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Plan of the talk

Cutting down trees

The record point of view

Generating random Cayley trees

Large random Cayley trees and the CRT
Cutting down trees to plant a forest
Cutting down lattice paths
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Algorithms and the additive coalescent
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Introduction

Natural setting: cutting at edges Practical setting: cutting at nodes
@ cut a random edge @ pick a random node
@ keep the bit with the root @ remove the subtree
@ stop when no more edges. @ stop when no more nodes

Two kinds of result:
@ for deterministic and log n trees: (weakly) 1-stable laws
@ for Galton—Watson trees (/7 trees), the case we are interested in here.

History: Meir-Moon, Janson, Chassaing, Panholzer, Fill, etc... method of
moments :(
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Union-Find algorithms and the fragmentation/coalescent

A natural model for merge queries:
@ initially have n sets {1}, {2},...,{n}
@ there is an unknown spanning tree 7 on 1,2,...,n
@ the merge queries are the edges of 7" in a random order

@ after n — k merges the collection of sets is forest of k + 1 rooted trees
= kernel is additive

An other important one:
@ the queries are edges of K,
@ the merge queries arrive in random order

@ growth of random graphs/minimum spanning tree: kernel is
multiplicative
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Hashing with linear probing/parking
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@ take a random permutation 7 = (7, ...,m,) of {1,2,... n}
@ iisarecordif 7; = min{j <i: 7}

E

Z 1fi is arecord]] — Z 1/i~logn

i=1

Equivalent to records in a rooted path P
6 3 4 7 2 1 5
e O OO0 0020
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Records II: a tree version

Records in rooted trees: R(7') the number of records in a tree 7'
@ for atree 7 rooted at r and a random permutation 7

@ avertex u € T is arecord if 7, = min{m, : v € [u, r]}.

E[R(T)) =E

1
Z 1[u is arecord] | = nP (U is arecord) = nE
ueT DU +1

If T, is a rinary search tree If T}, is a simply generated tree

E[R(T,)] ~ ZIZgn E[R(T,)] ~ vn
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@ for atree 7 rooted at r and a random permutation 7

@ avertex u € T is arecord if m, = min{m, : v € [u, r]}.
E|[R

[R(T)] =E lz 1[u is a record]

1
] = nP (U is arecord) = nE [Du-i- 1]

If T, is a simply generated tree

If T, is a rinary search tree

E[R(T,)] ~ s—

~ 2logn

E[R(T,)] ~ Vi

Cut the vertices in the order given by 7. Then:

u is cut

<~
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Generating rooted labelled trees uniformly

Cayley tree:
@ uniformly chosen rooted labelled tree on {1,2,...,n}
@ uniformly random rooted spanning tree of K,
@ can also generate the shape as a Poisson(1)-Galton—Watson tree
conditioned on the size being 7.
Algorithm 1
@ Start with vertex 1

@ For 2 < i < n connect i to

Vi Jj w.p. 1/n 1<j<i-2
Tl i—1 wp.1—(i—2)/n

@ Randomly permute the labels

Cutting down trees with a Markov chainsaw 8/ 27



Generating rooted labelled trees uniformly

Algorithm 2 (Aldous—Broder)
@ start from a random vertex X;
@ move in the graph according to a simple random walk X;

@ if X visits X; for the first time add the edge X;_| — X;.

@ At the cover time, return the tree of directed edges.
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Consequences for large random trees

A “building branches” point of view

Walk until the first time we go to a vertex already discovered:

@ when the tree has k vertices, we stop the current branch with
probability & /n.

@ given that we stop, the current vertex is uniform on the already
constructed tree

Lengths in Cayley trees
@ P (first branch > k edges) = Hf.;l(l —i/n)
@ critical scaling k ~ x+/n (birthday paradox)
@ P (first branch > x/n) ~ e 712,
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A Markov chain of spanning trees

Following the algorithm
@ {X;,j > 0} asequence of i.i.d. r.v. uniformin {1,2,....n}
® 7(k) =inf{j > 0:X; =k}
@ T the tree consisting of {(X 1 — X, )) : 7(k) > 0}

X2 X X Xi Xs X Xy

3 1 1 2 4 4
LA AAL R
A stationary sequence of rooted trees: change the starting point
@ {X;.j € Z} asequence of i.i.d. r.v. uniformin {1,2,... n}
o 7i(k) =inf{j > i:X; =k}

@ T' the tree consisting of {(X,,)—1 — X)), Ti(k) > i}
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Stick breaking construction for the limit of large trees

Theorem (Scaling limit of Cayley trees)

Viewed as a metric space, with the graph
distance,

_ d—GH
n 2T, =25 T

n— o0

Scaling limit of the Aldous—Broder algorithm
@ a Poisson point process with rate xdx splits R ( into segments;

@ Take the segments in order, and make them into a tree shape hooking
them at a uniform position

@ Taking the closure yields the continuum random tree.
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@ pick a random node X;

