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Introduction

Natural setting: cutting at edges

cut a random edge

keep the bit with the root

stop when no more edges.

Practical setting: cutting at nodes

pick a random node

remove the subtree

stop when no more nodes

Two kinds of result:

for deterministic and log n trees: (weakly) 1-stable laws

for Galton–Watson trees (
√

n trees), the case we are interested in here.

History: Meir-Moon, Janson, Chassaing, Panholzer, Fill, etc... method of
moments :(
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Union-Find algorithms and the fragmentation/coalescent

A natural model for merge queries:

initially have n sets {1}, {2}, . . . , {n}

there is an unknown spanning tree T on 1, 2, . . . , n

the merge queries are the edges of T in a random order

after n− k merges the collection of sets is forest of k + 1 rooted trees
⇒ kernel is additive

An other important one:

the queries are edges of Kn

the merge queries arrive in random order

growth of random graphs/minimum spanning tree: kernel is
multiplicative
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Hashing with linear probing/parking
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Records I

Usual records

take a random permutation π = (π1, . . . , πn) of {1, 2, . . . , n}

i is a record if πi = min{j ≤ i : πj}.

E

[∑
i

1[i is a record]

]
=

n∑
i=1

1/i ∼ log n

Equivalent to records in a rooted path P

6 3 4 7 2 1 5
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Records II: a tree version

Records in rooted trees: R(T) the number of records in a tree T

for a tree T rooted at r and a random permutation π

a vertex u ∈ T is a record if πu = min{πv : v ∈ Ju, rK}.

E [R(T)] = E

[∑
u∈T

1[u is a record]

]
= nP (U is a record) = nE

[
1

DU + 1

]

If Tn is a rinary search tree

E [R(Tn)] ∼
n

2 log n

If Tn is a simply generated tree

E [R(Tn)] ≈
√

n

A coupling

Cut the vertices in the order given by π. Then:
u is cut ⇔ u is a record
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Generating rooted labelled trees uniformly

Cayley tree:

uniformly chosen rooted labelled tree on {1, 2, . . . , n}

uniformly random rooted spanning tree of Kn

can also generate the shape as a Poisson(1)-Galton–Watson tree
conditioned on the size being n.

Algorithm 1

Start with vertex 1

For 2 ≤ i ≤ n connect i to

Vi =

{
j w.p. 1/n 1 ≤ j ≤ i− 2
i− 1 w.p. 1− (i− 2)/n

Randomly permute the labels
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Generating rooted labelled trees uniformly

Algorithm 2 (Aldous–Broder)

start from a random vertex X0;

move in the graph according to a simple random walk X;

if X visits Xi for the first time add the edge Xi−1 → Xi.

At the cover time, return the tree of directed edges.

X0 X1 X2 X3 X4

X5X6
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Consequences for large random trees

A “building branches” point of view

Walk until the first time we go to a vertex already discovered:

when the tree has k vertices, we stop the current branch with
probability k/n.

given that we stop, the current vertex is uniform on the already
constructed tree

Lengths in Cayley trees

P (first branch ≥ k edges) =
∏k

i=1(1− i/n)

critical scaling k ∼ x
√

n (birthday paradox)

P (first branch ≥ x
√

n) ∼ e−x2/2.
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A Markov chain of spanning trees

Following the algorithm

{Xj, j ≥ 0} a sequence of i.i.d. r.v. uniform in {1, 2, . . . , n}

τ(k) = inf{j ≥ 0 : Xj = k}

T the tree consisting of {(Xτ(k)−1 → Xτ(k)) : τ(k) > 0}

3 1 1 2 4 4

X0 X1 X2 X4 X5 X6 X7

A stationary sequence of rooted trees: change the starting point

{Xj, j ∈ Z} a sequence of i.i.d. r.v. uniform in {1, 2, . . . , n}

τi(k) = inf{j ≥ i : Xj = k}

T i the tree consisting of {(Xτi(k)−1 → Xτi(k)), τi(k) > i}

{T i, i ∈ Z} the stationary Markov chain of rooted trees such that:

Forward transition T i to T i+1

add the edge Xi → Xi+1

remove the only edge with head Xi+1

Simple random walk on a
regular graph⇒ uniform
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Stick breaking construction for the limit of large trees

Theorem (Scaling limit of Cayley trees)

Viewed as a metric space, with the graph
distance,

n−1/2Tn
d−GH−−−−→
n→∞

T .

Scaling limit of the Aldous–Broder algorithm

a Poisson point process with rate xdx splits R>0 into segments;

Take the segments in order, and make them into a tree shape hooking
them at a uniform position

Taking the closure yields the continuum random tree.
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A closer look at the Markov chain construction

Reformulation

pick a random node Xi+1

cut it off, together with its subtree Ri+1

Build T i by appending T i \ Ri+1 as a child of Xi+1

Ri+1

T i

Xi

Xi+1
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Observations about the random walk construction

Facts about the construction
Conditional on their respective sizes (subset of labels):

left-over tree T1 \ R1 is a Cayley tree

the cut-off tree R1 is a Cayley tree

Idea:

Run the procedure without putting edges from X−1 or X0

Conditional on X−1 6= X0, this is a random forest of 2 rooted trees.
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A probabilistic correspondence

Theorem
There exists a correspondence between:

a uniform Cayley tree T and a cutting down sequence, and

a uniform Cayley tree T? and a uniformly random node u ∈ T?.

