].

Related notations, of which, however, we only make a scant use, are

— �-notation: write
φ(s) =

s→s0
�(g(s))

if the ratioφ(s)/g(s) stays bounded from below in modulus by a non-zero
quantity, ass→ s0 in S. One then says thatφ is of order at least g.

— 2-notation: if φ(s) = O(g(s)) andφ(s) = �(g(s)), write

φ(s) =
s→s0

2(g(s)).

One then says thatφ is of order exactly g.

For instance, one has asn→+∞ in Z>0:

sinn = o(logn); logn = O(
√

n); logn = o(
√

n);(n
2

)
= �(n√n); πn+√n = 2(n).

As x→ 1 in R≤1, one has
√

1− x = o(1); ex = O(sinx); logx = 2(x − 1).

We take as granted in this book the elementary asymptotic calculus with such
notations (see, e.g., [538, Ch. 4] for a smooth introductionclose to the needs of an-
alytic combinatorics and de Bruijn’s classic [143] for a beautiful presentation.). We
shall retain here in particular the fact that Taylor expansions (Note A.6, p. 726) imply
asymptotic expansions; for instance, the convergent expansions, all valid for|u| < 1,

log(1+ u) =
∞∑

k=1

(−1)k−1

k
uk, exp(u) =

∑

k≥0

1

k!
uk, (1− u)−α =

∑

k≥0

(
k+ α − 1

k

)
uk,

imply (asu→ 0)

log(1+ u) = u+ O(u2), exp(u) = 1+ u+ u2

2
+ O(u3), (1− u)1/2 = 1− u

2
+ O(u2),

and so forth. Consequently, asn→+∞, one has:

log

(
1+ 1

n

)
= 1

n
+ O

(
1

n2

)
,

(
1− 1

logn

)1/2

= 1− 1

2 logn
+ o

(
1

logn

)
.
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Two important asymptotic expansions are Stirling’s formula for factorials and the
harmonic number approximation, valid forn ≥ 1,

(4)
n! = nne−n

√
2πn (1+ ǫn) , 0< ǫn <

1
12n

Hn = logn+ γ + 1

2n
− 1

12n2
+ ηn ηn = O

(
n−4

)
, γ

.= 0.57721,

that are commonly established as consequences of the Euler–Maclaurin summation
formula that relates sums to integrals (see Note A.7, p. 726,references [143, 538], as
well as Appendix B.7:Mellin transform, p. 762).
� A.1. Simplification rules for the asymptotic calculus.Some of them are

O(λ f ) −→ O( f ) (λ 6= 0)
O( f )± O(g) −→ O(| f | + |g|)

−→ O( f ) if g = O( f )
O( f · g) −→ O( f )O(g).

Similar rules apply foro(·). �

Asymptotic scales.An important notion due to Poincaré is that of anasymptotic
scale. A sequence of functionsω0, ω1, . . . is said to constitute an asymptotic scale if
all functionsω j exist in a common neighbourhood ofs0 ∈ S and if they satisfy there,
for all j ≥ 0:

ω j+1(s) = o(ω j (s)), i.e., lim
s→s0

ω j+1(s)

ω j (s)
= 0.

Examples at 0 are the scales:u j (x) = x j ; v2 j (x) = x j logx andv2 j+1(x) = x j ;
w j (x) = x j/2. Examples at infinity aret j (n) = n− j , and so on. Given a scale
8 = (ω j (s)) j≥0, a function f is said to admit anasymptotic expansionin the scale8
if there exists a family of complex coefficients(λ j ) (the family is then necessarily
unique) such that, for each integerm:

(5) f (s) =
m∑

j=0

λ jω j (s)+ O(ωm+1(s)) (s→ s0).

In this case, one writes

(6) f (s) ∼
∞∑

j=0

λ jω j (s), (s→ s0)

with an extension of the symbol ‘∼’. (Some authors prefer the notation ‘≈”, but in
this book, we reserve it to mean informally “approximately equal” or “of the rough
form”.)

The scale may be finite and in most cases, we do not need to specify it as it is
clear from context. For instance, one can write

Hn ∼ logn+ γ + 1

12n
, tanx ∼ x + 1

3
x3+ 2

15
x5.

In the first case, it is understood thatn→ ∞ and the scale is logn,1,n−1,n−2, . . . .
In the second case,x → 0 and the scale isx, x3, x5, . . . . Note carefully that in the
case of a complete expansion (6), convergence of the infinitesum isnot in any way
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implied: the relation is to be interpreted literally, in thesense of (5); namely, as a
collection of more and more precise descriptions off whens becomes closer and
closer tos0. (As a matter of fact, almost all the asymptotic expansions of number
sequences developed in this book, starting with Stirling’sformula, are divergent.)
� A.2. Harmonics of harmonics.The harmonic numbers are readily extended to non-integral
index by (cf also theψ function p. 746)

Hx :=
∞∑

k=1

(
1

k
− 1

k+ x

)
.

For instance, H1/2 = 2− 2 log 2. This extension is related to the Gamma function [604], and it
can be proved that the asymptotic estimate (4), withx replacingn, remains valid asx→ +∞.
A typical asymptotic calculation shows that

HHn = log logn+ γ +
γ + 1

2
logn

+ O

(
1

log2 n

)
.

What is the shape of an asymptotic expansion of HHHn
? �

� A.3. Stackings of dominos. A stock of dominos of length 2cm is given. It is well known that
one can stack up dominos in a harmonic mode:

11/3 1/2

Estimate within 1% the minimal number of dominos needed to achieve a horizontal span of
1m (=100cm). (Hint: about 1.50926 1043 dominos!) Set up a scheme to evaluate this integer
exactly, and do it! �

� A.4. High precision fraud.Why is it that, to forty decimal places, one finds

4
500 000∑

k=1

(−1)k−1

2k− 1
.= 3.141590653589793240462643383269502884197

π
.= 3.141592653589793238462643383279502884197,

with only four “wrong” digits in the first sum? (Hint: consider the simpler problem

1

9801
.= 0.00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 · · · .)

Many fascinating facts of this kind are found in works by Jon and Peter Borwein [79, 80]. �

Uniform asymptotic expansions.The notions previously introduced allow for
uniform versions in the case of families dependent on a secondary parameter [143,
pp. 7–9]. Let{ fu(s)}u∈U be a family of functions indexed byU . An asymptotic
equivalence like

fu(s) = O (g(s)) (s→ s0),

is said to beuniform with respect to uif there exists an absolute constantK (indepen-
dent ofu ∈ U ) and a fixed neighbourhoodV of s0 such that

∀u ∈ U, ∀s ∈ V : | fu(s)| ≤ K |g(s)|.



726 A. AUXILIARY ELEMENTARY NOTIONS

This definition in turn gives rise to the notion of a uniform asymptotic expansion: it
suffices that, for eachm, theO error term in (5) be uniform. Such notions are central
for the determination of limit laws in Chapter IX, where a uniform expansion of a
class of generating functions near a singularity is usuallyrequired.
� A.5. Examples of uniform asymptotics.One hasuniformly, for u ∈ R andu ∈ [0, 1] respec-
tively:

sin(ux) =
x→∞O(1),

(
1+ 1

n

)u
=

n→∞1+ u

n
+ O

(
1

n2

)
.

However, the second expansion no longer holds uniformly with respectto u whenu ∈ R (take
u = ±n), although it holdspointwise(non-uniformly) for any fixedu ∈ R. What about the

assertion

(
1+ 1

n

)u
=

n→∞1+ u

n
+ O

(
u2

n2

)
for u ∈ R? �

� A.6. Taylor expansions.Let (φk) be a sequence of polynomials such thatφ0 = 1 and
φ′k+1 = φk, for all k ≥ 0. A repeated use of integration by parts shows that, for a functionf

assumed to be sufficiently smooth, one has ([h]B
A denotes the variationh(B)− h(A))

(7)

∫ 1

0
f (t)φ0(t)dt =

[
f φ1

]1
0−

[
f ′φ2

]1
0+ · · · + (−1)m−1[ f (m−1)φm

]1
0

+ (−1)m
∫ 1

0
f (m)(t) φm(t)dt.

Choosingφk(t) = (t − 1)k/k! yields thebasic Taylor expansion with remainder:

(8)
∫ 1

0
f (t)dt =

m−1∑

k=0

f (k)(0)

(k+ 1)!
+ 1

m!

∫ 1

0
f (m)(t) (1− t)m dt.

If | f (m)(t)| is less thanm! A−m for someA > 1, then a convergent representation follows.
Setting f (t) = xg′(xt) then yields the classicalTaylor expansion with remainder

(9) g(x) =
m∑

k=0

g(k)(0)
xk

k!
+ 1

m!

∫ x

0
g(m+1)(t) (x − t)m dt,

and a convergent infinite series can be deduced under suitable growth assumptions on the deriva-
tives ofg. (Complex analytic methods of Chapter IV and Appendix B develop a powerful theory
by which one can avoid explicitly determining and bounding derivatives.) �

� A.7. Euler–Maclaurin summation.Choose nowφk(t) = [zn]zetz/(ez − 1). Theφk are, up
to normalization,Bernoulli polynomialsand their coefficients involve the Bernoulli numbers
(p. 268):φ0(t) = 1, φ1(t) = t − 1

2 , φ2(t) = t2/2− t/2+ 1/12, and so on. Equation (7) then
yields thebasic Euler–Maclaurin expansion with remainder:

∫ 1

0
f (t)dt = f (0)+ f (1)

2
−

M∑

k=1

B2k

(2k)!

[
f (2k−1)]1

0+
∫ 1

0
f (2M)(t)φ2M (t)dt.

From here, a formula results by summation (with{x} := x − ⌊x⌋), which serves to compare
sums and integrals:
∫ n

0
f (t)dt = f (0)+ f (n)

2
+

n−1∑

j=1

f ( j )−
M∑

k=1

B2k

(2k)!

[
f (2k−1)]n

0 +
∫ n

0
f (2M)(t)φ2M ({t})dt.

The asymptotic expansions of (4), p. 724, can finally be developed: use f (t) = log(t + 1)
and f (t) = 1/(t + 1). (Hint: see [142, §3.6], [465, pp. 281–289], or [538, §4.5].) The
fine characterisation of the “Euler–Maclaurin constants” (Euler’s constantγ for Hn, Stirling’s
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constant
√

2π for Stirling’s approximation) is in general non-obvious: see pp. 238, pp. 410, and
pp. 766 for complex-analytic alternatives. �

A.3. Combinatorial probability

This entry gathers elementary concepts from probability theory specialized to the
discrete case and used in Chapter III. A more elaborate discussion of probability
theory forms the subject of Appendix C.

Given a finite setS, theuniform probability measureassigns to anyσ ∈ S the
probability mass

P(σ ) = 1

card(S)
.

The probability of any set, also known asevent, E ⊆ S, is then measured by

P{E} := card(E)

card(S)
=
∑

σ∈E
P(σ )

(“the number of favorable cases over the total number of cases”).
Given a combinatorial classA, we make extensive use of this notion with the

choice ofS = An. This defines a probability model (indexed byn), in which elements
of sizen in A are taken with equal likelihood. For this uniform probabilistic model,
we write

Pn and PAn,

whenever the size and the type of combinatorial structure considered need to be em-
phasized.

Next consider a parameterχ , which is a function fromS to Z≥0. We regard such
a parameter as arandom variable, determined by its probability distribution,

P(χ = k) = card({σ | χ(σ) = k})
card(S)

.

The notions above extend gracefully to non-uniform probability models that are de-
termined by a family of non-negative numbers(pσ )σ∈S which add up to 1:

P(σ ) = pσ , P(E) :=
∑

σ∈E
pσ , P(χ = k) =

∑

χ(σ)=k

pσ .

Moments. Important information on a distribution is provided by itsmoments.
We state here the definitions for an arbitrary discrete random variable supported byZ
and determined by its probability distribution,P(X = k) = pk where the(pk)k∈Z
are non-negative numbers that add up to 1. Theexpectationof f (X) is defined as the
linear functional

E( f (X)) =
∑

k

P{X = k} · f (k).

In particular, the (power)momentof orderr is defined as the expectation:

E(Xr ) =
∑

k

P{X = k} · kr .



728 A. AUXILIARY ELEMENTARY NOTIONS

Of special importance are the first two moments of the random variableX. The
expectation (also mean or average)E(X) is

E(X) =
∑

k

P{X = k} · k.

The second momentE(X2) gives rise to thevariance,

V(X) = E

(
(X − E(X))2

)
= E(X2)− E(X)2,

and, in turn, to thestandard deviation

σ(X) =
√

V(X).

The mean deserves its name as first observed by Galileo Galilei (1564–1642): if a
large number of draws are effected and values ofX are observed, then the arithmetical
mean of the observed values will normally be close to the expectationE(X). The
standard deviation measures in a mean quadratic sense the dispersion of values around
the expectationE(X).
� A.8. The weak law of large numbers.Let (Xk) be a sequence of mutually independent
random variables with a common distribution. If the expectationµ = E(Xk) exists, then for
everyǫ > 0:

lim
n→∞P

(∣∣∣∣
1

n
(X1+ · · · + Xn)− µ

∣∣∣∣ > ǫ

)
= 0.

(See [205, Ch X] for a proof.) Note that the property does not require finite variance. �

Probability generating function.The probability generating function(PGF) of
a discrete random variableX, with values inZ≥0, is by definition:

p(u) :=
∑

k

P(X = k)uk,

and an alternative expression isp(u) = E(uX). Moments can be recovered from the
PGF by differentiation at 1, for instance:

E(X) = d

du
p(u)

∣∣∣∣
u=1

, E(X(X − 1)) = d2

du2
p(u)

∣∣∣∣∣
u=1

.

More generally, the quantity,

E(X(X − 1) · · · (X − k+ 1)) = dk

duk
p(u)

∣∣∣∣
u=1

,

is known as thekth factorial moment.
� A.9. Relations between factorial and power moments.Let X be a discrete random variable
with PGF p(u); denote byµr = E(Xr ) its r th moment and byφr its factorial moment. One
has

µr = ∂r
t p(et )

∣∣
t=0 , φr = ∂r

u p(u)
∣∣
u=1 .

Consequently, with
{n

k
}

and
[n
k
]

the Stirling numbers of both kinds (Appendix A.8:Stirling
numbers, p. 735),

φr =
∑

j

(−1)r− j
[

r

j

]
µ j ; µr =

∑

j

{
r

j

}
φ j .
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(Hint: for φr → µr , expand the Stirling polynomial defined in (17), p. 736; in the converse
direction, writep(et ) = p(1+ (et − 1)).) �

Markov–Chebyshev inequalities.These are fundamental inequalities that apply
equally well to discrete and to continuous random variables(see Appendix C for the
latter).

Theorem A.1 (Markov–Chebyshev inequalities). Let X be anon-negativerandom
variable and Y anarbitraryreal random variable. One has for an arbitrary t> 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y)| ≥ tσ(Y)} ≤ 1

t2
(Chebyshev inequality).

Proof. Without loss of generality, one may assume thatX has been scaled in such
a way thatE(X) = 1. Define the functionf (x) whose value is 1 ifx ≥ t , and 0
otherwise. Then

P{X ≥ t} = E( f (X)).

Since f (x) ≤ x/t , the expectation on the right is less than 1/t . Markov’s inequality
follows. Chebyshev’s inequality then results from Markov’s inequality applied toX =
|Y − E(Y)|2. �

Theorem A.1 informs us that the probability of being much larger than the mean
must decay (Markov) and that an upper bound on the decay is measured in units given
by the standard deviation (Chebyshev).

Moment inequalities are discussed for instance in Billingsley’s reference trea-
tise [68, p. 74]. They are of great importance in discrete mathematics where they
have been put to use in order to show theexistenceof surprising configurations. This
field was pioneered by Erdős and is often known as the “probabilistic method” [in
combinatorics]; see the book by Alon and Spencer [13] for many examples. Moment
inequalities can also be used to estimate the probabilitiesof complex events by reduc-
ing the problems to moment estimates for occurrences of simpler configurations—this
is one of the bases of the “first and second moment methods”, again pioneered by
Erdős, which are central in the theory of random graphs [76, 355]. Finally, moment
inequalities serve to design, analyse, and optimize randomized algorithms, a theme
excellently covered in the book by Motwani and Raghavan [451].

A.4. Cycle construction

The unlabelled cycle construction is introduced in ChapterI and is classically
obtained within the framework of Ṕolya theory (Note I.58, p. 85 and [129, 488, 491]).
The derivation given here is based on an elementary use of symbolic methods that
follows [259]. It relies on bivariate GFs developed in Chapter III, with z marking size
andu marking the number of components. Consider a classA and the sequence class
S = SEQ≥1(A). A sequenceσ ∈ S is primitive (or aperiodic) if it is not the repetition
of another sequence (e.g.,αββαα is primitive, butαβαβ = (αβ)2 is not). The class
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PS of primitive sequences is determined implicitly,

S(z,u) ≡ u A(z)

1− u A(z)
=
∑

k≥1

PS(zk,uk),

which expresses that every sequence possesses a “root” thatis primitive. Möbius
inversion (Equation (3), p. 722) then gives

PS(z,u) =
∑

k≥1

µ(k)S(zk,uk) =
∑

k≥1

µ(k)
uk A(zk)

1− uk A(zk)
.

A cycle is primitive if all of its linear representations areprimitive. There is an
exact one-to-ℓ correspondence between primitiveℓ–cycles and primitiveℓ–sequences.
Thus, the BGFPC(z,u) of primitive cycles is obtained by effecting the transforma-
tion uℓ 7→ 1

ℓuℓ on PS(z,u), which means

PC(z,u) =
∫ u

0
PS(z, v)

dv

v
,

giving after term-wise integration,

PC(z,u) =
∑

k≥1

µ(k)

k
log

1

1− uk A(zk)
.

Finally, cycles can be composed from arbitrary repetitionsof primitive cycles
(each cycle has a primitive “root”), which yields forC = CYC(A):

C(z,u) =
∑

k≥1

PC(zk,uk).

The arithmetical identity
∑

d | k µ(d)/d = ϕ(k)/k gives eventually

(10) C(z,u) =
∑

k≥1

ϕ(k)

k
log

1

1− uk A(zk)
.

Formula (10) is reduced to the formula that appears in the translation of the cy-
cle construction in the unlabelled case (Theorem I.1, p. 27), upon settingu = 1; this
formula also coincides with the statement of Proposition III.5, p. 171, regarding the
number of components in cycles, and it yields the general multivariate version (Theo-
rem III.1, p. 165) by a simple adaptation of the argument.

A.5. Formal power series

Formal power series [330, Ch. 1] extend the usual algebraic operations on poly-
nomials to infinite series of the form

(11) f =
∑

n≥0

fnzn,

wherez is a formal indeterminate. The notationf (z) is also employed. LetK be a
ring of coefficients (usually we shall take one of the fieldsQ,R,C); the ring of formal
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power series is denoted byK[[z]] and it is the setKN of infinite sequences of elements
of K, written as infinite sums (11), endowed with the operations of sum and product:

(∑

n

fnzn

)
+
(∑

n

gnzn

)
:=

∑

n

( fn + gn) zn

(∑

n

fnzn

)
×
(∑

n

gnzn

)
:=

∑

n

(
n∑

k=0

fkgn−k

)
zn.

A topology, known as theformal topology, is put onK[[z]] by which two series
f, g are “close” if they coincide to a large number of terms. First, the valuation of a
formal power seriesf = ∑n fnzn is the smallestr such thatfr 6= 0 and is denoted
by val( f ). (One sets val(0) = +∞.) Given two power seriesf andg, their distance
d( f, g) is then defined as 2− val( f−g). With this distance (in fact an ultrametric dis-
tance), the space of all formal power series becomes acomplete metric space. The
limit of a sequence of series{ f ( j )} exists if, for eachn, the coefficient of ordern in
f ( j ) eventually stabilizes to a fixed value asj →∞. In this wayformal convergence
can be defined for infinite sums: it suffices that the general term of the sum should
tend to 0 in the formal topology, i.e., the valuation of the general term should tend
to∞. Similarly for infinite products, where

∏
(1+ u( j )) converges as soon asu( j )

tends to 0 in the topology of formal power series.
It is then a simple exercise to prove that the sumQ( f ) := ∑

k≥0 f k exists (the
sum converges in the formal topology) wheneverf0 = 0; the quantity then defines the
quasi-inversewritten (1− f )−1, with the implied properties with respect to multipli-
cation (namely,Q( f )(1− f ) = 1). In the same way one defines formally logarithms
and exponentials, primitives and derivatives, etc. Also, the compositionf ◦g is defined
wheneverg0 = 0 by substitution of formal power series. More generally, any process
on series that involves only finitely many operations at eachcoefficient is well-defined
and is accordingly a continuous functional in the formal topology.

It can then be verified that the usual functional properties of analysis extend to
formal power series provided they make sense formally; for instance, the logarithm
and the exponential of formal power series, as defined by their usual expansions, are
inverses of one another (e.g., log(exp(z f)) = z f ; exp(log(1+ z f)) = 1+ z f). The
extension to multivariate formal power series follows along entirely similar lines.
� A.10.The OGF of permutations.The ordinary generating function of permutations,

P(z) :=
∞∑

n=0

n!zn = 1+ z+ 2z2+ 6z3+ 24z4+ 120z5+ 720z6+ 5040z7+ · · ·

exists as an element ofC[[z]], although the series has radius of convergence 0. The quantity
1/P(z) is well-defined (via the quasi-inverse) and one can effectively compute1 − 1/P(z)
whose coefficients enumerate indecomposable permutations (p. 90). The formal seriesP(z)
can even be made sense of, analytically, but as anasymptotic series(Euler [198]), since

∫ ∞

0

e−t

1+ tz
dt ∼ 1− z+ 2!z2− 3!z3+ 4!z4− · · · (z→ 0+).

Thus, the OGF of permutations is also representable as the (formal, divergent) asymptotic series
associated to an integral. �
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A.6. Lagrange inversion

Lagrange inversion (Lagrange, 1770) relates the coefficients of the compositional
inverse of a function to coefficients of the powers of the function itself (see [129, §3.8]
and [330, §1.9]). It thus establishes a fundamental correspondence between functional
composition and standard multiplication of series. Although the proof is technically
simple, the result is altogether non-elementary.

The inversion problemz = h(y) consists in expressingy as a function ofz;
it is solved by the Lagrange series given below. It is assumedthat [y0]h(y) = 0,
so that inversion is formally well defined, and [y1]h(y) 6= 0. The problem is then
conveniently standardized by definingφ(y) = y/h(y).

Theorem A.2 (Lagrange Inversion Theorem). Let φ(u) = ∑
k≥0 φkuk be a power

series ofC[[u]] with φ0 6= 0. Then, the equation y= zφ(y) admits a unique solution
in C[[z]] whose coefficients are given by (Lagrange form)

(12) y(z) =
∞∑

n=1

ynzn, where yn =
1

n
[un−1] φ(u)n.

