# Computing the Distance of a Point to an Algebraic Hypersurface and Application to Exclusion Methods

Xavier Gourdon
Algorithms Project, INRIA Rocquencourt

February 12, 1996

[summary by Pierre Nicodème]

#### Abstract

We compute lower bounds for the distance in  $\mathbb{C}^n$  from a point u to an algebraic surface  $\mathcal{Z}$ . Such lower bounds or proximity tests give an approximation of  $\mathcal{Z}$ . We present tests based on both Taylor's formula and a generalization of the Dandelin-Graeffe process to the multivariate case, and their application to the exclusion method [2].

#### 1. Introduction

Given a point a in  $\mathbb{C}^n$ , and an algebraic hypersurface

$$\mathcal{Z}(P) = \{(z_1, \dots, z_n) \in \mathbb{C}^n | P(z_1, \dots, z_n) = 0\},\$$

with  $P \in \mathbb{C}[z_1, \ldots, z_n]$ , we want to evaluate the distance  $d(a, \mathcal{Z})$  corresponding to the norm

$$||z|| = \max_{1 \le k \le n} |z_i|$$

By shifting the variable z, we can restrict to the case a=0.

#### 2. Univariate Polynomials

Let  $P(z) = \sum_{i=0}^{d} a_i z^i \in \mathbb{C}[z]$ ,  $a_d \neq 0$ , and  $\mathcal{Z}(P) = \{U_1, \dots, U_d\}$ . We want to evaluate  $d(0, \mathcal{Z}) = \min_i |U_i|$ . In Henrici [4, vol. 1], Theorems 6.4.d and 6.4.i give the following classical bound for  $\mathcal{Z}(P)$ :

Proposition 1. If  $\rho(P)$  is the nonnegative root of the equation  $|a_0| = \sum_{j=1}^d |a_j| \rho^j$ , then

$$\rho(P) \le d(0, \mathcal{Z}) \le \frac{1}{2^{1/d} - 1} \rho(P) \approx \frac{d}{\log 2} \rho(P).$$

Graeffe Iteration. With  $P(z) = a_d \prod_{i=1}^d (z - U_i)$ , we consider

$$P(z)P(-z) = (-1)^d a_d^2 \prod_{i=1}^d (z^2 - U_i^2) = P^{(1)}(z^2).$$

We note  $P^{\langle 1 \rangle}$  the classical Graeffe iterate; the roots of  $P^{\langle 1 \rangle}$  are the squares of those of P, and  $d(0, \mathcal{Z}(P^{\langle 1 \rangle})) = d(0, \mathcal{Z}(P))^2$ ; we have

$$\rho(P^{\langle 1 \rangle}) \le d(0, \mathcal{Z}(P^{\langle 1 \rangle})) \le \frac{\rho(P^{\langle 1 \rangle})}{2^{1/d} - 1};$$

so with  $\rho_1 = \sqrt{\rho(P^{\langle 1 \rangle})}$ , we get

$$\rho_1 \le d(0, \mathcal{Z}(P)) \le \frac{\rho_1}{(2^{1/d} - 1)^{1/2}}.$$

Generally, we define  $P^{\langle k \rangle} = \text{Graeffe}(P^{\langle k-1 \rangle})$ ; then, we get  $d(0, \mathcal{Z}(P^{\langle k \rangle})) = d(0, \mathcal{Z}(P))^{2^k}$ ; with  $\rho_k = \rho(P^{\langle k \rangle})^{1/2^k}$ , we have

$$\rho_k \le d(0, \mathcal{Z}(P)) \le \frac{\rho_k}{(2^{1/d} - 1)^{1/2^k}}.$$

The upper bound tends rapidly to the lower bound as k increases, thus we have obtained an effective process to compute  $d(0, \mathcal{Z})$ .

Computing the  $P^{(k)}$ . With  $A(z) = \sum_{i \equiv 0 \mod 2} a_i z^{i/2}$  and  $B(z) = \sum_{i \equiv 1 \mod 2} a_i z^{(i-1)/2}$ , we have

$$P(z)P(-z) = A(z^{2})^{2} - z^{2}B(z^{2})^{2},$$

and therefore,

$$Graeffe(P) = A(z)^2 - zB(z)^2.$$

A practical problem is that the coefficient size doubles at each Graeffe iteration.

