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Abstract

The problem of obtaining asymptotic information about parameters of algorithms can of-
ten be reduced to the computation of limit distributions of combinatorial structures. Michéle
Soria and Philippe Flajolet have shown that for a large number of combinatorial schemes
these limit distributions are normal [1]. However, one also frequently encounters discrete
limit distributions. In certain degenerate cases it is even possible to obtain continuous spe-
cial limit distributions. Here, we are interested in these latter two cases and give some
examples. More precisely, we shall study special limit distributions arising from a bivariate
generating function of the form F(uC(z)).

1. Introduction

Consider the generating function C(z) of some combinatorial structure C'. Let F(C') be a new
combinatorial structure, obtained by applying a combinatorial construction F to C'. Then the
information about the number of C-structures “in” an F(C')-structure is contained in the bivariate
generating function F(uC(z)). Usually we take one of the following constructors, which are listed
with their associated exponential and ordinary generating functions.

Constructor | Labelled(e.g.f.) Unlabelled(o.g.1.)
1 1
Sequence T aC(a) W) ( 7)1 Tl
1 o(k 1
Cycle log ——— log
1 —uC(2) ;21 k 1 —ukC(2%)
Set exp(uC(z)) |exp Z ﬂukC(zk)
i1k
We will study
[w*]F(w)[z"]C*(2)
Pr Xn =k)= ’
e e

when n tends to infinity. Here X, is the random variable giving the number of C-structures in
an F(C) structure of size n. We will take k& of the form k = pu, + zo,, where u, and o, denote
respectively the mean value and the standard deviation of X,,. We will also note r = ps and
R = pp the convergence radii of C' and F.

Several cases should be distinguished, depending on the sign of C(r) — R:

— Sub-critical case (C(r) < R), leads to a discrete limit distribution;
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— Critical case (C(r) = R), leads to a continuous special limit distribution, if R < oo;
— Super-critical case (C(r) > R), leads to a normal limit distribution.

In the case of continuous limit distributions, we have different types of theorems, depending on
what kind of information we wish to obtain. Classically the following types are distinguished:

Continuity theorem: X,, — X <= xx, (1) — xx(1);

Integral limit theorem (GLT): Pr(z < (X, — pn)/on < y) — [ w(t)dt;
Local limit theorem (LLT): o, Pr(X,, = |ttn + Aos]) — w(A);

— Exponential tails: My (¢) is uniformly bounded in any interval around 0.

Here xx, = E(e'"¥=) is the characteristic function of X,, and Mx,k = E(e'*~) its moment generating
function. As generating functions arising from combinatorial problems are often quite regular, one
can usually systematically obtain the four types of theorems by using familiar analytical techniques
such as the saddle point method and singularity analysis.

2. The sub-critical case

THEOREM 1. Suppose that C(z) has an algebraic aperiodic singularity
C(o) = 7= (L= 2frf e,
with 0 < A< 1 and 7 < R. Then we have a discrete limil distribution,
kfprt-t TF"(7T)
Fr(r) Fr(r) -
The proof runs as follows. The condition 7 < R gives
F(C(2)) = F(r) = F'(r)y(1—z/r)* + -

The n-th coefficient [2"]F(C(z)) is obtained by singularity analysis. If & is a constant, [z"]C*(z)
can also be computed by singularity analysis, when n — oco. Combining these computations, we
obtain

Pr(X, =k) ~ and  p, ~ 1+

(W] F(u)[2"]C*(2) _ fukr*™!

Pr(X, =k) = = — .
[2"1F(C(2)) k(1)
Finally, by the usual formula for y,, we have
_ e FCR) L T )
[ F(C(2)) F(r)
Constructor Pr(X, =k) ~ Law Example
Sequence (1 —7)%krk=t Geometric ¢ | General trees
k-1
Cycle e’ (kT i Poisson ¢ Cayley trees
Set (1—71)r* Geometric
T Bka_l
Partition tmre Bell ¢
(k—1)!
(1 —7)e =k fpr3
Ordered partition _ 1 (k-1 Laguerre §
S = zp: p! (p -1

TaBLE 1. Application of Theorem 1 for some classical constructors in a labelled environment
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A a|Pr(X,=2n*)| Law Example

Ll = Rateigh | Rand i

= alei andom mappings

5 NG g pping

1 2 2

3 2 — 2%~ /2 | Maxwell | Pairs of random mappings
™

1 I'(1/4) )

1 1 YL Pyju(z) | Soria Extended forests

TABLE 2. Applications of Theorem 2

3. The critical case

TuroreM 2. Let F be an algebraic-logarithmic function: F(t) = (1—t)=*log”[1/(1—1)]. Suppose
that C(z) has an algebraic aperiodic singularity

Cz)=1—v(1—z/m)*+---, with 0< <1
Then we have a special continuous limit distribution

z*" 1y T (Aa)

Pr(X, = zn*) ~ 5 mpk(ﬂ/x), with  Py(z) = Z %7

n

where x = O(1). We also have p,, ~ un* and o2 ~ o*n?*.

Proor. We have 5
A 1
F(C(z)) ~ log” :
(C(=) 741 = z/r)re °8 1—z/r
The results for p, and o, are easily obtained by singularity analysis. We must now compute

Pr(X, = k), for k = an*, where = O(1). We have

[uwf]F(w)[2"]C*(2)
[2"]F(C(2))

and again we use singularity analysis. O
ProprosITION 1. Py(z) is normally convergent for |z| < xo and hypergeometric, if X is rational.
Proor. If A = p/q is rational, we can write

EP(’” where PU)(z) = > oy
Bypyqlz p/q plq (mq 4+ 7)T(—pm —rp/q)’

m>0

These latter functions are easily seen to be expressible as finite sums of generalized hypergeometric
functions. O

As an example, extended forests have the following bivariate generating function:

1
1—uE(z)

where F(z) = 2¢g(229(2)), with 2g(z) =1 — /1 — 4z. We have E(z) =1 — /1 — 4z and

F(uE(2)) =

4

W) ﬁF (3722574

$4
W)

Z_i) 436\; (3/45/4
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In her talk, Michele Soria also considered the super-critical case and the critical case with R = oo.
Both cases have normal limit distributions. For more information on the bivariate scheme F(uC'(z)),
see [2].
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