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1. Introduction

In RNA, interactions between nucleotides form base pairs and, seen at a higher level, character-
istic secondary structure motifs such as helices, loops and bulges. These motifs are of great interest
to biologists. Though the secondary structure of RNA is much simpler than its tertiary structure,
it remains difficult to compute because the number of secondary structures of an RNA of n bases
grows exponentially with n [9]. Several methods have been established for folding RNAs, that
is predicting RNA secondary structure. The first method is phylogenetic analysis of homologous
RNA molecules. It relies on conservation of structural features during evolution. Some people are
trying to apply a grammar formalism to this method [3]. The second method uses a simplified ther-
modynamic model of RNA secondary structure to find the structure with the lowest free energy.
The third method has been recently introduced by Haussler et al. [6] and it relies on stochastic
context-free grammars (SCFGs) to model common secondary structures of a given family of RNAs.
Our parser has been designed to express easily the latest two methods.

2. Folding and S-attribute grammars

It is well known that secondary structures without pseudo-knots of an RNA may be seen as
derivation trees of this RNA for a suitably defined context-free grammar (CFG) [7]. We might for
instance use the following grammar with terminals A,C, G, U:

E—¢|AE|CE|GE|UE | AEUE |UEAE |GECE |GEUE | CEGE |UEGE
We shall use the following classic definition of context-free grammars (CFGs).

DeriNiTION 1. A CFG G = (T, N, P, S) consists of finite sets of terminals 7', nonterminals N,
productions (rewriting rules) P and of a start symbol 5 € N. Let V = NUT denote the vocabulary
of the grammar. Each production in P has the form A — «, where A € N and a € V*. A is the
left-hand side of the production and « its right-hand side.

In our work, we assumed that the grammar is proper (no useless rules or symbols, non-circular,
epsilon-free). Grammars whose derivation trees describe secondary structures will always be am-
biguous because a given RNA always has many different secondary structures.

CFGs allow us to give a synthetic description of a set of secondary structures, but they do not
allow us to choose one structure among this set. S-attribute CFGs (5-ACFGs) [4] are an extension
of CFGs allowing the assignment of a value (called attribute) to every vertex of a derivation tree.
With attributes, we may now select derivation trees with a simple criterion. If the attribute of a
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vertex is an energy or a probability, the criterion may be the selection of the derivation tree with
the lowest energy or the highest probability at the root. But attributes are not restricted to simple
real values and may be more complex. Our context of utilization of S-ACFGs has led us to the
following definition for those grammars.

DErFINITION 2. An S-ACFG is denoted by G = (T, N, P, S, A, S4, Fp). This is an extension of
the proper CFG G = (T, N, P, 5), where an attribute z € A is attached to each symbol X € V,
and a string of attributes A € A* to each string a € V*. §4 is a function from 7 to A assigning
attributes to terminals. Fp is a set of functions from A* to A. A function f4_, isin Fp iff A — «
is in P.

The attribute A of a string « is the concatenation of the attributes of the symbols in o. When
a function f4_, is applied to the attribute A of a string a derived from A, it returns the attribute
x of A. Thus, functions of Fp are responsible for the computation, in a bottom-up way, of the
attributes of nonterminals A in derivations A3 —* u, where u must belong to T* in order that
the attribute of A may be computable.

3. Two known parsing algorithms

With our application of parsing to RNAs, we will have to find one derivation tree among a
potentially exponential number of derivation trees. Hence tabular algorithms are a good way to
deal with this parse forest since they output a compacted representation of the parse forest in
polynomial time O(n?®) and space O(n?).

The simplest algorithm is the one of Cocke-Younger-Kasami [1]:

Let G be a proper CFG in Chomsky normal form. The algorithm builds a table (7}):<j<, such
that 7} contains the item [A,¢] iff A — a;41 .. .4q;.

For j between 1 and n, perform the following steps

(1) Add [A,5 — 1] to T} if A — ay;
(2) Add [A,1] to T} if 3k < j such that [B,¢] € T} and [C, k] € T; and A — BC}
(3) Repeat the previous step while there remains items to be added to 7;.

The string a; . ..a, belongs to L(G) iff [5,0] € T,.

CYK’s algorithm needs grammars in Chomsky normal form, and it does not avoid many useless
derivation subtrees. A much better algorithm is Earley’s algorithm [1, 2]:

Let G be a proper CFG. Objects of the form [A — X, ... Xy - Xpy1... X, 7], where A — X, ... X,
and 0 < i < n, are called items. The algorithm builds a table (7})i<;<, such that 7; contains an
item [A — « - (3,1] iff there exists v such that

* *
S—="ay...0;A7 = ay...q;aBy =" ay...a;37

At the beginning, [S — -a,0] € T, for all S — a. Then, if [A — -Bj3,0] € Ty, add [B — -v,0] to T}
for all B — 7. For 5 between 1 and n, perform the following steps

(1) For all [B — a-af,i] € Tj_; such that a = q;, add [B — aa- 3,i] to T};

(2) If [A— v-,i] € T}, then for all [B — a - AB,k] € 1;, add [B — aA - §,k] to T};

(3) f[A— a-Bp,i] €T}, add [B — y,j] to T} for all B — 7;

(4) Repeat the two previous steps while there remains items to be added to 7j.
The string a; . ..a, belongs to L(G) iff [S — a-,0] € T,,.

