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Definitions

The redundancy-rate problem of universal coding for a
class of sources consists in determining by how much the
actual code length exceeds the optimal (ideal) code length.

A code
Cn: A" — {0,1}"
is a mapping from the set A" of all sequences of length n
over the alphabet A to the set {0, 1}* of binary sequences.

Given a probabilistic source model and a code C,, we let:

e P(x7) be the probability of the message 7 = =1 ... z,,
o L(C,, z7) be the code length for =7,

e Entropy H,(P) = — Zfﬂf P(z?)lg P(x7),

e the “ideal” code length: —1g P(x7).

Information-theoretic quantities are expressed in binary
logarithms written lg := log,. We also write log := In.
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Various Redundancies

The pointwise redundancy R,(C,, P;x}) and the
average redundancy R, (C,,, P) are defined as

R,(Ch, P;x7)
Rn(Cy)

L(C,) +1g P(z})
EX{L[Rn(Cna P; X?)]
E[L(Cn, X|)] — Hn(P)

where E denotes the expectation. The maximal redundancy
is defined as

R*(C,, P) = m%X{Rn(Cm P;z)}.
T

The pointwise redundancy can be negative, maximal and
average redundancy cannot (see next slide).

The strong redundancy-rate problem consists in
determining for a class & of source models the rate of
growth of the minimax quantities

Ry(S) = minmax{Ru(Ca, P)H(= o(n),
R.(S) = minmax{R,(Cn, P)}(= o(n))
as n — OoQ.
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Shannon’s Lower Bound

Fact: For any code, the average code length
E[L(C,, X{')] cannot be smaller than the entropy of the
source H,(P), that is,

E[L(Cn, X1)] 2 Hn(P).

Sketch of Proof: Let K = Zx? o~ L(=T) < 1, and
L(C,,x7) := L(C},). Then

E[L(Cn, X{)] — Ho(P) = > P(z})L(a})
P EAT

+ D> P(z)log P(z})

n n
) €A

= )  P(z})log

:1:"116./4”
> 0

P(z7)

= — log K
2 L@ K &

since the first term is a divergence and cannot be negative
(or logx < x — 1) while K < 1 by Kraft's inequality.

Barcelona/Stanford /Berkeley'99 4



Analytic Information Theory

The redundancy rate problem is typical of a situation where
second-order asymptotics play a crucial role since the
leading term of L(C',) is known to be nH, where H is
the entropy rate. This problem is an ideal candidate for
analytic information theory that applies analytic tools to
information theory.

As argued by Andrew Odlyzko: “Analytic methods are
extremely powerful and when they apply, they often yield
estimates of unparalleled precision.”

In 1997 Shannon Lecture, Jacob Ziv presented compelling
arguments for “backing off” to a certain degree from the
(first-order) asymptotic analysis of information systems in
order to predict the behaviour of real systems where we
always face finite (and often small) lengths (of sequences,
files, codes, etc.) One way of overcoming these difficulties
is to increase the accuracy of asymptotic analysis and
replace first-order analyses by more complete asymptotic
expansions, thereby extending their range of applicability to
smaller values while providing more accurate analyses (like
constructive error bounds, large deviations, local or central
limit laws).
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Survey: Shannon-Fano Code

Shannon-Fano code assigns code of length [lg P(z7)] to
x7 (it is assumed that P(x7) is known).

Consider a binary memoryless source with p denoting the
probability of generating 0. For a block of length n, the
average redundancy R>" is

R = Y ()P =P (- loga(p"(1 = p)" )]
k=0

+ logy(p* (1 - p)"") .

1—0»p 1
a=logy, | —— |, B=log, (| —).
D 1—p

For the Shannon—-Fano code we prove that its average
redundancy is as n — oo

Let

o irrational

N|—

RSF:
s —w ((Mnf) —3)  a=gx

where () = & — | x| is the fractional part of &, and N, M
are integers such that gcd (N, M) = 1.
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Figure 1: Shannon—Fano code redundancy versus block size n

for: (a) irrational a = log,(1 — p)/p with p = 1/m; (b)
rational o = log,(1 — p)/p with p = 1/9.
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Survey: Huffman Code

As before we consider a binary memoryless source emitting
O and 1 with probabilities p and ¢ = 1 — p, respectively.
For a block of length n, we construct its Huffman code
(through the associated Huffman tree).

