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Abstract

Many characteristics of quadtrees, like search costs and page occupancy, are precisely
analysed. The mean value of such parameters are shown to have generating functions of
hypergeometric type. Integral representations and singularity analysis give explicit forms
for many structural constants of those trees.

The quadtree structure is a natural generalization of binary search trees to d-dimensional data.
It constitutes a fundamental hierarchical representation of point data in higher dimensional spaces,
which is used in many different fields like data bases or image processing (see e.g. Samet’s book [7]).

Interesting parameters in the study of quadtrees are path length (related to the cost of searching
or inserting data) and the page occupancy in the case of quadtrees depending on an integer param-
eter b representing a page capacity. These additive parameters have been largely investigated: for
example, the average path length for d-dimensional quadtrees of size n is equivalent to % nlogn [3];
the page occupancy, in the case d = 2, approaches 33% [5].

The method used by Flajolet et alii in [3, 4, 5] relies on studying a linear differential equation of
order d and the local behaviour of its solutions. The results presented here rely on a new method of
attack, in which the dimension d is only a parameter in some linear differential equation of order 1.
With this method, it is possible to get more precise asymptotic expansions for the average value
of parameters, and to obtain formal expressions for the coefficients of these expansions for all d’s
(but goldies). The previous method, in the case d > 2, only gave an equivalent and the involved
constant was not always reachable.

1. Classical method

All cost functions which are studied here are additive and the mean value f,, over all d-quadtrees
of size n satisfies a recurrence

(1) fn:tn+2dz7rn,kfk7

k=0

where {,, is a toll function, that is to say the cost of dividing into sub-problems and reconstructing
from sub-problems. For example, if ¢, = 1 then f, is the number of nodes, and if ¢, = n then f,
is the average path length. Besides, 7, ; is the probability that the first subtree has size £, which
has value

1 1

k= 2 (N + 1) (Nar + 1)

E<N;<-<Ng_1<n-—1
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Translating equation (1) into generating functions gives for f(z) = Y_>"_, f, 2" the integral equa-
tion

(2) J(2) = (=) + 24 U A(2),
where I and J are two linear operators defined by
_ [P _ 7@
If(Z)_ o mdt7 Jf(z)_/o t(l—t)

The functional equation (2) may be expressed as a linear differential equation of order d, namely

Q) [0-2] U -1 = 25000

The asymptotic behaviour of the sequence (f,,) depends on the dominant singularities of f(z),
which is a solution of (3).
Let us remind that for a linear differential equation

ar(2)y ¥ (=) + -+ aof2) () = O,

where the a;’s are polynomials, the singular points are at the roots a of a;(z). Moreover the local
behaviour of the solution may have two forms

lbreg(z) = <1 _ i)s " Py, (log(a — =) (1 B i) n/q

a/ % «a

or
. 1
lbirreg(z) = lbreg(z) X exp [P ((1 - Z/a)l/q)] ;
according to the regular or irregular type of the singular point a [9]. It is possible to compute all
these quantities by a method of indeterminate coefficients [8]. In this way, one obtains a basis of
singular solutions (the series may be convergent or divergent). But a basis is not sufficient and one
must also find the coordinates of the studied solution with respect to the basis.

ExaMmPLE. The generating function of the average path length in dimension d = 2 satisfies the
linear differential equation [3]

143
21— 272P"(2) + (1 - 22)(1— 2)P'(2) — 4 P(2) = ﬁ
-z
In this case, it is possible to give an explicit solution in the form of a hypergeometric function, but
we neglect this point of view to illustrate the general method.
First we deal with the homogeneous equation. It has two singularities @ = 0, 1, and we find two
solutions

1 2

1) = g 1= 309+ B = (=22 14 20- 2

A particular local solution is

Jo(z) = (1_12)2 [logliz_§+...]_

So the general solution

f(2) = folz) + c1 fi(2) + ¢ fol2)
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has the singular behaviour
1 1 ¢ —2/3
log
(1-2)2 11—z (1-2)?

_I_ SN
hence for the coeflicients

(4) fo=nlogn+(c;+7-5/3)n+---.

Thus the recurrence gives first a linear differential equation, next the dominant singularity and
local behaviour, and eventually the asymptotic behaviour of f,. Alas we cannot compute the
coefficient ¢;, except numerically.

2. New method

The new method relies first on Euler transform, which yields a first order recurrence instead of
a full history recurrence, and second on analytically continuation of Taylor series.

2.1. Euler transform. The Euler transform

ra=r5(7)

is an involution and the associated relation on coefficients is

fu= (1) (Z) i

k=0

To abbreviate, we note Z = —z/(1 — z). According to (2), the function f*(z) satisfies a new
functional equation

(1= 2)f(2) = (1 - Z)t"(Z) + 2°J° (1 - 2)[*(2),
which involves two operators, which are much simpler than the preceding ones,
’ Z g(w)
I(l—Z)f*(Z):_/ f*(u)du, and Jg(Z):/ 2 du.
0 o U

Moreover the underlying recurrence is merely of order 1,

(5) £t [1 - (%)] fisy

(u, =t —t;_;) and it is to be compared with the original recurrence

fn = tn + QdZﬂ-n,kfk‘-

k=0

ExaMPLE. For the average path length recurrence, (5) is easy to solve because u, = 6, 5 — 6, 1

is zero for n > 3, hence
n 9 d
Y= 1—(+ for n > 3.