Furthermore, one has for k> 0 (Bürmann form)

(13) y(z)k =
∞∑

n=1

y(k)n zn, where y(k)n =
k

n
[un−k] φ(u)n.

By linearity, a form equivalent to B̈urmann’s (13), withH an arbitrary function, is

(14) [zn]H(y(z)) = 1

n
[un−1]

(
H ′(u)φ(u)n

)
.

Proof. The method of indeterminates coefficients provides a system of polynomial
equations for{yn} that is seen to admit a unique solution:

y1 = φ0, y2 = φ0φ1, y3 = φ0φ
2
1 + φ2

0φ2, . . . .

Sinceyn only depends polynomially on the coefficients ofφ(u) till order n, one may
assume without loss of generality, in order to establish (12) and (13), thatφ is a poly-
nomial. Then, by general properties of analytic functions,y(z) is analytic at 0 (see
Chapter IV and Appendix B.2:Equivalent definitions of analyticity, p. 741 for defini-
tions) and it maps conformally a neighbourhood of 0 into another neighbourhood of 0.
Accordingly, the quantitynyn = [zn−1]y′(z) can be estimated by Cauchy’s coefficient
formula:

(15)

nyn = 1

2iπ

∫

0+
y′(z)

dz

zn
(Direct coefficient formula fory′(z))

= 1

2iπ

∫

0+

dy

(y/φ(y))n
(Change of variablez 7→ y)

= [yn−1] φ(y)n (Reverse coefficient formula forφ(y)n).

In the context of complex analysis, this useful result appears as nothing but an avatar
of the change-of-variable formula. The proof of Bürmann’s form is similar. �
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There exist instructive (but longer) combinatorial proofsbased on what is known
as the “cyclic lemma” or “conjugacy principle” [503] for Łukasiewicz words. (See
Note I.47, p. 75 and the remarks surrounding Proposition III.7, p. 194.) Another
classical proof due to Henrici relies on properties of iteration matrices [330, §1.9]; see
also Comtet’s book for related formulations [129].

Lagrange inversion serves most notably to develop explicitformulae for simple
varieties of trees (Chapters I, p. 66, and II, p. 128), mappings (Subsection II. 5.2,
p. 129), planar maps (Chapter VII, p. 516) and more generallyfor problems involving
coefficients of powers of functions.

� A.11.Lagrange–B̈urmann inversion for fractional powers.The formula

[zn]

(
y(z)

z

)α
= α

n+ α [un]φ(u)n+α

holds for any real or complex exponentα, and hence generalizes Bürmann’s form. One can
similarly expand log(y(z)/z). �

� A.12.Abel’s identity.By computing in two different ways the coefficient

[zn]e(α+β)y = [zn]eαy · eβy,

wherey = zey is the Cayley tree function, one derives a collection of identities

(α + β)(n+ α + β)n−1 = αβ
n∑

k=0

(
n

k

)
(k+ α)k−1(n− k+ β)n−k−1,

known asAbel’s identities. �

� A.13. A variant of Lagrange inversion.If y(z) satisfiesy = zφ(y), then one haszy′ =
y/(1− zφ′(y)). Hence, for a functiona(y), the chain

[zn]
ya(y)

1− zφ′(y)
= [zn−1]y′a(y) = n[zn] A(y),

whereA is such thatA′ = a. This, by (14), yields the general evaluation:

[zn]
ya(y)

1− zφ′(y)
= [un−1]a(u)φ(u)n.

In particular, forφ(u) = eu, we havey ≡ T (the Tree function), and [zn]T/(1− T) = nn,
which gives back the number of mappings of sizen. �

A.7. Regular languages

A languageis a set of words over some fixed alphabetA. The structurally sim-
plest (yet non-trivial) languages are theregular languagesthat, as asserted on p. 57,
can be defined in several equivalent ways (see [6, Ch. 3] or [189]): by regular expres-
sions, either ambiguous or not, and by finite automata, either deterministic or non-
deterministic. Our definitions ofS–regularity (Sas in specification) andA–regularity
(A as in automaton) from Section I. 4, p. 49, correspond to definability by unambigu-
ousregular expression anddeterministicautomaton, respectively.
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Regular expressions and ambiguity.Here is first the classical definition of a
regular expression in formal language theory.

Definition A.1. The categoryRegExp of regular expressionsis defined inductively
by the property that it contains all the letters of the alphabet (a ∈ A) as well as the
empty symbolǫ, and is such that, if R1, R2 ∈ RegExp, then the formal expressions
R1 ∪ R2, R1 · R2 and R⋆1 are regular expressions.

Regular expressions are meant to denotelanguages. The languageL(R) asso-
ciated toR is obtained by interpreting ‘∪’ as set-theoretic union, ‘·’ as catenation
product extended to sets and ‘⋆’ as the star operation:L(R⋆) := {ǫ} ∪ L(R) ∪
(L(R) · L(R)) ∪ · · · . These operations, since they rely on set-theoretic operations,
place no condition on multiplicities (a word may be obtainedin several different
ways). Accordingly, the notions of a regular expression anda regular language are
useful when studying structural properties of languages, but they must be adapted for
enumeration purposes, where unambiguous specifications are needed.

A wordw ∈ L(R)may be parsable in several ways according toR: theambiguity
coefficient(or multiplicity) of w with respect to the regular expressionR is defined1

as the number of parsings and writtenκ(w) = κR(w).
A regular expressionR is said to beunambiguousif for all w, we haveκR(w) ∈

{0,1}, ambiguous otherwise. In the unambiguous case, ifL = L(R), thenL is S–
regular in the sense of Chapter I, and a specification is obtained by the translation
rules

(16) ∪ 7→ +, · 7→ ×, ( )⋆ 7→ SEQ,

so that the translation mechanism afforded by Proposition I.2 p. 52 applies. (Use of
the general mechanism (16) in the ambiguous case would implythat we enumerate
words with multiplicities [ambiguity coefficients] taken into account.)

A–regularity implies S–regularity. This construction is due to Kleene [367]
whose interest had its origin in the formal expressive powerof nerve nets. Within
the classical framework of the theory of regular languages,it produces from an au-
tomaton (possibly non-deterministic) a regular expression (possibly ambiguous).

For our purposes, let a deterministic automatona (as defined in Subsection I. 4.2,
p. 56) be given, with alphabetA, set of statesQ, with q0 and Q the initial state
and the set of final states respectively (Definition I.11, p. 56). The idea consists in
constructing inductively the family of languagesL(r )i, j of words that connect stateqi to
stateq j passing only through statesq0, . . . ,qr in betweenqi andq j . We initialize the

data withL(−1)
i, j to be the singleton set{a} if the transition(qi ◦ a) = q j exists, and

the emptyset (∅) otherwise. The fundamental recursion

L
(r )
i, j = L

(r−1)
i, j + L

(r−1)
i,r SEQ(S){L(r−1)

r,r }L(r−1)
r, j ,

incrementally takes into account the possibility of traversing the “new” stateqr .
(The unions are clearly disjoint and the segmentation of words according to passages

1 For instance ifR = (a ∪ aa)⋆ andw = aaaa, thenκ(w) = 5 corresponding to the five parsings:
a · a · a · a, a · a · aa, a · aa · a, aa · a · a, aa · aa.
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S–regularity ≡ Unambiguous
RegExp −→ General

RegExp
↑ K ↓ I

A–regularity ≡ Deterministic
FA

RS←− Non-deterministic
FA

Figure A.1. Equivalence between various notions of regularity:K is Kleene’s con-
struction;RS is Rabin–Scott’s reduction;I is the inductive construction of the text.

through stateqr is unambiguously defined, hence the validity of the sequencecon-
struction.) The languageL accepted bya is then given by the regular specification

L =
∑

q j∈Q

L
||Q||
0, j ,

that describes the set of all words leading from the initial stateq0 to any of the final
states while passing freely through any intermediate stateof the automaton.

S–regularity implies A–regularity. An object described by a regular specifica-
tion r can be first encoded as a word, with separators indicating theway the word
should be parsed unambiguously. These encodings are then describable by a regular
expression using the correspondence of (16). Next any language described by a regular
expression is recognizable by an automaton (possibly non-deterministic) as shown by
an inductive construction. (We only state the principles informally here.) Let→ r→
represent symbolically the automaton recognizing the regular expressionr, with the
initial state represented by an incoming arrow on the left and the final state(s) by an
outgoing arrow on the right. Then, the rules are schematically

r⋆

r× s

r+ s

r

r s

r

s

;

;

;

Finally, a standard result of the theory, the Rabin–Scott theorem, asserts that any
non-deterministic finite automaton can be emulated by a deterministic one. (Note:
this general reduction produces a deterministic automatonwhose set of states is the
powerset of the set of states of the original automaton; it may consequently involve an
exponential blow-up in the size of descriptions.)

A.8. Stirling numbers.

These numbers count among the most famous ones of combinatorial analysis.
They appear in two kinds:
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• the Stirling cycle number(also called ‘of the first kind’)
[n
k

]
enumerates

permutations of sizen havingk cycles;
• theStirling partition number(also called ‘of the second kind’)

{n
k

}
enumer-

ates partitions of ann-set intok non-empty equivalence classes.

The notations
[n
k

]
and

{n
k

}
proposed by Knuth (himself anticipated by Karamata) are

nowadays most widespread; see [307].
The most natural way to define Stirling numbers is in terms of the “vertical” EGFs

when the value ofk is kept fixed:

∑

n≥0

[
n

k

]
zn

n!
= 1

k!

(
log

1

1− z

)k

∑

n≥0

{
n

k

}
zn

n!
= 1

k!

(
ez− 1

)k
.

From here, the bivariate EGFs follow straightforwardly:

∑

n,k≥0

[
n

k

]
uk zn

n!
= exp

(
u log

1

1− z

)
= (1− z)−u

∑

n,k≥0

{
n

k

}
uk zn

n!
= exp

(
u(ez− 1)

)
.

Stirling numbers and their cognates satisfy a host of algebraic relations. For in-
stance, the differential relations of the EGFs imply recurrences reminiscent of the
binomial recurrence

[
n

k

]
=
[
n− 1

k− 1

]
+ (n− 1)

[
n− 1

k

]
,

{
n

k

}
=
{

n− 1

k− 1

}
+ k

{
n− 1

k

}
.

By techniques akin to Lagrange inversion or by expanding thepowers in the vertical
EGF of the Stirling partition numbers, one finds explicit forms

[
n

k

]
=

∑

0≤ j≤h≤n−k

(−1) j+h
(

h

j

)(
n− 1+ h

n− k+ h

)(
2n− k

n− k− h

)
(h− j )n−k+h

h!
{

n

k

}
= 1

k!

k∑

j=0

(
k

j

)
(−1) j (k− j )n.

Although comforting, these forms are not too useful in general, due to their sign al-
ternation. (The one relative to Stirling cycle numbers was obtained by Schl̈omilch
in 1852; see [129, p. 216].)

An important relation is that of the generating polynomialsof the
[n
r

]
for fixedn,

(17) Pn(u) ≡
n∑

r=0

[
n

r

]
ur = u · (u+ 1) · (u+ 2) · · · (u+ n− 1),
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which nicely parallels the OGF for the
{n

r

}
, for fixedr :

∞∑

n=0

{
n

r

}
zn = zr

(1− z)(1− 2z) · · · (1− rz)
.

� A.14.Schl̈omilch’s formula.It is established starting from

k!

n!

[
n

k

]
= 1

2iπ

∮
logk 1

1− z

dz

zn+1
,

via the change of variablea la Lagrange:z= 1− e−t . See [129, p.216] and [251]. �

A.9. Tree concepts

In the abstract graph-theoretic sense, aforestis an acyclic (undirected) graph and
a tree is a forest that consists of just one connected component. Arooted treehas a
specific node is distinguished, theroot. Rooted trees are drawn with the root either
below (the mathematician’s and botanist’s convention) or on top (the genealogist’s
and computer scientist’s convention), and in this book, we employ both conventions
interchangeably. Here then are two planar representationsof the same rooted tree

(18)

a∗

b

c d

e f

g h i

j k

l

a∗

b

d

j e k

l

f

i g h

c

where the star distinguishes the root. (Tags on nodes,a,b, c, etc, are not part of the
tree structure but only meant to discriminate nodes here.) Atree whose nodes are
labelled by distinct integers then becomes alabelled tree, this in the precise technical
sense of Chapter II. Size is defined by the number of nodes (vertices). Here is for
instance a labelled tree of size 9:

(19)

5

9

6 4

3

8 1

7

2

In a rooted tree, theoutdegreeof a node is the number of its descendants; with the
sole exception of the root, outdeegree is thus equal to degree (in the graph-theoretic
sense, i.e., the number of neighbours) minus 1. Once this convention is clear, one
usually abbreviates “outdegree” by “degree” when speakingof rooted trees. Aleaf is
a node without descendant, that is, a node of (out)degree equal to 0. For instance the
tree in (19) has five leaves. Non-leaf nodes are also called internal nodes.

Many applications from genealogy to computer science require superimposing
an additional structure on a graph-theoretic tree. Aplane tree(sometimes also called
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Figure A.2. Three representations of a binary tree.

a planar tree) is defined as a tree in which subtrees dangling from a common node
are ordered between themselves and represented from left toright in order. Thus, the
two representations in (18) are equivalent as graph-theoretic trees, but they become
distinct objects when regarded as plane trees.

Binary treesplay a very special role in combinatorics. These are rooted trees
in which every non-leaf node has degree 2 exactly as, for instance, in the first two
drawings of Figure A.2. In the second case, the leaves have been distinguished by ‘2’.
Thepruned binary tree(third representation) is obtained from a regular binary tree by
removing the leaves—such a tree then has unary branching nodes of either one of two
possible types (left- or right-branching). A binary tree can be fully reconstructed from
its pruned version, and a tree of size 2n+ 1 always expands a pruned tree of sizen.

A few major classes are encountered throughout this book. Here is a summary2.

general plane trees (Catalan trees) G = Z × SEQ(G) (unlabelled)
binary trees A = Z + (Z ×A×A) (unlabelled)
non-empty pruned binary trees B = Z + 2(Z × B)+ (Z × B × B) (unlabelled)
pruned binary trees C = 1+ (Z × B × B) (unlabelled)

general non-plane trees (Cayley trees) T = Z × SET(T ) (labelled)

The corresponding GFs are, respectively,

G(z) = 1−
√

1− 4z

2
, A(z) = 1−

√
1− 4z2

2z
, B(z) = 1− 2z−

√
1− 4z

2z
,

C(z) = 1−
√

1− 4z

2z
, T(z) = zeT(z),

being of type OGF for the first four and EGF for the last one. Thecorresponding
counts are

Gn =
1

n

(
2n− 2

n− 1

)
, A2n+1 =

1

n+ 1

(
2n

n

)
, Bn =

1

n+ 1

(
2n

n

)
(n ≥ 1),

Cn =
1

n+ 1

(
2n

n

)
, Tn = nn−1.

The common occurrence of the Catalan numbers, (Cn = Bn = A2n+1 = Gn+1) is
explained by pruning and by the rotation correspondence described on p. 73.

2 The term “general” refers to the fact that no degree constraint is imposed.



APPENDIX B

Basic Complex Analysis

This appendix contains entries arranged in alphabetical order regarding the following topics:

Algebraic elimination; Equivalent definitions of analyticity; Gamma function; Holo-
nomic functions; Implicit Function Theorem; Laplace’s method; Mellin transform;
Several complex variables.

The corresponding notions and results are used starting with Part B, which is relative toComplex
Asymptotics. The present entries, together with the first sections of Chapter IV, should enable
a reader, previously unacquainted with complex analysis but with a fair background in basic
calculus, to follow the main developments of analytic combinatorics. There are a number of ex-
cellent classic presentations of complex analysis: the books by Dieudonné [165], Henrici [329],
Hille [334], Knopp [373], Titchmarsh [577], and Whittaker–Watson [604] are of special inter-
est, given their concrete approach to the subject (see also our comments on p. 286).

B.1. Algebraic elimination

Auxiliary quantities can be eliminated from systems of polynomial equations. In
essence, elimination is achieved by suitable combinationsof the equations themselves.
One of the best strategies is based on Gröbner bases and is presented in the excellent
book of Cox, Little, and O’Shea [135]. This entry develops a more elementary ap-
proach based onresultants. It is necessitated by the analysis of algebraic curves,
function, and systems (Sections VII. 6, p. 482, and VII. 7, p.493), with a general
applicability to context-free structures introduced on p.79.

Resultants.Consider a field of coefficientsK, which may be specialized as
Q,C,C(z), . . ., as the need arises. A polynomial of degreed in K[x] has at most
d roots inK and exactlyd in the algebraic closureK of K. Given two polynomials,

P(x) =
ℓ∑

j=0

a j x
ℓ− j , Q(x) =

m∑

k=0

bkxm−k,

their resultant(with respect to the variablex) is the determinant of order(ℓ+m),

(1) R(P, Q, x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · 0 0
0 a0 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aℓ−1 aℓ
b0 b1 b2 · · · 0 0
0 b0 b1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bm−1 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

also called the Sylvester determinant. By its definition, the resultant is a polynomial
form in the coefficients ofP and Q. The main properties of resultants are the fol-
lowing: (i ) ff P(x), Q(x) ∈ K[x] have a common root in the algebraic closureK of

739
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K, thenR(P(x), Q(x), x) = 0; (i i ) conversely, ifR(P(x), Q(x), x) = 0 holds, then
either a0 = b0 = 0 or else P(x), Q(x) have a common root inK. (The idea of the
proof of (i ) is as follows. LetS be the matrix in (1). Then the homogeneous linear
systemSw = 0 admits a solutionw = (ξ ℓ+m−1, . . . , ξ2, ξ,1) in which ξ is a com-
mon root ofP andQ; this is only possible if det(S) ≡ R vanishes.) See especially van
der Waerden’s crisp treatment in [590] and Lang’s treatise [401, V.10] for a detailed
presentation of resultants

Equating the resultant to 0 thus provides anecessarycondition for the existence
of common roots, but not always a sufficient one. This has implications in situations
where the coefficientsa j ,bk depend on one or several parameters. In that case, the
conditionR(P, Q, x) = 0 will certainly capture all the situations in whichP andQ
have a common root, but it may also include some situations where there is a reduction
in degree, although the polynomials have no common root. Forinstance, takeP(x) =
t x − 2 andQ(x) = t x2− 4 (with t a parameter); the resultant with respect tox is

R = 4t (1− t).

Indeed, the conditionR = 0 corresponds to either a common root (t = 1 for which
P(2) = Q(2) = 0) or to some degeneracy in degree (t = 0 for which P(x) = −2 and
Q(x) = −4 have no common zero).

Systems of equations.Given a system

(2) {Pj (z, y1, y2, . . . , ym) = 0}, j = 1 . .m,

defining an algebraic curve, we can then proceed as follows inorder to extract a single
equation satisfied by one of the indeterminates. By taking resultants withPm, elimi-
nate all occurrences of the variableym from the firstm−1 equations, thereby obtaining
a new system ofm−1 equations inm−1 variables (withz kept as a parameter, so that
the base field isC(z)). Repeat the process and successively eliminateym−1, . . . , y2.
The strategy (in the simpler case where variables are eliminated in succession exactly
one at a time) is summarized in the skeleton procedureEliminate:

procedureEliminate (P1, . . . , Pm, y1, y2, . . . ym);
{Elimination of y2, . . . , ym by resultants}
(A1, . . . , Am) := (P1, . . . , Pm);
for j from m by −1 to 2do
for k from j − 1 by −1 to 1do

Ak := R(Ak, A j , y j );
return (A1).

The polynomials obtained need not be minimal, in which case,one should appeal
to multivariate polynomial factorization in order to select the relevant factors at each
stage. (Gr̈obner bases provide a neater alternative to these questions, see [135].)

Computer algebra systems usually provide implementationsof both resultants and
Gröbner bases. The complexity of elimination is, however, exponential in the worst-
case: degrees essentially multiply, which is somewhat intrinsic. For example,y0 in
the quadratic system ofk equations

y0− z− yk = 0, yk − y2
k−1 = 0, . . . , y1− y2

0 = 0
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(determining the OGF of regular trees of degree 2k) represents an algebraic function
of degree 2k and no less.
� B.1.Resultant and roots.Let P, Q ∈ C[x] have roots{α j } and{βk}, respectively. Then

R(P, Q, x) = aℓ0bm
0

ℓ∏

i=1

m∏

j=1

(αi − β j ) = aℓ0

m∏

i=1

Q(αi ).

Thediscriminantof P classically defined byD(P) := a−1
0 R(P(x), P′(x), x) satisfies

D(P) ≡ a−1
0 R(P(x), P′(x), x) = a2ℓ−2

0

∏

i 6= j

(αi − α j ).

Given the coefficients ofP and the value ofD(P), an effectively computable bound on
the minimal separation distanceδ between any two roots ofP can be found. (Hint. Let
A = 1 + maxj (|a j /a0|). Then eachα j satisfies|α j | < m A. Set L =

(ℓ
2
)
. Then

δ ≥ |a0|2−2ℓ|D(P)|(2A)L−1.) �

B.2. Equivalent definitions of analyticity

Two parallel notions are introduced at the beginning of Chapter IV: analyticity
(defined by power series expansions) and holomorphy (definedas complex differen-
tiability). As is known from any textbook on complex analysis, these notions are
equivalent. Given their importance for analytic combinatorics, this appendix entry
sketches a proof of the equivalence, which is summarized by the following diagram:

Analyticity
[ A]−→
←−
[C]

C-differentiability
↓ [B]

Null integral Property

A. Analyticity implies complex-differentiability. Let f (z) be analytic in the disc
D(z0; R). We may assume without loss of generality thatz0 = 0 andR = 1 (else
effect a linear transformation on the argumentz). According to the definition of ana-
lyticity, the series representation

(3) f (z) =
∞∑

n=0

fnzn,

converges for allzwith |z| < 1. Elementary series rearrangements first entail thatf (z)
given by this representation is analytic at anyz1 interior toD(0; 1); similar techniques
then show the existence of the derivative as well as the fact that the derivative can be
obtained by term-wise differentiation of (3). See Note B.2 for details.
� B.2. Proof of [ A]: Analyticity implies differentiability.Formally, the binomial theorem pro-
vides

(4)

f (z) =
∑

n≥0

fnzn =
∑

n≥0

fn(z1+ z− z1)
n

=
∑

n≥0

n∑

k=0

(
n

k

)
fnzk

1(z− z1)
n−k

=
∑

m≥0

cm(z− z1)
m, cm :=

∑

k≥0

(
m+ k

k

)
fm+kzk

1.
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Let r1 be any number smaller than 1− |z1|. We observe that (4) makes analytic sense. Indeed,
one has the bound| fn| ≤ C An, valid for anyA > 1 and someC > 0. Thus, the terms in (4)
are dominated in absolute value by those of the double series

(5)
∑

n≥0

n∑

k=0

(
n

k

)
C An|z1|kr n−k

1 = C
∑

n≥0

An(|z1| + r1)
n = C

1− A(|z1| + r1)
,

which is absolutely convergent as soon asA is chosen such thatA < (|z1| + r1)
−1.

