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What is a radix-rational sequence (aka a k-regular sequence)?

e A very simple example

- 1 if nis a power of 2
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o Formal definition A (complex) sequence is rational with respect to radix B
if there is a finite dimensional vector space which contains the sequence and
is left stable by the B-section operators. (Allouche and Shallit, 1992)

o Linear representation A sequence is B-rational if and only if it admits a
linear representation Ao, A1, ..., Ap_1, L, C.



o Domains
> binary coding of integers (sum of digits, Thue-Morse sequence, Rudin-Shapiro
sequence. . .)
> theory of numbers (Pascal triangle reduced modulo a power of 2, sum of three
squares)
> divide-and-conquer algorithms (binary powering, Euclidean matching. . .)

@ A more natural example Cost of mergesort in the worst case

un:u[n/ﬂ—l—um/gj—i-n—L up =0, w1 =0

2 100 0 1000 0
0100 0 1200 0

B=2 A =012 11 A=|100 1 -1
10010 0000 O
00001 01 21 3

L=(0 000 1) c=(1 00 0 0)"

13 =(1101)2 w1z = LA1A1AgAC
o Classical case B =1, u, = LAGC



Asymptotic behaviour of radix-rational sequences

Theorem Each B-rational sequence admits an asymptotic expansion of the
form

n—-+o0o
a>ay,£>0

Up = Z n®log'(n) Z whees ™, (loggn) + O(n™)

w modulus 1 complex number, ¥ 1-periodic function

Example Worst mergesort: u, = nlog, n + n¥(log, n) + 1, with
W(t) =1—{t} — 2!~ (Flajolet and Golin, 1994)

Average or not? Study of Z Unp
0<n<N

Tools

> rational formal power series
dilation equation
joint spectral radius
Jordan reduction
numeration system

vvyvyy



Rational formal power series

o Radix-rational sequence and rational formal power series
» Every radix-rational sequence hides a rational formal power series.
alphabet B = {0,1,...,B — 1}
formal power series S = Z (S, w)w

weB*
here (S, w) = LAw; Awy - Awx C = LALWC if w = wiws - wi

> Every rational formal power series defines a radix-rational sequence.
n= (w)B: Un = (S’ w)
» The rational formal power series is the essential object.



Running sum

Sk(z) = Z A,C Q=Ao+A + -+ Ap_1
|lw|=K
(0.w)p<z

Sk(@)= Y AnQ 0+ Y A ALQN M0+ Y AnAn A QR TC

r1<zi ro<xg r3<xs
4ot Z ApyApy -+ A C
rKSTK
(0.21)3 (0.1112)3 B =3
i l (0.z12223)3 z = (0.121...)3




Lemma

With Q@ = Ao + A1 + - -+ + Ap_1, the sequence of running sums (Sk) satisfies
the recursion

Sti(z) = Y AnQFC + Ay, Sk(Bx — 31),

r1 <z

where x1 is the first digit in the radiz-B expansion of z in [0,1), with So(z) = C.
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Dilation equation

Basic case .
s K _ +
Hypothesis: Q" C e R(K) <V +0 (K))

for some nonzero vector V with R(K 4+ 1)/R(K) = pw(1 + O(1/K)) and
p>0, |lw =1

FK(JJ) = ﬁs;{(x), FK+1 = ,CKFK
_ 1 K R(K) _
ﬁK@(.’L‘) = mrlgzl ATIQ C+ mAzl(b(Bl‘ wl)

Basic dilation equation:
> B(0) =0, ®(1) = V,
» for every digit r of the radix-B system and for z in [r/B, (r + 1)/B),
1 1
d(z)=— > A,V + p—wA,,,cp(Bx — 7).
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e Wavelets

> Scaling function ¢ (or father wavelet), data (c) with hypotheses
Daubechies, 1988 : There exists a unique function ¢ € L2(R) such that
K—1

Q »(z) = Z crp(2z — k)

k=0
@ [w@ds=1
Q StTfppw C[0,K —1]
> Mother wavelet ¥ (x) = Z(fl)kcg,l,kga@x —k)
k

Wavelets () = o(z — k), Vi k() = 279/ (27 — k)
> Expansion f =Y (f,0r)er+ > (fi¥;k)05k for f € L3(R)

» Example: iteration from the box function (contracting operator)
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co=1/2,¢1 =1,

coa=1/2
co = 1/8, a1 =
ca = 6/8, c3 =
cy=1/8
co = (1+ a)/4,
a = (34 a)/4,
c2 = (3 - a)/4,
cs = (1 — a)/4,
a=+3

4/8,
4/8,



o Refinement schemes (Deslauriers and Dubuc, 1986)

