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Introduction

Last week, Manuel Kauers presented

• complicated theory and deep results

• which, unfortunately, is completely useless (no applications)!

This week, I will present

• no complicated theory

• no deep results

• but something that is very useful and has lots of applications!



Some Notation

The following operator symbols will be used:

• shift operator Sv: Svf(v) = f(v + 1)

• partial derivative Dv: Dvf(v) = d
dvf(v)

• arbitrary operator: ∂v any of the two above

All operators are considered to live in an Ore algebra of the form

Q(v, w, . . . )〈∂v, ∂w, . . . 〉,

i.e., polynomials in the ∂’s with rational function coefficients.
Remark: Q is some field of characteristic 0 containing Q.



Creative Telescoping

Let F (n) denote the double sum over the trinomial coefficients

F (n) =

n∑
j=0

n∑
i=0

(
n

i, j, n− i− j

)
=

n∑
j=0

n∑
i=0

n!

i!j!(n− i− j)!
.

Then the creative telescoping operator

CT = Sn − 3 + (Si − 1)
i

n− i− j + 1
+ (Sj − 1)

j

n− i− j + 1

with CT
((

n
i,j,n−i−j

))
= 0 implies that

F (n+ 1) = 3F (n).



Creative Telescoping

The lattice Green’s function of the square lattice is given by

P (z) =

∫ 1

0

∫ 1

0

1

(1− xyz)
√

1− x2
√

1− y2
dx dy.

The creative telescoping operator

(z3 − z)D2
z + (3z2 − 1)Dz + z +Dx

y(1− x2)

xyz − 1
+Dy

yz(1− y2)

xyz − 1

that annihilates the integrand, certifies that P (z) satisfies the
differential equation

(z3 − z)P ′′(z) + (3z2 − 1)P ′(z) + zP (z) = 0.



Creative Telescoping

In general, a creative telescoping operator has the form

P (v,∂v) + ∆1Q1(v,w,∂v,∂w) + · · ·+ ∆mQm(v,w,∂v,∂w)

where ∆i = Swi − 1 or ∆i = Dwi (depending on the problem).

• corresponds to an m-fold summation/integration problem

• w = w1, . . . , wm are the summation/integration variables

• v = v1, v2, . . . are the surviving parameters

• P (v,∂v) is called the principal part or the telescoper

• the Qi(v,w,∂v,∂w) are called the delta parts

• they can be viewed as certificates for the correctness of the
principal part



What is a Function?

The functions that we consider here must have the following two
properties:

• ∂-finite: Any shift and derivative of a function f(v) is
expressible as a finite Q(v)-linear combination of “basis
functions” (shifts and derivatives of f).
In terms of ideals: the annihilating left ideal of f(v) is
zero-dimensional in Q(v)〈∂v〉.

• holonomic: there is an annihilating ideal in the polynomial
algebra Q〈v,∂v〉 which has the elimination property, i.e., for
each choice of n+ 1 among the 2n generators
v1, . . . , vn, ∂v1 , . . . , ∂vn we find an element in the ideal that
depends only on those.



Holonomic and ∂-Finite Functions
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Example of a ∂-finite function

The Legendre polynomials are ∂-finite.

Their annihilating left ideal is generated by

{(n+ 1)Sn + (1− x2)Dx − (n+ 1)x,
(x2 − 1)D2

x + 2xDx − n(n+ 1)}.

This is a Gröbner basis (Sn > Dx) with finitely many (namely 2)
monomials under the stairs: U = {1, Dx}.
Changing the monomial order to Dx > Sn we obtain a different
Gröbner basis

{(x2 − 1)Dx − (n+ 1)Sn + (n+ 1)x,
(n+ 2)S2

n − (2n+ 3)xSn + (n+ 1)}

with U = {1, Sn} under the stairs.