Complex differentiability of at anyz1 ∈ D(0; 1) is derived from the analogous calculation,
valid for small enoughδ,

(6)

1

δ
( f (z1+ δ)− f (z1))) =

∑

n≥0

n fnzn−1
1 + δ

∑

n≥0

n∑

k=2

(
n

k

)
fnzk

1δ
n−k−2

=
∑

n≥0

n fnzn−1
1 + O(δ),

where boundedness of the coefficient ofδ results from an argument analogous to (5). �

The argument of Note B.2 has shown that the derivative off at z1 is obtained by
differentiating termwise the series representingf . More generally derivatives of all
orders exist and can be obtained in a similar fashion. In viewof this fact, the equalities
of (4) can also be interpreted as theTaylor expansion(by grouping terms according to
values ofk first)

(7) f (z1+ δ) = f (z1)+ δ f ′(z1)+
δ2

2!
f ′′(z1)+ · · · ,

which is thus generally valid for analytic functions.

B. Complex differentiability implies the “Null Integral” Property. The Null Inte-
gral Property relative to a domain� is the property:

∫

λ

f (z)dz= 0 for any loopλ ⊂ �.

(A loop is a closed path that can be contracted to a single point in the domain�.) Its
proof results from the Cauchy–Riemann equations and Green’s formula.
� B.3. Proof of [B]: the Null Integral Property.This starts from theCauchy–Riemann equa-
tions. Let P(x, y) = ℜ f (x + iy) andQ(x, y) = ℑ f (x + iy). By adopting successively in the
definition of complex differentiabilityδ = h andδ = ih, one findsP′x + i Q′x = Q′y − i P ′y,
implying the Cauchy–Riemann equations:

(8)
∂P

∂x
= ∂Q

∂y
and

∂P

∂y
= −∂Q

∂x
,

(The functionsP andQ satisfy the partial differential equations1 f = 0, where1 is the two-

dimensionalLaplacian1 := ∂2

∂x2 + ∂2

∂y2 ; such functions are known asharmonic functions.)

The Null Integral Property, given differentiability, results from the Cauchy–Riemann equations,
upon taking into account Green’s theorem of multivariate calculus,

∫

∂K
Adx+ Bdy=

∫ ∫

K

(
∂B

∂x
− ∂A

∂y

)
dx dy,

which is valid for any (compact) domainK enclosed by a simple curve∂K . �
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C. Complex differentiability implies analyticity.The starting point is the formula

(9) f (a) = 1

2iπ

∫

γ

f (z)

z− a
dz,

knowing only differentiability of f and its consequence, the Null Integral Property,
but preciselynotpostulating the existence of an analytic expansion (hereγ is a simple
positive loop encirclinga inside a region in whichf is analytic).

� B.4. Proof of [C]: the integral representation.The proof of (9) is obtained by decomposing
f (z) in the original integral asf (z) = f (z) − f (a) + f (a). Define accordinglyg(z) =
( f (z) − f (a))/(z− a), for z 6= a, andg(a) = f ′(a). By the differentiability assumption,g
is continuous and holomorphic (differentiable) at any point other thana. Its integral is thus 0
alongγ . On the other hand, we have

∫

γ

1

z− a
dz= 2iπ,

by a simple computation: deformγ to a small circle arounda and evaluate the integral directly
by settingz− a = rei θ . �

Once (9) is granted, it suffices to write, e.g., for an expansion at 0,

f (z) = 1

2iπ

∫

γ

f (t)
dt

t − z

= 1

2iπ

∫

γ

f (t)

(
1+ z

t
+ z2

t2
+ · · ·

)
dt

t

=
∑

n≥0

fnzn, fn := 1

2iπ

∫

γ

f (t)
dt

tn+1
.

(Exchanges of integration and summation are justified by normal convergence.)
Analyticity is thus proved from the Null Integral Property.

� B.5.Cauchy’s formula for derivatives.One has

f (n)(a) = n!

2iπ

∫

γ

f (z)

(z− a)n+1
dz.

This follows from (9) by differentiation under the integral sign. �

� B.6. Morera’s Theorem.Suppose thatf is continuous [but nota priori known to be differ-
entiable] in an open set� and that its integral along any triangle in� is 0. Then, f is analytic
(hence holomorphic) in�. (For details, see, e.g, [497, p. 68].) This theorem is useful for
disposing ofapparent(or “removable”) singularities, as in(cos(z)− 1)/ sin(z). �

B.3. Gamma function

The formulae of singularity analysis in Chapter IV involve theGamma function
in an essential manner. The Gamma function extends to non-integral arguments the
factorial function. We collect in this appendix a few classical facts regarding it. Proofs
may be found in classic treatises like Henrici’s [329] or Whittaker and Watson’s [604].
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Figure B.1. A plot of Ŵ(s) for reals.

Basic properties.Euler introduced the Gamma function as

(10) Ŵ(s) =
∫ ∞

0
e−t ts−1 dt,

where the integral converges providedℜ(s) > 0. Through integration by parts, one
immediately derives the basic functional equation of the Gamma function,

(11) Ŵ(s+ 1) = sŴ(s).

SinceŴ(1) = 1, one hasŴ(n+ 1) = n!, so that the Gamma function serves to extend
the factorial function for non-integral arguments. The special value,

(12) Ŵ

(
1

2

)
:=
∫ ∞

0
e−t dt√

t
= 2

∫ ∞

0
e−x2

dx = √π,

proves to be quite important. It implies in turnŴ(−1
2) = −2

√
π .

From (11), the Gamma function can be analytically continuedto the whole ofC
with the exception of poles at 0,−1,−2, . . . . indeed, the functional equation used
backwards yields

Ŵ(s) ∼ (−1)m

m!

1

s+m
(s→−m) ,

so that the residue ofŴ(s) at s = −m is (−1)m/m!. Figure B.1 depicts the graph of
Ŵ(s) for real values ofs.

� B.7. Evaluation of the Gaussian integral.Define J :=
∫∞
0 e−x2

dx. The idea is to evalu-

ateJ2:

J2 =
∫ ∞

0

∫ ∞

0
e−(x

2+y2) dxdy.

Going to polar coordinates,(x2+ y2)1/2 = ρ, x = ρ cosθ , y = ρ sinθ yields, via the standard
change of variables formula:

J2 =
∫ ∞

0

∫ π
2

0
e−ρ

2
ρdρdθ.

The equalityJ2 = π/4 results. �
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Hankel contour representation.Euler’s integral representation ofŴ(s) used in
conjunction with the functional equation permits us to continueŴ(s) to the whole of
the complex plane. A direct approach due to Hankel provides an alternative integral
representation valid for all values ofs.

Theorem B.1 (Hankel’s contour integral). Let
∫ (0)
+∞ denote an integral taken along

a contour starting at+∞ in the upper plane, winding counterclockwise around the
origin, and proceeding towards+∞ in the lower half-plane. Then, for all s∈ C,

(13)
1

π
sin(πs)Ŵ(1− s) = 1

Ŵ(s)
= − 1

2iπ

∫ (0)

+∞
(−t)−se−t dt.

In (13),(−t)−s is assumed to have its principal determination whent is negative real,
and this determination is then extended uniquely by continuity throughout the contour.
The integral then closely resembles the definition ofŴ(1− s). The first form of (13)
can also be rewritten as1Ŵ(s) , by virtue of the complement formula given below.

� B.8. Proof of Hankel’s representation.We refer to volume 2 of Henrici’s book [329, p. 35]
or Whittaker and Watson’s treatise [604, p. 245] for a detailed proof.

A contour of integration that fulfills the conditions of the theorem is typically the contour
H that is at distance 1 of the positive real axis comprising three parts: a line parallel to the
positive real axis in the upper half-plane; a connecting semi-circle centered at the origin; a line
parallel to the positive real axis in the lower half-plane. More precisely,H = H− ∪H+ ∪H◦,
where

(14)





H− = {z= w − i, w ≥ 0}
H+ = {z= w + i, w ≥ 0}
H◦ = {z= −eiφ, φ ∈ [−π2 ,

π
2 ]}.

Let ǫ be a small positive real number, and denote byǫ · H the image ofH by the trans-
formationz 7→ ǫz. By analyticity, for the integral representation, we can equally well adoptas
integration path the contourǫ ·H, for anyǫ > 0. The main idea is then to letǫ tend to 0.

Assume momentarily thats < 0. (The extension to arbitrarys then follows by analytic
continuation.) The integral alongǫ ·H decomposes into two parts:

1. The integral along the semi-circle is 0 if we take the circle of a vanishing small
radius, since−s> 0.

2. The combined contributions from the upper and lower lines give, asǫ → 0

∫ (0)

+∞
(−t)−se−t dt = (−U + L)

∫ ∞

0
t−se−t dt

whereU andL denote the determinations of(−1)−s on the half-lines lying in the
upper and lower half-planes respectively.

By continuity of determinations,U = (e−iπ )−s andL = (e+iπ )−s. Therefore, the right-hand
side of (13) is equal to

− (−eiπs + e−iπs)

2iπ
Ŵ(1− s) = sin(πs)

π
Ŵ(1− s),

which completes the proof of the theorem. �
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Expansions. The Gamma function has poles at the non-positive integers but has
no zeros. Accordingly, 1/Ŵ(s) is an entire function with zeros at 0,−1, . . ., and the
position of the zeros is reflected by the product decomposition,

(15)
1

Ŵ(s)
= seγ s

∞∏

n=1

[
(1+ s

n
)e−s/n

]

(of the so-called Weierstrass type). Thereγ = 0.57721 denotes Euler’s constant

γ = lim
n→∞ (Hn− logn) ≡

∞∑

n=1

[
1

n
− log(1+ 1

n
)

]
.

The logarithmic derivative of the Gamma function is classically known as the psi
function and is denoted byψ(s):

ψ(s) := d

ds
logŴ(s) = Ŵ′(s)

Ŵ(s)
.

In accordance with (15),ψ(s) admits a partial fraction decomposition

(16) ψ(s+ 1) = −γ −
∞∑

n=1

[
1

n+ s
− 1

n

]
.

From (16), it can be seen that the Taylor expansion ofψ(s+ 1), and hence ofŴ(s+
1), involves values of the Riemann zeta function,ζ(s) = ∑∞

n=1
1
ns , at the positive

integers: for|s| < 1,

ψ(s+ 1) = −γ +
∞∑

n=2

(−1)nζ(n)sn−1.

so that the coefficients in the expansion ofŴ(s) around any integer are polynomi-
ally expressible in terms of Euler’s constantγ and values of the zeta function at the
integers. For instance, ass→ 0,

Ŵ(s+ 1) = 1− γ s+
(
π2

12
+ γ

2

2

)
s2+

(
−ζ(3)

3
− π

2γ

12
− γ

3

6

)
s3+ O(s4).

Another direct consequence of the infinite product formulaefor Ŵ(s) and sinπs
is the complement formula for the Gamma function,

(17) Ŵ(s)Ŵ(−s) = − π

ssinπs
,

which directly results from the factorization of the sine function (due to Euler),

sins= s
∞∏

n=1

(
1− s2

n2π2

)
.

In particular, Equation (17) gives back the special value (cf (12)): Ŵ(1/2) = √π .
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� B.9.The duplication formula.This is

22s−1Ŵ(s)Ŵ(s+ 1/2) = π1/2Ŵ(2s),

which provides the expansion ofŴ near 1/2:

Ŵ(s+ 1/2) = π1/2− (γ + 2 log 2) π1/2s+
(
π5/2

4
+ (γ + 2 log 2)2π1/2

2

)
s2+ O(s3).

The coefficients now involve log 2 as well as zeta values. �

Finally, a famous and absolutely fundamental asymptotic formula is Stirling’s
approximation, familiarly known as “Stirling’s formula”:

Ŵ(s+ 1) = sŴ(s) ∼ sse−s
√

2πs

[
1+ 1

12s
+ 1

288s2
− 139

51840s3
+ · · ·

]
.

It is valid for (large) reals ∈ R>0, and more generally for alls→ ∞ in |arg(s)| <
π − δ (any δ > 0). For the purpose of obtaining effective bounds, the following
quantitative relation [604, p. 253] often proves useful,

Ŵ(s+ 1) = sse−s(2πs)1/2eθ/(12s), where 0< θ ≡ θ(s) < 1,

an equality that holds now for alls ≥ 1. Stirling’s formula is usually established by
appealing to the method of Laplace applied to the integral representation forŴ(s+
1), see Appendix B.6:Laplace’s method, p. 755, or by Euler–Maclaurin summation
(Note A.7, p. 726). It is derived by Mellin transforms in Appendix B.7, p. 762.
� B.10. The Eulerian Beta function. It is defined forℜ(p),ℜ(q) > 0 by any of the following
integrals,

B(p,q) :=
∫ 1

0
x p−1(1−x)q−1 dx =

∫ ∞

0

yp−1

(1+ y)p+q dy= 2
∫ π

2

0
cos2p−1 θ sin2q−1 θ dθ,

where the last form is known as a Wallis integral. It satisfies:

B(p,q) = Ŵ(p)Ŵ(q)

Ŵ(p+ q)
.

[See [604, p. 254] for a proof generalizing that of Note B.7.] �

� B.11.Facts about the Riemann zeta function (ζ ). Here are a few properties of this function,
whose elementary theory centrally involves the Gamma function. It is initially defined by

ζ(s) :=
∑

n≥1

1

ns , ℜ(s) > 1,

and it admits a meromorphic expansion to the whole ofC, with only a pole ats = 1, where
ζ(s) = 1/(s− 1)+ γ + · · · andγ is Euler’s constant. Special values fork ∈ Z≥1 are

ζ(2k) = 22k−1|B2k|
(2k)!

π2k, ζ(−2k+ 1) = − B2k

2k
, ζ(−2k) = 0,

with B2k a Bernoulli number. Other interesting values areζ(0) = −1
2 , ζ ′(0) = − log

√
2π .

The functional equation admits many forms, among which the reflection formula:

Ŵ
( s

2

)
π−s/2ζ(s) = Ŵ

(
1− s

2

)
π−(1−s)/2ζ(1− s).

The proofs make an essential use of Mellin transforms (Appendix B.7,p. 762, and especially
Equation (46), p. 764) as well as Hankel contours. Accessible introductions are to be found
in [186, 578, 604]. �
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B.4. Holonomic functions

Doron Zeilberger [626] has introduced discrete mathematicians to a powerful
framework, theholonomic framework, which takes its roots in classical differential
algebra [72, 133] and has found innumerable applications inthe theory of special
functions and symbolic computation [480], combinatorial identities, and combinato-
rial enumeration. In these pages, we can only offer a (too) brief orientation tour of this
wonderful theory. Major contributions in the perspective of Analytic Combinatorics
are due to Stanley [551], Zeilberger [626], Gessel [289], and Lipshitz [409, 410]. As
we shall see there is a chain of growing generality and power,

rational → algebraic → holonomic.

The associated asymptotic problems are examined in Subsection VII. 9.1, p. 518 (“reg-
ular” singularities) and Section VIII. 7, p. 581 (“irregular” singularities).

Univariate holonomic functions.Holonomic functions1 are solutions of linear
differential equations or systems whose coefficients are rational functions. The uni-
variate theory is elementary.

Definition B.1. A formal power series (or function) f(z) is said to beholonomicif it
satisfies a linear differential equation,

(18) c0(z)
dr

dzr
f (z)+ c1(z)

dr−1

dzr−1
f (z)+ · · · + cr (z) f (z) = 0,

where the coefficients cj (z) lie in the fieldC(z) of rational functions. Equivalently,
f (z) is holonomic if the vector space overC(z) spanned by the set of all its derivatives
{∂ j f (z)}∞j=0 is finite dimensional.

By clearing denominators, we can assume, if needed, the quantities c j (z) in (18)
to be polynomials. It then follows that the coefficient sequence ( fn) of a holo-
nomic f (z) satisfies a recurrence,

(19) ĉs(n) fn+s+ ĉs−1(n) fn+s−1+ · · · + ĉ0(n) fn = 0,

for some polynomialŝc j (n), providedn ≥ n0 (somen0). Such a recurrence (19) is
known as aP–recurrence. (The two properties of sequences, to be the coefficients of
a holonomic function and to beP–recursive, are equivalent.)

Functions such asez, logz, cos(z),arcsin(z),
√

1+ z, and Li2(z) :=∑
n≥1 zn/n2 are holonomic. Formal power series like

∑
zn/(n!)2 and

∑
n!zn

are holonomic. Sequences like1n+1

(2n
n

)
,2n/(n2 + 1) are coefficients of holonomic

functions and areP–recursive. However, sequences like
√

n, logn are not P–
recursive, a fact that can be proved by an examination of singularities of associated
generating functions [232]. For similar reasons, tanz, secz, andŴ(z) that have
infinitely many singularities arenot holonomic.

Holonomic functions enjoy a rich set of closure properties.Define the Hadamard
product of two functionsh = f ⊙ g to be the termwise product of series: [zn]h(z) =
([zn] f (z)) · ([zn]g(z)). We have the following theorem.

1A synonymous name is∂-finite or D-finite.
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Theorem B.2 (Univariate holonomic closure). The class of univariate holonomic
functions is closed under the following operations: sum(+), product(×), Hadamard
product(⊙), differentiation(∂z), indefinite integration(

∫ z
), and algebraic substitu-

tion (z 7→ y(z) for some algebraic function y(z)).

Proof. An exercise in vector space manipulations. For instance, let VS(∂⋆ f ) be
the vector space overC(z) spanned by the derivative{∂ j

z f } j≥0. If h = f + g
(or h = f · g), then VS(∂⋆h) is finite dimensional since it is included in the direct
sum VS(∂⋆ f )⊕ VS(∂⋆g) (respectively, the tensor product VS(∂⋆ f )⊗ VS(∂⋆g)). For
Hadamard products, ifhn = fngn, then a system ofP–recurrences can be obtained
for the quantitiesh(i, j )n = fn+i gn+ j from the recurrences satisfied byfn, gn, and then
a singleP–recurrence can be obtained. Closure under algebraic substitution results
from the methods of Note B.12. See Stanley’s historic paper [551] and his book chap-
ter [554, Ch. 6] for details. �

� B.12.Algebraic functions are holonomic.Let y(z) satisfy P(z, y(z)) = 0, with P a poly-
nomial. Any non-degenerate rational fractionQ(z, y(z)) can be expressed as a polynomial
in y(z) with coefficients inC(z). [Proof: let D be the denominator ofQ; the Bezout relation
AP − BD = 1 (in C(x)[y]), obtained by a gcd calculation between polynomials (iny), ex-
presses 1/D as a polynomial iny.] Then, all derivatives ofy live in the space spanned over
C(z) by 1, y, . . . , yd−1, with d = degy P(z, y). (The fact that algebraic functions are holo-
nomic was known to Abel [1, p. 287], and an algorithm has been described in recent times by
Comtet [128].) The closure under algebraic substitutions(y 7→ y(z)) asserted in Theorem B.2
can be established along similar lines. �

Zeilberger observed that holonomic functions with coefficients inQ can be spe-
cified by afinite amount of information. Equality in this subclass is then a decidable
property, as the following skeleton algorithm suggests (detailed validity conditions are
omitted).

Algorithm Z : Decide whether two holonomic functions A(z), B(z) are equal
Let6, T be holonomic descriptions ofA, B (by equations or systems);
Compute a holonomic differential equationϒ for h := A− B;
Let e be the order ofϒ .
Output‘equal’ iff h(0) = h′(0) = · · · = h(e−1)(0) = 0, with e the order ofϒ .

The book titled “A = B” by Petkov̌sek, Wilf, and Zeilberger [480] abundantly illus-
trates the application of this method to combinatorial and special function identities.
Interest in the approach is reinforced by the existence of powerful symbolic manip-
ulation systems and algorithms: Salvy and Zimmermann [531]have implemented
univariate algebraic closure operations; Chyzak and Salvy[120, 123] have developed
algorithms for multivariate holonomicity discussed below.

Example B.1. The Euler–Landen identities for dilogarithms.Let as usual Liα(z) :=∑
n≥1 zn/nα represent the polylogarithm function (p. 408). Around 1760, Landenand Eu-

ler discovered the dilogarithmic identity [52, p. 247],

(20) Li2

(
− z

1− z

)
= −1

2
log2(1− z)− Li2(z),
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which corresponds to the (easy) identity on coefficients (extract [zn])

(21)
n∑

k=1

(
n− 1

k− 1

)
(−1)k

k2
= − 1

n2
−

n−1∑

k=1

1

k(n− k)
,

and specializes (atz= 1/2) to the infinite series evaluation

Li2

(
1

2

)
≡
∑

n≥1

1

n22n
= π2

12
− 1

2
log2 2.

Write A andB for the left and right sides of (20), respectively. The differential equations forA,
B are built in stages, according to closure properties:

(22)

Li1(z) : (1− z)∂2y− ∂y = 0
Li1(z)

2 : (1− z)2∂3y+ 3(1− z)∂2y+ ∂y = 0
Li2(z) : z(1− z)∂3y+ (2− 3z)∂2y− ∂y = 0
B(z) : z3(36z5+ · · · )(1− z)6∂9y+ · · · − 48(225z5+ · · · )∂y = 0
A(z) : z(1− z)2∂3y+ (1− z)(2− 5z)∂2y− (3− 4z)∂y = 0

Thus,A− B lives a priori in a vector space of dimension 12= 3+ 9. It thus suffices tocheck
the coincidence of the expansions of both members of (20) up to order 12 in order toprovethe
identity A = B. (An upper bound on the dimension of the vector space is actually enough.)
Equivalently, given the automatic computations of (22), it suffices toverify sufficiently many
cases of the identity (21) in order to have a completeproof of it. . . . . . . . . . . . . . . . . . . . . . . . .�

� B.13.Holonomic functions as solutions of systems.(This is a simple outcome of Note VII.48,
p. 522.) A holonomic functiony(z)which satisfies a linear differential equation of orderm with
coefficients inC(z) is also the first component of a first-order differential system of dimensionm
with rational coefficients:y(z) = Y1(z), where

(23)





d

dz
Y1(z) = a11(z)Y1+ · · · + a1m(z)Ym(z)

...
...

...
d

dz
Ym(z) = am1(z)Y1+ · · · + amm(z)Ym(z),

where eachai, j (z) is a rational function. Conversely, any solution of a system (23) with the
ai, j ∈ C(z) is holonomic in the sense of Definition B.1. �

� B.14.The Laplace transform.Let f (z) =∑n≥0 fnzn be a formal power series. Its (formal)
Laplace transform g= L[ f ] is defined as the formal power series:

L[ f ](x) =
∞∑

n=0

n! fnxn.