Using Stubley’s result (1994), we conclude that the
average redundancy Rf of the Huffman code is

Rf — 14 RiF _ 9 Z (Z) pkqn—k2—<ak+ﬂn> +0(p")
k=0

where p < 1 and RS2 is the average redundancy of the
Shannon-Fano code. As n — oo this becomes

][OV

— &5 = 0.057304. .. a irrational
RY =
" 3_ L ((BMn) — 1) — 1 o—(nBM)/M

2 M 2 M(1—2—1/M)

<=

with the notation as above.
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Figure 2: Huffman’s code redundancy versus block size n for:
(a) irrational a = log,(1 — p)/p with p = 1/; (b) rational
a = log,(1 — p)/p with p = 1/9.

The maximum Huffman redundancy is

1 + log log 2
log 2

max{R7} = 1— =1g(2(lge)/e) = 0.08607.. .,

as N — OQ.
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Shtarkov’s Mimimax Result

Shtarkov in 1978 proved that the minimax redundancy

Ig ZilégP(ml,w) <R (S)<Ig ZilépP(:cl,w) +1.
1

Indeed, for the lower bound Shtarkov considered the
following probability distribution

sup, P(z7,w)
Zaﬂf’ Supw P(ZE?’ CU)

q(xy) =

By Kraft's inequality there exists 7 such that (for uniquely
decodable codes C,,)

—L(Cy) < lgq(&}),

which implies the lower bound. For the upper bound,
Shtarkov proposed a code (', of length

L(C,) = lg(Zsup P(z7),w) —lg P(z7)| ,

which gives the desired upper bound.
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Finitely Parametrizable Class of Processes

If M is i.i.d. or the class of Markov chains, or more
generally the process belongs to a finitely parametrizable
class of dimension K, then Rissanen proved that the average
redundancy R,, and the minimax redundancy R}

_ K
Ru(M) ~ R,(M) ~ —lgn.

as n — oco. It was also found that the next term of R, (S)
and of R (S) is O(1).

We will prove a full asymptotic expansion of R (M) for
memoryless sources over an m-ary alphabet; e.g.,

R, (M) = m_llg<ﬁ>+1g<i)>+...

2 2 T'(m/2
N L(m/2)m V2
3T(m/2 —1/2) /n
N <3 +m(m—2)2m+1)  I’(m/2)m’ ) 1
36 orz(m/2—1/2)) n

1
+ 0 n3/2

where I'(x) is the Euler gamma function.
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Tunstall’s Code

Savari and Gallager 1997 and Savari 1998 analyzed
Tunstall's  variable-to-fixed codes for memoryless and
Markovian sources. @ For memoryless binary source, it
was proved that

Hlg H + 0.5h,

Ra(T) = —————

log p

provided B = Tos g Is irrational, where ho = plog2p +

q log2 q. The case of B rational was not discussed, but one
expects some fluctuation in this case.
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Renewal Process

Csiszar and Shields have studied order r Markov renewal
sequences in which a 1 is inserted every Ty, 17, ... of O's,
where {T;} is either an i.i.d. or Markov renewal or r-order
Markov renewal process. We denote such sources as R

Csiszar and Shields proved that
Ru(R;) = R*(R,) = ©(n""D/772)
forr = 1,2, ... which specializes to ©(y/n) when » = 0.

We will prove here (Flajolet & Szpankowski 1998) a precise
asymptotic expansion of R (Rg) for the renewal processes,
namely

) 2 5 1
R (Ro) = ——+ven — —lgn + —lglogn + O(1)
log 2 3 2

where ¢ = &= — 1 & 0.645.
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Lempel-Ziv Code

Louchard and Szpankowski 1997, Savari 1997, Wyner 1998,
and Jacquet and Szpankowski 1995 proved that the Lempel-
Ziv codes in the class of i.i.d. and Markov processes have
either rate

e O(n/logn) for LZ'78

e O(nloglogn/logn) for LZ'7T7 code.

