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What is a radix-rational sequence (aka a k-regular sequence)?

A very simple example

un =

{
1 if n is a power of 2
0 otherwise

un

u2n = un u2n+1

u4n+1 = u2n+1 u4n+3 = 0
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A0 =

(
1 0
0 1

)
A1 =

(
0 0
1 0

)

L =
(

0 1
)

C =

(
1
0

)



Formal definition A (complex) sequence is rational with respect to radix B
if there is a finite dimensional vector space which contains the sequence and
is left stable by the B-section operators. (Allouche and Shallit, 1992)

Linear representation A sequence is B-rational if and only if it admits a
linear representation A0, A1, . . ., AB−1, L, C.



Domains
I binary coding of integers (sum of digits, Thue-Morse sequence, Rudin-Shapiro

sequence. . .)
I theory of numbers (Pascal triangle reduced modulo a power of 2, sum of three

squares)
I divide-and-conquer algorithms (binary powering, Euclidean matching. . .)

A more natural example Cost of mergesort in the worst case

un = udn/2e + ubn/2c + n− 1, u0 = 0, u1 = 0

B = 2 A0 =


2 1 0 0 0
0 1 0 0 0
0 1 2 1 1
1 0 0 1 0
0 0 0 0 1

 A1 =


1 0 0 0 0
1 2 0 0 0
1 0 0 1 −1
0 0 0 0 0
0 1 2 1 3


L =

(
0 0 0 0 1

)
C =

(
1 0 0 0 0

)tr
13 = (1101)2 u13 = LA1A1A0A1C

Classical case B = 1, un = LAn0C



Asymptotic behaviour of radix-rational sequences

Theorem Each B-rational sequence admits an asymptotic expansion of the
form

un =
n→+∞

∑
α>α∗,`≥0

nα log`B(n)
∑
ω

ωblogB ncΨα,`,ω(logB n) +O(nα∗)

ω modulus 1 complex number, Ψ 1-periodic function

Example Worst mergesort: un = n log2 n+ nΨ(log2 n) + 1, with
Ψ(t) = 1− {t} − 21−{t} (Flajolet and Golin, 1994)

Average or not? Study of
∑

0≤n≤N

un

Tools
I rational formal power series
I dilation equation
I joint spectral radius
I Jordan reduction
I numeration system



Rational formal power series

Radix-rational sequence and rational formal power series
I Every radix-rational sequence hides a rational formal power series.

alphabet B = {0, 1, . . . , B − 1}
formal power series S =

∑
w∈B∗

(S,w)w

here (S,w) = LAw1Aw2 · · ·AwKC = LAwC if w = w1w2 · · ·wK
I Every rational formal power series defines a radix-rational sequence.
n = (w)B , un = (S,w)

I The rational formal power series is the essential object.



Running sum

SK(x) =
∑
|w|=K

(0.w)B≤x

AwC Q = A0 +A1 + · · ·+AB−1

SK(x) =
∑
r1<x1

Ar1Q
K−1C+

∑
r2<x2

Ax1Ar2Q
K−2C+

∑
r3<x3

Ax1Ax2Ar3Q
K−3C

+ · · ·+
∑

rK≤xK

Ax1Ax2 · · ·ArKC

-

0

?

(0.x1)3

?

(0.x1x2)3

?

(0.x1x2x3)3

?
x

?

B = 3

x = (0.121 . . .)3



Lemma

With Q = A0 +A1 + · · ·+AB−1, the sequence of running sums (SK) satisfies
the recursion

SK+1(x) =
∑
r1<x1

Ar1Q
KC +Ax1SK(Bx− x1),

where x1 is the first digit in the radix-B expansion of x in [0, 1), with S0(x) = C.



Dilation equation

Basic case

Hypothesis: QKC =
K→+∞

R(K)

(
V +O

(
1

K

))
for some nonzero vector V with R(K + 1)/R(K) = ρω(1 +O(1/K)) and
ρ > 0, |ω| = 1.

FK(x) =
1

R(K)
SK(x), FK+1 = LKFK

LKΦ(x) =
1

R(K + 1)

∑
r1<x1

Ar1Q
KC +

R(K)

R(K + 1)
Ax1Φ(Bx− x1)

Basic dilation equation:
I Φ(0) = 0, Φ(1) = V ,
I for every digit r of the radix-B system and for x in [r/B, (r + 1)/B),

Φ(x) =
1

ρω

∑
r1<r

Ar1V +
1

ρω
ArΦ(Bx− r).