(Thus Laplace transforms convert EGFs into OGFs.) Under suitable convergence conditions,
the Laplace transform is analytically representable by

L[ f ](x) =
∫ ∞

0
f (xz)e−z dz.

The following property holds:A series is holonomic if and only if its Laplace transform is
holonomic.[Hint: useP–recurrences (19).] �
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� B.15.Hypergeometric functions.It is customary to employ the notation(a)n for representing
the falling factoriala(a−1) · · · (a−n+1). The function of one variable,z, and three parameters,
a,b, c, defined by

(24) F [a, b; c; z] = 1+
∞∑

n=1

(a)n(b)n
(c)n

zn

n!
,

is known as ahypergeometric function. It satisfies the differential equation

(25) z(1− z)
d2y

dz2
+ (c− (a+ b+ 1)z)

dy

dz
− aby= 0,

and is consequently a holonomic function. An accessible introduction appears in [604, Ch XIV].
The generalized hypergeometric function (or series) depends onp + q parameters

a1, . . . ,ap andc1, . . . , cq, and is defined by

(26) pFq[a1, . . . ,ap; c1, . . . , cq; z] = 1+
∞∑

n=1

(a1)n · · · (ap)n

(c1)n · · · (cq)n

zn

n!
,

so thatF in (24) is a2F1. Hypergeometric functions satisfy a rich set of identities [193, 542],
many of which can be verified (though notdiscovered) by Algorithm Z. �

Multivariate holonomic functions. Let z = (z1, . . . , zm) be a collection of
variables andC(z) the field of all rational fractions in the variablesz. For n =
(n1, . . . ,nm), we definezn to bezn1

1 · · · z
nm
m and let∂n represent∂z

n1
1
· · · ∂znm

m
.

Definition B.2. A multivariate formal power series (or function) f(z) is said to be
holonomicif the vector space overC(z) spanned by the set of all derivatives{∂n f (z)}
is finite dimensional.

Since the partial derivatives∂ j
z1 f are bound, a multivariate holonomic function

satisfies a differential equation of the form

c1,0(z)
∂r1

∂zr1
1

f (z)+ · · · + c1,r1(z) f (z) = 0,

and similarly forz2, . . . , zm. (Any system of equations with possibly mixed partial
derivatives that allows one to determine all partial derivatives in terms of a finite num-
ber of them serves to define a multivariate holonomic function.) Denominators can be
cleared, upon multiplication by the l.c.m of all the denominators that figure in the sys-
tem of defining equations. There results that coefficients ofmultivariate holonomic
functions satisfy particular systems of recurrence equations with polynomial coeffi-
cients, which are characterized in [410].

Given f (z) viewed as a function ofz1, z2 (the remaining variables being param-
eters) and abbreviated asf (z1, z2), thediagonalwith respect to variablesz1, z2 is

Diagz1,z2
[ f (z1, z2)] =

∑

ν

fν,νz
ν
1, where f (z1, z2) =

∑

n1,n2

fn1,n2zn1
1 zn2

2 .

The Hadamard product is defined, as in the univariate case, with respect to a specific
variable (e.g.,z1).

Theorem B.3(Multivariate holonomic closure). The class of multivariate holonomic
functions is closed under the following operations: sum(+), product(×), Hadamard
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product(⊙), differentiation(∂), indefinite integration(
∫
), algebraic substitution, spe-

cialization (setting some variable to a constant), and diagonal.

An elementary proof of this remarkable theorem (in the sensethat it does not
appeal to higher concepts of differential algebra) is givenby Lipshitz in [409, 410].
The closure theorem and its companion algorithms [120, 570]make it possible to
prove, or verify, automatically identities, many of which are non-trivial. For instance,
in his proof of the irrationality of the numberζ(3) = ∑

n≥1 1/n3, Apéry introduced
the combinatorial sequence,

(27) An =
n∑

k=0

(
n

k

)2(n+ k

k

)2

,

for which a proof was needed [588] of the fact that it satisfiesthe recurrence

(28) (n+ 1)3Bn + (n+ 2)3Bn+2− (2n+ 3)(17n2+ 51n+ 39)Bn+1 = 0,

with B1 = 5, B2 = 73. Obviously, the generating functionB(z) of the sequence
(Bn) as defined by theP–recurrence (28) is univariate holonomic. Repeated use of
the multivariate closure theorem shows that the ordinary generating functionA(z) of
the sequenceAn of (28) is holonomic. (Indeed, start from the explicit

∑

n1,n2

(
n1

n2

)
zn1
1 zn2

2 =
1

1− z1(1+ z2)
,

∑

n1,n2

(
n1+ n2

n2

)
zn1
1 zn2

2 =
1

1− z1− z2
,

and apply suitable Hadamard products and diagonal operations.) This gives an ordi-
nary differential equation satisfied byA(z). The proof is then completed by checking
that An andBn coincide for enough initial values ofn.

Holonomic functions in infinitely many variables.Let f be a power series in
infinitely many variablesx1, x2, . . .. Let S ⊂ Z≥1 be a subset of indices. We write
fS for the specialization off in which all the variables whose indices do not belong
to Sare set to 0. Following Gessel [289], we say that the seriesf is holonomic if, for
each finiteS, the specializationfS is holonomic (in the variablesxs for s ∈ S). Gessel
has developed a powerful calculus in the case of seriesf that aresymmetric functions,
with stunning consequences for combinatorial enumeration.

An undirected graph is calledk–regular if every vertex has exact degreek. A
standard Young tableauis the Ferrers diagram of an integer partition, filled with con-
secutive integers in a way that is increasing along rows and columns. The classical
Robinson–Schensted–Knuth correspondence establishes a bijection between permu-
tations of sizen and pairs of Young tableaux of sizen having the same shape. The
common height of the tableaux in the pair associated to a permutationσ coincides
with the length of the longest increasing subsequence ofσ . A k× n Latin rectangleis
ak× n matrix with elements in the set{1,2, . . . ,n} such that entries in each row and
column are distinct. (It is thus ak–tuple of “discordant” permutations.)

Gessel’s calculus [288, 289] provides a unified approach forestablishing the holo-
nomic character of many generating functions of combinatorial structures, such as:
Young tableaux, permutations of uniform multisets, increasing subsequences in per-
mutations, Latin rectangles, regular graphs, matrices with fixed row and column sums,
and so on. For instance:the generating functions of Latin rectangles and Young
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tableaux of height at most k, of k–regular graphs, and of permutations with longest
increasing subsequence of length k areholonomicfunctions.In particular, the number
Yn,k of permutations of sizen with longest increasing subsequence≤ k satisfies

(29)
∑

n≥0

Yn,k
z2n

(n!)2
= det

[
I |i− j |(2z)

]
1≤i, j≤k , whereIν(2z) =

∞∑

n=0

x2n+ν

n!(n+ ν)! ,

that is, a corresponding GF is expressible as a determinant of Bessel functions. Other
applications are described in [122, 444].

The asymptotic problems relative to the holonomic framework are examined in
Subsection VII. 9.1, p. 518 and Section VIII. 7, p. 581.

B.5. Implicit Function Theorem

In its real-variable version, the Implicit Function Theorem asserts that, for a
sufficiently smooth functionF(z, w) of two variables, a solution to the equation
F(z, w) = 0 exists in the vicinity of a solution point(z0, w0) (therefore satisfying
F(z0, w0) = 0) provided the partial derivative satisfiesF ′w(z0, w0) 6= 0. This theorem
admits a complex extension, which is essential for the analysis of recursive structures.

Without loss of generality, one restricts attention to(z0, w0) = (0,0). We con-
sider here a functionF(z, w) that is analytic in two complex variables in the sense
that it admits a convergent representation valid in a polydisc,

(30) F(z, w) =
∑

m,n≥0

fm,nzmwn, |z| < R, |w| < S.

for someR, S> 0 (cf Appendix B.8:Several complex variables, p. 767).

Theorem B.4(Analytic Implicit Functions). Let F be bivariate analytic near(0,0).
Assume that F(0,0) ≡ f0,0 = 0 and F′w(0,0) ≡ f0,1 6= 0. Then, there exists a unique
function f(z) analytic in a neighbourhood|z| < ρ of 0 such that f(0) = 0 and

F(z, f (z)) = 0, |z| < ρ.

� B.16.Proofs of the Implicit Function Theorem.See Hille’s book [334] for details.
(i ) Proof by residues. Make use of the principle of the argument and Rouché’s Theorem to

see that the equationF(z, w) has a unique solution near 0 for|z| small enough. Appeal then to
the result, based on the residue theorem, that expresses the sum of the solutions to an equation
as a contour integral: withC a small enough contour around 0 in thew–plane, one has

(31) f (z) = 1

2iπ

∫

C
w

F ′w(z, w)
F(z, w)

dw

(Note IV.39, p. 270), which is checked to represent an analytic function of z.

(i i )Proof by majorant series. SetG(z, w) := w− f −1
0,1 F(z, w). The equationF(z, w) = 0

becomes the fixed-point equationw = G(z, w). The bivariate seriesG has its coefficients
dominated termwise by those of

Ĝ(z, w) = A

(1− z/R)(1− w/S) − A− A
w

S
.

The equationw = Ĝ(z, w) is quadratic. It admits a solution̂f (z) analytic at 0,

f̂ (z) = A
z

R
+ A(A2+ AS+ S2)

S2

z2

R2
+ · · · ,
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whose coefficients dominate termwise those off .
(i i i ) Proof by Picard’s method of successive approximants. WithG as before, define the

sequence of functions
φ0(z) := 0; φ j+1(z) = G(z, φ j (z)),

each analytic in a small neighbourhood of 0. Thenf (z) can be obtained as

f (z) = lim
j→∞

φ j (z) ≡ φ0(z)−
∞∑

j=0

(
φ j (z)− φ j+1(z)

)
,

which is itself checked to be analytic near 0 by the geometric convergence of the series. �

Weierstrass Preparation.The Weierstrass Preparation Theorem (WPT) also fa-
miliarly known asVorbereitungssatzis a useful complement to the Implicit Function
Theorem.

Given a collectionz= (z1, . . . , zm) of variables, we designate as usual byC[[z]]
the ring of formal power series in indeterminatesz. We letC{z} denote the subset of
these that are convergent in a neighbourhood of(0, . . . ,0), i.e., analytic (cf Appen-
dix B.8: Several complex variables., p. 767).

Theorem B.5 (Weierstrass Preparation). Let F = F(z1, . . . , zm) in C[[z]] (respec-
tively,C{z}) be such that F(0, . . . ,0) = 0 and F depends on at least one of the zj with
j ≥ 2 (i.e., F(0, z2, . . . , zm) is not identically 0). Define a Weierstrass polynomial to
be a polynomial of the form

W(z) = zd + g1zd−1+ · · · + gd,

where gj ∈ C[[z2, . . . , zm]] (respectively, gj ∈ C{z2, . . . , zm}), with gj (0, . . . ,0) =
0. Then, F admits a unique factorization

F(z1, z2, . . . , zm) = W(z1) · X(z1, . . . , zm),

where W(z) is a Weierstrass polynomial and X is an element ofC[[z1, . . . , zm]] (re-
spectively,C{z1, . . . , zm}) satisfying X(0,0 . . . ,0) 6= 0.
� B.17. Weierstrass Preparation: sketch of a proof.An accessible proof and a discussion of
the formal algebraic result are found in Abhyankar’s lecture notes [2, Ch. 16].

The analytic version of the theorem is the one of use to us in this book. We prove it in the
representative case wherem= 2 and writeF(z, w) for F(z1, z2). First, the number of roots of
the equationF(z, w) = 0 is given by the integral formula

(32)
1

2iπ

∫

γ

F ′w(z, w)
F(z, w)

dw,

whereγ is a small contour encircling 0 in thew-plane. There exists a sufficiently small open
set� containing 0 such that the quantity (32), which is an analytic function ofz while being
an integer, is constant, and thus necessarily equal to its value atz = 0, which we calld. The
quantityd is the multiplicity of 0 as a root of the equationF(0, w) = 0. In other words, we
have shown that ifF(0, w) = 0 hasd roots equal to 0, then there ared values ofw near 0
(within γ ) such thatF(z, w) = 0, providedz remains small enough (within�).

Let y1, . . . , yd be thesed roots. Then, we have for the power sum symmetric functions,

yr
1 + · · · + yd

r =
1

2iπ

∫

γ

F ′w(z, w)
F(z, w)

wr dw,

which are analytic functions ofzwhenz is sufficiently near to 0. There results from relations be-
tween symmetric functions (Note III.64, p. 88) thaty1, . . . , yr are the solutions of a polynomial
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equation with analytic coefficients,W, which is a uniquely defined Weierstrass polynomial.
The factorization finally results from the fact thatF/W has removable singularities. �

In essence, by Theorem B.5, functions implicitly defined by atranscendental
equation (an equationF = 0) are locally of the same nature as algebraic functions
(corresponding to the equationW = 0). In particular, form = 2, when the solu-
tions have singularities, these singularities can only be branch points and companion
Puiseux expansions hold (Section VII. 7, p. 493). The theorem acquires even greater
importance when perturbative singular expansions (corresponding tom ≥ 3) become
required for the purpose of extracting limit laws in ChapterIX.
� B.18.Multivariate implicit functions.The following extension of Theorem B.4 is important,
with regard to the solution ofsystemsof equations (Section VII. 6, p. 482). Its statement [104,
§IV.5] makes use of the notion of analytic functions of several variables (Appendix B.8, p. 767).
Theorem B.6 (Multivariate implicit functions). Let fi (x1, . . . , xm; z1, . . . , zp), with i =
1, . . . ,m, be analytic functions in the neighbourhood of a point xj = a j , zk = ck. Assume that
theJacobian determinantdefined as

J := det

(
∂ fi
∂x j

)

is non-zero at the point considered. Then the equations (in the xj )

yi = fi (x1, . . . , xm; z1, . . . , zp), i = 1, . . . ,m,

admit a solution with the xj near to the aj , when the zk are sufficiently near to the ck and the yi
near to the bi := fi (a1, . . . ,am; c1, . . . , cp): one has

x j = g j (y1, . . . , ym; z1, . . . , zp),

where each gj is analytic in a neighbourhood of the point(b1, . . . , bm; c1, . . . , cp).

The basic idea is that the linear approximations expressed by theJacobian matrix
(
∂ fi
∂x j

)

can be inverted. Hence thex j depend locally linearly on theyi , zk; hence they are analytic.�

B.6. Laplace’s method

The method of Laplace serves to estimate asymptoticallyreal integrals depending
on a large parametern (which may be an integer or a real number). Although it is
primarily a real analysis technique, we present it in detail, given its relevance to the
saddle-point method, which deals instead withcomplexcontour integrals.

Case study: a Wallis integral.In order to demonstrate the essence of the method,
consider first the problem of estimating asymptotically theWallis integral

(33) In :=
∫ π/2

−π/2
(cosx)n dx,

asn → +∞. The cosine attains its maximum atx = 0 (where its value is 1), and
since the integrand ofIn is a large power, the contribution to the integral outside any
fixed segment containing 0 is exponentially small and can consequently be discarded
for all asymptotic purposes. A glance at the plot of cosn x asn varies (Figure B.2) also
suggests that the integrand tends to conform to a bell-shaped profile near the centre as
n increases. This is not hard to verify: setx = w/√n, then a local expansion yields

(34) cosn x ≡ exp(n log cos(x)) = exp

(
−w

2

2
+ O(n−1w4)

)
,
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Figure B.2. Plots of cosn x [left] and cosn(w/
√

n) [right], for n = 1 . .20.

the approximation being valid as long asw = O(n1/4). Accordingly, we choose
(somewhat arbitrarily)

κn := n1/10,

and define the central range by|w| ≤ κn. These considerations suggest to rewrite the
integral In as

In =
1√
n

∫ +π√n/2

−π√n/2

(
cos

w√
n

)n

dw,

and expect under this new form an approximation by a Gaussianintegral arising from
the central range.

Laplace’s method proceeds in three steps.
(i ) Neglect the tails of the original integral.
(i i ) Centrally approximate the integrand by a Gaussian.
(i i i ) Complete the tails of the Gaussian integral.

In the case of the cosine integral (33), the chain is summarized in Figure B.3. Details
of the analysis follow.

(i ) Neglect the tails of the original integral: By (34), we have

cosn
(
κn√

n

)
∼ exp

(
−1

2
n1/5

)
,

and, since the integrand is unimodal, this exponentially small quantity bounds the
integrand throughout|w| > κn, that is, on a large part of the integration interval. This
gives

(35) In =
∫ +κn/

√
n

−κn/
√

n
cosn x dx+ O

(
exp

(
− 1

2
κ2

n

))
,

and the error term is of the order of exp(−1
2n1/5).
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∫ π/2

−π/2
cosn x dx = 1√

n

∫ π
2
√

n

− π2
√

n

(
cos

w√
n

)n
dw Setx = w/√n; chooseκn = n1/10

∼ 1√
n

∫ κn

−κn

(
cos

w√
n

)n
dw [Neglect the tails]

∼ 1√
n

∫ κn

−κn

e−w
2/2dw [Central approxim.]

∼ 1√
n

∫ ∞

−∞
e−w

2/2dw [Complete the tails]

∼
√

2π

n
.

Figure B.3. A typical application of the Laplace method.

(i i ) Centrally approximate the integrand by a Gaussian: In the central region, we
have

(36)

I (1)n :=
∫ +κn/

√
n

−κn/
√

n
cosn x dx

= 1√
n

∫ +κn

−κn

e−w
2/2 exp

(
O(n−1w4)

)
dw

= 1√
n

∫ +κn

−κn

e−w
2/2
(
1+ O(n−1w4)

)
dw

= 1√
n

∫ +κn

−κn

e−w
2/2 dw + O(n−3/5),

given the uniformity of approximation (34) forw in the integration interval.

(i i i ) Complete the tails of the Gaussian integral: The incomplete Gaussian inte-
gral in the last line of (36) can be easily estimated once it isobserved that its tails are
small. Precisely, one has, forW ≥ 0,

∫ ∞

W
e−w

2/2 dw ≤ e−W2/2
∫ ∞

0
e−h2/2 dh≡

√
π

2
e−W2/2

(by the change of variablew = W + h). Thus,

(37)
∫ +κn

−κn

e−w
2/2 dw =

∫ +∞

−∞
e−w

2/2 dw + O

(
exp

(
− 1

2
κ2

n

))
.

It now suffices to collect the three approximations, (35), (36), and (37): we have
obtained in this way.

(38) In =
1√
n

∫ +∞

−∞
e−w

2/2 dw + O
(
n−3/5) ≡

√
2π

n
+ O(n−3/5).

These three steps comprise Laplace’s method.
� B.19.A complete asymptotic expansion.In the asymptotic scale of the problem, the expo-
nentially small errors in the tails can be completely neglected; the main error in(38) then arises
from the central approximation (34), and its companionO(w4n−1) term. This can easily be
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improved and it suffices to appeal to further terms in the expansion of logcosx near 0. For
instance, one has (withx = w/√n):

cosn x = e−w
2/2

(
1− w4/12n+ O(n−2w8)

)
.

Proceeding as before, we find that a further term in the expansion ofIn is obtained by consid-
ering the additive correction

ǫn := − 1√
n

∫ +∞

−∞
e−w

2/2

(
w4

12n

)
dw ≡ −

√
π

8n3
,

so that

In =
√

2π

n
−
√
π

8n3
+ O(n−17/10).

A complete asymptotic expansion in the scalen−1/2,n−3/2,n−5/2, . . . can easily be obtained
in this way. �

� B.20.Wallis integrals, central binomials, and the squaring of the circle.The integralIn is an
integral considered by John Wallis (1616–1703). It can be evaluated through partial integration
or by its relation to the Beta integral (Note B.10, p. 747) asIn = Ŵ(1

2)Ŵ(
n
2 +

1
2)/Ŵ(

n
2 + 1).

There results (n 7→ 2n):
(

2n

n

)
∼ 22n
√
πn

(
1− 1

8n
+ 1

128n2
+ 5

1024n3
− · · ·

)
,

which is yet another avatar of Stirling’s formula. Wallis’ evaluation, when combined with its
asymptotic estimate, is, in Euler’s terms, a formula for “squaring the circle”

π

4
= 2 · 4 · 4 · 6 · 6 · 8 · 8 · 10 · 10

3 · 3 · 5 · 5 · 7 · 7 · 9 · 9 · 11
&c,

albeit one that cannot be finitely implemented with ruler and compass. �

General case of large powers.Laplace’s method applies under general condi-
tions to integrals involving large powers of a fixed function.

Theorem B.7 (Laplace’s method). Let f and g be indefinitely differentiable real-
valued functions defined over some compact interval I of the real line. As-
sume that|g(x)| attains its maximum at a unique point x0 interior to I and that
f (x0), g(x0), g′′(x0) 6= 0. Then, the integral

In :=
∫

I
f (x)g(x)n dx

admits a complete asymptotic expansion:

(39) In ∼
√

2π

λn
f (x0)g(x0)

n


1+

∑

j≥1

δ j

n j


 , λ := −g′′(x0)

g(x0)
.

� B.21.Proof of Laplace’s method.Assume first thatf (x) ≡ 1. Then, one choosesκn as a
function tending slowly to infinity like before (κn = n1/10 is suitable). It suffices to expand

I (1)n :=
∫ x0+κn/

√
n

x0−κn/
√

n
en logg(x) dx,

as the differenceIn − I (1)n is exponentially small. Set firstx = x0+ X and

L(X) := logg(x0+ X)− logg(x0)+ λ
X2

2
,
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so that, withw = X
√

n, the central contribution becomes:

I (1)n = g(x0)
n

√
n

∫ κn

−κn

e−λw
2/2enL(w/

√
n) dw.

Then, expandingL(X) to any orderM ,

L(X) =
M−1∑

j=3

ℓ j X j + O(XM ),

shows thatenL(w/
√

n) admits a full expansion in descending powers of
√

n:

enL(w/
√

n) ∼ 1+ ℓ3w
3

√
n
+

2ℓ4w
4+ ℓ23w6

2n
+ · · · .

There, by construction, the coefficient ofn−k/2 is a polynomialEk(w) of degree 3k. This
expression can be truncated to any order, resulting in

I (1)n = g(x0)
n

√
n

∫ κn

−κn

e−λw
2/2


1+

M−1∑

k=1

Ek(w)

nk/2
+ O

(
1+ w3M

nM/2

)
 dw.

One can then complete the tails at the expense of exponentially small terms since the Gaussian
tails are exponentially small.

The full asymptotic expansion is revealed by the following device: for anypower series
h(w), introduce the Gaussian transform,

G[ f ] :=
∫ ∞

−∞
e−w

2/2 f (w) dw,

which is understood to operate by linearity on integral powers ofw,

G[w2r ] = 1 · 3 · · · (2r − 1)
√

2π, G[w2r+1] = 0.