More precisely, for LZ'78 Louchard and Szpankowski
1997 showed that (binary alphabet with O's generated with
probability p)

Rn(LZ) H(2 L b+ 5())”
n = — Y = = — 46(n
7 oH “ logn
n log log n
n O( gQg )
log®n
where H = —plogp — gqlogqg > 0O is the entropy rate,

v = 0.577... is the Euler constant, hy = p10g2p +
q log® ¢, and

pk+1 10gp+ qk+1 logq
1 — pk—l—l _ qk:—l—l

o @]
w = —
k=1

The function §(x) that fluctuates with mean zero and
a tiny amplitude for logp/log q rational, but satisfies
lim, o d(x) = O otherwise.

Barcelona/Stanford /Berkeley'99 14



Shields’ Result

Shields proved that there is no function p(n) = o(n) which
is a weak redundancy rate bound for the class of all ergodic
processes.
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ANALYTIC METHODS: Fourier Analysis and
Sequence Distribution Modulo 1

We consider here redundancy of the Shannon-Fano block
code and the Huffman block code for a memoryless source
generating a block of length n with the binomial distribution.

Let p(k) = p®(1 — p)™*, where p is the probability of
generating 0. Redundancy of the Shannon-Fano code is

RF = Y ()P (- 1gp(k)] +lgp(k))
k=0

= 13 (M) pha ek 4 )

k=0

(x) = © — |x] is the fractional part of z and
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Shannon-Fano Code - Irrational Case

Throughout, we shall use the following Fourier series; for
real x

1 > sin 2rma
T = — —
< > 2 ng:l m
1 2mimax 1
= 5 — Z Cmé€ ; Cm = _2 )
mez—{0} T

where Z is the set of all integers. Hereafter, we shall write

Zm;éo = ZmGZ—{O}'

Irrational Case:

D 1 & n n— mim(« n
R;S;F _ §_|_ (k)pkq k Cm€2 im(ak+Bn)
k=0 m=#0

1 2mwimpBn 2mimao "
- T e ()
: %;O m q

How to prove that the last term is o(1) for « irrational?
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Bernoulli Uniformly Distributed Sequences
Modulo 1

Definition 1. [B-u.d. mod 1] A sequence z,, € R is said
to be Bernoulli uniformly distributed modulo 1 (in short:
B-u.d. mod 1) iffor0 < p <1

. =/ o
zim 37 ()P = p)" Fxal(an) = A
k=0
holds for every interval I C R, where xi(x,) is the

characteristic function of I (i.e., it equals to 1 if x,, € I
and O otherwise) and A(I) is the Lebesgue measure of I.

Theorem 1. Let 0 < p < 1 be a fixed real number and
suppose that the sequence x.,, is B-uniformly distributed
modulo 1. Then for every Riemann integrable function
f :[0,1] = R we have

: — (T & N L I _ !
im 32 ()" =" s ) | s

where the convergence is uniform for all shifts y € R.

Proof. Standard; cf. Drmota and Tichy (1997) or Kuipers
and Niederreiter (1974).
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Weyl’s Criterion

Theorem 2. [Weyl’s Criterion] A sequence x,, is B-u.d.
mod 1 if and only if

. _ n k n—k 2wimzx
li () 1— k=
fim ) ()@= p) e

holds for all non-zero m € Z — {0}.

Proof. The proof again is standard. Basically, it is based on
the fact that by Weierstrass's approxzimation theorem every
Riemann integrable function f of period 1 can be uniformly
approximated by a trigonometric polynomial (i.e., a finite
combination of functions of the type e2™™%).
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Finishing the Irrational Case

In our case, we must show that (ak) is B-u.d. mod 1. By
Weyl's criterion

. - n k n—k 2mim(ka) . ( 2mima >n
Y 32 () pha e =i (petT 4
k=0
= 0

provided « is irrational. Hence, by the previous theorem,
with f(t) =t and y = (Bn, we immediately obtain

. —~ /7N k n—k ! _1
Jirgogg(k)pq (ozk—l—ﬁn)z/o tdt—g.

