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Abstract

We compute lower bounds for the distance in C* from a point u to an algebraic sur-
face Z. Such lower bounds or proximity tests give an approximation of Z. We present tests
based on both Taylor’s formula and a generalization of the Dandelin-Graeffe process to the
multivariate case, and their application to the exclusion method [2].

1. Introduction
Given a point @ in C", and an algebraic hypersurface

Z(P)={(21,...,2.) € C*|P(21,...,2,) = 0},

with P € Clzy,..., 2,], we want to evaluate the distance d(a, 2) corresponding to the norm
[2[] = max {2].

By shifting the variable z, we can restrict to the case ¢ = 0.

2. Univariate Polynomials

Let P(z) = S0, a;2° € C[z],aq # 0, and Z(P) = {Uy,...,U;}. We want to evaluate d(0, Z) =
min; |U;]. In Henrici [4, vol. 1], Theorems 6.4.d and 6.4.i give the following classical bound for

Z(P):
ProposiTION 1. If p(P) is the nonnegative root of the equation |aqg| = Z}j:l la;|p?, then

1 d
< < ——— ~ .
p(P) <d(0, 2) < i p(P) ~ 1 50(P)

Graeffe Iteration. With P(2) = a4 [[i_,(z — U;), we consider

We note P{') the classical Graeffe iterate; the roots of P!} are the squares of those of P, and
d(0, Z2(PM)) = d(0, Z(P))% we have

p( P
p(PM) < d(0, 2(PM)) < T
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so with p; = 1/p(P1), we get

P1
p1 < d(0,Z(P)) < @i 1y

Generally, we define P%*) = Graeffe(P*=1)) ; then, we get d(0,Z(P*)) = d(0,Z(P))*; with
pr = p(P#)1/2" we have

Pk

The upper bound tends rapidly to the lower bound as k increases, thus we have obtained an effective
process to compute d(0, Z).
Computing the P!, With A(2) = 3 ,-omods @22 and B(2) = 3,2, noas @207 1/2, we have
P(2)P(-2) = A(2*)* — 2°B(2*)?,
and therefore,
Graeffe(P) = A(2)* — 2B(2)*.

A practical problem is that the coeflicient size doubles at each Graeffe iteration.

3. Multivariate Polynomials

In the multivariate case, the polynomial P(z)P(—z) can not be written as Q(z*) where Q(z)
is a polynomial, thus we need to modify the definition. We generalize the Graeffe process to the
multivariate case as follows:

DEFINITION 1. We call the N-th Graeffe iterate of P(2) € C[z, ..., z,] the polynomial PIN(z)
defined by

aV_1 .

. 2
PWN(z) = H P(w’ 2), w = exp (%) , =1,
j=0
where w’z denotes the point (w/zy,...,w'2,).
ProprosITION 2. For all non negative integer N, the N-th Graeffe iterate of P(z) writes as
PM(z) =5 B (2),
i>0

where the B][»N] ’s are homogeneous polynomials of degree 2V j. The (N + 1)-st Graeffe iterate can
be computed from the N -th thanks to the formula

PRI = Y - PG, P = S BN,
j=kmod2

With the multivariate Graefle process, we easily generalize the univariate algorithm to compute
d(0, 2) in the multivariate case.

TuroREM 1. Let P(z) be a polynomial in Clz1, . . ., 2,] of total degree d. Let PN (z) =Y., BJ[»N](Z)
be its N-th Graeffe iterate and Ry the non-negative solulion of the equation in R -
(1) PRY0) = 318 o

izl
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d To/d Tl/d T2/d 7‘3/d T4/d

d d  r/d 4 r/d
2 0.7673 0.9725 0.9996 1.0000 1.0000 ro/d _mifd  mo/d s/
5
7

0.6525 0.9479 0.9973 1.0000 1.0000 2 0.5832 0.6338 0.8108 0.8224
0.6325 0.9400 0.9960 0.9999 1.0000 3 0.4802 0.5108 0.6478 0.7561
15 0.6067 0.9271 0.9938 0.9999 1.0000

TABLE 2. Some values of
TABLE 1. Some values of ry /d(0, 2, 4) rn/d(0, 2, 4) for n =17.
for n = 2.

where HB][»N]HOO = supy,=1 | B;(2)[|. Then we have

-N

1 2 N
(2) ry < d(Ovz) < <m) TN, N = R?\, .

Computing HB][»N]Hc>o raises a difficult practical problem; therefore, we make use of the norm
120 @az®|| = 3 |aql, easy to compute. Our main result is stated using this norm; one demonstrates
the equivalence of the norms || - ||, and || - || by combination of the Parseval identity and of the
Cauchy-Schwarz inequality.

THEOREM 2. Lel py be the unique nonnegative solution of

d
Nljp i
(3) |PN0)] = > 1B
i=1
The distance from 0 to Z salisfies
(4) ry <d(0,2) < knry,
where

1/2M

yo 1 2N 4 —1
TN = PN and Ry = m n—1

Moreover Nlim knx = 1, which implies Nlim ry =d(0,2).

4. Examples

We take a polynomial of degree d in n variables: P, ; = E?zl(l —2;)*—1. With Z, ; = Z(P, ),
we have d(0, 2, 4) = 1 — 7.

Tables 1 and 2 give the value of the ratio 7y /d(0, 2, 4) of Theorem 3 for several values of n, d
and N. The computations were performed in Maple. These examples show that the bound is quite
good for a small value N of Graeffe iterates.

5. Exclusion methods

We give the principle of the method for a polynomial of one variable P(z) € C|[z].

— Let the exclusion function be: zy — p(z), with p given by theorem 2 after a proper shift
of the variable, and
(1) p(z0) = 0 <= P(z0) = 0,
(2) P has no zero in |z — 2| < p(zp), which is equivalent to p(zq) < d(zo, 2);
— then, the exclusion test is: let C' be a square of centre z; and half-side @ > 0. If p(zg) > V2a,
(' contains no zero of P.
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Ficure 1. Representing by exclu- Ficure 2. Intersection of the
sion the curve y*—2¢y°+y*— 322y + curves z°+y° —2zy = 0 (Descartes
22* = 0 (petal). folium) and y* —2¢y° +y? — 322y +

)
22* = 0 (petal).

FExclusion algorithm.

Consider the reciprocal polynomial R(z) of P(z); compute by Graeffe a lower bound of the
smallest root of R(z), which gives an upper bound b, of the largest root of P(z);

Start from a big square centred at the origin, with side 2b,, which contains all the roots of
P(2);

Recursively split the square in four squares of equal size, discarding by the exclusion test
squares containing no zeros;

Stop the recursion when the desired precision is reached (the surface of the area covering
the zeros decreases exponentially fast to zero).

Figure 1 shows an application of the exclusion method to localize an algebraic curve in R2

For an algebraic variety 2; = Z(F;) and Z2 = (), Z2(F;), with Pi,..., P, € Clz,...,2,], let
pi(zo) be an exclusion function defined by theorem 2 for P;, (1 < ¢ < m); we can define an exclusion
function for the variety as p(z9) = sup; ;< Pi(20)-

An application of exclusion method to localize the intersection of two curves in R? is given in
Figure 2.
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