### 3. Multivariate Polynomials

In the multivariate case, the polynomial P(z)P(-z) can not be written as  $Q(z^2)$  where Q(z) is a polynomial, thus we need to modify the definition. We generalize the Graeffe process to the multivariate case as follows:

Definition 1. We call the N-th Graeffe iterate of  $P(z) \in \mathbb{C}[z_1, \ldots, z_n]$  the polynomial  $P^{[N]}(z)$  defined by

$$P^{[N]}(z) = \prod_{j=0}^{2^{N}-1} P(\omega^{j} z), \qquad \omega = \exp\left(\frac{2i\pi}{2^{N}}\right), \quad i^{2} = -1,$$

where  $\omega^j z$  denotes the point  $(\omega^j z_1, \ldots, \omega^j z_n)$ .

Proposition 2. For all non negative integer N, the N-th Graeffe iterate of P(z) writes as

$$P^{[N]}(z) = \sum_{i>0} B_j^{[N]}(z),$$

where the  $B_j^{[N]}$ 's are homogeneous polynomials of degree  $2^Nj$ . The (N+1)-st Graeffe iterate can be computed from the N-th thanks to the formula

$$P^{[N+1]}(z) = P_0^{[N]}(z)^2 - P_1^{[N]}(z)^2, \qquad P_k^{[N]}(z) = \sum_{j=k \bmod 2} B_j^{[N]}(z).$$

With the multivariate Graeffe process, we easily generalize the univariate algorithm to compute  $d(0, \mathcal{Z})$  in the multivariate case.

THEOREM 1. Let P(z) be a polynomial in  $\mathbb{C}[z_1,\ldots,z_n]$  of total degree d. Let  $P^{[N]}(z)=\sum_{j\geq 0}B_j^{[N]}(z)$  be its N-th Graeffe iterate and  $R_N$  the non-negative solution of the equation in R

(1) 
$$|P^{[N]}(0)| = \sum_{\substack{j \ge 1 \\ 48}} ||B_j^{[N]}||_{\infty} R^j,$$

| d  | $r_0/d$ | $r_1/d$ | $r_2/d$ | $r_3/d$ | $r_4/d$ |
|----|---------|---------|---------|---------|---------|
| 2  | 0.7673  | 0.9725  | 0.9996  | 1.0000  | 1.0000  |
| 5  | 0.6525  | 0.9479  | 0.9973  | 1.0000  | 1.0000  |
| 7  | 0.6325  | 0.9400  | 0.9960  | 0.9999  | 1.0000  |
| 15 | 0.6067  | 0.9271  | 0.9938  | 0.9999  | 1.0000  |

| TABLE 1.    | Some values | of $r_N$ | $d(0,\mathcal{Z}_{n,d})$ |
|-------------|-------------|----------|--------------------------|
| for $n=2$ . |             |          | , ,                      |

| d | $r_0/d$ | $r_1/d$ | $r_2/d$            | $r_3/d$ |
|---|---------|---------|--------------------|---------|
|   |         |         | $0.8108 \\ 0.6478$ |         |

Table 2. Some values of  $r_N/d(0, \mathcal{Z}_{n,d})$  for n = 7.

where  $||B_j^{[N]}||_{\infty} = \sup_{\|z\|=1} ||B_j(z)||$ . Then we have

(2) 
$$r_N \le d(0, \mathcal{Z}) \le \left(\frac{1}{2^{1/d} - 1}\right)^{2^{-N}} r_N, \qquad r_N = R_N^{2^{-N}}.$$

Computing  $||B_j^{[N]}||_{\infty}$  raises a difficult practical problem; therefore, we make use of the norm  $||\sum_{\alpha} a_{\alpha} z^{\alpha}|| = \sum_{\alpha} |a_{\alpha}|$ , easy to compute. Our main result is stated using this norm; one demonstrates the equivalence of the norms  $||\cdot||_{\infty}$  and  $||\cdot||$  by combination of the Parseval identity and of the Cauchy-Schwarz inequality.

Theorem 2. Let  $\rho_N$  be the unique nonnegative solution of

(3) 
$$|P^{[N]}(0)| = \sum_{j=1}^{d} ||B_j^{[N]}||\rho^j|$$

The distance from 0 to Z satisfies

$$(4) r_N \le d(0, \mathcal{Z}) \le \kappa_N r_N,$$

where

$$r_N = 
ho_N^{2^{-N}} \quad and \quad \kappa_N = \left( \frac{1}{2^{1/d} - 1} \sqrt{\binom{2^N + n - 1}{n - 1}} \right)^{1/2^N}.$$

Moreover  $\lim_{N\to\infty} \kappa_N = 1$ , which implies  $\lim_{N\to\infty} r_N = d(0, \mathbb{Z})$ .