As a result f*(z) is hypergeometric, hence f(z) is hypergeometric too. More precisely we have

o
“ 1

z 22

T

r 3—wi,...,3 —wy,1
(1—z)3 e 3,...,3
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with the classical notation of generalized hypergeometric functions
F(al,...,ap Z)I (al)n"'(ap)ni7
U N PN nz:%(bl)n...(bq)n n!
and (a), = a(a+1)---(a+n—1). The link between f, and the hypergeometric series comes from

the equality
1 R | e

k wi=2¢ w

2.2. General theorem. In the preceding example, the expression of f, is explicit. This is a

general result because f satisfies
n

= A(n)kz_?%.

n—2

k—l) and for the number of leaves uy, is simply 1. We obtain

For paged trees, we have u, = (—1)*+*(
in this way the following theorem [2].

THEOREM 1. The expectation f, of an additive cost function with toll t, is

fn:to‘|‘n<(2d—1)t0—|—t1)_|_zn:(_1)k( )Akzt;—t; 1

But the asymptotic behaviour is not yet known. To get that damned behaviour we search for
the behaviour of f*(z) at —oo, since point —co corresponds to point 1 (the dominant singularity
of f(z)) through Euler transformation. Function f*(Z7) is defined as a power series and we search
for an integral representation, which permits an extension to the whole plane. The formula for
analytic continuation of Taylor series [6] is

1 c+i00 T
0= [ eleort s

07T Jeioo sin s

with

if we assume that

= 3 ln) (-

n>0

and ¢(s) is an analytical function, satisfying some growth conditions.

1(i-(2)) = 4

ExamPLE. For the path length

with
B 1 I'n+1-w)
A =Tn T wg T(n+ 1)
w;2

and we use

1 1 —3/24i00 T
(—t) = ——— A(=s)t°* d
;=) A(2)2im /_3/2_2'00 (=s) sin T 5
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as an extension of our power series f*(—¢). Next we shift the line of integration to the right and
collect the residues. There is a pole of order 2 at s = —1 and the computation of the residue gives

10 (logt 4 t1—2cos27r/d) 7

t—0c0

(=) = t+§t [1ogt—1+2¢(2—w)—¢(2)

where ¢» = T”/T'. Using Euler transform, the preceding expansion, valid in a neighbourhood of —oc,
becomes an expansion in the neighbourhood of 1, which yields a more precise expression than the
one obtained by the classical method —cf. (4)-
_ 2 1 2";’ 2 1-2 cos2w/d
fn = Enlogn—l—n(l—g—l—j—l—g Z [¢(2—w)—¢(2)]) —|—O<logn—|—n )

wi=2

w#2
ExAMPLE. For the number of leaves the formula is
"1
[r=Amn)Y —=.
= A(k)

The problem is to make this expression an analytic function of n. A first way to do this is to use
the series of differences (the term n — 1 is a correction due to limj A(k) = 1),

. 1 1
fn = 4ln) ,;<A(k)_A(k+n—1))+"_1]'

A second way is to write

fr=lm A(n) ) (A(k) T A - 1)) '

In both cases we obtain

Jn zn[l—wgdr(2—w)<1+§k:‘j((:)))] +...

w#2
For d = 2, the factor of n has value 4 72 — 39 ~ 0.47841762.

ExaMmPLE. Eventually the page occupancy for quadtrees with page capacity b gives rise to the

sequence
" (o)

fi=Am) 2. S0

k=b+1

The continuation of f as an analytical function of n is more subtle. The first way needs the b
first terms of the asymptotic expansion of f* to be precomputed, and this is not satisfactory. The
second way uses

Y j—2\ o I(j+n—2) pitn-1
g _m{A(n) 2 l(b—l) A(j)  (b- 1)!F(j+n—b—1)A(j+n—1)]

i>b
b I'(j+n-2) pitn=1 }

—A(m) 3 b-DIG+n-b-1)AG+n—1)

j=2
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It is noteworthy that the bounds of the sums are independent of n. So that it is possible to formally
compute the constants in the asymptotic expansion given by the theorem. By the former method,
these constants were attainable only by numerical computation.

3. Conclusion

This new method, which treats the dimension d as a parameter, permits to study precisely
the additive characteristics of quadtrees: full asymptotic expansions are available, coefficients of
these expansions are formally computable. But the computation is rather difficult and may involve
summation of multiple series. Moreover, only additive parameters can be dealt with. (Such an
important parameter as the height must be tackled with other methods [1].) Still this method has
the advantage of generality and may be applied to a wide class of problems.
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