Then, the complete asymptotic expansion ofIn is obtained by the formal expansion

(40)
g(x0)

n
√

nλ
·G

[
exp

(
λ−3/2w3yL̃(λ−1/2wy)

)]
, L̃(X) := 1

X3
L(X), y 7→ 1√

n
.

The addition of the prefactorf (x) (omitted so far) induces a factorf (x0) in the main
term of the final result and it affects the coefficients in the smaller order terms in a computable
manner. Details are left as an exercise to the reader. �

� B.22.The next term?One has (withf j := f ( j )(x0), etc):

In
√
λn√

2πg(x0)
n
= f0+

−9λ3 f0+ 12λ2 f2+ 12λ f1g3+ 3λ f0g4+ 5g2
3 f0

24λ3n
+ O(n−2),

which is best determined using a symbolic manipulation system. �

The method is amenable to a large number of extensions. Roughly it requires
a point where the integrand is maximized, which induces somesort of exponential
behaviour, local expansions then allowing for a replacement by standard integrals.
� B.23. Special cases of Laplace’s method.When f (x0) = 0, the integral normalizes to an

integral of the form
∫
w2e−w

2/2. If g′(x0) = g′′(x0) = g(i i i )(x0) = 0 but g(i v)(x0) 6= 0
then a factorŴ(1/4) replaces the characteristic

√
π ≡ Ŵ(1/2). [Hint:

∫∞
0 exp(−wβ )wα dw =

β−1Ŵ((α + 1)β−1).] If the maximum is attained at one end of the intervalI = [a,b] while
g′(x0) = 0, g′′(x0) 6= 0, then the estimate (39) must be multiplied by a factor of 1/2. If the
maximum is attained at one end of the intervalI while g′(x0) 6= 0, then the right normalization
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is w = x/n and the integrand is reducible to an exponentiale−w. Here are some dominant
asymptotic terms:

x0 6= a, b g′′(x0) 6= 0, f (x0) = 0
√

π
2λ5n3 g(x0)

n(λ f ′′(x0)+ f ′(x0)g
′′′(x0))

x0 6= a, b g′′(x0) = 0, g(i v)(x0) 6= 0 Ŵ(1
4)

4
√

3
2λ⋆n f (x0)g(x0)

n
(
λ⋆ = − g(i v)(x0)

g(x0)

)

x0 = a f (x0) 6= 0, g′(x0) 6= 0 − 1
ng′(x0)

f (x0)g(x0)
n+1 .

A similar analysis is employed in Section VIII. 10, p. 600, when we discusscoalescence cases
of the saddle-point method. �

ExampleB.2. Stirling’s formula via Laplace’s method.Start from an integral representation
involving n!, namely,

In :=
∫ ∞

0
e−nxxn dx = n!

nn+1
.

This is a direct case of application of the theorem, except for the fact that the integration interval
is not compact. The integrand attains its maximum atx0 = 1 and the remainder integral

∫∞
2 is

accordingly exponentially small as proved by the chain
∫ ∞

2
e−nxxn dx = (2e−2)n

∫ ∞

0

(
1+ x

2

)n
e−nx dx [x 7→ x + 2]

< (2e−2)n
∫ ∞

0
enx/2e−nx dx = 2

n
(2e−2)n [log(1+ x/2) < x/2].

Then the integral from 0 to 2 is amenable to the standard version of Laplace’s method as stated
in Theorem B.7 to the effect that

n! = nne−n
√

2πn

(
1+ O

(
1

n

))
.

The asymptotic expansion ofIn is derived from (40) and involves the combinatorial GF

(41) H(z,u) := exp

(
u

(
log(1− z)−1− z− z2

2

))
.

The noticeable fact is thatH(z,u) is the exponential BGF of generalized derangements involv-
ing no cycles of length 1 or 2, withz marking size andu marking the number of cycles:

H(z,u) =
∑

n,k≥0

hn,kuk zn

n!
= 1+ 1

3uz3+ 1
4 uz4+ 1

5 uz5+(1
6u+ 1

18u2)z6+(1
7u+ 1

12u2)z7+· · · .

Then, a complete asymptotic expansion ofIn is obtained by applying the Gaussian transform
G to H(wy,−y−2) (with y = n−1/2), resulting in

n! ∼ nne−n
√

2πn

(
1+ 1

12n
+ 1

288n2
− 139

51840n3
− · · ·

)
.

Proposition B.1 (Stirling’s formula). The factorial function admits the asymptotic expansion:

x! ≡ Ŵ(x + 1) ∼ xxe−x
√

2πx


1+

∑

q≥1

cq

xq


 (x→+∞).

The coefficients satisfy cq =
2q∑

k=1

(−1)k

2q+k(q + k)!
h2q+2k,k, where hn,k counts the number of

permutations of size n having k cycles, all of length≥ 3.
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The derivation above is due to Wrench (see [129, p. 267]). . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .�

The scope of the method goes much beyond the case of integralsof large powers.
Roughly, what is needed is a localization of the main contribution of an integral to a
smaller range (“Neglect the tails”) where local approximations can be applied (“Cen-
trally approximate”). The approximate integral is then finally estimated by completing
back the tails (“Complete the tails”).

The Laplace method is excellently described in books by de Bruijn [143] and
Henrici [329]. A thorough discussion of special cases and multidimensional integrals
is found in the book by Bleistein and Handelsman [75]. Its principles are fundamental
to the development of the saddle-point method in Chapter VIII.
� B.24.The classical proof of Stirling’s formula.This proceeds from the integral

Jn :=
∫ ∞

0
e−xxn dx ( = n!)

The maximum is atx0 = n and the central range is nown ± κn
√

n. Reduction to a Gaussian
integral follows, but the estimate is no longer a direct application of Theorem B.7. �

Laplace’s method for sums.The basic principles of the method of Laplace (for
integrals) can often be recycled for the asymptotic evaluation of discrete sums. Take a
finite or infinite sumSn defined by

Sn :=
∑

k

t (n, k).

A preliminary task consists in working out the general aspect of the family of num-
bers{t (n, k)} for fixed (but large)n ask varies. In particular, one should locate the
valuek0 ≡ k0(n) of k for which t (n, k) is maximal. In a vast number of cases, tails
can be neglected; a central approximationt̂(n, k) of t (n, k) for k in the “central” re-
gion neark0 can be determined, frequently under the form [remember thatwe use in
this book ‘≈’ in the loose sense of “approximately equal”]

t̂(n, k) ≈ s(n)φ

(
k− k0

σn

)
,

whereφ is some smooth function whiles(n) andσn are scaling constants. The quan-
tity σn indicates the range of the asymptotically significant terms. One may then
expect

Sn ≈ s(n)
∑

k

φ

(
k− k0

σn

)
.

Then providedσn → ∞, one may further expect to approximate the sum by an inte-
gral, which after completing the tails, gives

Sn ≈ s(n)σn

∫ ∞

−∞
φ(t)dt.

ExampleB.3. Sums of powers of binomial coefficients.Here is, in telegraphic style, an appli-
cation to sums of powers of binomial coefficients:

S(r )n =
+n∑

k=−n

(
2n

n+ k

)r
.
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The largest term arises atk0 = 0. Furthermore, one has elementarily
( 2n
n+k

)
(2n

n
) =

(
1− 1

n
)
· · ·
(
1− k−1

n
)

(
1+ 1

n
)
· · ·
(
1+ k

n
) .

By the exp–log transformation and the expansion of log(1± x), one has

(42)

( 2n
n+k

)
(2n

n
) = exp

(
−k2

n
+ O(k3n−2)

)
.

This approximation holds fork = o(n2/3), where it provides a Gaussian approximation

(φ(x) = e−r x2
) with a span ofσn =

√
n. Tails can be neglected, so that

1
(2n

n
)r S(r )n ∼

∑

k

exp

(
−r

k2

n

)
,

say with|k| < n1/2κn whereκn = n1/10. Then approximating the Riemann sum by an integral
and completing the tails, one gets

Sr
n ∼

(
2n

n

)r√
n
∫ ∞

−∞
e−rw2

dw, that is, Sr
n ∼

22rn
√

r
(πn)−(r−1)/2,

which is our final estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .�

� B.25.Elementary approximation of Bell numbers.The Bell numbers counting set partitions
(p. 109) are

Bn = n![zn]eez−1 = e−1
∞∑

k=0

kn

k!
.

The largest term occurs fork neareu whereu is the positive root of the equationueu = n+ 1;
the central terms are approximately Gaussian. There results the estimate,

(43) Bn = n!e−1(2π)−1/2(1+ u−1)−1/2 exp

(
eu(1− u logu)− 1

2
u

) (
1+ O(e−u)

)
.

This alternative to saddle-point asymptotics (p. 560) is detailed in [143, p.108]. �

B.7. Mellin transforms

The Mellin transform2 of a function f defined overR>0 is the complex-variable
function f ⋆(s) defined by the integral

(44) f ⋆(s) :=
∫ ∞

0
f (x)xs−1 dx.

This transform is also occasionally denoted byM[ f ] or M[ f (x); s]. Its importance
devolves from two properties:(i ) it mapsasymptotic expansions of a function at 0
and+∞ to singularities of the transform;(i i ) it factorizesharmonic sums (defined
below). The conjunction of the mapping property and the harmonic sum property
makes it possible to analyse asymptotically rather complicated sums arising from a

2In the context of this book, Mellin transforms are useful in analyses relative the longest run problem
(p. 311), the height of trees (p. 329) polylogarithms (p. 408), and integer partitions (p. 576). They also serve
to establish fundamental asymptotic expansions, as in the case of harmonic and factorial numbers (below).



B.7. MELLIN TRANSFORMS 763

linear superposition of models taken at different scales. Major properties are summa-
rized in Figure B.4. In this brief review, detailed analyticconditions must be omitted:
see the survey [234] as well as comments and references at theend of this entry.

It is assumed thatf is locally integrable. Then, the two conditions,

f (x) =
x→0+

O(xu), f (x) =
x→+∞

O(xv ),

guarantee thatf ∗ exists fors in astrip,

s ∈ 〈−u,−v〉, i.e., −u < ℜ(s) < −v.
Thus existence of the transform is granted providedv < u. The prototypical Mellin
transform is the Gamma function discussed earlier in this appendix:

Ŵ(s) :=
∫ ∞

0
e−xxs−1 dx =M[e−x; s], 0< ℜ(s) <∞.

Similarly f (x) = (1 + x)−1 is O(x0) at 0 andO(x−1) at infinity, and hence its
transform exists in the strip〈0,1〉; it is in fact π/ sinπs, as a consequence of the
Eulerian Beta integral. The Heaviside function defined byH(x) := [[0 ≤ x < 1]]
exists in〈0,+∞〉 and has transform 1/s.

Harmonic sum property.The Mellin transform is a linear transform. In addition,
it satisfies the simple but important rescaling rule:

f (x)
M7→ f ⋆(s) implies f (µx)

M7→ µ−s f ⋆(s),

for anyµ > 0. Linearity then entails the derived rule

(45)
∑

k

λk f (µkx)
M7→

(∑

k

λkµ
−s
k

)
· f ⋆(s),

valid a priori for any finite set of pairs(λk, µk) and extending to infinite sums when-
ever the interchange of

∫
and

∑
is permissible. A sum of the form (45) is called

a harmonic sum, the function f is the “base function”, theλ values are the “ampli-
tudes” and theµ values the “frequencies”. Equation (45) then yields the “harmonic
sum rule”: The Mellin transform of a harmonic sumfactorizesas the product of the
transform of the base function and a generalized Dirichlet series associated to ampli-
tudes and frequencies. Harmonic sums surface recurrently in the context of analytic
combinatorics and Mellin transforms are a method of choice for coping with them.

Here are a few examples of application of the harmonic sum rule (45):
∑

k≥1

e−k2x2 7→
ℜ(s)>1

1
2Ŵ(s/2)ζ(s)

∑

k≥0

e−x2k 7→
ℜ(s)>0

Ŵ(s)

1− 2−s

∑

k≥0

(logk)e−
√

kx 7→
ℜ(s)>2

−ζ ′(s/2)Ŵ(s)
∑

k≥1

1

k(k+ x)
7→

0<ℜ(s)<1
ζ(2− s)

π

sinπs
.

� B.26. Connection between power series and Dirichlet series.Let ( fn) be a sequence of
numbers with at most polynomial growth,fn = O(nr ), and with OGFf (z). Then, one has

∑

n≥1

fn
ns =

1

Ŵ(s)

∫ ∞

0
f
(
e−x) xs−1 dx, ℜ(s) > r + 1.
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Function( f (x)) Mellin transform( f ⋆(s))

f (x)
∫ ∞

0
f (x)xs−1 dx definition, s ∈ 〈−u,−v〉

1

2iπ

∫ c+i∞

c−i∞
f ⋆(s)x−s ds f⋆(s) inversion th.,−u < c < −v

∑

i

λi fi (x)
∑

i

λi f ⋆i (s) linearity

f (µx) µ−s f ⋆(s) scaling rule (µ > 0)

xρ f (xθ )
1

θ
f ⋆
(

s+ ρ
θ

)
power rule

∑

i

λi f (µi x)

(∑

i

λiµ
−s
i

)
· f ⋆(s) harmonic sum rule (µi > 0)

∫ ∞

0
λ(t) f (t x)dt

∫ ∞

0
λ(t)t−s dt · f ⋆(s) harmonic integral rule

f (x) logk x ∂k
s f ⋆(s) diff. I, k ∈ Z≥0, ∂s := d

ds

∂k
x f (x)

(−1)kŴ(s)

Ŵ(s− k)
f ⋆(s− k) diff. II, k ∈ Z≥0, ∂x := d

dx

∼
x→0

xα(logx)k ∼
s→−α

(−1)kk!

(s+ α)k+1
mapping: x→ 0, left poles

∼
x→+∞

xβ (logx)k ∼
s→−β

(−1)k−1k!

(s+ β)k+1
mapping: x→∞, right poles

Figure B.4. A summary of major properties of Mellin transforms.

For instance, one obtains the Mellin pairs

(46)
e−x

1− e−x
M7→ ζ(s)Ŵ(s) (ℜ(s) > 1), log

1

1− e−x
M7→ ζ(s+ 1)Ŵ(s) (ℜ(s) > 0).

These serve to analyse sums or, conversely, deduce analytic properties of Dirichlet series. �

Mapping properties.Mellin transforms map asymptotic terms in the expansions
of a function f at 0 and+∞ onto singular terms of the transformf ⋆. This property
stems from the basic Heaviside function identities

H(x)xα
M7→ 1

s+ α (s ∈ 〈−α,+∞〉), (1−H(x))xβ
M7→ − 1

s+ β (s ∈ 〈−∞,−β〉),

as well as what one obtains by differentiation with respect to α, β.
The converse mapping property also holds. Like for other integral transforms,

there is aninversion formula: if f is continuous in an interval containingx, then

(47) f (x) = 1

2iπ

∫ c+i∞

c−i∞
f ⋆(s)x−s ds,

where the abscissac should be chosen in the “fundamental strip” off ; for instance
anyc satisfying−u < c < −v with u, v as above is suitable.

In many cases of practical interest,f ⋆ is continuable as a meromorphic function
to the whole ofC. If the continuation off ⋆ does not grow too fast along vertical lines,
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then one can estimate the inverse Mellin integral of (47) by residues. This corresponds
to shifting the line of integration to somed 6= c and taking poles into account by the
residue theorem. Since the residue at a poles0 of f ⋆ involves a factor ofx−s0, the
contribution ofs0 will give useful information onf (x) asx → ∞ if s0 lies to the
right of c, and on f (x) asx → 0 if s0 lies to the left. Higher order poles introduce
additional logarithmic factors. The “dictionary” is simply

(48)
1

(s− s0)k+1
M−1

−→ ± (−1)k

k!
x−s0(logx)k,

where the sign is ‘+’ for a pole on the left of the fundamental strip and ‘−’ for a pole
on the right.

Mellin asymptotic summation.The combination of mapping properties and the
harmonic sum property constitutes a powerful tool of asymptotic analysis, as shown
by the examples and the notes below.

ExampleB.4. Asymptotics of a simple harmonic sum.Let us first investigate the pair

F(x) :=
∑

k≥1

1

1+ k2x2
, F⋆(s) = 1

2

π

sin 1
2πs

ζ(s),

whereF⋆ results from the harmonic sum rule and has fundamental strip〈1,2〉. The function
F⋆ is continuable to the whole ofC with poles at the points 0, 1, 2 and 4, 6, 8, . . .. The trans-
form F⋆ is small towards infinity, so that application of the dictionary (48) is justified. One
finds

F(x) ∼
x→0+

π

2x
− 1

2
+ O(xM ), F(x) ∼

x→+∞
π2

6x2
− π4

90x4
+ · · · ,

where the expansion at 0 is valid for anyM > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�

ExampleB.5. Asymptotics of a dyadic sum.A particularly important quantity in analytic
combinatorics is the following harmonic sum, stated here together with its Mellin transform:

8(x) :=
∞∑

k=0

(
1− e−x/2k

)
; 8⋆(s) = − Ŵ(s)

1− 2s , s ∈ 〈−1, 0〉.

It occurs for instance in the analysis of longest runs in words (p. 311). The transform ofe−x−1
is alsoŴ(s), but in the shifted strip〈−1,0〉. The singularities of8⋆ are ats= 0, where there is
a double pole, ats= −1,−2, . . . which are simple poles, but also at the complex points

χk =
2ikπ

log 2
.

The Mellin dictionary (48) can still be applied provided one integrates along along rectangular
contour that passes in-between poles. The salient feature is here the presence of fluctuations
induced by the imaginary poles, sincex−χk = exp

(
−2ikπ log2 x

)
, and each pole induces a

Fourier element. All in all, one finds (anyM > 0):

(49)





8(x) ∼
x→+∞

log2 x + γ

log 2
+ 1

2
+ P(x)+ O(xM )

P(x) := 1

log 2

∑

k∈Z\{0}
Ŵ

(
2ikπ

log 2

)
e−2ikπ log2 x .
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The analysis forx → 0 yields, in this particular case,8(x) ∼
x→0

∑

n≥1

(−1)n−1

1− 2−n
xn

n!
, which

would also result from expanding exp(−x/2k) in 8(x) and reorganizing the terms. . . . . . . .�

Example B.6. Euler–Maclaurin summation via Mellin analysis.Let f be continuous on
(0,+∞) and satisfyf (x) =x→+∞ O(x−1−δ), for someδ > 0, and

f (x) ∼
x→0+

∞∑

k=0

fkxk.

The summatory functionF(x) satisfies

F(x) :=
∑

n≥1

f (nx), F⋆(s) = ζ(s) f ⋆(s),

by the harmonic sum rule. The collection of (trimmed) singular expansionsof f ⋆ at s =
0,−1,−2, . . . is summarized by the formal expansion, conventionally represented by≍:

f ⋆(s) ≍
(

f0
s

)

s=0
+
(

f1
s+ 1

)

s=1
+
(

f2
s+ 2

)

s=1
+ · · · .

Thus, by the mapping properties, providedF⋆(s) is small towards±i∞ in finite strips, one has

F(x) ∼
x→0

1

x

∫ ∞

0
f (t)dt +

∞∑

j=0

f j ζ(− j )x j ,

where the main term is associated to the singularity ofF⋆ at 1 and arises from the pole ofζ(s),
with f ⋆(1) giving the integral off . The interest of this approach is that it is very versatile and
allows for various forms of asymptotic expansions off at 0 as well as multipliers like(−1)k,
logk, and so on; see [234] for details and Gonnet’s note [300] for alternative approaches. . .�

� B.27.Mellin-type derivation of Stirling’s formula.One has the Mellin pair

L(x) =
∑

k≥1

log
(
1+ x

k

)
− x

k
, L⋆(s) = π

ssinπs
ζ(−s), s ∈ 〈−2,−1〉.

Note thatL(x) = log(e−γ x/Ŵ(1+ x)). Mellin asymptotics provides

L(x) ∼
x→+∞

−x logx − (γ − 1)x − 1

2
logx − log

√
2π − 1

12x
+ 1

360x3
− 1

1260x5
+ · · · ,

where one recognizes Stirling’s expansion ofx!:

logx! ∼
x→+∞ log

(
xxe−x

√
2πx

)
+
∑

n≥1

B2n

2n(2n− 1)
x1−2n

(the Bn are the Bernoulli numbers). �

� B.28.Mellin-type analysis of the harmonic numbers.Forα > 0, one has the Mellin pair:

Kα(x) =
∑

k≥1

(
1

kα
− 1

(k+ x)α

)
, K ⋆α(s) = −ζ(α − s)

Ŵ(s)Ŵ(α − s)

Ŵ(α)
.

This serves to estimate harmonic numbers and their generalizations, for instance,

Hn ∼n→∞ logn+ γ − 1

2n
−
∑

k≥2

Bk

k
n−k ∼ logn+ γ + 1

2n
− 1

12n2
+ 1

120n4
− · · · ,

sinceK1(n) = Hn. �
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General references on Mellin transforms are the books by Doetsch [168] and Wid-
der [605]. The term “harmonic sum” and some of the corresponding technology orig-
inates with the abstract [253]. This brief presentation is based on the survey article
by Flajolet, Gourdon, and Dumas [234] to which we refer for a detailed treatment;
see also the self-contained treatment by Butzer and Jansche[100]. Mellin analysis of
“harmonic integrals” is a classical topic of applied mathematics for which we refer
to the books by Wong [614] and Paris–Kaminski [472]. Valuable accounts of proper-
ties of use in discrete mathematics and analysis of algorithms appear in the books by
Hofri [335], Mahmoud [429], and Szpankowski [564].

B.8. Several complex variables

The theory of analytic (or holomorphic) functions of one complex variables ex-
tends non-trivially to several complex variables. This profound theory has been largely
developed in the course of the twentieth century. Here we shall only need the most
basicconcepts, not the deeper results, of the theory.

Consider the spaceCm endowed with the metric

|z| = |(z1, . . . , zm)| =
m∑

j=1

|z j |2,

under which it is isomorphic to the Euclidean spaceR2m. A function f from Cm to C

is said to be analytic at some pointa if in a neighbourhood ofa it can be represented
by a convergent power series,

(50) f (z) =
∑

n

fn(z− a)n ≡
∑

n1,...,nm

fn1,...,nm(z1− a1)
n1 · · · (zm− am)

nm.

There and throughout the theory, extensive use is made of themulti-index convention,
as encountered in Chapter III, p. 165.

An expansion (50) converges in a polydisc
∏

j {|z j − a j | < r j }, for somer j > 0.
A convergent expansion at(0, . . . ,0) has its coefficients majorized in absolute value
by those of a series of the form

m∏

j=1

1

1− z j /Rj
=
∑

n

R−nzn ≡
∑

n1,...,nm

R−n1
1 · · · R−nm

m zn1
1 · · · znm

m .