Wavelets
I Scaling function ϕ (or father wavelet), data (ck) with hypotheses

Daubechies, 1988 : There exists a unique function ϕ ∈ L2(R) such that

1 ϕ(x) =

K−1∑
k=0

ckϕ(2x− k)

2

∫
R
ϕ(x) dx = 1

3 suppϕ ⊂ [0, K − 1]

I Mother wavelet ψ(x) =
∑
k

(−1)kcg−1−kϕ(2x− k)

Wavelets ϕk(x) = ϕ(x− k), ψj,k(x) = 2−j/2ψ(2−jx− k)

I Expansion f =
∑
k

〈f, ϕk〉ϕk +
∑
j

∑
k

〈f, ψj,k〉ψj,k for f ∈ L2(R)

I Example: iteration from the box function (contracting operator)



hat
c0 = 1/2, c1 = 1,
c2 = 1/2

cubic
B-spline

c0 = 1/8, c1 = 4/8,
c2 = 6/8, c3 = 4/8,
c4 = 1/8

Daubechies

c0 = (1 + α)/4,
c1 = (3 + α)/4,
c2 = (3 − α)/4,
c3 = (1 − α)/4,

α =
√

3



Refinement schemes (Deslauriers and Dubuc, 1986)
I Interpolation scheme (gliding Lagrange interpolation)

data: (vk)k∈Z and L > 0,
output: f function such that f(k) = vk

if f defined on
1

2j
Z and xj,k =

k

2j
+

1

2j+1
then f(xj,k) = πj,k(xj,k) where

πj,k is the Lagrange interpolation polynomial at p/2j with
k − L ≤ p ≤ k + L+ 1

I Correction If (vk) bounded, f extends to R as a continuous function
I Scaling function ϕ
v0 = 1, vk = 0 for k 6= 0

f(x) =
∑
k∈Z

vkϕ(x− k)

ϕ(x) =
∑
k

ckϕ(2x− k)

I Example with L = 2 (cascade algorithm)

















Basic result

Theorem

Let L, (Ar)0≤r<B, C be a linear representation of dimension d for the radix B.
It is assumed that

I QKC =
K→+∞

R(K)

(
V +O

(
1

K

))
for some nonzero vector V with

R(K + 1)/R(K) = ρω(1 +O(1/K)) and ρ > 0, |ω| = 1

I there exists and induced norm ‖ ‖ and a constant λ, with 0 < λ < ρ such that all
matrices Ar, 0 ≤ r < B, satisfy ‖Ar‖ ≤ λ.

Then
I the basic dilation equation has a unique solution F, which is continuous from [0, 1]

into Cd,

I the sequence (FK) converges uniformly towards F, with speed essentially
O((λ/ρ)K).

Concretely SK(x) =
K→+∞

R(K)F(x) +O(λK)



Contribution of dilation equations
I Contracting operator
I Cascade algorithm
I Regularity F is Hölder with exponent logB(ρ/λ)
I Form of the dilation equation (B = 2)

F Piecewise equation, non homogeneous

F(x) =

{
T0F(2x) if 0 ≤ x ≤ 1/2
T0V + T1F(2x− 1) if 1/2 ≤ x ≤ 1

F Global equation, homogeneous

F(x) = T0F(2x) + T1F(2x− 1) for x real

with F constant on the left of 0 and on the right of 1

I Example Billingsley’s distribution functions (Billingsley, 1995)

X =
∑
n≥0

Xn

2n
, Xn = Bernoulli(p), 0 < p < 1



L =
(

1
)
, A0 =

(
1− p

)
, A1 =

(
p
)
, C =

(
1
)

Q =
(

1
)
, ρ = 1, ω = 1 V =

(
1
)
, R(K) = 1,

F distribution function, F (x) = (1− p)F (2x) + pF (2x− 1), F (0) = 0, F (1) = 1

λ = max(p, 1− p)
Hölder exponent α = log2(1/max(p, 1− p)) ' 0.62 (here p = 13/20)
if 1/2 < p < 1

essentially best Hölder exponent on the right α+ = log2(1/(1− p)) ' 1.51 > 1

essentially best Hölder exponent on the left α− = α



Joint spectral radius

Controlling products Aw Rota and Strang, 1960: λT = max|w|=T ‖Aw‖1/T
joint spectral radius λ∗ = limT→+∞ λT

example with worstmergesort
1 = �
∞ = �
2 = �



Changing the radix
I From B to BT If a sequence is B-rational, it is BT -rational forall T ∈ N>0.

