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1. Introduction

Solving Diophantine equations, that is finding integer solutions to polynomial equations, is one
of the oldest mathematical problems. The very name “Diophantine” reminds us of the great Greek
mathematician Diophante who solved some of the most basic equations.

At the beginning of the twentieth century, Hilbert asked about the existence of a universal
algorithm that would compute all integer solutions of a polynomial equation, and it was not until
1970 that Matiyasevich [13] showed the inexistence of such an algorithm.

Even before the negative answer to this problem, many mathematicians have developed algo-
rithms for special cases. For the univariate case, the problem is related to good rational approxi-
mations of a non rational root a of a polynomial P with integer coefficients. Let n be the degree
of P and p/q a rational number. Put é(a) = |a — p/q|. Thue [19] showed that
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with the consequence that there are only a finite number of solutions of the equation Q(X,Y) =
1, where @) is an homogeneous, irreducible polynomial of degree > 3. Siegel [17] improved the
bound to: o)
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which was enough to prove the finiteness of the number of solutions of y? = f(z) for f a separable
polynomial of degree > 3 and p > 2 [18]. Later, in 1955, Roth proved [16]:
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a result that is the best possible, due to well known results in continued fraction theory, namely
that if a is irrational, then there exists an infinite number of rational numbers p/q¢ such that
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As is often the case, the constants are ineffective and this does not help us when we want to find
the solutions of a given equation. Around 1966, Baker [1] (see also [3]) found a very deep bound:

Theorem 1. Let aq,aq,...,a, denote algebraic numbers. Then for every n-tuple of integers

(b1,ba,...,b,), we have
K =0 or K >exp(—Cslogmax|b;|), where K = |bjlogay + bzlogas+ -+ b,loga,l.
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Unfortunately, the constant Cy4, though effective, is very huge and specialists thought it was
completely useless. However, Baker and Davenport [2] gave the first use of such a bound, for
solving a system of simultaneous Pell equations.

2. Solving Homogeneous Equations

2.1. Statement of the Problem. Let P(X,Y) be a homogeneous polynomial of degree n, monic
in Y, and let a; denote the roots of P(1,7). In this section, we want to solve the equation
P(X,Y)=11n integers X and Y, which we rewrite as:

n
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Suppose (Xg,Yp) is an integer solution of this equation. In view of (1), it is obvious that at least
one of the terms Yy — a; X is small. This implies that:

YO — Ozj)(o ~ (a]- — Oéi))(o
when j # 4. Using (1) again, we get that:
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or in other words, Yy/ Xy is a very good approximation of a;.

2.2. Using the Baker Bound. In algebraic terms, equation (1) tells us that for each ¢, the
number Yy — a; X is a unit in Q(a;).
One knows that the set of units of a number field Q(a) is a group of finite type. There exists

a set of units, the so-called fundamental units ny,1ns,...,n, such that every unit can be written
as: ¢ 10, 775-" where { denotes a root of unity in Q(«) and the b;’s are integers. Without loss of
generality, it can be shown that we can restrict to the case where ( = —1.
Now suppose that a; is a real root of P(1,7). If j # k # 1, we can write:

‘YO —o;Xoap —ar 1‘ < C5(P)

Yo — axXo aj — ay = | Xo|™
From this, we deduce that:

log Yo —a;Xo ap — oy 06,(13)-

Yo — o Xooj —ar| — | Xo|®

Write Yy — ap Xg = 77211 - -772}. We can rewrite the last inequality as:
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It is not hard to see that log|Xo| & B = maxy |bs|, so that the right-hand side of the inequality is
bounded by

Crexp(—nCgB).
For the left hand side, we use the Baker bound to finally obtain the lower bound
exp(—Cylog B) < Crexp(—nCsB).
This clearly gives a bound B on B.
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Unfortunately, this bound is much too large to be useful. For instance, in the case of the equations
(3) X142y = £1, or £2,
one finds B = 2.32 x 10%2.

2.3. Refining the Bound. Once we know that the b;’s are bounded, we would like to find a better
bound. The idea is the following. Suppose the b;’s are integers subject to |b;| < B. We would like
to prove some result on the minimum of the quantity |>°,_, beA¢| where the A/’s are real numbers.
Using the Lenstra-Lenstra-Lovdsz theory [12] as in [8], it is possible to show that this minimum is
bounded from below by Cio/B"~!. Since we also have the Baker bound:
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we get
B <log(B"~"/Cio) = (r — 1)log B — log C1g

or a bound which is logarithmically smaller.
For instance, for our example, we find that B8 = 29 instead of 2.32 x 10%2.

2.4. Finishing the Computations. At this point, one can finish the computations by enumer-
ating all solutions. As easy as it seems, do not forget that there could be a lot of computations still
to be done. In our example, there are 9 values for the b;’s, with |b;] < 29, which amounts to 59°
combinations.

This is enough when n is small, but can be quite cumbersome when n increases, since the
computational determination of units in a general number field is no easy task at all (see for
example [7, 14, 15]).

3. A Faster Approach

The idea of Bilu and the speaker [4, 5] is the following: we can rewrite equation (2) as:

Loj+ Y bl
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that is we have r linear forms in r + 1 logarithms. The idea is to transform these forms so as to
obtain a new form of the type 6 = |aa+ b3+ 6| where the integers a and b are bounded. Minimizing
such a form can be done using continued fractions, and therefore is very fast. Once this is done,
and using a bound as C'/|Xo|", there are two cases. Either § < 1/2 and we can easily deduce b
from a, or # > 1/2 and since C'/|Xo|™ > 1/2, | Xp| is quite small and we are done. In brief, we have
reduced a large enumeration problem in a large number of unknowns to one in a single unknown.

For our leading example, we get that B = 4 and it takes 12 seconds on a workstation to find all
the solutions.

4. Conclusions

We have shown how to solve some special cases of Diophantine equations by a clever use of
Baker’s bound combined with casual ingenuity. It is possible to use more tricks, for example using



90

units that are not fundamental, or to work with relative norms. For instance, the speaker has the
world record in the field, with the solution of the equation

2505

[T (v = cos(2kx/5011)X) = £1

k=1
using an intermediate field of degree 3. The original Baker bound, 10%°, was reduced to 46, yielding
a total running time of 8 minutes. More examples are given in [6] and in [10, 11], refinements are
given when one does not have the full unit group of the number field under consideration.

The ideas we have described above can be used mutatis mutandis to solve equations of the type
Y? = f(X). The only difference comes from the construction of the units. We refer to the speaker’s
thesis for this.

As a final comment, we note that similar techniques can be used to solve equations on elliptic
curves [9, 20].
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