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1. Introduction

Polyominoes are objects sprung from recreative mathematics and from different domains in
physics (such as Ising’s model; its generalisation, Pott’s model; directed percolation and branched
polymer problems) [14, 20, 21, 25]. Two great classes of problems relative to polyominoes are

— tiling problems;
— enumeration problems.

David Klarner began to study polyomino tilings in 1965. There are still open questions in this
field [12, 15, 16, 17], however several (un)decidability results are known [1, 2]. What is more,
aperiodic tilings are today a new spring of inspiration in noncommutative geometry [8]. In the
remainder, we only consider enumeration problems. Exact asymptotics of polyominoes on a square
lattice is still unknown. Accurate results are then limited to special families of polyominoes, for
which we know a generative grammar. We are therefore brought back to the study of a functional
equation which defines the generating function. Nevertheless, obtaining of a closed form (i.e., an
explicit solution) or even any form of solution often remains difficult. We will show several methods
to obtain them.

2. Definitions
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apolyomino associated row but not convex directed
animal column convex polyomino

A polyomino is a connected set on a lattice. A polyomino is said to be convex if it is both
column-convex and row-convex. A polyomino is said to be directed if, for each couple of points of
the polyomino, there exists a path only made of North and West steps which links this two points.

One can find in previous summaries [4, 13] how to obtain functional equations satisfied by the
generating functions (most of the methods are tricky decompositions [5] of polyominoes into very
regular smaller pieces, such as “strata” or “wasp-waist” decompositions). For results in dimension

greater than 2, see [3, 6].
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3. Differential Equation Method

Enumeration of convex polyominoes with perimeter 2n on the honeycomb (or “hexagonal”)
lattice can be solved with this method. Let P, the number of such polyominoes with perimeter
2n + 6, Enting [10] gives the following result. The generating function P(z) = Y7  pna” satisfies
the differential equation

P"(z)(2? = Ta* — 22° 4+ 1225 + 827) + P'(2)(—11z — 4a? + 532% + 222* — 402° — 1625)
+ P(2)(20 4 22z — 522% — 202° — 162* — 322°) = 20 4 222 — 5227 4 82° + 42 + 82°

which leads to

Ple) = 1—22 4+ 22 — 2% — 221 — 422
= (11 2)%(1 - 22)2 ‘

Let us mention that the package GFUN in Maple is able to make such translations (recurrences,
differential equations, algebraic equations, closed forms), see [23].

4. Temperley’s Method

We are going to illustrate Temperley’s method [24] with the enumeration of column convex
polyominoes (on a square lattice) with respect to perimeter [7]. The generating function

Gy)=> vy

can be rewritten as
Gy)=> g:(y)
r>1

where the g, satisfy a recurrence

Grra — 201+ y3)gr43 + (14 39° + 3y" — 4%)gr 2 — 20° (1 + ¥*)gr41 + y'g, = 0

and g1, g2, g3, g4, the “initial conditions”, are known.

If we “guess” that g, has the shape A" (or is a linear combination of such monomials), we can
obtain A by solving the fourth degree equation associated to the recurrence formula, and we find,
as the equation easily splits:

M =AMl+y+y =) + )V =M1 —y+y* + )+ =0.

So solving the two second degree equations gives four values (closed forms) A1, Az, Az, A4, two of
which are O(1) at 0. We then have to find the A; such that ¢, = 2?21 A;N%. But g, = O(y¥1?)
at 0,s0 A; = 0if A; = O(1). There are still two coefficients to determine, say A; and A4. They can
be found by solving a system involving gi, g2, Az, Ay, Ao, A4 and one finally obtains a closed form

As g Agdy
G(y) = .
(v) == N T 1A,

A very similar method is applied for unidirectional-convex polygons on the honeycomb lattice
in [19].



5. Kernel Method

In his talk, Dominique Gouyou-Beauchamps has also presented an exploitation of the “kernel
method” for the enumeration of parallelogram polyominoes with respect to horizontal and vertical
half-perimeter, area and first column height, respectively marked by z, v, ¢, s.

Remember that the generating function P with respect to horizontal and vertical half-perimeter
is easy to obtain: The wasp-waist decomposition directly leads to P = zy + 2P + yP + P? so

l—az—y—+1—-22—-2y+a?+y>—2zy
The full generating function P(z,y,q,s) satisfies a more intricate equation (obtained by a strata
decomposition), namely

TYSq xsq

1—ysq  (1—sq)(1—ysq

When ¢ = 1, this can be rewritten
(1-(1—-z—y)s+y*)P(z,y,1,5)= zsP(z,y,1,1) + zys(1 — s).