This proves that for « irrational

1
R = > +o(1).

n

It can be proved (thanks to M. Drmota) that for almost
all irrational o the rate of convergence in the above is

146
O (log\; ") for some 6 > 0.
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Shannon-Fano Redundancy — Rational Case

Now we assume that &« = N/M where N, M are integers
such that gcd(N, M) = 1. Denote pnr = (7)p*q" "
We proceed as follows:

Sn = Zn: (:)pkq”_k <k% + 6n>

k=0

M—-1 N
= Z Z Pn.k <£M + N + ﬁn>

£=0 m: k=l+mM<n

- Ail<%+ﬁn> > Puke

£=0 m: k=0+mM<n

We will prove that the last sum is well approximated by
1/M.
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Useful Lemma

Lemma 1. For fixed ¢ < M and M, there exist p < 1
such that

S (O)pra-pmt =00,

m: k=f+mM<n M

Proof. Let wy = e2™*/M for | = 0,1,...,M — 1 be
the Mth root of unity. It is well known that

1 M‘lwn_{ 1 if M|n

— v = _

M = O otherwise.

where M |n means that M divides n. In view of this, we

can write

™ n> St = L (pwi + @)"* + .. + (pwr—1 +
m: k=f+mM<n k M

1
= — 40",
M+ (p")

since |(pw, + q)| = p* + ¢° + 2pq cos(2wr /M) < 1 for
r # 0.
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Finishing the Rational Case

Continuing the derivation and using the above lemma we
obtain

1 M-1 1 ‘
S, = — - Z Cme27rzm(E/M-|—ﬂn)
M 2
£=0 m#0
M—-1
1 : 1 L
— - Cm€27rzmn,8_ Z e27rzmM
2 m=#0 M £=0
_ 11 2T M BN
2 M m=kM#0
L (3 )
= —— — | —=——{(8n )
2 M \2
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Huffman Redundancy

We only need to analyze

— n n— — n
T, = Z (k)pkq ko—(ak+Bn)
k=0

The irrational case is easy since a direct application of
our previous result, with f(t) = 27" and y = Bn, yields

1 1
lim T, = / 27 dt =
n—o0 0 2 log 2

for o irrational.
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Huffman Redundancy — Rational Case

We could use Fourier series again, but instead we generalize

our previous approach in the following theorem (proposed by
M. Drmota):

Theorem 3. Let 0 < p < 1 be a fixed real number
and suppose that a = <1 is a rational number with
gcd(N,M) = 1. Then, for every bounded function

f :[0,1] = R we have

M-1

(My)

n n . 1
g(k)p%l—p) “F(ha+y)) = 27 2

uniformly for all y € R and some p < 1.

Setting f(t) = 27" we obtain

1 M-—1
T, = — o~ UMD=(MBR)/M) 4 5 Y
l:
1 1 — 2~ M/M
_ —(MBn)/M n
- o g T O
1
_ —(MpBn)/M n
= aM(l—2 UMy + o)
for p < 1.
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ANALYTIC METHODS: Tree Generating
Function and Singularity Analysis

We consider here the minimax redundancy for a memoryless
source over an m-ary alphabet A(m). Shtarkov's result
implies that

R, = log D,(m)

where D,,(m) satisfies
Du(m) =3 (") D30

1=1

where D(1) =0, D (1) =1forn > 1, and fori > 1
we have

po=3 () (5 (-5 pie-n.

1 n n
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Derivation of the Recurrence on D} (m)

Observe first that one can write

m

Dum) = > () > Pi("w)

i=1 2 e A(i)

(") puce)

2

I
M

where A (%) represents a subset of A consisting of ¢ symbols.
Indeed, we count separately sequences consisting of only
symbols form A(%).