Closure of analytic functions under sums, products, and compositions results from
standard manipulations of majorant series (see p. 250 for the univariate case). Finally,
a function is analytic in an open set� ⊆ Cm iff it is analytic at eacha ∈ �.

A remarkable theorem of Hartogs asserts thatf (z) with z ∈ Cm is analyticjointly
in all thez j (in the sense of (50)) if it is analyticseparatelyin each variablez j . (The
version of the theorem that postulatesa priori continuity is elementary.)

As in the one-dimensional case, analytic functions can be equivalently defined by
means of differentiability conditions. A function isC-differentiable or holomorphic
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ata if, as1z→ 0 in Cm, one has

f (a+1z)− f (a) =
m∑

j=1

c j1z j + o (|1z|) .

The coefficientsc j are the partial derivatives,c j = ∂z j f (a). The fact that this relation
does not depend on the way1z tends to 0 implies the Cauchy–Riemann equations.
In a way that parallels the single variable case, it is provedthat two conditions are
equivalent: f is analytic; f is complex-differentiable.

Iterated integrals are defined in the natural way and one finds, by a repeated use
of calculus in a single variable,

(51) f (z) = 1

(2iπ)m

∫

C1

· · ·
∫

Cm

f (ζ )

(ζ1− z1) · · · (ζm− zm)
dζ1 · · · dζm,

whereC j is a small circle surroundingz j in thez j –plane. By differentiation under the
integral sign, Equation (51) also provides an integral formula for the partial derivatives
of f , which is the analogue of Cauchy’s coefficient formula. Iterated integrals are
independent of details of the “polypath” on which they are taken, and uniqueness of
analytic continuation holds.

The theory of functions of several complex variables develops in the direction of
an integral calculus that is much more powerful than the iterated integrals mentioned
above; see, for instance, the book by Aı̆zenberg and Yuzhakov [8] for a multidimen-
sional residue approach. Egorychev’s monograph [187] develops systematic applica-
tions of the theory of functions of one or several complex variables to the evaluation
of combinatorial sums. Pemantle together with several coauthors [474, 475, 476] has
launched an ambitious research programme meant to extract the coefficients of mero-
morphic multivariate generating functions by means of thistheory, with the ultimate
goal of obtaining systematically asymptotics from multivariate generating functions.
By contrast, see especially Chapter IX, we can limit ourselves to developing a pertur-
bative theory of one-variable complex function theory.

In the context of this book, the basic notion of analyticity in several complex vari-
ables serves to confer abona fideanalytic meaning to multivariate generating func-
tions. Basic definitions are also needed in the context of functions f defined implicitly
by functional relations of the formH(z, f ) = 0 or H(z,u, f ) = 0, where analytic
functions of two or more complex variables make an appearance. (See in particular the
discussion of the analytic Implicit Function Theorem and the Weierstrass Preparation
Theorem in this appendix, p. 753.)



APPENDIX C

Concepts of Probability Theory

This appendix contains entries arranged in logical order regarding the following topics:

Probability spaces and measure; Random variables; Transforms of distributions;
Special distributions; Convergence in law.

In this book we start from probability spaces that are finite, since they arise from objects of a
fixed size in some combinatorial class (see Chapter III and Appendix A.3: Combinatorial prob-
ability, p. 727 for elementary aspects), then need basic properties of continuous distributions in
order to discuss asymptotic limit laws. The entries in this appendix are relatedprincipally to
Chapter IX of Part C (Random Structures). They present a unified framework that encompasses
discrete and continuous probability distributions alike. For further study, we recommend the su-
perb classics of Feller [205, 206], given the author’s concrete approach, and of Billingsley [68],
whose coverage of limit distributions is of great value for analytic combinatorics.

C.1. Probability spaces and measure

An axiomatization of probability theory1 was discovered in the 1930s by Kol-
mogorov. Ameasurable spaceconsists of a set�, called the set of elementary events
or the sample set and aσ -algebraA of subsets of� called events (that is, a collec-
tion of sets containing∅ and closed under complement and denumerable unions). A
measure spaceis a measurable space endowed with a measureµ : A 7→ R≥0 that
is additive over finite or denumerable unions of disjoint sets; in that case, elements
of A are called measurable sets. Aprobability spaceis a measure space for which the
measure satisfies the further normalizationµ(�) = 1; in that case, we also writeP for
µ. Any setS⊆ � such thatµ(S) = 1 is called asupportof the probability measure.
These definitions given above cover several important cases.

(i ) Finite sets with the uniform measure(also known as “counting” measure).
In this case,� is finite, all sets are inA (i.e., are measurable), and (|| · || denotes
cardinality)

µ(E) := ||E||||S|| .

Non-uniform measures over a finite set� are determined by assigning a non-negative
weight p(ω) to each element of� (with

∑
ω∈� p(ω) = 1) and setting

µ(E) :=
∑

e∈E

p(e).

(We also writeP(e) for P({e}) ≡ µ({e}) = p(e).) In this book,� is usually the sub-
classCn formed by the objects of sizen in some combinatorial classC. The uniform
measure is usually assumed, although suitably weighted models often prove to be of

1For this entry we refer to the vivid and well-motivated presentation in Williams’ book [609] or to
many classical treatises such as those by Billingsley [68] and Feller [205].
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interest: see for instance in Chapter III the discussion of weighted word models and
Bernoulli trials as well as the case of weighted tree models and branching processes.

(i i ) Discrete probability measures over the integers(supported byZ or Z≥0). In
this case the measure is determined by a functionp : Z 7→ R≥0 and

µ(E) :=
∑

e∈E

p(e),

with µ(Z) = 1. (All sets are measurable.) More general discrete measures supported
by denumerable sets ofR can be similarly defined.

(i i i ) The real lineR equipped with theσ -algebra generated by the open intervals
constitutes a standard example of a measurable space; in that case, any member of
theσ -algebra is known as a Borel set. The measure, denoted byλ, that assigns to an
interval(a,b) the valueλ(a,b) = b−a (and is extended non-trivially to all Borel sets
by additivity) is known as the Lebesgue measure. The interval [0,1] endowed withλ
is a probability space. The lineR itself is not a probability space sinceλ(R) = +∞.

In the measure-theoretic framework, arandom variableis a mappingX from
a probability space� (equipped with itsσ -algebraA and its measureP�) to R

(equipped with its Borel setsB) such that the preimageX−1(B) of any B ∈ B lies
in A. For B ∈ B, the probability thatX lies in B is then defined as

P(X ∈ B) := P�(X
−1(B)).

Since the Borel sets can be generated by the semi-infinite intervals (−∞, x], this
probability is equivalently determined by the function

F(x) := P(X ≤ x),

which is called thedistribution functionor cumulative distribution functionof X. It
is then possible to introduce random variables directly by means of distribution func-
tions, see the entry below,Random variables.

Integration. The next step is to go from measures of sets to integrals of (real-
valued) functions. Lebesgue integrals are constructed, first for indicator functions of
intervals, then for simple (staircase) functions, then fornon-negative functions, finally
for integrable functions. One defines in this way, for an arbitrary measureµ, the
Lebesgue integral

(1)
∫

f dµ, also written
∫

f (x)dµ(x) or
∫

f (x)µ(dx),

where the last notation is often preferred by probabilists.The basic idea is to decom-
pose the domain ofvaluesof f into finitely many measurable sets (Ai ) and, for a
positive functionf , consider the supremum over all finite decompositions (Ai )

(2)
∫

f dµ := sup
(Ai )

∑

i

[
inf
ω∈Ai

f (ω)

]
µ(Ai ).

(Thus Riemann integration proceeds by decomposing the domain of the function’s
argumentswhile Lebesgue integrals decomposes the domain ofvaluesand appeals to
a richer notion of measure for point sets.)
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In (1) and (2), the possibility exists thatµ assigns a non-zero measure to cer-
tain individual points. In such a context, the integral is sometimes referred to as
the Lebesgue-Stieltjesintegral. It suitably generalizes theRiemann-Stieltjesintegral
which, given a real valued functionM , defines the following extension of the standard
Riemann integral:

(3)
∫

f (x)d M(x) = lim
(Bk)

∑

k

f (xk)1Bk(M).

There theBk form a finite partition of the domain in which the argument off ranges,
the limit is taken as the largestBk tends to 0, eachxk lies in Bk, and1Bk(M) is the
variation ofM on Bk.

The great advantage of Stieltjes (hence automatically of Lebesgue) integrals is to
unify many of the formulae relative to discrete and continuous probability distributions
while providing a simple framework adapted to mixed cases.

C.2. Random variables

A real random variableX is fully characterized by its (cumulative) distribution
function

FX(x) := P(X ≤ x),

which is a non-decreasing right-continuous function satisfying F(−∞) = 0,
F(+∞) = 1.

A variable isdiscreteif it is supported by a finite or denumerable set. Almost all
discrete distributions in this book are supported byZ or Z≥0. (An interesting excep-
tion is the collection of distributions occurring in longest runs of words, Chapter IV,
p. 308.)

A variable X is continuousif it assigns zero probability mass to any finite or
denumerable set. In particular, it has no jump. An easy theorem states that any distri-
bution function can be decomposed into a discrete and a continuous part,

F(x) = c1Fd(x)+ c2Fc(x), c1+ c2 = 1.

(The jumps must sum to at most 1, hence their set is at most denumerable.) A variable
is absolutely continuousif it assigns zero probability mass to any Borel set of mea-
sure 0. In that case, the Radon–Nikodym Theorem asserts thatthere exists a function
w such that

FX(x) =
∫ x

−∞
w(y)dy.

(There, in all generality, the Lebesgue integral is required but the Riemann integral is
sufficient for all practical purposes in this book.) The functionw(x) is called adensity
of the random variableX (or of its distribution function). WhenFX is differentiable
everywhere it admits the density

w(x) = d

dx
FX(x),

by the Fundamental Theorem of Calculus.
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� C.1. The Lebesgue decomposition theorem.It states that any distribution functionF(x)
decomposes as

F(x) = c1Fd(x)+ c2Fac+ c3Fs(x), c1+ c2+ c3 = 1,

whereFd is discrete,Fac is absolutely continuous, andFs is continuous butsingular, i.e., it
is supported by a Borel set of Lebesgue measure 0. Singular randomvariables are constructed,
e.g., from the Cantor set. �

In this book, all combinatorial distributions are by naturediscrete (and then sup-
ported byZ≥0). All continuous distributions obtained as limits of discrete ones are,
in our context, absolutely continuous and the qualifier “absolutely” is globally under-
stood when discussing continuous distributions.

If X is a random variable, theexpectationof a functiong(X) is defined as

E (g(X)) =
∫

R

g(x)d F(x),

which involves the distribution functionF of X. In particular theexpectationor mean
of X is E(X), and generally itsmomentof orderr is

µ(r ) = E(Xr ).

(These quantities may not exist forr 6= 0.)
� C.2.Alternative formulae for expectations.If X is supported byR≥0:

E(X) =
∫ ∞

0
(1− F(x)) dx.

If X is supported byZ≥0:

E(X) =
∑

k≥0

P(X > k).

Proofs are by partial integration and summation: for instance withpk = P(X = k),

E(X) =
∑

k≥1

kpk = (p1+ p2+ p3+ · · · )+ (p2+ p3+ · · · )+ (p3+ · · · )+ · · · .

Similar formulae hold for higher moments. �

C.3. Transforms of distributions

TheLaplace transformof X (or of its distribution functionF) is defined by

λX(s) := E

(
esX

)
=
∫ +∞

−∞
esx d F(x).

(If F has a discrete component, then integration is to be taken in the sense of
Lebesgue–Stieltjes or Riemann–Stieltjes.) The Laplace transform is also known as
themoment generating function(see below for an existential discussion). Thechar-
acteristic functionis defined by

φX(t) = E

(
ei t X

)
=
∫ +∞

−∞
ei t x d F(x),

and it is a Fourier transform. Both transforms are formal variants of one another and
φX(t) = λX(i t ).
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If X is discrete and supported byZ, then itsprobability generating function(PGF)
is, as defined as in Appendix A.3:Combinatorial probability, p. 727:

PX(u) := E(uX) =
∑

k∈Z
P(X = k)uk.

As an analytic object this always exists whenX is non-negative (supported byZ≥0),
in which case the PGF is analytic at least in the open disc|u| < 1. If X ∈ Z assumes
arbitrarily large negative values, then the PGF certainly exists on the unit circle, but
sometimes not on a larger domain. The precise domain of existence of the PGF as an
analytic function depends on the geometric rate of decay of the left and right tails of
the distribution, that is, ofP(X = k) ask→ ±∞. The characteristic function of the
variableX (and of its distribution functionFX) is

φX(t) := E(ei t X ) = PX(e
i t ) =

∑

k∈Z
P(X = k)eikt .

It exists forall real valuesof t . The Laplace transform of the discrete variableX is

λX(s) := E(esX) = PX(e
s) =

∑

k∈Z
P(X = k)eks.

If X is a continuous random variable with distribution functionF(x) and density
w(x), then the characteristic function is expressed as

φX(t) := E(ei t X ) =
∫

R

ei t xw(x)dx.

and the Laplace transform is

λX(s) := E(esX) =
∫

R

esxw(x)dx.

The Fourier transform always exists for real arguments (by integrability of the Fourier
kernel ei t whose modulus is 1). The Laplace transform, when it exists ina strip,
extends analytically the characteristic function via the equalityφX(t) = λX(i t ). The
Laplace transform is also called themoment generating functionsince an alternative
formulation of its definition, valid for discrete and continuous cases alike, is

λX(s) :=
∑

k≥0

E(Xk)
sk

k!
,

which indeed represents the exponential generating function of moments. (We avoid
this terminology in the text, because of a possible confusion with the many other types
of generating functions employed in this book.)

The importance of the transforms is due to the existence ofcontinuity theoremby
which convergence of distributions can be established via convergence of transforms.

� C.3.Centring, scaling, and standardization.Let X be a random variable. DefineY = X−µ
σ .

The representations as expectations of the Laplace transform and of thecharacteristic function
make it obvious that

φY(t) = e−µi t φX

(
t

σ

)
, λY(s) = e−µsλX

( s

σ

)
.



774 C. CONCEPTS OF PROBABILITY THEORY

One says thatY is obtained fromX by centring (by a shift ofµ) and scaling (by a factor ofσ ).
If µ andσ are the mean and standard deviation ofX, then one says thatY is a standardized
version ofX. �

� C.4.Moments and transforms.The moments are accessible from either transform,

µ(r ) := E{Yr } = dr

dsr λ(s)

∣∣∣∣
s=0
= (−i )r

dr

dtr
φ(t)

∣∣∣∣
t=0

.

In particular, we have

(4)

µ = d

ds
λ(s)

∣∣∣∣
s=0
= −i

d

dt
φ(t)

∣∣∣∣
t=0

µ(2) = d2

ds2
λ(s)

∣∣∣∣∣
s=0

= − d

dt
φ(t)

∣∣∣∣
t=0

σ2 = d2

ds2
logλ(s)

∣∣∣∣∣
s=0

= − d2

dt2
logφ(t)

∣∣∣∣∣
t=0

.

The direct expression of the standard deviation in terms of logλ(s), called thecumulant gener-
ating function, often proves computationally handy. �

� C.5. Mellin transforms of distributions.The quantityM(s) := E(Xs−1) is the Mellin trans-
form of X or of its distribution functionF , whenX is supported byR≥0 (see Appendix B.7:
Mellin transform, p. 762). In particular, ifX admits a density, then this notion coincides with
the usual definition of a Mellin transform. When it exists, the value of the Mellintransform at
an integers = k provides the moment of orderk − 1; at other points, it provides moments of
fractional order. �

� C.6. A “symbolic” fragment of probability theory.Consider discrete random variables sup-
ported byZ≥0. Let X, X1, . . . be independent random variables with PGFp(u) and letY have
PGFq(u). Then, certain natural operations admit a translation into PGFs.

Operation PGF

switch (Bern(λ)⇒ X | Y) λp(u)+ (1− λ)q(u)
sum X + Y p(u) · q(u)

X1+ · · · + Xn p(u)n

random sum X1+ · · · + XY q(p(u))

size bias ∂X
up′(u)
p′(1)

(“Bern” means a Bernoulli{0,1} variableB, with P(1) = λ; the switch is interpreted asB X+
(1− B)Y. Size-biased distributions occur in Chapter VII.) �

C.4. Special distributions

A compendium of special probability distributions of frequent occurrence in ana-
lytic combinatorics is provided by Figure C.1.

A Bernoulli trial of parameterq is an event such that it has probabilityp of hav-
ing value 1 (interpreted as “success”) and probabilityq of having value 0 (interpreted
as “failure”), with p + q = 1. Formally, this is the set� = {0,1} endowed with
the probability measureP(0) = q, P(1) = p. (By extension, we also refer to in-
dependent experiments with finitely many possible outcomesas Bernoulli trials. In
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Distribution Prob.(D), density(C) PGF(D), Char. f. (C)

D Binomial (n, p)

(
n

k

)
pk(1− p)n−k (q + pu)n

D Geometric (q) (1− q)qk 1− q

1− qu

D Neg. binomial[m] (q)

(
m+ k− 1

k

)
qk(1− q)m

(
1− q

1− qu

)m

D Log. series (λ)
1

− log(1− λ)
λk

k!

log(1− λu)

log(1− λ)
D Poisson (λ) e−λ

λk

k!
eλ(1−u)

C Gaussian or Normal,N (0,1)
e−x2/2
√

2π
e−t2/2

C Exponential e−x 1

1− i t

C Uniform [−1/2,+1/2] [[−1/2≤ x ≤ +1/2]]
sin(t/2)

(t/2)

Figure C.1. A list of commonly encountered discrete (D) and continuous(C) prob-
ability distributions: type, name, probabilities or density, probability generating func-
tion or characteristic function.

that sense, the model of words of some fixed length over a finitealphabet and non-
uniform letter weights (or probabilities) belongs to the category of Bernoulli models;
see Chapter III.) Thebinomial distributionof parametersn,q is the random vari-
able that represents the number of successes inn independent Bernoulli trials. This is
the probability distribution associated with the game of heads-and-tails. Thegeomet-
ric distribution is the distribution of a random variableX that records the number of
failures till the first success is encountered in a potentially arbitrarily long sequence
of Bernoulli trials. Thenegative binomialdistribution of indexm (written N B[m])
and parameterq corresponds to the number of failures beforem successes are en-
countered. We have found in Chapter VII that it is systematically associated with the
number ofr –components in an unlabelled multiset schemaF = M(G) whose com-
position of singularities is of the exp–log type. The geometric distribution appears
in several schemas related to sequences while the logarithmic series distribution is
closely tied to cycles (Chapter V). indexlogarithmic-series distribution

ThePoisson distributioncounts among the most important distributions of prob-
ability theory. Its essential properties are recalled in Figure C.1. It occurs for instance
in the distribution of singleton cycles and ofr –cycles in a random permutation and
more generally in labelled composition schemes (Chapter IX).

In this book all probability distributions arising directly from combinatorics area
priori discrete as they are defined on finite sets—typically a certainsubclassCn of a
combinatorial classC. However, as the sizen of the objects considered grows, these
finite distributions usually approach a continuous limit. In this context, by far the most
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important law is theGaussian lawalso known asnormal law, which is defined by its
density and its distribution function:

(5) g(x) = e−x2/2

√
2π

, 8(x) = 1√
2π

∫ x

−∞
e−y2/2 dy.

The corresponding Laplace transform is then evaluated by completing the square,

λ(s) = 1√
2π

∫ +∞

−∞
e−y2/2+sy dy. = es2/2,

and, similarly, the characteristic function isφ(t) = e−t2/2. The distribution of (5) is
referred to as thestandardnormal distribution,N (0,1); if X is N (0,1), the variable
Y = µ + σ X defines the normal distribution with meanµ and standard deviationσ ,
denotedN (µ, σ ).

Among other continuous distributions appearing in this book, we mention the
theta distributions associated with the height of trees andDyck paths (Chapter V) and
the stable laws, which surface in Chapter IX.

C.5. Convergence in law

The central notion, which is of the greatest interest for analytic combinatorics, is
the notion ofconvergence in law, also known asweak convergence.

Definition C.1. Let Fn be a family of distribution functions. The Fn are said tocon-
verge weaklyto a distribution function F if pointwise there holds

(6) lim
n

Fn(x) = F(x),

at every continuity point x of F. This is expressed by writingFn⇒ F as well as
Xn⇒ X, if Xn, X are random variables corresponding to Fn, F. We say that Xn
converges in distributionor converges in lawto X.

This definition has the merit of covering discrete and continuous distributions
alike. For discrete distributions supported byZ, an equivalent form of (6) is
limn Fn(k) = F(k) for eachk ∈ Z; for continuous distributions, Equation (6) just
means that limn Fn(x) = F(x) for all x ∈ R. Although in all generality anything can
tend to anything else, due to the finite nature of combinatorics, we only need in this
book the convergences

Discrete⇒ Discrete, Discrete⇒ Continuous (after standardization).

Three major tools can be used to establish convergence in law: characteristic
functions, Laplace transforms, and moment convergence theorems.

Characteristic functions and limit laws.Properties of random variables are re-
flected by probabilities of characteristic functions, in accordance with general princi-
ples of Fourier analysis—Figure C.2 offers an aperçu. Most important for us is the
Continuity Theoremfor characteristic functions due to Lévy and used extensively in
Chapter IX, starting on p. 639, through the Quasi-powers Theorem of p. 645.
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Characteristic function(φ(t)) distribution function(F(x))

φ(0) = 1 F(−∞) = 0, F(+∞) = 1

|φ(t0)| = 1 for somet0 6= 0 Lattice distribution, span2πt0
φ(t) =

t→0
1+ iµt + o(t) E(X) = µ <∞

φ(t) =
t→0

1+ iµt − ν t2

2
+ o(t2) E(X2) = ν <∞

logφ(t) = − t2

2 X
d=N (0,1)

φ(t)→ 0 ast →∞ X is continuous

φ(t) integrable (is inL1) X is absolutely continuous

density isw(x) = 1

2π

∫ +∞

−∞
e−i t xφ(t)dt

λ(s) := φ(−is) exists inα < ℜ(s) < β Exponential tails

limT→∞ 1
2T

∫+T
−T |φ(t)|2 dt equals

∑
i (pi )

2; the pi are the jumps

φn(t)→ φ(t) (point conv.) Fn⇒ F (weak conv.)

Xn⇒ X (conv. in distribution)

φn “close” toφ Fn “close” to F (Berry–Esseen)

Figure C.2. The correspondence between properties of the distribution function(F)
of a random variable(X) and properties of its characteristic function(φ).

Theorem C.1(Continuity theorem for characteristic functions). Let Y,Yn be random
variables with characteristic functionsφ, φn. A necessary and sufficient condition for
the weak convergence Yn⇒Y is thatφn(t)→ φ(t) for each t.

