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Abstract

We present a general scheme to generate uniformly at random planar maps of various kinds.
Our algorithms rely on a combinatorial and bijective approach: we encode the planar maps
by some classes of particular trees. This encoding is the basis of efficient random generators
of maps of the most simple classes of planar maps. For more complex structures, we proceed
by using a new general probabilistic scheme, that we call extraction/rejection algorithm.

1. Introduction

A planar map is an embedding of a graph in the plane, considered up to continuous deformations
of the plane. Maps are allowed to have multiple edges and loops; otherwise there are called simple
maps. The maps we consider are rooted: there is an oriented edge, called the root.

We present here two families of algorithms for the random generation of rooted planar maps.
The first one applies to the few classes of maps which are counted by multiplicative closed formulas.
Here are two examples from [2, 5]:
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Our approach consists in finding new bijections between these maps and some particular families
of trees. More precisely, there exists, for each family of maps as above, a family of trees such that

#{free leaves}
#{leaves} -

and the bijection is given by the closure of the trees (terms like free leaves and closure will be
explained below). Then the generation scheme is the following: i) generate uniformly at random a
tree, by known efficient algorithms; ii) “decode” the tree to get its associated map. Table 1 gives
the basic families that benefit from this approach, leading to linear generation algorithms. The
method is illustrated in Section 2 on the family of bipartite cubic maps.

However, a number of families do not present simple formulas as above. In these cases we
use a new method: eztraction/rejection. It combines the usual rejection principle with composition
schemes that are common for maps. See in Table 2 the new families reached with this new approach,
which is presented in Section 3.

#{maps} = # {trees),



FIGURE 1. A bipartite cubic map with 17 x 2 vertices

FIGURE 2. A planted plane
tree with 17 internal nodes FIGURE 3. A blossom tree

2. Bijective Approach

We present here the method through the example of bipartite cubic maps: maps whose vertices
have degree 3 and are colored in black or white in such a way that no edge joins two vertices of the
same color (Figure 1).

These maps are in bijection with blossom trees, as we will see below. A planted plane binary
tree is a plane binary tree whose root has degree one. Figure 2 presents such a tree (the leaves are
omitted in the figure, except the root leaf at the left). A blossom tree is a particular tree which can
be constructed from a planted plane tree as follows: in the middle of each internal edge, we put a
white-colored vertex with a bud on one of the two sides, as in Figure 3. Now we call partial closure
of a blossom tree the structure obtained after the following treatment: turn anti-clockwise around

main family intermediate family underlying trees
general quartic (all degree 4) binary
bipartite (or Eulerian) bipartite cubic binary
m-constellations m-Eulerian general
non separable quartic without 2-cocycle ternary
loopless triangulations non separable cubic ternary

TABLE 1. Maps (with n edges, loops and multiple edges allowed) generated in linear time

maps simple smooth no leaf 2-¢ non separ. 3-¢ 4-c

all ok ok ok ok ok ok mno
bipartite ok no ok ok ok no no
triangulations ok - - - - ok ok

TABLE 2. Some extra properties reachable via extraction/rejection. (Non separable
means loopless 2-connected, smooth means without vertices of degree 2)
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the tree, and join each bud to the nearest leaf so that no crossing occurs. (In this way, buds and
leaves can be seen as a system of nested parentheses.) See in Figure 4 the partial closure of the
blossom tree of Figure 3. Since there are 3 more leaves than buds in any blossom tree, there are
necessarily 3 leaves which remain alone; we call them single leaves. We say that a blossom tree is
balanced if its root is a single leaf in its partial closure. Finally the complete closure of a blossom
tree is obtained by joining the three single leaves to a new vertex and rooting the resulting map
towards the root leaf (Figure 5). This gives the map of Figure 1.

Theorem 1. The complete closure defines a one-to-one correspondence between balanced blossom
trees with n nodes and bipartite cubic maps with 3n edges.

Now here is the way to generate uniformly at random a bipartite cubic map with 3n edges:

1. generate uniformly at random a planted binary tree with n nodes; this can be done in linear
complexity with well known algorithms (see [1] for example);

2. toss a coin independently for each edge to place buds;

3. choose with probability 1/3 one of the three possible balanced blossom trees and achieve the
complete closure.

3. Extraction/Rejection Algorithms

Suppose that we have to generate uniformly at random a bicolored triangulation like the one in
Figure 6, with a given number of faces. By duality, this is equivalent to generate a bipartite cubic
map as the one in Figure 7: each black (resp. white) vertex in the map gives a black (resp. white)
triangle in the triangulation, each face gives a vertex. But the map must be without separator, i.e.,
without configuration like the one on the left of Figure 8; otherwise the associated triangulation
might present multiple edges, like in the right of the figure.

FIGURE 4. Partial closure of the FiGURE 5. Complete closure
blossom tree of the blossom tree

FIGURE 7. A bipartite
cubic map without sep-
FIGURE 6. A bicolored triangulation arator




A natural idea would be to use a rejection algorithm in order to generate maps without sep-
arators: draw uniformly at random bipartite cubic maps until we get a map without separator.
Unfortunately, bipartite cubic maps without separators are very rare, so this approach is practically
intractable. So we need another idea. Here is the extraction/rejection method:

1. Generate uniformly at random a bipartite cubic map with the algorithm of Section 2;
2. remove the possible separators (we get what we call the core of the map);
3. construct the triangulation from the core by duality.

An important problem appears here: if we generate a map with n vertices and remove the separators,
the resulting map is likely to have less than n vertices! To fix this problem, we will generate maps
with too many vertices: we can prove, using asymptotic analysis, that drawing bipartite cubic maps
with m = 3n vertices gives, with a good probability, cores having n vertices. This leads to an
algorithm with complexity O(n%/3).

This approach can be generalized for a number of families, as seen in Table 2. Details are given
in (3, 4].

FIGURE 8. A separator in a bipar-
tite cubic map and its result by

duality
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FIGURE 9. A map with separators
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