> Interpolation scheme (gliding Lagrange interpolation)
data: ('Uk)kEZ and L > 0,
output: f function such that f(k) = vy
. 1
if f defined on EZ and x; ) = 5 + pYEsy then f(xjjk) = 7 k(x;,k) where
7 % is the Lagrange interpolation polynomial at p/27 with
k—L<p<k+L+1
> Correction If (v;) bounded, f extends to R as a continuous function
> Scaling function ¢
vo=1,v =0 for k#0
J@) =3 veple = k)
keZ
p(z) = crp(2w — k)
K
» Example with L = 2 (cascade algorithm)
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@ Basic result
Theorem

Let L, (Ar)o<r<B, C be a linear representation of dimension d for the radiz B.
It is assumed that

1
Q¥c = R(K) (V + 0 (})) for some nonzero vector V. with
feo]

K—
R(K + 1)7R(K) =pw(l+O(1/K)) and p >0, |w| =1
there exists and induced norm || || and a constant X, with 0 < X\ < p such that all
matrices Ar, 0 <r < B, satisfy ||Ar|| < A.

Then
thf b(((z:s‘,iic dilation equation has a unique solution F, which is continuous from [0, 1]
into C%,

the sequence (F ) converges uniformly towards F, with speed essentially

O((\/p)").

Concretely Sk () R(K)F(z) + O(\")

K—+too




o Contribution of dilation equations
Contracting operator
Cascade algorithm
Regularity F is Holder with exponent logg(p/A)
Form of the dilation equation (B = 2)
* Piecewise equation, non homogeneous

[ ToF(2z) ifo<z
F(x) = { ToV + TiF(2z — 1) if1/2 <

vvyvyy

IN

* Global equation, homogeneous
F(z) = ToF(2z) + T'F(2z — 1) for x real
with F constant on the left of 0 and on the right of 1
Example Billingsley’s distribution functions (Billingsley, 1995)

X .
X = Z 27;7 Xn = Bernoulli(p), 0 < p< 1
n>0

v



L=(1)A=(1-p) A
Q:( )p-lw-lV

=(pr)c=(1)
(1
F distribution function, F(x)

(
), R(K) =1,
=(1-p)F(Q2x)+pF(2x—1), F(0)=0, F(1) =1
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A= max(p, 1- p)

Holder exponent o = logy(1/ max(p,1 — p)) ~ 0.62 (here p = 13/20)

if1/2<p<1
essentially best Holder exponent on the right a4 =logy(1/(1 —p)) ~ 1.51 > 1
essentially best Holder exponent on the left a— = «



Joint spectral radius

e Controlling products A, Rota and Strang, 1960: A1 = max,|=r ||Aw||1/T
joint spectral radius A, = limr_ 400 A7
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example with worstmergesort

1=¢o
0o =0 14
2=9




o Changing the radix

» From B to BT If a sequence is B-rational, it is BT -rational forall T € N~q.
Linear representation L, A,, C with 0 <r < B for B
becomes L, Ay, C with |w| =T for BT.

> Eigenvalues Q = Z A, becomes Q<T) = Z Ay =QT

0<r<B |w|=T

p becomes p” (and S becomes S )

> Dichotomy (desired)

| ,
0 Ax AT A1

SN

error term| 7 expansion




o Jordan reduction
> Idea
Jordan reduction of matrix @ and processing of each generalized eigenspace
Vector valued functions become matrix valued functions, but same arguments
> Qualitative result

Theorem

Let L, (Ar)o<r<B, C be a linear representation of a formal power series S. The
sequence of running sums

SK(:t) = LSK(x) = E LAwC
|lw|=K
(0.w)p<z

admits an asymptotic expansion with error term O(MNX) for every X > \«, where A« is
the joint spectral radius of the family (Ar)o<r<p. The used asymptotic scale is the
family of sequences p’ (I;), p >0, L€ N>q. The coefficients are related to solutions of
dilation equations. The error term is uniform with respect to x € [0, 1].







o Numeration system
N

We return to Z Unp,.
n=0
> Idea
N = BE+t K = |logg N|, t = {logg N}

sum up to N =
[sum of u, up to BX — 1] plus [sum of u, from B to N]=

[(sum of (S, w) for |w| < K)
minus (sum for those words beginning with 0)]

plus

[(running sum of (S, w) up to N for words of length K + 1)
minus (sum for those words beginning with 0)]



> Technique

dooum)y= > (Z LA,C— > LAOAw/C>

n<BK+t 0<k<K Mw|=k |w’|=k—1
+( 3 LAC— 3 LAko/C’)
|w|=K+1 [w!|=K
(w)p<BK+1pt=1
that is
S oum=Lli-4) > Q"C+ > LAC
n<BK+t 0<k<K |w|=K+1

(w>B§BK+lBt—1

> un)=Lla—A0) Y Q¥C+ LSk (B

n<BE+t 0<k<K

and we are at home.