To derive the recurrence of D (i) we argue as follows:
Consider an alphabet A(7 — 1) and assume that these i — 1
symbols of A(7 — 1) occur on n — k positions of ™. Thus,
we deal with D) _, (i — 1). On the remaining k positions
we place the ith symbol with the (optimal) probability

sup P (x;,w) = — 1—5

and establishes the recurrence:

DI () = Zn: (Z’) <E)k <1 _ E) " D (i—1).

1 n n
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Main Result

Theorem 4. For fixedm > 1 the quantity D} (m) attains
the following asymptotics

e = 0T )6
f e (3) TR
+ 0O(n27?

for large n.

Corollary 1. Form > 2

R’ log D, (m) = m2— ! log <%> + log (F\(/g))
repm V3

ToarE-h Va
3+m(m—2)2m+1) I*(Z)m? 1
i < 36 _91“2(%—%)> n
+ o< ! )
n3/2
for large n.
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Sketch of Proof of Theorem 1

1. Let us introduce a new sequence ﬁ;(m) defined as

Bim) = Z (") (%) (1- S)n_kD:;_k(m 1)
= D}(m)+ Di(m—1).

2. Observe that

_D f— .
o Pnm) ,; K (n— k)

D ,(m—1).

This is a convolution of two sequences {k"/k!} and
{k*/k!D;(m — 1).
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3. Define

S * — kk k 15
D (z) = Z ki D, (m).
k=0

The tree function T'(z) is defined as a solution to
T(z) = ze*™®

which is also

0© k-1
T =3 St
k=1 °
The function T'(z) is called the “tree function” since
it enumerates rooted labeled trees. It is also related

to Lambert's W-function defined as a solution of
W (z)exp(W(x)) = « and which can be called from
MAPLE. (In fact, T(2) = —W(—=z).) Furthermore, it
can be obtained from the Ramanujan’s Q-function which
finds many applications in hashing, random mappings, and
memory conflict.

Related to the tree function is

I
z) = e = ,
K- 1—T(z)

k=0

which we need in the analysis.
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4. From the recurrence and our definitions we obtain

D;.(2) = B(2)D},_(2) -
Thus
D;,(z) = (B(z) — )" 'Di(z) = (B(z) - )"

since D{(z) = B(z) — 1. So
D;(m) = T ((B() — 1)™)

where [z"] f(z) is the standard notation for the coefficient
of f(z) at 2™
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5. Properties of T'(z). The tree function has an algebraic
singularity at z = e~'. This can be seen if we view the
functional equation of T'(z) is a definition of an implicit
function of
z2(T) =Te .

This function achieves its maximum value z = e~ at
T = 1, and by the implicit-function theorem it can not
be inverted. Thus, it has an algebraic singularity at this
point.

—1
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6a. Asymptotics. We know that

T(Z) —1 = —\/2(1 — ez) -+ %(1 — ez) — %(1 _ 62:)3/2
43 9 5/2
+ E(l —ez) "+ 0((1 —ez)’7).

Then, B(z) can also be expanded around z = e~ leading
to

1 1 V2 4
B(z) = \/2(1 ' 62)4—5—% (1 — GZ)—I—ﬁ(l—ez)—l—- ..

Singularity analysis of Flajolet and Odlyzko, allows to
compute separately the coefficients for every function
involved in the above asymptotic expansion. For example,

(o) - (- ront).
" (Vi—er) = —— (1+ 3)

7T’I’L3 2 16m

kn](l—}ez> e

! 1
® — e "2 (1 + Ton -+ O(l/n2)> .
n
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6b. Thus

e "[z")(B(z) — 1)™

as desired.

Barcelona/Stanford /Berkeley'99
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Sketch of Proof of Corollary 1

From our definition we have

m

D) = > (T)pi =22 (7)) B -1

1=1 1=1

Thus
Dn(z) = B™(z) — 1.

Then, D, (m) = Z[2"](B™(z) — 1). We found:

s = ey m
e |z z) = — — —
27T () 2% \3T(Z - 3)
n? 2 [(m(m — 2)(2m + 1) m_5
O(n2 2
t ( srg) ) Tt

Finally, we additionally observe that
1
log(1+av/a+ba+ca*’?) = av/a+(b—7a")a+0(s*")

as x — 0, and this completes the proof.
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General Recurrence

Our method allows to solve a general recurrence of the
following form:

=t () () (1-2) @ e,

where a,, is a given sequence (the so called additive term),
and m is an additional parameter.