@ cut it off, together with its subtree R; |

X;

@ Build 77 by appending 77 \ R; as a child of X,

Ti

¢
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A closer look at the Markov chain construction

Reformulation
@ pick a random node X,
@ cut it off, together with its subtree R; |

@ Build 77 by appending 7" \ R, | as a child of X, ;

Xit1

X;

e
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Observations about the random walk construction

Facts about the construction

Conditional on their respective sizes (subset of labels):
@ left-over tree 7' \ R; is a Cayley tree

@ the cut-off tree R, is a Cayley tree

Idea:

@ Run the procedure without putting edges from X_; or X

@ Conditional on X_; # X, this is a random forest of 2 rooted trees.
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A probabilistic correspondence

Theorem

There exists a correspondence between.:
@ a uniform Cayley tree T and a cutting down sequence, and
@ a uniform Cayley tree T* and a uniformly random node u € T*.

In the correspondence, the length of the cutting sequence is turned into the
depth of u in T*(plus one).

Idea of the proof:

@ one step of the Markov chain of spanning tree cuts at a uniformly
random node;

@ for the second step, rather than doing it on the whole tree, just do it on
T\ R;: replace T \ R; by the its tranformation in one step of the
Markov chain

@ stop when you hit the root of initial tree 7°.
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A picture is worth a thousand words

TO Tl T2 K 1

Xo Vi Vi Vi

XO Va2 V2
Xo

S Vh—1
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@ with probability |7| !, return the root u;

and recurse in 7'(uz)

@ otherwise, pick a child u, of u; with probability proportional to |7 (u5)|

The vertex U returned by the procedure is uniform in T.

For all u € T, there is a unique path
up,up, ...,y =u. Then P (U = u):
K—1

11 (1~ ) e

1
Ty -1
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At time r, when v,. = X, the vertex X is uniformly random in T"~"

The growth of the path vy, vy, ..
uniformly random node:

., v, follows the distribution of the path to a

@ with probability |77(X,)| ! return X

@ otherwise 7! (X)) is size-biased
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About walks associated with trees

Let 7, be a Cayley tree of size n, with contour function C( - )
Theorem (Marckert—-Mokkadem)

Lete = (e(7),0 <t < 1) be a standard Brownian excursion. Then,

\/ﬁ n—o00
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Towards cutting down lattice paths

a]

LetA={(x,y):0<x<2nand0<y<Cr(x)}
Say 7(p) = i if p € A correspond to the point u € T
Forp e Aletl, = #{p' : n(p)) ==(p)}

Sampling nodes uniformly at random

@ pick p = (x,y) with probability proportional to E;l

e then, 7(p) is uniform in 7.
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2#{nodes left in the tree} = length{fully active region}
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Cutting down the mightiest tree with ... a Herring!

Correct scaling:
@ mass by n

@ distances by \/n

@ time by \/n

Setting: e an excursion
@ A ={p=(xy):0<y<e()}
o peAlett, = |{p : w(p) = n(p)}|
@ P be a Poisson point process on A, x [0, co) with intensity f(;lv)a’xdydt

@ P* C P the points landing in the active region

@ () the length of the fully active region (mass left) at time s
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Cutting down the mightiest tree with ... a Herring!

Poisson Point Process
Correct scaling:
@ mass by n

@ distances by \/n

@ time by \/n

Setting: e an excursion
@ A ={p=(xy):0<y<e()}
o peAlett, = |{p : w(p) = n(p)}|
@ P be a Poisson point process on A, x [0, co) with intensity f(;lv)a’xdydt

@ P* C P the points landing in the active region

@ () the length of the fully active region (mass left) at time s
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@ Build the CRT from the PPP on [0, oo) with intensity xdx

@ Cut the CRT with an other PPP on [0, co) x R~ with intensity dxdr
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@ Build the CRT from the PPP on [0, oo) with intensity xdx
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Let T, be a Cayley tree:

Asn — o

K(Ty) e
\/_ Zl[p,GP*]N lim —Zl[p,GP*]
l>0
t\/n
.1 m(i) o
«O» <Fr « = = E A
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From an excursion to a reflected bridge

; : |
Theorem

In the limit, the bijection turns a Brownian excursion e into a
Brownian bridge B and

i) 4,y ()

\/]71 n—o00

where (Lg(B),0 < s < 1) is the local time process of B at 0.

4

R,
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Extension to all Galton—Watson trees with finite variance

¢ r.v. such that E€ = 1 and Var [¢] = 0% < <

Theorem
Let T, be a GW (€) conditioned to be of size n:

T,
H( n) d R
g\/ﬁ n— o0

Proof.

@ at the scale (n, \/n, \/n) the process looks the same, but time flows
more slowly by factor o

@ show that when the tree has size o(n) the number of records is o(/n)

O

4
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@ Random tree/excursion

@ Random cutting process

<x

n

([ mntsras <x

)

Conditional on n="/ >T, — T encoded by 2e,

77,) 4 .p
n—o00
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