Result and comments

o Qualitative result

Theorem

Let L, (Ar)o<r<B, C be a linear representation of a radiz rational sequence (ur,).
The running sum 27]:[:0 Un, admits an asymptotic expansion with error

term O(N'°8B*) for every A > ., where . is the joint spectral radius of the
family (Ar)o<r<p. The used asymptotic scale is the family of sequences
N“(Uog’; NJ), a €R, £ € N>q. The coefficients write w88 M ®(logz N) where
w is modulus 1 complex numer and ®(t) is 1-periodic and related to some

solution of a dilation equation by the change of variable x = Bitr-1

pK WK (I;>F(z) __, NlosBP (\_log? NJ) x ®(logg N)

o(t) = w't] pl—{t}F(B{t)—l)



e Example Discrepancy of the van der Corput sequence (Béjian and Faure,
1977)

Van der Corput sequence: n = (ng—1...n1no)2 Un = (0.non1...N0—1)2
Discrepancy:
v(n, a, B)
D(n)= sup |—""—=—(B-a),
0<a<p<1 n

Béjian and Faure sequence: E(n) =nD(n)
E(1)=1, E(2n)=E(), E@2n+1)= %(E(n) +E(n+1)+1)
basis (E(n), E(n+ 1),1), linear representation
1 1/2 0 1/2 0 0
L:(O 1 1), Ap = 1/2 0 , A= 1/2 1 0 , C=
1/2 1 1/2 0 1

0
0
3/2 1/2 0
Ao =1 Q_<1/2 3/2 o)
1/2 1/2 2



Jordan reduction, with basis (Vi, V3, V')

vi=(1/2 -1/2 0 )", Vo=(0 0 1/2)%, Vy=(1/2 1/2 0)",
1 0 0
= 0o 2 1 |, C=vi+V;
0 0 2
1
Sk(z) = 52K KF°(z) + 25 F'(z) + O(K)
Fo(z) = %AOFO(%D), for 0 <z < 1/2,
Fo(2) = %A0V20+ %FO(mel), for 1/2 <z < 1;
1 1 0 1 0
F(z) = _EF (r)+§A0F (2z), for 0 <z < 1/2,
Fl(z) = 7%F°(w)+%AOV21 +%F1(2x71), for1/2<z <1

FO(0) =0, F°(1) = Vi, F1(0) = 0, F1(1) = v . F(x) = 2V, F' is not explicit.
1 & 1 1
SO Bm) = plog Ny (1- {0 +2 0 (BeY )+ EEY))

N—>7+oo4
log N
+o(RER).

n=1



comparison between the (red) empirical and (blue) theoretical periodic
functions
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o Example Newman-Coquet sequence (Newman, 1969; Coquet, 1983)
u(n) = (=1)*2G") 4-rational sequence (changing the radix! +v/3, 0 — 3, 0)

Do (=l = Nemfg O pEith o),
n<N
F=F +F+F3

Fl(a:) = %Fl(élw) -+ %F2(4I) + %F3(4I) -+ %F1(4£U - 1),

Fo(z) = %F2(4$ —-1) — %F3(4a: —-1)+ %Fl(élw —-2)+ %F2(4z —2),
Fs(z) = %F3(4x —2)+ §F1(4x —-3) — %F2(4£ —-3)+ §F3(4x - 3),
F,(0) = F2(0) = F3(0) =0, Fy(1) = 2/3, F»(1) = F5(1) = 1/3.

125 ] VAN i




e Example Rudin-Shapiro sequence (Shapiro, 1951; Rudin, 1959; Brillhart
and Carlitz, 1970)
u(n) = (_1)62;11(71)

Z un = VN®(log, N) + O(1)

Z'Oj | 25
1.5:
n 2.0
1.0:
7 15
0.5%
. 1.0
0.0 TTTTTTT T T T T TTTT] L e

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0



o Periodicity versus pseudo-periodicity
>

(1) = wltl p— 1t p(BitI-1)

» Example Rosettes

cos 0 0
AO:( 0 cosﬁ)’ Al:(sinﬁ

—sin?
0



Context

o Exact expansion

> Delange, 1975
sum of digits

> Allouche and Shallit, 2003
extension

o Asymptotic expansion

» Dumont et alii, 1989, 1990, 1999
automata and substitutions

> Flajolet et aliz, 1994, 1994, 2008
divide-and-conquer recurrences, Dirichlet series

B—1 400

VB Iy = B Y T e (T (5) v ma,

r=1 r=1 k=1