Linear representation L, Ar, C with 0 ≤ r < B for B
becomes L, Aw, C with |w| = T for BT .

I Eigenvalues Q =
∑

0≤r<B
Ar becomes Q(T ) =

∑
|w|=T

Aw = QT

ρ becomes ρT (and SK becomes SKT )
I Dichotomy (desired)

-
0 λ∗ λT λ1

•

?

•

?

•

?

•

?

•

?

•

?

•

?
error term ? expansion

ρ



Jordan reduction
I Idea

Jordan reduction of matrix Q and processing of each generalized eigenspace
Vector valued functions become matrix valued functions, but same arguments

I Qualitative result

Theorem

Let L, (Ar)0≤r<B, C be a linear representation of a formal power series S. The
sequence of running sums

SK(x) = LSK(x) =
∑
|w|=K

(0.w)B≤x

LAwC

admits an asymptotic expansion with error term O(λK) for every λ > λ∗, where λ∗ is
the joint spectral radius of the family (Ar)0≤r<B. The used asymptotic scale is the

family of sequences ρK
(K
`

)
, ρ > 0, ` ∈ N≥0. The coefficients are related to solutions of

dilation equations. The error term is uniform with respect to x ∈ [0, 1].





Numeration system

We return to

N∑
n=0

un.

I Idea
N = BK+t, K = blogB Nc, t = {logB N}

sum up to N =

[sum of un up to BK − 1] plus [sum of un from Bk to N ]=

[(sum of (S,w) for |w| ≤ K)
minus (sum for those words beginning with 0)]

plus
[(running sum of (S,w) up to N for words of length K + 1)

minus (sum for those words beginning with 0)]



I Technique∑
n≤BK+t

u(n) =
∑

0≤k≤K

( ∑
|w|=k

LAwC −
∑

|w′|=k−1

LA0Aw′C

)

+

( ∑
|w|=K+1

(w)B≤BK+1Bt−1

LAwC −
∑
|w′|=K

LA0Aw′C

)

that is ∑
n≤BK+t

u(n) = L(Id−A0)
∑

0≤k≤K
QkC +

∑
|w|=K+1

(w)B≤BK+1Bt−1

LAwC

or ∑
n≤BK+t

u(n) = L(Id−A0)
∑

0≤k≤K
QkC + LSK+1(Bt−1)

and we are at home.



Result and comments

Qualitative result

Theorem

Let L, (Ar)0≤r<B, C be a linear representation of a radix rational sequence (un).
The running sum

∑N
n=0 un admits an asymptotic expansion with error

term O(N logB λ) for every λ > λ∗, where λ∗ is the joint spectral radius of the
family (Ar)0≤r<B. The used asymptotic scale is the family of sequences
Nα
(blogB Nc

`

)
, α ∈ R, ` ∈ N≥0. The coefficients write ωblogB NcΦ(logB N) where

ω is modulus 1 complex numer and Φ(t) is 1-periodic and related to some
solution of a dilation equation by the change of variable x = B{t}−1

ρ
K
ω
K
(K
`

)
F (x) −→ N

logB ρ
(blogB Nc

`

)
× Φ(logB N)

Φ(t) = ω
btc
ρ
1−{t}

F (B
{t}−1

)



Example Discrepancy of the van der Corput sequence (Béjian and Faure,
1977)
Van der Corput sequence: n = (n`−1 . . . n1n0)2 un = (0.n0n1 . . . n`−1)2
Discrepancy:

D(n) = sup
0≤α<β≤1

∣∣∣∣ν(n, α, β)

n
− (β − α)

∣∣∣∣ ,
Béjian and Faure sequence: E(n) = nD(n)

E(1) = 1, E(2n) = E(n), E(2n+ 1) =
1

2
(E(n) + E(n+ 1) + 1)

basis (E(n), E(n+ 1), 1), linear representation

L =
(

0 1 1
)
, A0 =

 1 1/2 0
0 1/2 0
0 1/2 1

 , A1 =

 1/2 0 0
1/2 1 0
1/2 0 1

 , C =

 1
0
0

 .

