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Abstract

Using bijections between genealogical trees arising from branching processes, plane trees
and classical random walks, one can derive asymptotic distributions of random variables such
as tree height, distances related to the nearest mutual ancestor and labelled trees properties.

1. A few definitions
— K := the set of all plane trees K with N + 1 vertices

1 2N
IKn| = il ( N) (Catalan number)

— Let AC{0,1,...},
/Cg\?) ;= {K € Ky: the degree of any non-rooted vertex of K belongs to A}.
— Fp := the set of all rooted labelled trees with N non-rooted vertices
|Fvl= (N + DN

To any plane tree K € Ky41 having m, vertices of degree r, there corresponds W rooted

labelled trees, with
my+2ma+ -+ Nmy = N,
mo+m;+---+my =N+ 1.

2. Branching processes

Let f(s) be the generating function of the number & of direct descendants of an individual in a Galton-
Watson branching process: f(s) := Y, P(€ = k)s* and let Z(n) be the number of individuals at time n.

There is an obvious bijection § between any genealogical tree G and the corresponding plane tree K.

If Qg is the set of all genealogical trees, f(s) generates a probability measure on the set of subsets of Qg
and also a corresponding measure on the set of subsets of Qg (the set of all plane trees). If v(G) is the total
number of individuals in G then

mo MN—1
Po " "Pn-1

(1) PIG=Gl(G) = N = Tr i

and by the bijection é, this is equivalent to Ps[K = Ky|K € Kn].
A few particular cases of f(s) are given by:

— fi(s) = 5. Then (1) gives ﬁ
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— Ja(8) =2 hea ca®s® with f(1) = 1, f/(1) = 1. Then (1) leads to

(4) 1
= el
— fa(s) = e*71. Then (1) leads to
N! 1
® LG (N D7

3. Labelled trees

If Tv € Fn, set v := the operation of removing labels and adding a root, so Kn+1 = v(In) € Kn41-
One can prove that P[T € Fn : y(T) = Kn+1] = (2). So one can investigate the properties of T which
are invariant with respect to relabelling by investigating the branching process with f(s) = fs(s). The same

analysis holds with fi(s) =2 ;c4 %sk and for f](\,A).
4. Trees height
Let 7(G) = min[n : Z(n) = 0] (extinction time). Then the height of K, H(K) is given by H(K) =
]

7[671(K)]. One can prove that, if f/(1) = 1,0 < f”(1) = B, then
' T sy =n| = > L
(3) hmP[\/ﬁZﬂy_N]_P[r?a}lW ()>2\/§

where W (t) is the standard Brownian Excursion (B.E.) on [0, 1

For example fi(s) leads to B = 2. If we set n = /N, (3)
density can also be derived.

If one analyzes the standard random walk (R.W.) until the next return to 0, the local time at height j is
equivalent in probability to the branching process Z(j) with fi(s). Also fi leads to the Catalan statistic for
plane trees and to the classical relation between asymptotic height and maximum of the B.E.

However, if \/LN — o0, with & < a < 1, (3) is no longer true. It is however possible to find a function

h(n, N) such that

J-
gives P[H(K) > n]. An equivalent of the

i ) n? exp[—h(n, N)]
PUH(K) 2 n|K € Hy] ~ 4+ T_n2/N?

5. Nearest mutual ancestor

Let A(n, G) be the distance to the nearest mutual ancestor of all individuals living at time n — 1 (given
that Z(n — 1) > 0). Let us condition on v(G) = N and use fi1(s). Call {(n, K) the corresponding quantity
in the tree K.

One can derive P[({(n, K)/V/N < a|K € Kn ] if \/LN — B. Also {(n,K) < na iff the number of
upcrossings of the strip [(n — 1)a, n] in the corresponding R.W. is given by (1). The same arguments can
be generalized to the total number of subtrees of K having their roots on level (1 — a)n and containing all
vertices of given height n of K.

6. Generalizations

One can consider generation dependent branching processes, processes with some life length distribution,
ete.
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