In the correspondence, the length of the cutting sequence is turned into the
depth of u in T?(plus one).

Idea of the proof:

one step of the Markov chain of spanning tree cuts at a uniformly
random node;

for the second step, rather than doing it on the whole tree, just do it on
T0 \ R1: replace T0 \ R1 by the its tranformation in one step of the
Markov chain

stop when you hit the root of initial tree T0.
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A picture is worth a thousand words

X0

v1

v1
X0

v2

X0

v1
v2

v1
v2

vκ−1
X0

T0 T1 T2 Tκ−1
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Sampling a random vertex in a tree

Algorithm

with probability |T|−1, return the root u1;

otherwise, pick a child u2 of u1 with probability proportional to |T(u2)|
and recurse in T(u2)

Lemma
The vertex U returned by the procedure is uniform in T.

Proof.
For all u ∈ T , there is a unique path
u1, u2, . . . , uκ = u. Then P (U = u):

κ−1∏
i=1

(
1− 1
|T(ui)|

)
|T(ui+1)|
|T(ui)| − 1

× 1
|T(uκ)|

=
1
|T|

u1

u2
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Why does it work?

Lemma

At time κ, when vκ = X0, the vertex X0 is uniformly random in Tκ−1

Proof.
The growth of the path v1, v2, . . . , vκ follows the distribution of the path to a
uniformly random node:

with probability |T i(X0)|−1 return X0

otherwise T i+1(X0) is size-biased
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About walks associated with trees

1

3 5 8

9 6 7

2 4

Let Tn be a Cayley tree of size n, with contour function C( · )

Theorem (Marckert–Mokkadem)

Let e = (e(t), 0 ≤ t ≤ 1) be a standard Brownian excursion. Then,

C(b2n · c)√
n

d−−−→
n→∞

2e( · )
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Towards cutting down lattice paths

Let A = {(x, y) : 0 ≤ x ≤ 2n and 0 ≤ y ≤ CT(x)}
Say π(p) = i if p ∈ A correspond to the point u ∈ T
For p ∈ A let `p = #{p′ : π(p′) = π(p)}

Sampling nodes uniformly at random

pick p = (x, y) with probability proportional to `−1
p

then, π(p) is uniform in T .
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Cutting down lattice paths

Every cut inhibates a region of A:

2#{nodes left in the tree} = length{fully active region}
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Cutting down the mightiest tree with . . . a Herring!

Poisson Point Process

Correct scaling:

mass by n

distances by
√

n

time by
√

n

Setting: e an excursion

Ae = {p = (x, y) : 0 ≤ y ≤ e(x)}

p ∈ Ae, let `p = |{p′ : π(p) = π(p′)}|

P be a Poisson point process on Ae × [0,∞) with intensity `−1
(x,y)dxdydt

P? ⊆ P the points landing in the active region

µ(s) the length of the fully active region (mass left) at time s
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An other point of view

An ode to Poisson processes

Build the CRT from the PPP on [0,∞) with intensity xdx

Cut the CRT with an other PPP on [0,∞)× R≥0 with intensity dxdt
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Number of cuts in terms of the mass left

Lemma
Let Tn be a Cayley tree:

κ(Tn)√
n

d−−−→
n→∞

∫ ∞
0

µ(s)ds d
= R

Proof.
As n→∞

κ(Tn)√
n

=
1√
n

∑
i≥0

1[pi ∈ P?] ≈ lim
t→∞

1√
n

t
√

n∑
i=0

1[pi ∈ P?]

≈ lim
t→∞

1√
n

t
√

n∑
i=0

m(i)
n
≈
∫ ∞

0
µ(s)ds
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From an excursion to a reflected bridge

Theorem
In the limit, the bijection turns a Brownian excursion e into a
Brownian bridge B and

κ(Tn)√
n

d−−−→
n→∞

L1(B)
d
= R,

where (Ls(B), 0 ≤ s ≤ 1) is the local time process of B at 0.
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Extension to all Galton–Watson trees with finite variance

ξ r.v. such that Eξ = 1 and Var [ξ] = σ2 <∞

Theorem

Let Tn be a GW(ξ) conditioned to be of size n:

κ(Tn)

σ
√

n
d−−−→

n→∞
R

Proof.

at the scale (n,
√

n,
√

n) the process looks the same, but time flows
more slowly by factor σ

show that when the tree has size o(n) the number of records is o(
√

n)
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Isolating the randomness of the cut process

Two levels of randomness
Random tree/excursion

Random cutting process

Theorem

Conditional on n−1/2Tn → T encoded by 2e,

P
(
κ(Tn)√

n
≤ x

∣∣∣∣ Tn

)
d−−−→

n→∞
P
(∫ ∞

0
µ2e(s)ds ≤ x

∣∣∣∣ e
)
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