All items generated by Farley’s algorithm are useful in the context of left to right parse of the
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4. Our parsing algorithm

Our parsing algorithm outputs items which are in fact a factorization of Earley’s items sharing
the same right part before the dot: it will replace a set of items [A — a3, i] having the same string
a by a single item [A — a,t] if a # ¢, or by nothing if @ = € [8, 5]. A is the set of non-terminals
which were at the left-hand side of replaced items.

The algorithm replaces the search performed in step 4 of Earley’s algorithm by an extraction in
a priority queue @ holding pairs (X,7) of symbols and integers. We say that a pair (X,7) has a
greater priority than a pair (Y,7)if¢ > jorifi =j and Y —* X. The function used to return and
remove the set of maximum pairs of ¢} is denoted by FEztract.

Let G be a proper CFG. Our algorithm builds a table (7})i<j<, such that 7; contains an item
[A — a,i] iff @ # ¢ and for all A € A there exists § and v such that

* , * B
S—="ay...0;A7 — ay...q;aBy7 =" ay...a;07

Every time an item [A — «, 4] is added to T}, perform @ := QU {(A,i) | A€ AANA — a}. At the
beginning, all 7; are empty. Let Ag = {A € N | 33,5 — AB}. For j between 1 and n perform the
following steps
(1) Q = {(a;,j - )};
(2) (X,1):= Eatract(Q);
(3) T;:= T U{[A — X,i] | A = {A€ A | 30,4 — XB} # 0}
(4) T; :=T; U{[A — oX,h] | I[A" = a,h] € T, A= {A € A'|3B,A — aX B} # 0};
(5) Repeat steps 2 to 5 while @) is not empty;
(6) Compute Aj := Ua_aijer,{D € N [IA — aBB,37,A€ ANB =" Dy}
Then a; ...a, € L(G) iff there exists [A — «,0] € T,, such that S € A and 5 — «a.

In the general case, the complexity of our algorithm is O(n?) in time and O(n?) in space. As with
Earley’s algorithm, these orders might be improved for grammars having some special properties
which are of no interest in our case (RNA folding).

Now that we have an algorithm which may use CFG, we may transform it to use S-ACFG:

— Items are [A — a, i, A], where A is the string of attributes attached to a;
— Pairs (X, ) added to @ are triplets (X,4,x), where z is the attribute attached to X;
— Functions f4_., are taken into account at the time of reduction of items;
— The combinatorial explosion of the number of items is avoided with constraints C,, associ-
ated with non-terminals A, which replace a set of triplets (A,,z) with fixed A and ¢ by a
single triplet (A, ¢, y) whose attribute y is deduced from attributes in the replaced set.
Let G be a S-ACFG. Every time an item [A — a,2,A] is added to 7}, perform @ := Q U
{(A,7, fama(N)) | A € ANA — a}. At the beginning, all T; are empty. Let Ay = {4 € N |
33,5 — ApB}. For 1 < j < n perform the following steps
(1) @ :={(a;,5 = 1, 5a(a;))};
(2) (X,i,2):=Cx(Eatract(Q));
(3) Ty = T, U{[A — X,i,2] | A = {A € A, | 35,4 — XB} # 0);
(4) T; :=T; U{[A — aX,h,Az] | A — a,h, A€ T;,A={A e A'|3B,A — aXB} # 0};
(5) Repeat steps 2 to 5 while @ is not empty;
(6) Compute Aj := Ua_o;ner, AP € N | IA — aBB,3y,A€ ANB =" Dv}.
Then @, ...a, € L(G) iff there exists [A — «,0,A] € T}, such that S € A and 5 — a.

Let r > 1 be the maximum number of nonterminals appearing at the right-hand side of any pro-

duction of G. Then the space complexity is O(n") and the time complexity is O(n"*!). Grammars
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used in practice usually verifly r = 2 or may be turned into a grammar verifying » = 2. Hence our
algorithm has the complexity of the dynamic programming algorithm used by Zuker [10] to find a
secondary structure of minimal energy with the thermodynamic model.

The main advantage of our algorithm over a simpler Earley algorithm is that, with the factor-
ization provided by our items, many different items may now be replaced by a single item. This
feature is interesting with SCFGs we used with our algorithm.

5. Results

We have retrieved by ftp the Vienna package. This package is a set of C source files which
implements the old style dynamic programming relations popularized by Zuker to find the mini-
mum energy secondary structure of an RNA for the well known thermodynamic model. We then
converted the thermodynamic model embedded in this package into a suitable S-ACFG, and then
into a C source parser by a YACC-like tool which we wrote. Because they use the same model, our
generated parser and the Vienna package will return the same secondary structure from the same
input, thus we may compare dynamic programming and parsing. On 1667 bases of RNA on a DEC-
server 2100-500MP, the Vienna package requires 350 s. and 19 Mbytes, while our program needs
266 s. and 50 Mbytes. Thus our parsing algorithm is faster than standard dynamic programming,
and it uses less than three times as much memory. Yet, the description of the thermodynamic model
with S-ACFG is much simpler and much more flexible in the expression of structural constraints
than dynamic programming relations.

Our parsing algorithm may also be readily applied to SCFGs since probabilities of derivations
trees may easily be interpreted as attributes of derivation trees. The first results are encouraging
because we are 3 times faster on tRNAs than the CYK-like parser used by Haussler’s team.
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