How to Find CT Operators

The general strategy is:

1. make an ansatz with undetermined coefficients

2. extract equations for these coefficients

3. solve these equations

Remarks:

• step 2 is done by reduction modulo the annihilating ideal

• using a Gröbner basis ensures the equivalence

(remainder is zero) ⇐⇒ (operator is in the ideal)

• equating all coefficients (in the Ore algebra sense) of the
remainder to zero yields a system of equations

• depending on the ansatz, a coefficient comparison w.r.t. some
variables is performed



Different Ansätze

There are plenty of ways to obtain CT operators:

1. k-free ansatz (in our terminology: w-free)

2. polynomial ansatz

3. ansatz with undetermined rational functions

4. ansatz with generic denominators

5. ansatz with specific denominators

Since we are usually interested in the principal part of “smallest
order”, the main loop is over its support (trial and error).



k-Free Ansatz
Ansatz of the form ∑

α

∑
β

cα,β(v)∂αv ∂
β
w

where none of the summation/integration variables w appear in
the unknown coefficients cα,β.

• existence of such an operator is guaranteed by holonomy
• rewriting to the form P (v,∂v) +

∑
i ∆iQi(v,∂v,∂w) is

straight-forward
• coefficient comparison w.r.t. w is necessary
• leads to a linear system for the cα,β
• known as Sister Celine’s algorithm



Polynomial Ansatz
Ansatz of the form∑

α

cα(v)∂αv +

m∑
i=1

∆i

∑
α

∑
β

∑
γ

ci,α,β,γ(v)wγ∂αv ∂
β
w

• existence of such an operator is guaranteed by holonomy
(a fortiori: generalization of the k-free ansatz)

• coefficient comparison w.r.t. w is necessary
• leads to a linear system
• implemented in Wegschaider’s MultiSum package

(for hypergeometric summands only)



Ansatz with Undetermined Rational Functions
Ansatz of the form∑

α

cα(v)∂αv + ∆w

|U|∑
j=1

ϕj(v, w)Uj

with unknowns cα ∈ Q(v) and ϕj ∈ Q(v, w), where
U = {U1, U2, . . . } are the monomials under the stairs.

• existence is guaranteed (reduce the delta part of the previous
ansatz to normal form)

• two different kinds of unknowns
• leads to a coupled linear first-order system of differential or

difference equations in the unknowns ϕj with parameters cα
• only a single summation/integration is possible
• this ansatz was proposed by Chyzak
• implemented in Mgfun (Maple) and HolonomicFunctions

(Mathematica)



Ansatz with Generic Denominators
Ansatz of the form∑

α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α c1,i,j,α(v)wα∑
α c2,i,j,α(v)wα

Uj

• coefficient comparison w.r.t. w is necessary
• leads to a nonlinear system of equations
• nobody ever proposed to use this ansatz!



Ansatz with Specific Denominators
Topic of our talk: ansatz of the form∑

α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α ci,j,α(v)wα

di,j(v,w)
Uj

with unknowns cα and ci,j,α, and with specific denominators di,j .

• coefficient comparison w.r.t. w
• leads to a linear system of equations
• the denominators di,j can be somehow predicted
• implemented in HolonomicFunctions

• partly available in MultiSum (the hypergeometric case only),
see also Wilf/Zeilberger (1992) and
Apagodu/Zeilberger (2005)



Comparison

Let’s compare the classical method (Chyzak) with our new
approach:

• several summations/integrations possible in one step

• no guarantee for termination or for finding the operator with
minimal principal part

• coupled diff. system with few unknowns vs.
linear system with many unknowns

• perfectly suited for homomorphic images

• no expensive uncoupling required

• memory requirements can be confined to a minimum

• better controllability



Optimization 1: Homomorphic Images

Homomorphic images (i.e., modular arithmetic) play a crucial role
in our approach.

• the unknown coefficients have to be determined in Q(v)

• but for testing whether a certain principal part admits a
solution: use homomorphic images

• plug in concrete values for v1, v2, . . .

• compute in Zp instead of Q for some prime p

• caveat: Gröbner basis reduction; first compute the necessary
products ∂αv ∂

β
wgi where {g1, g2, . . . } is the Gröbner basis,

then do the substitution!