For a proof, see [68, §26]. What is notable is that the theorem provides anec-
essary and sufficient condition. In addition, the Berry–Esseen inequalities stated in
Chapter IX, p. 641, lie at the origin of precise speed of convergence estimates to
asymptotic limits.

Laplace transforms and limit laws.The continuity theorem for Laplace trans-
forms is stated in Chapter IX, p. 639. In principle, it is of a more restricted scope
than Theorem C.1 since Laplace transforms need not exist. Also, error bounds de-
rived from Laplace transform can be exponentially worse than those resulting from
Berry–Esseen inequalities [557]. For these reasons, the rôle of Laplace transforms in
this book is mostly confined to large deviation estimates (Section IX. 10, p. 699).

The method of moments.For the purpose of establishing limit laws in combi-
natorics, it is may be convenient (sometimes even necessary) to access distributions
by moments. One then attempts to deduce convergence of distributions from conver-
gence of moments. This approach requires conditions under which a distribution is
uniquely characterized by its moments—finding these is knownas themoment prob-
lem in analysis. A lucid discussion is offered by Billingsley in[68, §30], which we
follow.
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A distribution functionF(x), with x ∈ R, is characterized by its moments if the
sequence of real numbers

µk =
∫

R

xk d F(x), k = 0,1,2, . . . ,

uniquely determinesF (that is:
∫

xkd F =
∫

xkdG for all k implies F = G). The
following basic conditions are known to besufficientfor such a property to hold:(i ) F
has finite support;(i i ) the exponential generating function of(µk) is analytic at 0, that
is, for someR> 0, one has

(7) µk
Rk

k!
→ 0, k→∞.

(The first case is proved by appealing to Weierstrass’ theorem to the effect that poly-
nomials are dense among continuous functions over a finite interval with respect to
the uniform norm; the second case results from the continuity theorem of Laplace
transforms, which are none other than exponential generating functions of moments.)
Clearly, the uniform distribution over [0,1], the exponential distribution, and the
Gaussian distribution are characterized by their moments.

Equation (7) expresses the fact that a distribution is characterized by its moments
provided they do not grow too fast, which indicates that its tails decay sufficiently
rapidly. Other useful sufficient conditions forF(x) to be characterized by moments
are [157, XIV.2]:

(8)





Carleman:
∞∑

k=0

µ
−1/(2k)
2k = +∞ (support(F) ⊂ R)

—— :
∞∑

k=0

µ
−1/(2k)
k = +∞ (support(F) ⊂ R≥0)

Krein :
∫ ∞

−∞
log( f (x))

dx

1+ x2
= −∞ (F ′(x) = f (x)).

One has the following theorem.

Theorem C.2(Moment Convergence Theorem). Let F be determined by its moments
and assume that a sequence of distribution functions Fn(x), x ∈ R satisfies for each
k = 0,1,2 . . .,

lim
n→∞

∫

R
xk d Fn(x) =

∫

R

xk d F(x).

Then weak convergence holds: Fn⇒ F.

For a proof, see [68, §30]. In this book, moment methods are used to validate the
moment pumping method expounded in Chapter VII, p. 532.
� C.7. The log–normal distribution.As its name indicates, this is the distribution of the ex-

ponential of a standard normal, with densityf (x) = e−(logx)2/2/(x
√

2π), for x > 0. The
distribution with densityf (x)(1+ sin(2π logx)) has the same moments (Stieltjes, 1895).�



Bibliography
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[83] BOUSQUET-M ÉLOU, M. Limit laws for embedded trees: Applications to the integrated SuperBrow-
nian excursion.Random Structures and Algorithms 29(2006), 475–523.
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Appliqúees 3(1838), 508–516. Freely accessible under the Gallica-MathDoc site.
[107] CATALAN , E. Addition à la note sur unéequation aux diff́erences finies, inséŕee dans le volume
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[119] CHOMSKY, N., AND SCHÜTZENBERGER, M. P. The algebraic theory of context–free languages.

In Computer Programing and Formal Languages(1963), P. Braffort and D. Hirschberg, Eds., North
Holland, pp. 118–161.

[120] CHYZAK , F. Gr̈obner bases, symbolic summation and symbolic integration. InGröbner Bases and
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Newton-Raphson.Advances in Applied Mathematics 3(1982), 407–416.
[148] DEIFT, P. Integrable systems and combinatorial theory.Notices of the American Mathematical Soci-

ety 47, 6 (2000), 631–640.
[149] DELAURENTIS, J. M., AND PITTEL , B. G. Random permutations and brownian motion.Pacific

Journal of Mathematics 119, 2 (1985), 287–301.
[150] DELEST, M.-P.,AND V IENNOT, G. Algebraic languages and polyominoes enumeration.Theoretical

Computer Science 34(1984), 169–206.
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[205] FELLER, W. An Introduction to Probability Theory and its Applications, third ed., vol. 1. John Wiley,
1968.

[206] FELLER, W. An Introduction to Probability Theory and Its Applications, vol. 2. John Wiley, 1971.
[207] FILL , J. A. On the distribution of binary search trees under the random permutation model.Random

Structures & Algorithms 8, 1 (1996), 1–25.
[208] FILL , J. A., FLAJOLET, P., AND KAPUR, N. Singularity analysis, Hadamard products, and tree

recurrences.Journal of Computational and Applied Mathematics 174(Feb. 2005), 271–313.
[209] FILL , J. A.,AND JANSON, S. Approximating the limiting quicksort distribution.Random Structures

& Algorithms 19(2001), 376–406.
[210] FILL , J. A., AND KAPUR, N. Limiting distributions for additive functionals on Catalan trees.Theo-

retical Computer Science 326, 1–3 (2004), 69–102.
[211] FINCH, S.Mathematical Constants. Cambridge University Press, 2003.
[212] FINKEL , R. A., AND BENTLEY, J. L. Quad trees, a data structure for retrieval on compositekeys.

Acta Informatica 4(1974), 1–9.
[213] FISCHER, H. Die verschiedenen Formen und Funktionen des zentralen Grenzwertsatzes in der En-

twicklung von der klassischen zur modernen Wahrscheinlichkeitsrechnung. Shaker Verlag, 2000. 318
p. (ISBN: 3-8265-7767-1).

[214] FLAJOLET, P. Combinatorial aspects of continued fractions.Discrete Mathematics 32(1980), 125–
161. Reprinted in the 35th Special Anniversary Issue ofDiscrete Mathematics, Volume 306, Issue
10–11, Pages 992-1021 (2006).

[215] FLAJOLET, P.Analyse d’algorithmes de manipulation d’arbres et de fichiers, vol. 34–35 ofCahiers
du Bureau Universitaire de Recherche Opérationnelle. Universit́e Pierre et Marie Curie, Paris, 1981.
209 pages.

[216] FLAJOLET, P. On congruences and continued fractions for some classical combinatorial quantities.
Discrete Mathematics 41(1982), 145–153.

[217] FLAJOLET, P. On the performance evaluation of extendible hashing and trie searching.Acta Infor-
matica 20(1983), 345–369.

[218] FLAJOLET, P. Approximate counting: A detailed analysis.BIT 25(1985), 113–134.
[219] FLAJOLET, P. Elements of a general theory of combinatorial structures.In Fundamentals of Com-

putation Theory(1985), L. Budach, Ed., vol. 199 ofLecture Notes in Computer Science, Springer
Verlag, pp. 112–127. Proceedings of FCT’85, Cottbus, GDR, September 1985 (Invited Lecture).

[220] FLAJOLET, P. Analytic models and ambiguity of context–free languages.Theoretical Computer Sci-
ence 49(1987), 283–309.

[221] FLAJOLET, P. Mathematical methods in the analysis of algorithms and datastructures. InTrends in
Theoretical Computer Science, E. Börger, Ed. Computer Science Press, 1988, ch. 6, pp. 225–304.
(Lecture Notes forA Graduate Course in Computation Theory, Udine, 1984).

[222] FLAJOLET, P. Constrained permutations and the principle of inclusion-exclusion.
Studies in Automatic Combinatorics II (1997). Available electronically at
http://algo.inria.fr/libraries/autocomb .

[223] FLAJOLET, P. Singularity analysis and asymptotics of Bernoulli sums.Theoretical Computer Science
215, 1-2 (1999), 371–381.



BIBLIOGRAPHY 787

[224] FLAJOLET, P. Counting by coin tossings. InProceedings of ASIAN’04 (Ninth Asian Computing
Science Conference)(2004), M. Maher, Ed., vol. 3321 ofLecture Notes in Computer Science, pp. 1–
12. (Text of Opening Keynote Address.).

[225] FLAJOLET, P., DUMAS, P., AND PUYHAUBERT, V. Some exactly solvable models of urn process
theory.Discrete Mathematics & Theoretical Computer Science (Proceedings) AG(2006), 59–118.
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[263] FLAJOLET, P., SZPANKOWSKI, W., AND VALL ÉE, B. Hidden word statistics.Journal of the ACM
53, 1 (Jan. 2006), 147–183.

[264] FLAJOLET, P., ZIMMERMAN , P., AND VAN CUTSEM, B. A calculus for the random generation of
labelled combinatorial structures.Theoretical Computer Science 132, 1-2 (1994), 1–35.
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[399] LAM É, G. Extrait d’une lettre de M. Laḿe à M. Liouville sur cette question: Un polygone con-
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[492] PÓLYA , G., AND SZEGŐ, G. Aufgaben und Lehrsätze aus der Analysis, 4th ed. Springer Verlag,

1970.
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[508] RÉVÉSZ, P. Strong theorems on coin tossing. InProceedings of the International Congress of Math-

ematicians (Helsinki, 1978)(Helsinki, 1980), Acad. Sci. Fennica, pp. 749–754.
[509] RICHARD, C. Scaling behaviour of two-dimensional polygon models.Journal of Statistical Physics

108, 3/4 (2002), 459–493.
[510] RICHARD, C. Onq-functional equations and excursion moments. ArXiv:math/0503198, 2005.
[511] RIEMANN , B. Sullo svolgimento delquoziente di due serie ipergeometriche in frazione continua

infinita. InBernhard Riemann’s Gesammelte mathematische Werke und wissenschaftlicher Nachlass,
H. Weber and R. Dedekind, Eds. Teubner, 1863. Fragment of a manuscript (# XXIII), posthumously
edited by H. A. Schwarz.

[512] RIORDAN, J.Combinatorial Identities. Wiley, 1968.
[513] RIORDAN, J. Combinatorial Identities. Dover Publications, 2002. A reprint of the Wiley edition

1958.



BIBLIOGRAPHY 797

[514] RIVIN , I. Growth in free groups (and other stories). ArXiv, 1999. arXv:math.CO/9911076v2, 31
pages.
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[520] ROURA, S., AND MARTÍNEZ, C. Randomization of search trees by subtree size. InAlgorithms—

ESA’96(1996), J. Diaz and M. Serna, Eds., no. 1136 in Lecture Notes in Computer Science, pp. 91–
106. Proceedings of the Fourth European Symposium on Algorithms, Barcelona, September 1996.

[521] RUBEL, L. A. Some research problems about algebraic differential equations.Transactions of the
American Mathematical Society 280, 1 (1983), 43–52.

[522] RUBEL, L. A. Some research problems about algebraic differential equations II.Illinois Journal of
Mathematics 36, 4 (1992), 659–680.

[523] RUDIN , W. Real and complex analysis, 3rd ed. McGraw-Hill Book Co., 1987.
[524] SACHKOV, V. N. Verojatnostnye Metody v Kombinatornom Analize. Nauka, 1978.
[525] SACHKOV, V. N. Combinatorial Methods in Discrete Mathematics, vol. 55 ofEncyclopedia of Math-

ematics and its Applications. Cambridge University Press, 1996.
[526] SACHKOV, V. N. Probabilistic methods in combinatorial analysis. Cambridge University Press,

Cambridge, 1997. Translated and adapted from the Russian original edition, Nauka,1978.
[527] SALOMAA , A., AND SOITTOLA , M. Automata-Theoretic Aspects of Formal Power Series. Springer,

1978.
[528] SALVY , B. Asymptotique automatique et fonctions géńeratrices. Ph.D. Thesis,́Ecole Polytechnique,
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[563] SZEGŐ, G. Orthogonal Polynomials, vol. XXIII of American Mathematical Society Colloquium

Publications. A.M.S, Providence, 1989.
[564] SZPANKOWSKI, W. Average-Case Analysis of Algorithms on Sequences. John Wiley, 2001.
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a . .b (integer interval), 17
∂ (derivative), 87
E (expectation), 113, 728, 772
ℑ (imaginary part), 230
lg (binary logarithm), 308
m (analytic mean), 645
O (asymptotic notation), 722
o (asymptotic notation), 722
P (probability), 113, 157
R (resultant notation), 739
Rconv (radius of convergence), 230
ℜ (real part), 230
Res (residue operator), 233
v (analytic variance), 645
V (variance), 728
1–domain,seeDelta–domain
2 (asymptotic notation), 723
2 (pointing), 86
σ (standard deviation), 728
� (asymptotic notation), 723
⌈·⌋ (nearest integer function), 43, 260
[zn] (coefficient extractor), 19
[[ ·]] (Iverson’s notation), 58
∼= (combinatorial isomorphism), 19
.= (numerically close), 7
≫ (much larger), 566
≪ (much smaller), 566
≈ (roughly equal), 50
∼ (asymptotic notation), 722
⊲⊳ (exponential order), 243∮

(contour integral), 549
⋆ (labelled product), 101
+, seedisjoint union
〈·〉 (strip ofC), 763
◦ (substitution), 87, 136

CYC (cycle construction), 26, 103
MSET (multiset construction), 26
PSET (powerset construction), 26
SEQ (sequence construction), 25, 102
SET (set construction), 102
K� (�–restricted construction), 30

Abel identity, 733
Abel–Plana summation, 238
adjacency matrix (of graph), 336
admissibility (of function), 564–572

admissible construction, 22, 100
Airy area distribution, 365, 534, 706
Airy function, 534, 598, 606, 707, 714
Airy map distribution, 713–714
alcohol, 284, 477–478
algebraic curve, 495
algebraic function, 482–518, 539

asymptotics, 493–518
branch, 495
coefficient, 500–518
elimination, 739–741
exceptional set, 495–496
Newton polygon, 498–500
Puiseux expansion, 444, 498–500
singularities, 495–518
singularity perturbation, 681–684

algebraic topology, 200
algebraic–logarithmic singularity, 376, 393
algorithm

approximate counting, 313–315
balanced tree, 91, 280
binary adder, 308
binary search tree, 203, 428–430, 685, 688
digital tree (trie), 356, 693
Floyd’s cycle detection, 465–466
hashing, 111, 146, 178, 534, 600
integer gcd, 664
irreducible polynomials, 450
Lempel–Ziv compression, 694
paged trees, 688
Pollard’s integer factoring, 466–467
polynomial factorization, 449, 450
polynomial gcd, 662–664
shake and paint, 417
TCP protocol, 315

alignment, 119, 261, 296, 654
alkanes, 477–479
allocation,seeballs-in-bins model
alphabet, 49
ambiguity

context-free grammar, 82
regular expression, 316, 734

analytic continuation, 239
analytic depoissonization, 572–574, 694
analytic function, 230–238

equivalent definitions, 741–743
composition, 411–417
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differentiation, 418–422, 741–743
Hadamard product, 422–427
integration, 418–422, 742–743
inversion, 249, 275–280, 402–407
iteration, 280–283
Lindelöf integrals, 237, 409

animal (lattice), 80–82, 396
aperiodic function, system,seeperiodicity con-

ditions
apparent singularity,seesingularity, apparent
approximate counting, 313–315
area (of Dyck path), 330, 533–534, 706
argument principle, 270
arithmetical functions, 721
arithmetical semigroups, 91, 673
arrangement, 112, 113
asymptotic

algebraic, 518
expansion, 724
notations, 722–725
scale, 724–725

atom, 24, 98
autocorrelation (in words), 60, 271, 659
automaton,seefinite automaton
average,seeexpectation

balanced tree,seetree
ballot problem, 68, 76
balls-in-bins model, 113, 177–178

capacity, 598–600
Poisson law, 177

Bell numbers, 109
asymptotics, 560–562, 762

Bell polynomials, 188
Bernoulli number, 747
Bernoulli numbers, 268, 726–727, 766
Bernoulli trial, 191, 307, 774
Berry–Esseen inequalities, 624–625, 641, 777
Bessel function, 46, 332, 534, 607, 661, 753
Beta function(B), 384, 524, 601, 747
BGF,seebivariate generating function
bibliometry, 45
bijective equivalence (∼=), 19
binary decision tree (BDT), 78
binary search tree (BST), 203, 428–430, 685,

688
binary tree, 738
binomial coefficient, 100

asymptotics, 380–385
central approximation, 160, 328, 588, 642,

761–762
sum of powers, 761–762

binomial convolution, 100
binomial distribution, 627, 642, 775
birth and death process, 319
birth process, 312
birthday paradox, 114–119, 192, 416
bivariate generating function (BGF), 157
Boltzmann model, 280, 566, 701
boolean function, 70, 77–78, 487–488

bootstrapping, 309
bordering condition (permutation), 202
Borges’s Theorem, 61–62, 680, 683–684
Borges, Jorge Luis, 61
boson, 532
boxed product, 139–142
branch (of curve), 495
branch point (analytic function), 230, 277
branching processes, 196–198
bridge, 707
bridge (lattice path), 77, 506–513, 636
Brownian motion, 185, 360, 413, 534, 706
Bürmann inversion,seeLagrange inversion

canonicalization, 87
cartesian product construction (×), 23
Catalan numbers (Cn), 17, 34–36, 38, 67, 73–

78, 738
asymptotics, 7, 37–39, 383
generating function, 35

Catalan sum., 417
Catalan tree, 35, 173, 738
Cauchy’s residue theorem, 234
Cauchy–Riemann equations, 742
Cayley tree, 127–129, 179
Cayley tree function,seeTree function (T)
Central Limit Theorem (CLT), 593, 642–643,

696
centring (random variable), 773
characteristic function (probability), 639, 772–

774
Chebyshev inequalities, 161, 729
Chebyshev polynomial, 327
chessboard, 373
circuit (in graph), 336, 346
circular graph, 99
class (of combinatorial structures), 16

labelled, 95–149
cluster, 209, 212
coalescence of saddle-point

with other saddle-point, 606
with roots, 589
with singularity, 590–591

code (words), 62
coding theory, 38, 53, 62, 246
coefficient extractor ([zn]), 19
coin fountain, 331, 662
combination, 52
combinatorial

class, 16, 96
isomorphism (∼=), 19
parameter, 151–219
sums, 415–417

combinatorial chemistry, 443, 474–479
combinatorial identities, 747–753
combinatorial probability, 727–729
combinatorial schema,seeschema
complete generating function, 186–198
complex differentiability, 231
complex dynamics, 280, 535
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complexity theory, 77
composition (of integer), 39–49

Carlitz type, 201, 206, 263, 666
complete GF, 188
cyclic (wheel), 47
largest summand, 169, 298, 300
local constraints, 199–200, 263
number of summands, 44, 167–168, 654
prime summands, 43, 298–300, 654
profile, 169, 296
r –parts, 168
restricted summands, 297–300

composition schema, 411–417, 628, 703
critical, 412, 416–417, 707–714
subcritical, 629, 634
supercritical, 414–416, 650–655

computable numbers, 251
computer algebra,seesymbolic manipulation
concentration (of probability distribution), 161–

163
conformal map, 231
conjugacy principle (paths), 75
connection problem, 470–472, 483–505, 521,

525, 583
constructible class, 250–255
construction

cartesian product (×), 23
cycle (CYC), 26, 165, 729–730

labelled, 103, 174
disjoint union (+), 25
implicit, 88–91
labelled product (⋆), 100–102
multiset (MSET), 26, 165
pointing(2), 86–88, 198
powerset (PSET), 26, 165, 174
sequence (SEQ), 25, 165

labelled, 102, 174
set (SET), 102
substitution (◦), 86–88, 198–201

context-free
asymptotics, 440, 482–484
language, 82–83, 482
specification, 78–83, 482–488

continuant polynomial, 321
continuation (analytic), 239
continued fraction, 195, 216, 283, 318–336, 663
continuity theorems (probability), 623–627,

639–641, 776–777
continuous random variable, 638–644, 771
contour integral (

∮
), 549

convergence
in law, 620–623, 638–639
speed (probability), 624–625, 641

convexity (of GFs), 280, 550
correlation,seeautocorrelation
coupon collector problem, 114–119, 192
cover time (walk), 363
covering (of interval), 27

critical composition schema,see composition
schema

critical point, 607
cumulant (of random variable), 647, 774
cumulated value (of parameter), 159
cumulative distribution function,seedistribu-

tion function
cumulative generating function, 159
cycle construction (CYC), 26, 165, 729–730

labelled, 103, 174
undirected, labelled, 133

cycle lemma (paths), 75
cyclic permutation, 99

1–domain, 389, 398
D–finite functions,seeholonomic functions
Daffodil Lemma, 266
Darboux’s method, 436
data compression, 274, 694
data mining, 315, 417
de Bruijn graph, 354–355
Dedekindη function, 577
degree (of tree node), 737
Delta–domain (1), 389, 398
density (random variable), 771
denumerant, 43, 257–258
dependency graph, 33, 250, 340, 483
depoissonization, 572–574
derangement, 122, 207, 261, 368, 448, 671, 760
derivative (∂), 87
devil’s staircase, 352–353
dice games, 587
Dickman function, 675
difference equation,see q–calculus
differential equations, 518–532, 581–585, 684–

690, 748–753
differential field, 522
differentiation (singular), 418–422
digital tree (trie), 356, 693
digraph,seegraph
dilogarithm, 238, 410, 749–750
dimensioning heuristic (saddle point), 554, 555,

566
diophantine inequalities (linear), 46
directed graph, 336
Dirichlet generating function (DGF), 664, 721,

763
disc of convergence (series), 230, 726
discrete random variable, 620–628, 771
discriminant (of polynomial), 495, 741
disjoint union construction (+), 25, 100
distribution,seeprobability distribution
distribution function (random variable), 621,

638, 641, 771
divergent series, 89, 138, 731
DLW Theorem, see Drmota–Lalley–Woods

Theorem
dominant singularity, 242
double exponential distribution, 118, 308
Drmota–Lalley–Woods Theorem, 443, 482–493
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drunkard problem, 90, 425–427
Dyck path,see alsoexcursion, 77, 319, 511

area, 330, 533–534, 706–707
height, 326–330
initial ascents, 635

dynamical system, 318, 664, 716

EGF,seeexponential generating function
Ehrenfest urn model, 118, 336, 530
eigenvalue,seematrix
EIS (Sloane’s Encyclopedia), 18
Eisenstein’s lemma (algebraic functions), 505
elimination (algebraic function), 739–741
elliptic function, 330, 531
entire function, 243
entropy, 587
error function (erf), 638
Euclid’s algorithm,seegreatest common divisor