Indeed, the above leads to

Xm(z) = A(2) + 2B(2) X m-1(2)

where
Xm(z) = Z 1% Tk A(z) = Z 7% Gk
k=0 ° k=0 '

This last recurrence can be solved by telescoping in terms
of m, and then the singularity analysis will provide an
asymptotic expansion, as discussed above.
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ANALYTIC METHODS: Mellin Transform
and Saddle Point Approach

Csiszar and Shields studied the minimax redundancy of the
renewal process defined as:

Let T7,7T5... be a sequence of i.i.d. positive-valued
random variables with distribution Q(j) = Pr{7T; =
j} over nonnegative integers j > 0. The process

To, To+ Ty, To+T1+ 15, ... is called the renewal process
which is stationary if Ty is chosen properly. With such a
renewal process we associate a binary renewal sequence in
which the positions of the 1's are at the renewal epoches
To, To + 11, To + T + Ts, .. ..

By Shtarkov's method, to study the redundancy R’ we
should evaluate

R, =lg E sup P(z7)
n @
1
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A Simple Lemma

Lemma 2. Define r, = 28", Then
'm = Z 'n,k
k=0
- — i i .
k ko ko 1/ \k k k

P(n,k)

where P (n, k) denotes the partition of n into k terms, that
IS

n = ko+2ki+---+nkp_1,
k= ko+- -+ Ekn.

Proof. Observe that the renewal sequence x7 can be
represented as

z" = 0°110%21-..10*"10- - -0

k*
where 0 < a; < n for ¢ = 1,...,n. Let k,, be
the number of ¢ such that a; = m, where m =

0,1,...,n— 1.
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Then
P(z}) = Q(0)Q" (1) --- Q" 1(n — 1)Q"(K")
subject to Q(0) + Q(1) 4 -+ + Q(n — 1) < 1, where
ko+2ki+ - +nk,_1 + k" =n,

and Q" (k™) = Pr{T1 > k™}. Thisis a simple optimization
problem with constraints that can be easily solved leading to

L ko k,_ kn—1
sup P(z7) :< 0 >< ! )
Q ko+ -+ kn1 ko+ -+ kn1

which proves the lemma.
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Re-Formulation of the Problem

A difficulty of finding asymptotics of r,, stems from the factor
k!/kk present in the definition of r, . We circumvent this
problem by analyzing a related pair of sequences, namely s,
and sy,  that are defined as

S’I’L — Zk:O Snak
k k, _
—k k™0 k'n—1
Snk — € Z’P(n,kz) ko! kp_ 1!

The translation from s,, to r,, is most conveniently expressed
in probabilistic terms. Introduce the random variable K,
whose probability distribution is sy, /sy, that is,

W, - Pr{K, =k} = M,

Sn

where w,, denotes the distribution. Then Stirling's formula
yields

n
T'n 'n,k Sn,k

= = = E[(Kn)!K, e "]

Sn k=0 Sn,k Sn
_1
— E[V27K,] + O(E[K, ).

Thus, the problem of finding 7, redluces to asymptotic
evaluations of s, E[v/K,] and E[K, ?].
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Fundamental Lemmas

The heart of the matter is the following lemma which
provides the necessary estimates.

Lemma 3. Let u, = E[K,] and 0> = Var(K,,), where
K,, has the distribution ©o,, defined above. The following
holds

7
S, ~ exp <2\/c —glogn—l—d—l—o(l)>
1 /n n

4
o2 = O(nlogn) = o(2),
where c = /6 — 1, d = —log 2 — 2logc — 2logm.

By Chebyshev's we also have:

Lemma 4. For largen

EVE] = py!2(1+ o(1))
E[K,2] = o(1).

where u, = E[K,].
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Main Result

In summary, r, and s,, are related by

rn = S E[V2rK,](1+ o(1))
= Sp\V/2mun(1l 4+ o(1)).