Denominators

∑
α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α ci,j,α(v)wα

di,j(v,w)
Uj

• candidates for denominators: leading coefficients of the
Gröbner basis

• in case of summation, also shifts need to be included
• find a candidate d such that di,j | d for all i, j
• heuristic: take the common denominator that occurs during

the reduction of the ansatz
• works well in more than 90% of the examples

−→ better understanding needed!



Optimization 2

∑
α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α ci,j,α(v)wα

di,j(v,w)
Uj

For computing a candidate d for the common denominator:
• don’t do the reduction with symbolic v
• perform modular reduction
• identify the true factors from their homomorphic images
• consider only factors that depend on some of the w



Optimization 3

∑
α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α ci,j,α(v)wα

di,j(v,w)
Uj

Still, for fixed support of the principal part and denominators di,j ,
the degree of wα in the delta parts is yet unknown.
• start with small degree
• increase the degree until it becomes “unreasonably” large

(heuristic!)
• need not to build the whole matrix in each step
• just add a few columns (and probably rows)
• this is very fast, and thus the heuristic bound can be generous
• problematic for multiple summations/integrations



Optimization 4

∑
α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α ci,j,α(v)wα

di,j(v,w)
Uj

Minimize the common denominator d.
• write d as a product of irreducible factors
• delete one factor
• reduce the degree bound according to the w-degree of this

factor
• check whether still a solution is found
• if so, this factor can be omitted in the ansatz



Optimization 5

∑
α

cα(v)∂αv +

m∑
i=1

∆i

|U|∑
j=1

∑
α ci,j,α(v)wα

di,j(v,w)
Uj

Minimize denominators di,j .
• is done in the same way as before
• sometimes it pays off, sometimes not



Optimization 6

Delete zero-components from the ansatz.

Use modular computations to reduce the number of rows in the
matrix.

With the refined ansatz, we may either

• start the final computation (non-modular) or

• perform many modular computations, allowing for
interpolating and reconstructing the solution



Example: Three Gegenbauer Polynomials (1)

∫ 1

−1
C

(λ)
l (x)C(λ)

m (x)C(λ)
n (x)

(
1− x2

)λ−1/2
dx =

π 21−2λΓ
(
2λ+ 1

2(l +m+ n)
)

Γ(λ)2
(

1
2(l +m+ n) + λ

)
×

(λ)(m+n−l)/2(λ)(l+n−m)/2(λ)(l+m−n)/2(
1
2(m+ n− l)

)
!
(

1
2(l + n−m)

)
!
(

1
2(l +m− n)

)
!(λ)(l+m+n)/2

The identity is valid when λ > −1
2 and λ 6= 0, l +m+ n is even

and the sum of any two of l,m, n is not less than the third; the
integral is zero in all other cases (Andrews/Askey/Roy (6.8.10)).

Trying Chyzak’s algorithm:
• with HolonomicFunctions: 20 minutes to find one relation

(a Mathematica bug prevents us from finding all of them)
• with Mgfun: out of memory after a few minutes



Example: Three Gegenbauer Polynomials (2)

But the result is strikingly simple: there are three CT operators
whose principal parts are

(l +m− n+ 1)(l −m+ n+ 2λ− 1)Sm −
(l −m+ n+ 1)(l +m− n+ 2λ− 1)Sn,

(l +m− n+ 1)(l −m− n− 2λ+ 1)Sl −
(l −m− n− 1)(l +m− n+ 2λ− 1)Sn,

(l −m− n− 2)(l −m+ n+ 2)(l +m− n+ 2λ− 2)
×(l +m+ n+ 2λ+ 2)S2

n −
(l +m− n)(l −m− n− 2λ)(l −m+ n+ 2λ)(l +m+ n+ 4λ).

With our new approach, it is computed within 10 seconds!



Examples from Thierry Combot (1)

Let Pn(x) =
1

x2 − 1

dn−1

dxn−1
(x2 − 1)n.

Now consider (for specific values of k) the integral∫ 1

−1
Pn(x)k+1(x2 − 1)k dx.