(gcd)
Euler numbers, 144, 268–269
Euler’s constant (γ ), 117, 726, 746, 747
Euler–Maclaurin summation, 238, 268, 726–

727, 766
Eulerian numbers, 210, 658, 697–698, 702
Eulerian tour (in graph), 354
exceedances (in permutations), 368
exceptional set (algebraic function), 495–496
excursion (lattice path), 77, 319, 506–513
exp–log schema, 441–442, 445–452, 670–676
exp–log transformation, 29, 85
expectation (or mean, average),E, 113, 158,

728, 772
exponential families (of functions), 197, 701
exponential generating function (EGF)

definition, 97
multivariate, 156
product, 100

exponential growth formula, 243–249
exponential order (⊲⊳), 243
exponential–polynomial, 255, 290–293, 319–

326

Fàa di Bruno’s formula, 188
factorial moment, 158, 728
factorial, falling, 520, 751
Ferrers diagram, 39
Fibonacci numbers (Fn), 42, 59, 256, 363
Fibonacci polynomial, 327
finite automaton, 56, 339–356
finite field, 90
finite language, 64
finite state model, 350, 358–367
forest (of trees), 68, 128, 737
formal language,seelanguage
formal power series,seepower series
formal topology (power series), 731
four-colour theorem, 513
Fourier transform, 639, 772
fractals, 282
fragmented permutation, 125

asymptotics, 247, 562–563
free group, 206
free tree,seetree, unrooted
function (of complex variable)

analytic, 230–238
differentiable, 231
entire, 231, 243
holomorphic, 231
meromorphic, 233

functional equation, 33, 275–285
Dedekindη function, 577
difference equation,see q–calculus
elliptic theta function, 330
Gamma function, 744
kernel method, 508
quadratic method, 515
zeta function, 747

functional graph, 129–132, 480, 673
Fundamental Theorem of Algebra, 270, 546

Galton–Watson process, 197
gambler ruin sequence, 76
gamma constant(γ ), seeEuler’s constant
Gamma function (Ŵ), 378, 743–747
Gaussian binomial, 45
Gaussian distribution, 593–594, 638, 776
Gaussian integral, 744
general tree, 738
generating function

algebraic,see alsoalgebraic function, 518
complete, 186–198
exponential, 95–149
holonomic,seeholonomic functions
horizontal, 153
multivariate, 151–219
ordinary, 15
rational,seerational function
vertical, 153

geometric distribution, 775
Gessel’s calculus, 752–753
GF,seegenerating function
golden ratio (ϕ), 42, 91
graph

acyclic, 132, 406
adjacency matrix, 336
aperiodic, 341
bipartite, 138
circuit, 336, 346
circular, 99
colouring, 513
connected, 138–139
de Bruijn, 354–355
directed, 336
enumeration, 105–106
excess, 133, 406
functional, 129–132, 480
labelled, 96–97, 105–106, 132–136
map, 513–518
non-crossing, 485–487, 502–503
path, 336–356
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periodic, 341
planar, 517
random, 134–136
regular, 133, 189, 379, 395–396, 449, 583–

585, 671, 752
spanning tree, 339
strongly connected, 341
unicyclic, 133
unlabelled, 105–106

greatest common divisor (gcd), 662–664
Green’s formula, 742
Gröbner basis, 80, 739
group

free, 206
symmetric, 139

Hadamard product, 303, 422–427, 748
Hamlet, 54
Hankel contour, 382, 745
Hardy–Ramanujan expansion, 579
harmonic function, 742
harmonic number (Hn), 117, 161, 389, 724

asymptotics, 723–724, 726, 766
generating function, 160

harmonic sum, 763
Hartogs’ Theorem, 767
hashing algorithm, 111, 146, 178, 600
Hayman admissibility, 564–572
heap of pieces, 81, 308
Heaviside function, 763
height of tree,seetree, height
Hermite polynomial, 334
hidden pattern, 54, 315–318
hierarchy, 128, 280, 472–474, 479
Hipparchus, 69
histograms, 157
holomorphic functions, 231
holonomic functions, 445, 494, 518, 581–585,

747–753
homotopy (of paths), 233
horizontal generating function, 153
horse kicks, 627
hypergeometric function, 423, 525, 750–751

basic, 315

implicit construction, 88–91, 137–139, 203–206
Implicit Function Theorem, 753–755
implicit-function schema, 467–475
inclusion–exclusion, 206–214, 367–373
increasing tree, 143–146, 202–203, 526–528,

684–685
Indo-European languages, 473
inheritance (of parameters), 163, 174
integer composition,seecomposition (of inte-

ger)
integer partition,seepartition (of integer)
integration (singular), 418–422
interconnection network, 333
inverse-function schema, 452–467
inversion

analytic, 275
inversion (analytic), 249, 402–407
inversion table (permutation), 146
involution (permutation), 122, 333, 558–560,

691–692
irregular singularity (ODE), 519, 581–585
isomorphism (combinatorial,∼=), 19
iteration (of analytic function), 280–283
iterative specification, 31–34, 250–255
Iverson’s notation ([[·]]), 58

Jacobi trace formula, 339
Jacobian matrix, determinant, 483, 491, 755

kangaroo hops, 373
kernel method (functional equation), 508
kings, 373
kitten, 517
Knuth–Ramanujan function,see Ramanujan’s

Q-function

labelled class, object, 95–149, 174–181
labelled construction, 100–106
labelled product (⋆), 101
Lagrange inversion, 66–70, 126, 194, 732–733
LambertW-function, 128
language, 733

context-free, 82–83, 482
formal, 49
regular, 373, 733–735

Laplace transform, 639, 750, 772–774
Laplace’s method, 601, 755–762

for sums, 761–762
Laplacian, 742

of graph, 339
large deviations, 587, 699–703
large powers, 585–594
largest components, 300
Latin rectangle, 752
lattice path, 76–77, 318–336, 506–513

decompositions, 320
initial ascents, 635–637

lattice points, 49, 589
Laurent series, 507
law of large numbers, 158, 162, 728
law of small numbers, 627
leader, 103, 136, 141, 142
leaf (of tree), 182, 737
Lebesgue measure, integral, 770
letter (of alphabet), 49
light bulb, 655
limit law, 611–718, 776–778
Lindelöf integrals, 237, 409
linear fractional transformation, 323
Liouville’s theorem, 237
local limit law, 593, 615, 694–699
localization (of zeros and poles), 269
logarithm, binary (lg), 308
logarithmic-series distribution, 297
logic (first-order), 467
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logistic map, 536
longest run (in word), 308–312
loop (in complex region), 233
Łukasiewicz codes, 75, 511
Lyndon words, 85

MacMahon’s Master Theorem, 338
magic duality, 238
majorant series, 250, 753
map, 414, 513–518, 713–714
mapping, 129–132, 462–467, 708, 733

connected components, 129–136, 449, 671
idempotent, 571
regressive, 145

mapping pattern,seefunctional graph
marking variable, 19, 164, 167
Markov chain, 56, 339, 666
Markov–Chebyshev inequalities, 161, 729
Master Theorem (of MacMahon), 338
matrix

aperiodic, 341
irreducible, 341
non-negative, 342
Perron–Frobenius theory, 340–342, 345
positive, 342
spectrum, 290
stochastic, 339, 352
trace, 339
transfer, 358–367, 664, 666
tridiagonal, 367

matrix integrals, 517
Matrix Tree Theorem, 339
Maximum Modulus Principle, 545
mean,seeexpectation
meander (lattice path), 77, 506–513, 637
meander (topology), 525
measure theory, 769–771
Meinardus’ method (integer partitions), 578–

580
Mellin transform, 311, 329, 409, 537, 576, 664,

762–767
ménage problem, 368
meromorphic function, 233

coefficient asymptotics, 289
singularity perturbation, 650–666

MGF, seemultivariate generating function
mobile (tree), 454
Möbius function (µ), 721
Möbius inversion, 89, 722
model theory, 467
modular form, 331, 577
moment generating function,seeLaplace trans-

form
moment inequalities, 161–163, 729
moment method, 318, 777–778
moment pumping, 532–535
moments (of random variable), 158, 727, 772
monkey saddle, 542, 545, 600–606
monodromy, 498
Morera’s Theorem, 743

Motzkin numbers, 68, 77, 81, 88
asymptotics, 396, 502, 589

Motzkin path, 77, 319, 326, 330, 511
multi-index convention, 165, 767
multinomial coefficient, 100, 187
multiset construction (MSET), 26, 165
multivariate generating function (MGF), 151–

219

naming convention, 19, 98
Narayana numbers, 182
natural boundary, 249
nearest integer function (⌈·⌋), 43, 260
necklace, 18, 64
negative binomial distribution, 451, 621, 627,

775
Neptune, 339
nested sequences, 290, 291, 318–336
network, 333
neutral object, 24, 98
Newton polygon, 498–500
Newton’s binomial expansion, 35
Newton–Puiseux expansion,seePuiseux expan-

sion
Newton–Raphson iteration, 88
nicotine, 21
non-crossing configuration, 485–487, 502–503
non-plane tree, 71–72, 127
non-recursive specification,seeiterative specifi-

cation
Nörlund–Rice integrals, 238
normal distribution,seeGaussian distribution
normalization (of random variable),seestan-

dardization
numerology, 318

O (asymptotic notation), 722
o (asymptotic notation), 722
ODE (ordinary differential equation),seediffer-

ential equations
OGF,seeordinary generating function
order constraints (in constructions), 139–146,

201–203
ordinary generating function (OGF), 19
ordinary point (analytic function), 543
orthogonal polynomials, 323, 332
oscillations (of coefficients), 264, 283, 384
outdegree,seedegree (of tree node)

P–recurrence, 748–749
Painlev́e equation, 532, 598
pairing (permutation), 122
parallelogram polyomino, 660–662
parameter (combinatorial), 151–219

cumulated value, 159
inherited, 163–165
recursive, 181–185

parenthesis system, 77
parking, 146, 534
parse tree, 82
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partially commutative monoid, 307–308
partition (of integer), 39–49

asymptotics, 248, 574–581
denumerant, 43, 257–258
distinct summands, 579
Durfee square, 45
Ferrers diagram, 39
Hardy–Ramanujan–Rademacher expansion,

579
largest summand, 44
Meinardus’ method, 578–580
number of summands, 44, 171, 581, 666
plane, 580
prime summands, 580
profile, 171
r –parts, 172

partition of set,seeset partition
path (in graph), 336
path (in complex region), 233
path length,seetree
patterns

in permutations, 211, 689
in trees, 213–214, 680–681
in words, 54–56, 58–62, 211, 271–274, 315–

318, 659–660, 666
pentagonal numbers, 49
periodicity conditions

coefficients, 264, 266, 302
Daffodil Lemma, 266
generating function, 294, 302
graph, 341
linear system, 341
polynomial system, 483

permutation, 17, 98, 119–124
alternating, 143–144, 269
ascending runs, 209–211, 658–659, 697–698
avoiding exceedances, 368
bordering condition, 202
cycles,see alsoStirling numbers (1st kind),

119–124, 155, 175–177, 448, 644–645,
671

cycles of lengthm, 625–627
cyclic, 99
derangement, 122, 207, 261, 368, 448, 671,

760
exceedances, 368
fixed order, 569
increasing subsequences, 596–598
indecomposable, 89, 139
inversion table, 146
involution, 122, 248, 333, 558–560, 596,

691–692
local order types, 202–203
longest cycle, 122, 569
longest increasing subsequence, 211, 596–

598, 716, 752–753
ménage, 368
pairing, 122
pattern, 211, 689

profile, 175
records, 140–141, 644–645
rises, 209–211
shortest cycle, 122, 261–262
singletons, 622–623
succession gap, 373
tree decomposition, 143–144

Perron–Frobenius theory, 340–342, 345
perturbation theory, 11–12, 591, 612, 617–618,

650–694, 703
PGF,seeprobability generating function
phase transition, 704–714

diagram, 704
phylogenetic trees, 129
Picard approximants, 754
Plana’s summation, 238
planar graph, 517
plane partition (of integer), 580
plane tree, 65–70
pointing construction (2), 86–88, 136–137, 198
Poisson distribution, 176, 451, 572–574, 627,

643, 775
Poisson–Dirichlet process, 676
poissonization, 572–574
political (in)correctness, 146
Pólya operators, 34, 252, 447, 475–482
Pólya theory, 83, 85–86
Pólya urn process,seeurn model
Pólya–Carlson Theorem, 253
Pólya–Redfield Theorem, 85
polydisc, 767
polylogarithm, 237, 408–411, 749–750
polynomial

primitive, 358
polynomial (finite field), 90–91, 449–450, 662–

664, 672–673
polynomial system, 488, 494
polyomino, 45, 201, 331, 363, 365–367, 535,

660–662
power series, 15, 19, 97, 153, 164, 187, 730–731

convergence, 731
divergent, 89, 138, 731
formal topology, 731
product, 731
quasi-inverse, 731
sum, 731

powerset construction (PSET), 26, 165
preferential arrangement numbers, 109
preorder traversal (tree), 74
prime number, 228, 721
Prime Number Theorem, 91
principal determination (function), 230
Pringsheim’s theorem, 240
prisoners, 124, 176
probabilistic method, 729
probability (P), 113, 157
probability distribution

Airy area, 365, 707
Airy map, 713–714
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arcsine law, 705
Bernoulli, 775
binomial, 627, 642, 775
double exponential, 118, 308–311
Gaussian, 593–594, 638, 776
geometric, 775
geometric–birth, 314
logarithmic series, 296, 775
negative binomial, 451, 621, 627, 775
Poisson, 451, 572–574, 627, 643, 775
Rayleigh, 116, 708
stable laws, 413, 707–714
theta function, 328, 360, 538
Tracy–Widom, 598
Zipf laws, 711

probability generating function (PGF), 157,
623, 728, 773

probability space, 769
profile (of objects), 169, 451–452
pruned binary tree, 738
psi function (ψ), 725, 746
Puiseux expansion (algebraic function), 444,

498–500

q–calculus, 45, 49, 315, 331, 661
quadratic method (functional equation), 515
quadtree, 522–525, 687–688
quasi-inverse, 34, 291, 731

matrix, 349
quasi-powers, 11, 586, 612, 644–690

generalized, 690–694
large deviations, 699–703
local limit law, 694–699
main theorem, 645–648

Rabin–Scott Theorem, 57–59, 735
radioactive decay, 627
radius of convergence (series), 230, 243–244
Radon–Nikodym Theorem, 771
Ramanujan’sQ-function, 115, 130, 416–417
random generation, 77, 300
random matrix, 597, 674
random number generator, 465
random variable, 727, 769–778

continuous, 638–644, 771
density, 771
discrete, 157, 620–628, 771

random walk,seewalk
rational function, 236, 255–258, 269–271

positive, 356, 357
Rayleigh distribution, 116, 708
record

in permutation, 140–141
in word, 189

recurrence
tree, 427–433

recursion (semantics of), 33
recursive parameter, 181–185
recursive specification, 32–34
region (of complex plane), 229

regular
expression, 373, 733–735
language, 300–308, 373, 733–735
specification, 300–308

regular graph,seegraph, regular
regular point (analytic function), 239
regular singularity (ODE), 519–525
relabelling, 100
removable singularity,seesingularity, apparent
renewal process, 300, 655
Res (residue operator), 233
residue, 233–238

Cauchy’s theorem, 234
resultant (R), 80, 739–741
Riccati differential equation, 689
Rice integrals,seeNörlund-Rice integrals
Riemann surface, 239
Rogers–Ramanujan identities, 331
rotation correspondence (tree), 73
Rouch́e’s theorem, 270
round (children’s), 397
RV, seerandom variable

SA (amenable to singularity analysis), 401
saddle-point

analytic function, 543–546
bounds, 246, 546–550, 586
depoissonization, 572–574
dimensioning heuristic, 554, 555, 566
large powers, 585–594
method, 541–608
multiple, 545, 600–606
perturbation, 690–694

scaling (random variable), 773
schema (combinatorial–analytic),see alsocom-

position schema, context-free specifica-
tion, exp–log schema, implicit-function
schema, inverse function schema, nested
sequences, regular specification, simple
variety (of trees), supercritical sequence
schema, 12, 170–171, 178–181, 289

Schr̈oder’s problems, 69, 129, 474
section (of sequence), 302
self-avoiding configurations, 363–365
semantics of recursion, 33
sequence construction (SEQ), 25, 165

labelled, 102, 174
series–parallel network, 69, 72
set construction (SET), 102, 174
set partition,see alsoBell numbers, Stirling

numbers (2nd kind), 62–64, 106–119, 179
asymptotics, 247, 560–562
block, 108
largest block, 569
number of blocks, 179, 594–596, 692–693

several complex variables, 767–768
shifting of the mean, 700, 701
shuffle product, 306
sieve formula,seeinclusion–exclusion
Simon Newcomb’s problem, 192–193
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simple variety (of trees), 66, 128, 194, 452
singular expansion (function), 393
singularity, 239–243

algebraic–logarithmic, 376, 393
apparent, 243, 743
dominant, 242
irregular (ODE), 581, 585
perturbation, 650–690
regular (ODE), 519–525
removable, 243, 743

singularity analysis, 375–438
applications, 439–540
perturbation, 650–690
uniform expansions, 668–669

singularity perturbation, 703–707
size (of combinatorial object), 16, 96
size-biased (probability), 461
Skolem-Mahler-Lech Theorem, 266
slicing, 199, 366, 508
slow variation, 434
Smirnov word, 204, 262, 312, 350
society (combinatorial class), 571
spacings, 52
span (of sequence, GF), 266
spanning tree, 339
special functions, 747–753
species, 30, 94, 137, 149
specification, 33

iterative, 31–34, 250–255, 280
recursive, 32–34

spectrum,seematrix
speed of convergence (probability), 624–625,

638–639
squaring of the circle, 758
stable laws,seeprobability distribution
standard deviation, (σ ), 728
standardization (random variable), 614, 638,

773
star-continuable function, 398
statistical physics, 46, 81, 201, 362–363, 440,

525, 704
steepest descent, 544, 547, 607
Stieltjes integral, 770–771
Stirling numbers, 735–737

cycle (1st kind), 121, 155, 644–645, 654, 698
partition (2nd kind), 62–64, 109, 179, 653–

654, 692–694
Stirling’s approximation, 37, 407, 410, 555–

558, 747, 760–761, 766
Stokes phenomenon, 582–583
string,seeword
strip (〈·〉), 763
subcritical composition schema,seecomposi-

tion schema
subexponential factor, 243
subsequence statistics,see hidden patterns,

words
substitution construction (◦), 86–88, 136–137,

198–201

supercritical composition schema,seecomposi-
tion schema

supercritical cycle, 414
supercritical sequence, 293–300, 652–655
supernecklace, 125
supertree, 412–414, 503, 714
support (of probability measure), 769
support (of sequence, GF), 266
surjection, 106–119, 296, 653–654

asymptotics, 259
complete GF, 188

surjection numbers, 109, 268
symbolic manipulation, 253
symbolic method, 15, 22, 33, 92, 104
symmetric functions, 189, 752–753

Tauberian theory, 434, 572
Taylor expansion, 201, 723, 726, 742
theory of species,seespecies
theta function, 328–330, 360, 538
threshold phenomenon, 211
tiling, 360–363, 665
total variation distance (probability), 623
totient function (ϕ), 27, 721
trace monoid,seepartially commutative monoid
trains, 253–255, 398
transcendental function, 506
transfer matrix, 358–367, 664–666
transfer operator, 664
transfer theorem, 389–392
tree, 31, 64–72, 125–136, 737

additive functional, 457–462
balanced, 91, 280–283
binary,see alsoCatalan numbers, 67, 738
branching processes, 196–198
Catalan, 35
Cayley,see alsoTree function(T), 127–129
degree profile, 194, 459–460
exponential bounds, 277–280
forests, 68
general, 31, 738
height, 216, 327–330, 458–459, 535–538
increasing, 143–146, 202–203, 526–528,

684–685
leaf, 182, 473, 678, 737
level profile, 194–195, 458–459, 711–712
Łukasiewicz codes, 75
mobile, 454
non-crossing, 485–487, 502–503
non-plane, 71–72, 462, 475–482
non-plane, labelled, 127
parse tree, 82
path length, 184–185, 195, 461, 534–535,

706–707
pattern, 213–214, 680–681
plane, 65–70, 738
plane, labelled, 126
quadtree, 522–525, 687–688
regular, 68
root subtrees, 633
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root-degree, 173, 179, 456–457, 632
rooted, 737
search, 203
simple variety, 66, 128, 194, 404–407, 452–

467, 589–590, 633, 683, 711–712
supertree, 412–414, 503, 714
t–ary, 68
unary–binary,see alsoMotzkin numbers, 68,

88, 396, 501
unrooted, 132, 480–482
valuated, 414
width, 359–360, 666, 712

tree concepts, 737–738
Tree function (T), 127–128, 403–407
tree recurrence, 427–433
triangulation (of polygon), 17, 20, 35–36, 79
tridiagonal matrix, 367
trinomial numbers, 588
trivial bound (integration), 547
truncated exponential, 111

unambiguous,seeambiguity
unary–binary tree,see tree, unary–binary and

Motzkin numbers
undirected cycle construction (UCYC), 86, 133
undirected sequence construction (USEQ), 86
uniform expansions

asymptotics, 725–726
singularity analysis, 668–669, 676

uniform probability measure, 727
uniformization (algebraic function), 497
universality, 7, 12, 440–443, 455, 606
unlabelled structures, 163–174
unrooted tree,seetree, unrooted
urn (combinatorial class), 99
urn model, 118, 336, 529–531

Vallée’s identity, 30
valley (saddle-point), 544
variance (V), 728
vertical generating function, 153
Vitali’s theorem (analytic functions), 624

w.h.p. (with high probability), 135, 162
walk, 367

birth type, 312–315
cover time, 363
devil’s staircase, 352–353
in graphs, 336–356
integer line, 319–324
interval, 319–330
lattice path, 76–77, 318–336, 506–513
self-avoiding, 363–365

Wallis integral, 747, 758
weak convergence (probability distributions),

621
Weierstrass Preparation Theorem (WPT), 754–

755
wheel, 47
width (of tree), 359–360, 666, 712

winding number, 270
word, 49–64, 111–119

aperiodic, 85
code, 62
excluded patterns, 355
language, 49, 733
local constraints, 349
longest run, 308–312
pattern, 54–56, 58–62, 211, 271–274, 315–

318, 659–660, 666
record, 189
runs, 51–54, 204
Smirnov, 204, 262, 312, 350

Young tableau, 752

zeta function of graphs, 346
zeta function, Riemann (ζ ), 228, 269, 408, 721,

746–747, 752
Zipf laws, 711