## 4. Examples

We take a polynomial of degree d in n variables:  $P_{n,d} = \sum_{j=1}^{n} (1-z_j)^d - 1$ . With  $\mathcal{Z}_{n,d} = \mathcal{Z}(P_{n,d})$ , we have  $d(0,\mathcal{Z}_{n,d}) = 1 - \frac{1}{n^{1/d}}$ .

Tables 1 and 2 give the value of the ratio  $r_N/d(0, \mathcal{Z}_{n,d})$  of Theorem 3 for several values of n, d and N. The computations were performed in Maple. These examples show that the bound is quite good for a small value N of Graeffe iterates.

#### 5. Exclusion methods

We give the principle of the method for a polynomial of one variable  $P(z) \in \mathbb{C}[z]$ .

- Let the exclusion function be:  $z_0 \mapsto \rho(z_0)$ , with  $\rho$  given by theorem 2 after a proper shift of the variable, and
  - (1)  $\rho(z_0) = 0 \iff P(z_0) = 0$ ,
  - (2) P has no zero in  $|z-z_0| < \rho(z_0)$ , which is equivalent to  $\rho(z_0) \le d(z_0, \mathcal{Z})$ ;
- then, the exclusion test is: let C be a square of centre  $z_0$  and half-side a > 0. If  $\rho(z_0) \ge \sqrt{2}a$ , C contains no zero of P.



-2 -1.5 -1 -0.5 x 1 1.5

FIGURE 1. Representing by exclusion the curve  $y^4 - 2y^3 + y^2 - 3x^2y + 2x^4 = 0$  (petal).

FIGURE 2. Intersection of the curves  $x^3 + y^3 - 2xy = 0$  (Descartes folium) and  $y^4 - 2y^3 + y^2 - 3x^2y + 2x^4 = 0$  (petal).

## Exclusion algorithm.

- Consider the reciprocal polynomial R(z) of P(z); compute by Graeffe a lower bound of the smallest root of R(z), which gives an upper bound  $b_u$  of the largest root of P(z);
- Start from a big square centred at the origin, with side  $2b_u$ , which contains all the roots of P(z);
- Recursively split the square in four squares of equal size, discarding by the exclusion test squares containing no zeros;
- Stop the recursion when the desired precision is reached (the surface of the area covering the zeros decreases exponentially fast to zero).

Figure 1 shows an application of the exclusion method to localize an algebraic curve in  $\mathbb{R}^2$ .

For an algebraic variety  $\mathcal{Z}_i = \mathcal{Z}(P_i)$  and  $\mathcal{Z} = \bigcap_i \mathcal{Z}(P_i)$ , with  $P_1, \dots, P_m \in \mathbb{C}[z_1, \dots, z_n]$ , let  $\rho_i(z_0)$  be an exclusion function defined by theorem 2 for  $P_i, (1 \leq i \leq m)$ ; we can define an exclusion function for the variety as  $\rho(z_0) = \sup_{1 \leq i \leq m} \rho_i(z_0)$ .

An application of exclusion method to localize the intersection of two curves in  $\mathbb{R}^2$  is given in Figure 2.

#### **Bibliography**

- [1] Bareiss (Erwin H.). Resultant procedure and the mechanization of the Graeffe process. *Journal of the ACM*, vol. 7, 1960, pp. 346-386.
- [2] Dedieu (Jean-Pierre), Gourdon (Xavier), and Yakoubsohn (Jean-Claude). Computing the distance from a point to an algebraic hypersurface. July 1996. Seminar of the American Mathematical Society. Park City. 8 pages. In press.
- [3] Dedieu (Jean-Pierre) and Yakoubsohn (Jean-Claude). Localization of an algebraic hypersurface by the exclusion algorithm. Applicable Algebra in Engineering, Communication and Computing, vol. 2, 1992, pp. 239-256.
- [4] Henrici (Peter). Applied and Computational Complex Analysis. John Wiley, New York, 1977. 3 volumes.
- [5] Pan (V.). Solving a polynomial equation: some story and recent progress. 1995. Preprint.