Our results using the ansatz with denominators:

• found recurrence in n for 2 ≤ k ≤ 7

• the integrand has k + 2 monomials under the stairs

• the cases with even k are harder: k = 6 took 10848s
while k = 7 took only 2293s

• the recurrence for k = 6 has order 6 (with even exponents
only) and degree 92

• the recurrence for k = 7 has order 4 and degree 70



Examples from Thierry Combot (2)

Consider the integral∫
(x2 − 1)2Pn(x)Qn(x)2

(∫
(x2 − 1)2Pn(x)3 dx

)
dx

where Qn(x) is annihilated by the same operators as Pn(x).
The inner integral denotes an antiderivative, whereas the outer one
is a contour around infinity.

• 24 monomials under the stairs

• ansatz with 1310 unknowns

• total timing is about 50 hours



Example: Lattice Green’s Functions

We study the face-centered cubic lattice in several dimensions
d = 2, . . . , 6.

The lattice Green’s function is the probability generating function

P (x; z) =

∞∑
n=0

pn(x)zn.

Of particular interest is

P (0; z) =

∞∑
n=0

pn(0)zn =
1

πd

∫ π

0
. . .

∫ π

0

dk1 . . . dkd
1− zλ(k)

.

that gives the return probabilities. Here λ(k) is the structure
function that is given by the discrete Fourier transform of the step
probabilities.



Example: Lattice Green’s Functions

Thus, for the d-dimensional face-centered cubic lattice, we have to
compute a d-fold integral of 1

1−zλ(k) where the structure function is

λ(k) =

(
d

2

)−1(
cos(k1) cos(k2) + · · ·+ cos(kd−1) cos(kd)

)
Timings with our approach

• d = 3: 2 seconds

• d = 4: 3 minutes

• d = 5: 4 hours

• d = 6: 5 days



Results for Lattice Green’s Functions

In this instance it turned out to be most efficient to do all
integrations separately.

In each case, the result is a linear ODE in z. From this we can
compute the return probability

r = 1− 1∑∞
n=0 pn(0)

to very high accuracy using asymptotic expansions.

Some results for return probabilities:

• d = 3: r3 = 1− 16 3√4π4

9(Γ( 1
3

))6
≈ 0.2563182365

• d = 4: r4 ≈ 0.09571315417

• d = 5: r5 ≈ 0.04657695746

• d = 6: r6 ≈ 0.02699987828



q-TSPP

Andrews

Robbins

Stanley



Let T (n) denote set of TSPPs with largest part at most n.

q0 q1 q2 q3 q4

Andrews-Robbins q-TSPP conjecture:∑
π∈T (n)

q|π/S3| =
∏

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2

For q = 1:

|T (n)| =
∏

1≤i≤j≤k≤n

i+ j + k − 1

i+ j + k − 2
(Stembridge)



The Determinant

Reduction by Soichi Okada:

The q-TSPP conjecture is true if

det(ai,j)1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
1− qi+j+k−1

1− qi+j+k−2

)2

=: bn

where

ai,j := qi+j−1

([
i+ j − 2

i− 1

]
q

+ q

[
i+ j − 1

i

]
q

)
+(1+qi)δi,j−δi,j+1

where [
n

k

]
q

:=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)
.



The Holonomic Ansatz

Second reduction by Doron Zeilberger:

“Pull out of the hat” a discrete function cn,j and prove

cn,n = 1 (n ≥ 1),
n∑
j=1

cn,jai,j = 0 (1 ≤ i < n),

n∑
j=1

cn,jan,j =
bn
bn−1

(n ≥ 1).

Then det(ai,j)1≤i,j≤n = bn holds.



The result. . .

. . . is about 7GB large (corresponding to
some million printed pages).

A short version of this appeared in PNAS
(Proceedings of the National Academy of
Sciences of the USA):

Christoph Koutschan, Manuel Kauers,
Doron Zeilberger:
A proof of George Andrews’ and
David Robbins’ q-TSPP conjecture
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