This incursion into the realm of elementary and probabilistic number theory of continued fractions, via modular forms, allows us to study the alternating sum of coefficients of a continued fraction, thus solving the longstanding open problem of their limit law.
| 
 | 
 | 
 | f | ( | Tj(x0) | ) | = | ó õ | 
 | f(y) dl(y). | 
| æ ç ç è | 
 | ö ÷ ÷ ø | = (-1)(c-1)(d-1)/4 | æ ç ç è | 
 | ö ÷ ÷ ø | . | 
| æ ç ç è | 
 | ö ÷ ÷ ø | =(-1) | 
 | , | 
| s(d,c)= | 
 | ((hd/c))((h/c)), | 
| 0, | if x is an integer, | 
| x - ë xû - 1/2, | otherwise. | 
| h(z) = e | 
 | 
 | (1 - e | 
 | ) | 
| ln h | æ ç ç è | 
 | ö ÷ ÷ ø | = | 
 | (1) | 
| a b | 
| c d | 
| ln h(z) = | 
 | - | 
 | 
 | , | 
| s(c, d) = | 
 | + | 
 | + | 
 | - s(d, c). | 
| s(d,c)= | 
 | æ ç ç è | -3+ | 
 | - | 
 | (-1)iai | ö ÷ ÷ ø | . | 
| a b | 
| c d | 
| 1') f(gz)=c(g) | æ ç ç è | 
 | ö ÷ ÷ ø | 
 | f(z)
  (for gÎ G),  and  2')  
ó õó õ | 
 | | | f(x+iy) | | | 2 | 
 | <¥. | 
| á f,gñ
=ó õó õ | 
 | f(z)g(z)yr | 
 | . | 
| S(m,n,c)=å | e | 
 | , | 
| S(m,n,c,c,G)=åc(g) | e | 
 | , | 
| a c | 
| c d | 
| 1 q | 
| 0 1 | 
| 1 q | 
| 0 1 | 
| tj(m, n, c, G) = | 
 | 
| e | 
 | 
 | e | 
 | =S | ( | 1,1,c,cr,SL(2,Z) | ) | , | 
| 
 | 
 | | | { n<N:f(n)<x } | | | =F(x). | 
| 
 | 
 | 
 | eitf(n)=g(t), | 
| ó õ | 
 | 
 | dy = e | 
 | , | 
| | | { 0<d<c<N:gcd(d,c)=1 } | | | = | 
 | +O(Nln N) | 
| 
 | e | 
 | ~ e | 
 | 
 | . | 
| 
 | e | 
 | = | 
 | e | 
 | + O | æ è | N2(ln | N) | 
 | ö ø | . | 
| 
 | e | 
 | =e | 
 | 
 | S | ( | 1,1,c,cr,SL(2,Z) | ) | , | 
| 
 | N2-r + O(N | 
 | )= | 
 | e | 
 | N2 + O(N2/ln N) | 
http://www.ihes.fr/~ilan/publications.html.
http://www.txwesleyan.edu/aegis/aegistwo/Unreasonable.html.This document was translated from LATEX by HEVEA.