This leads to

Theorem 5. [Flajolet and Szpankowski 1998] Consider the
class of renewal processes as defined above. The minimax
redundancy p,, attains the following asymptotics

. 2 5 1
R (Ro) = ——=+ven — =lgn + —lglogn + O(1)
log 2 8 2

where ¢ = %2 — 1 ~ 0.645
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Proof of the Fundamental Lemma

1. We start by introducing the well-known “tree function”
T'(z) defined as the solution of

T(z) = zel ?)

that is analytic at 0. The function T'(z) satisfies, by the
Lagrange inversion theorem,

r(s) = 3 b
z) = z
— k!
2. Next define the function 3(z) as
By = 3 et
k!

One has (e.g., by Lagrange inversion again or otherwise)

_ 1
1 —T(zel)

B(z)
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3. The quantities s,, and s, ; have generating functions,

oo

Sn(u) = Z sn,kuk, S(z,u) = Z Sn(u)z".

k=0

Then, since s, i involves convolutions of sequences of the
form k¥ /k!, we have

S(zu) = 37 athordk
7Dn,k:

= H B(z"u).

” ko+--+kp—1 kkO k;kn—l
ko! ky_1!

(&

4. To compute the moments pu,, and E[K,, (K, — 1)] we
use the following formulas

sno= [2"18(2, 1),
P CCACEY
" T RIS D)

[2")S (2, 1)

E[Kn(Kn - 1)]

[27]5(2,1)

where [z"]F'(z) denotes the coefficient at z" of F'(z),
S!(z,1) and S. (z,1) represent the first and the second
derivative of S(z,u) at u = 1.
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Mellin Asymptotics

5. We deal here with
S(z,1) = [[ B(=).
i=1

The behaviour of the generating function S(z,1) as z — 1
is an essential ingredient of the analysis.

5a. The singularity of the tree function T'(z) at z = e™*

is of the square-root type, that is, near z = 1, 8(z) admits
the singular expansion :

B(z) = ! —|—1—£ (1—2)+0(1 — 2).

V21 —2) 3 24

5b. We now turn to the infinite product asymptotics as
z — 17, with z real. Let L(z) = logS(z,1) and
z = et so that

L™t =S log Be™).
k=1

Mellin transform techniques provide an expansion of L(e™")
around ¢t = 0 (or equivalently z = 1) since the sum falls
under the harmonic sum paradigm.

Barcelona/Stanford /Berkeley'99 45



Mellin Properties

(M1) DIRECT AND INVERSE MELLIN TRANSFORMS. Let
c belong to the fundamental strip defined below.

f%@::wmﬂ@wy=ﬁff@nkuw

then

1 c+ioc0 . .,
f(x) =%/_‘ f(s)z “ds.

(M2) FUNDAMENTAL STRIP. The Mellin transform of
f(x) exists in the fundamental strip R(s) € (—a, —0),
where

f(z) =0(") (= —0), f(z) =0(")  (z = o).
(M3) HARMONIC SUM PROPERTY. By linearity and the
scale rule M(f(ax);s) = a *M(f(x);s),

flx) =D Meg(pxe)

k>0

then

Fi(s) =g"(8) D Anmy”.

k>0
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(M4) MAPPING PROPERTIES (Asymptotic expansion of
f(x) and singularities of f*(s)).

fl)= > cepa(logz)® + O(x™)
(§,k)eA

then ( )kk'
N —1 !
f (8) ~ Z Cg’k’(s + g)k:+1'

(§,k)eA

(i) Direct Mapping. Assume that f(z) admitsas z — 0
the asymptotic expansion of the above for some — M < —«

and £k > 0. Then for R(s) € (—M, —3), the transform
f*(s) satisfies the singular expansion of above.