It is typically the type of equation on which the kernel method applies. This method belongs to
mathematical folklore (see [18], exercise 2.2.1.4 for an early example). It works as follows: If one
cancels the kernel (1 — (1 —z — y)s + y?), i.e., one finds sg such that (1 - (1 -2z —y)sg + y*) = 0,
then one gets 0 = s P(z,y,1,1)+ zyse(1 — sg), from which follows a closed form for P(z,y,1,1)
and finally one obtains a closed form for P(z,y,1,s), viz.,

xsq
1 —sq)(1 - ysq)

P(xvyqus): )P('rvyqul)_( P(xvyqu‘SQ)'

l—z—y—/1-2z—2y—2zy+z2+y?
1‘1/\/ 1'23/ ZYyTx y)—}—xys(l—s)

o (
P(z,y,1,s)=

1-(1—z—y)s+ y?
6. Physicists’ Guesses

We have already mentioned that polyominoes are present in physical problems and in fact the
first people who found interesting results on this subject where physicists. They sometimes base
their works on empirical results. For example, in [9], the authors are doing as if

s __ s—1 s—1 s—1
NP = N3Th4 N3~t g N3

(Nf is the number of directed animals of size s with a “compact source” of size r) was a recurrence
formula satisfied by the N7 although it is only empirically verified for the first values. Nevertheless,
they go on and find that

Ls/2]
1 27 . . —
N} = 2 /. (1+eM)e (1 + 2cost)*"'dt and in particular N§ = (s — 1)! q_zo ﬁ

Another example of a typical physicist’s method is [14] (enumeration of directed animals on a
strip of width k); they consider a transfer matrix as an operator acting on a spin space and are
drawing their inspiration from standard techniques on integrable systems.

When k tends to infinity, they obtain:

> (n Z_ 1) (LiEQJ) and thus Y a,t" = % ( fj;t - 1) .

0<i<n n>o

Analysis of singularities gives
Uy ~ 312,



7. Matricial and Continued Fraction Method

We will show on a simple example (Dyck paths) how this method works. Let

dp(z) = Z athl

1>0

the ordinary generating function of Dyck paths which end at height A.

A path of length n which ends at height h is either a path of length n — 1 which ends at height
h — 1 followed by a NE step, or a path of length n — 1 which ends at height h + 1 followed by a SE
step. Thus one obtains the following infinite system

do(z) =1+ adi(x)
di(z) = zdo(z) + zdz(x)
dy(z) =z

di(z) 4 zds(x)

dn(z) = x.d.h_l(x) + adpi1(2)

which can be written as

-1 =z 0 0 do(x) -1
r -1 =z 0 di(z) 0
0 z -1 =z dyz)| = | O
0 (z) 0

-1 =z 0 0

0 -1 = 0

det | 0 x -1 =z

0 0 z -1
do(z) = . = lim M = lim Fi(2)
-1 z 0 0 k—oodet (), . h—oo Qr(T)

z -1 =z 0

det] O x -1 =z

0 0 z -1

where ( )kxk stands for the k x k truncated associated matrices. The special structure of these

matrices gives the recurrence

{Pk(x) = —Qu_1(z) = —Pp_yi(z) — 22 Pp_s(z)  with Pi(z) = —1,
Qu(e) = —Qr_1(2) — 22Qy_o(2) with Q1(z) = 1 and Qa(x) = 1 — 2%,



from which follows

Pr(e) _ =Qra(2) _ —Qk-1(2) _ 1 _ 1
Qr(z) Qr(z) —Qr-1(2) — ?Qr—2(z) 1 - 352_%“;7_21(8) 1- x27g‘;__11((2))
and then
L Pr(z) _ 1
dof@) = kh—{%o Qr(z) z?
1- 2
z
1o

hence
1 1 —+1— 422
d = qe. d -
o(®) 1 — 22dy(z) i, do(2) 222

In fact the continued fraction is a special case of a much more general result that we will express
in the next section.

8. Multicontinued Fractions Theorem

We will need the following notations. Let (/\l,k)ogkgl be a family of elements of a commutative
field and let (Px)r>0 be a family of monic polynomials which satisfy a recurrence relation:

k
Peyr(x) = aPe(2) = Y AppeiProi().
=0
One then defines a multicontinued fraction by

L(At) =

1

1
L= Agit = 3202 Agpiol T, —

L= Qoot = 2021 Apot? T TE,

Let ¢ be the operator defined by 6§(Ax;) = Ag41,41. We note P* the reciprocal polynomial of P:
1
P*(z) := 298P p(=).
z

Theorem 1 (Roblet, Viennot). If one sets A; ; := 0 in L(A,t) for i > k+ 1 and j < t, one gels a
rational fraction Ly(t), it is the k-th convergent of the multicontinued fraction L(\,1) and we have
P (1
Lk(t) = — k( )
Pra(1)
and the following approzimation near t = 0 holds

L(A\t) = Li(t) + O(t*1).

For a deeper understanding of links between continued fractions and combinatorics, see [11, 22].
The multicontinued fraction method allows to find the generating functions of diagonally convex
directed, diagonally convex, parallelogram, vertically convex directed, vertically convex polyomi-
noes and remains to be exploited to obtain generating functions of other classes of polyominoes or
directed animals.

You are now ready to try the different kinds of methods presented here on your favourite class
of polyominoes or even on other classes of combinatorial objects!
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