λ∗ = 1 Q =

 3/2 1/2 0
1/2 3/2 0
1/2 1/2 2





Jordan reduction, with basis (V1, V
0
2 , V

1
2 )

V1 =
(

1/2 −1/2 0
)tr

, V
0
2 =

(
0 0 1/2

)tr
, V

1
2 =

(
1/2 1/2 0

)tr
,

J =

 1 0 0
0 2 1
0 0 2

 , C = V1 + V
1
2

SK(x) =
1

2
2K K F0(x) + 2K F1(x) +O(K)

F
0
(x) =

1

2
A0F

0
(2x), for 0 ≤ x < 1/2,

F
0
(x) =

1

2
A0V

0
2 +

1

2
F

0
(2x− 1), for 1/2 ≤ x < 1;

F
1
(x) = −

1

2
F

0
(x) +

1

2
A0F

0
(2x), for 0 ≤ x < 1/2,

F
1
(x) = −

1

2
F

0
(x) +

1

2
A0V

1
2 +

1

2
F

1
(2x− 1), for 1/2 ≤ x < 1

F0(0) = 0, F0(1) = V 0
2 , F1(0) = 0, F1(1) = V 1

2 . F0(x) = xV 0
2 , F1 is not explicit.

1

N

N∑
n=1

E(n) =
N→+∞

1

4
log2N+

1

4

(
1− {t}+ 23−{t}

(
F 1
2 (2{t}−1) + F 1

3 (2{t}−1
))

+O

(
logN

N

)
.



comparison between the (red) empirical and (blue) theoretical periodic
functions

0.575

0.525

0.5

8

0.6

54

0.55

3 976
0.475

0.5

0.53

10 129

0.49

0.48

11

0.51

8

0.52



Example Newman-Coquet sequence (Newman, 1969; Coquet, 1983)
u(n) = (−1)s2(3n) 4-rational sequence (changing the radix! ±

√
3, 0→ 3, 0)∑

n≤N

(−1)s2(3n) =
N→+∞

N log4 3 31−{t}F (4{t}−1) +O(1),

F = F1 + F2 + F3
F1(x) =

1

3
F1(4x) +

1

3
F2(4x) +

1

3
F3(4x) +

1

3
F1(4x− 1),

F2(x) =
1

3
F2(4x− 1)−

1

3
F3(4x− 1) +

1

3
F1(4x− 2) +

1

3
F2(4x− 2),

F3(x) =
1

3
F3(4x− 2) +

1

3
F1(4x− 3)−

1

3
F2(4x− 3) +

1

3
F3(4x− 3),

F1(0) = F2(0) = F3(0) = 0, F1(1) = 2/3, F2(1) = F3(1) = 1/3.

function F (x) and periodic function Φ(t) = 31−{t}F (4{t}−1)



Example Rudin-Shapiro sequence (Shapiro, 1951; Rudin, 1959; Brillhart
and Carlitz, 1970)
u(n) = (−1)e2 ;11(n) ∑

n≤N

un =
N→+∞

√
NΦ(log4N) +O(1)

0.25 0.5

0.0

1.0

1.5

0.5

0.75 1.00.0

2.0

0.75

2.0

1.0

1.5

0.25 0.5

1.0

2.5

0.0



Periodicity versus pseudo-periodicity
I

Φ(t) = ωbtcρ1−{t}F (B{t}−1)

I Example Rosettes

A0 =

(
cosϑ 0

0 cosϑ

)
, A1 =

(
0 − sinϑ

sinϑ 0

)
,

2.0

1.0

2.0

0.5

−1.0 1.5−0.5

−0.5

0.5

−1.0

1.0

1.5

0.0

0.0



Context

Exact expansion
I Delange, 1975

sum of digits
I Allouche and Shallit, 2003

extension

Asymptotic expansion
I Dumont et alii , 1989, 1990, 1999

automata and substitutions
I Flajolet et alii , 1994, 1994, 2008

divide-and-conquer recurrences, Dirichlet series

U(s)(Bs IN −Q) = Bs
B−1∑
r=1

Ur

rs
+

B−1∑
r=1

+∞∑
k=1

(−1)k
(s+ k − 1

k

)( r
B

)k
U(s+ k)Ar