(i) Converse Mapping. Assume that f*(s) = O(|s|™")
with » > 1, as |s| — oo and that f*(s) admits the
singular expansion above for R(s) € (—M, —«). Then
f(x) satisfies the asymptotic expansion of above at z = 07
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Continuation of the Proof

6. The Mellin transform L*(s) = M(L(e™");s) of
L(e™") is computed by the harmonic sum property (M3).
For R(s) € (1, co), the transform evaluates to

L7(s) = ¢(s)A(s)

where ((s) = > .. -;n ° is the Riemann zeta function,
and -

A(s) = /Ooolog B(e~t)t* Ldt.

7. By the direct mapping property (M4), the expansion of
B(z) at z = 1 implies

1 1
log B(e™") = —Elogt —5 log2 + O(V't),

so that, collecting local expansions,

A(s) < (ML), _, + <li - 110g2>s—o'

282 2 s

Then

A(1 1 ]
s—1/ .4 4s 4s ) .o
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8. An application of the converse mapping property (M4)
allows us to come back to the original function,

L(e™") = &Jr—logt— ilogw+0(\/5),

which translates in
L(z) = & —log(l z)——log 7r——A(1)—|—O(\/1 — z).

where

e=A() = - [ log(l = T(a/e)=

9. In summary, we just proved that, as z — 17,

1
S(z,1) = el — a(l—z)% exp <1L

) @+ o).

where a = exp(—zlog ™ — ic).
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10. It remains to collect the information gathered on
S(z,1) and recover s,, = [2"]S(z, 1) asymptotically. The
inversion is provided by the Cauchy coefficient formula, that

IS,
1 7{ S(z,1)
Sy, = dz
271 zntl

where the integration path is any simple loop around 0 inside
the unit disk.

11. To estimate s,, we use the following lemma that is based
on an application of the saddle point method summarized
on the next few slides.

Lemma 5. For positive A > 0, and reals B and C, define
f(z) = faB,c(z) as

A 1 1 1
f(z) = exp (—-I—Blog + C'log <—log >>
1—=z2 1 — =z z 1—=2

Then, the nth Taylor coefficient of fa p c(z) satisfies
asymptotically, for large n,

[2"]faBc(z) = 2VAn —I—% (B — g) logn

+ Cloglog {/—
(@) (@)
glog 1/

— %log (4776_A/\/Z) + o(1).
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Saddle Point Method

Input: A function g(z) analyticin |z2| < R (0 < R <
+00) with nonnegative Taylor coefficients and “fast growth”
as z - R™. Let h(2) :=logg(z) — (n 4+ 1) log 2.

Output: The asymptotic formula for g, := [2"]g(2)
derived from the Cauchy coefficient integral
1 dz 1
gn = — [ 9(2) = - /eh(z) dz
2im S, zntl 24w J,

where 7 is a loop around z = 0.

(S1). SADDLE POINT CONTOUR. Require that g'(z)/g(z) —

+00 as z —+ R™. Let » = r(n) be the unique positive
root of the saddle point equation

Wiy=0 o T2 i)

g(r)

so that r — R as n — oo. The integral above is evaluated
on~y = {z| |z = r}.
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(S2). BASIC SPLIT. Require that k"' (r)Y/3n"(r)~1/% —
0. Define ¢ = (n) called the “range” of the saddle point
by

(P: hlll(r)—l/Ghll(r)—l/ll :
so that ¢ — O, h"(r)<,02 — 00, and
R'"(r)e® — 0. Split v = v U
71, where v = {z €| |arg(z)| <}, M =
{z €| |ara(=)] > o).

(S3) ELIMINATION OF TAILS. Require that |g(re®)| <

|g(r€*?)| on v1. Then, the tail integral satisfies the trivial

bound,
/ eh(Z) dZ — O ('e—h(reup)|> .
71
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(S4) LOCAL APPROXIMATION. Require that h(re') —
h(r) — 2r*0°R"(r) = O(|h"(r)¥’]) on ~o.  Then,
the central integral is asymptotic to a complete Gaussian
integral, and

L/ ) gy = 9T " (1—|—O(|h"'(r)gp3|)).

247 \/2mwh'(r)

(S5) COLLECTION. Requirements (S1), (52), (53), (54),
imply the estimate:

[2"]g(2) = g (1 +O(|h”’(r)so3l)) ~ I
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