
Subdivision Algorithms and the CF Expansion of
Real Roots of Polynomial Systems

Angelos Mantzaflaris, Bernard Mourrain and Elias Tsigaridas

GALAAD

INRIA Sophia-Antipolis – Méditerranée

Algorithms Project’s Seminar, September 28, 2009

Real Root isolation

Example

f = x5−7x4 +22x3−4x2−48x +36 = (x−1) ·(x2−6x +18) ·(x2−2)

real roots −√2 1 +
√

2
output (−49,0) (49

64 ,
147
128) (147

128 ,49)

• 0-dim systems of polynomial equations, e.g. {f1, f2} ⊆ Z[x , y]

Real Root isolation

Example

f = x5−7x4 +22x3−4x2−48x +36 = (x−1) ·(x2−6x +18) ·(x2−2)

real roots −√2 1 +
√

2
output (−49,0) (49

64 ,
147
128) (147

128 ,49)

• 0-dim systems of polynomial equations, e.g. {f1, f2} ⊆ Z[x , y]

Continued fractions

Any ζ ∈ R can be written as

ζ = b0 +
1

b1 +
1
. . .

= [b0, b1, b2, . . .]

Example
√

8 = 2 +
1

1 +
1

4 +
1

1 +
1
. . .

= [2,1,4,1, . . .]

• Partial approximant of bitsize τ yields the best rational
τ -approximation of the real number

Continued fractions

Any ζ ∈ R can be written as

ζ = b0 +
1

b1 +
1
. . .

= [b0, b1, b2, . . .]

Example
√

8 = 2 +
1

1 +
1

4 +
1

1 +
1
. . .

= [2,1,4,1, . . .]

• Partial approximant of bitsize τ yields the best rational
τ -approximation of the real number

Continued fractions

Any ζ ∈ R can be written as

ζ = b0 +
1

b1 +
1
. . .

= [b0, b1, b2, . . .]

Example
√

8 = 2 +
1

1 +
1

4 +
1

1 +
1
. . .

= [2,1,4,1, . . .]

• Partial approximant of bitsize τ yields the best rational
τ -approximation of the real number

CF Algorithm for Real Root Isolation

To isolate the positive real roots of f ∈ Z[x] :
Compute a positive integer lower bound B, reduce domain (0,B]
Check for one or no solution by Descartes’ rule of signs
Subdivide using Homography transformations and repeat..

B

1

0

0

0 0

x= 1/(x+1) x= x+1

x= x+B

CF(α) = bαc+ 1

CF
(

1
α−bαc

)

CF: Termination & Complexity

Theorem ([Vincent;1836], [Uspensky;1948], [Alesina,Galuzzi;1998])

Let f ∈ Z[x], and b0,b1, . . . ,bn ∈ Z+, n > O(d τ). The map

x 7→ b0 +
1

b1 +
1

. . . bn +
1
x

transforms f (x) to f̃ (x) such that
1 V (F) = 0⇔ f has no positive real roots.
2 V (F) = 1⇔ f has one positive real root.

Average complexity [Tsigaridas, Emiris; 2008]

The expected complexity of CF is ÕB(d3τ).

CF: Termination & Complexity

Theorem ([Vincent;1836], [Uspensky;1948], [Alesina,Galuzzi;1998])

Let f ∈ Z[x], and b0,b1, . . . ,bn ∈ Z+, n > O(d τ). The map

x 7→ b0 +
1

b1 +
1

. . . bn +
1
x

transforms f (x) to f̃ (x) such that
1 V (F) = 0⇔ f has no positive real roots.
2 V (F) = 1⇔ f has one positive real root.

Average complexity [Tsigaridas, Emiris; 2008]

The expected complexity of CF is ÕB(d3τ).

A General Subdivision Scheme

Input. A system f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output. A list of disjoint domains, each containing one and only one
real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:
b) Perform a precondition process and/or a reduction process to

refine the domain.
c) Apply an exclusion test to identify if the domain contains no roots.

Apply an inclusion test to identify if the domain contains a single
root. In this case output (I, f1, .., fs).

d) If both tests fail split the representation over I into a number of
sub-domains and push them to Q.

A General Subdivision Scheme

Input. A system f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output. A list of disjoint domains, each containing one and only one
real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:
b) Perform a precondition process and/or a reduction process to

refine the domain.
c) Apply an exclusion test to identify if the domain contains no roots.

Apply an inclusion test to identify if the domain contains a single
root. In this case output (I, f1, .., fs).

d) If both tests fail split the representation over I into a number of
sub-domains and push them to Q.

A General Subdivision Scheme

Input. A system f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output. A list of disjoint domains, each containing one and only one
real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:
b) Perform a precondition process and/or a reduction process to

refine the domain.
c) Apply an exclusion test to identify if the domain contains no roots.

Apply an inclusion test to identify if the domain contains a single
root. In this case output (I, f1, .., fs).

d) If both tests fail split the representation over I into a number of
sub-domains and push them to Q.

A General Subdivision Scheme

Input. A system f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output. A list of disjoint domains, each containing one and only one
real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:
b) Perform a precondition process and/or a reduction process to

refine the domain.
c) Apply an exclusion test to identify if the domain contains no roots.

Apply an inclusion test to identify if the domain contains a single
root. In this case output (I, f1, .., fs).

d) If both tests fail split the representation over I into a number of
sub-domains and push them to Q.

A General Subdivision Scheme

Input. A system f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output. A list of disjoint domains, each containing one and only one
real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:
b) Perform a precondition process and/or a reduction process to

refine the domain.
c) Apply an exclusion test to identify if the domain contains no roots.

Apply an inclusion test to identify if the domain contains a single
root. In this case output (I, f1, .., fs).

d) If both tests fail split the representation over I into a number of
sub-domains and push them to Q.

A General Subdivision Scheme

Input. A system f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output. A list of disjoint domains, each containing one and only one
real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:
b) Perform a precondition process and/or a reduction process to

refine the domain.
c) Apply an exclusion test to identify if the domain contains no roots.

Apply an inclusion test to identify if the domain contains a single
root. In this case output (I, f1, .., fs).

d) If both tests fail split the representation over I into a number of
sub-domains and push them to Q.

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

The mCF algorithm

Representation by homography. Subdivision using Taylor shifts
Reduction using univariate projections, preconditioning using the
Jacobian.
two criteria: identify a single solution in domain (inclusion)

identify a domain with no solutions (exclusion)

Consequently:
works in monomial basis
uses only integer arithmetic
treats unbounded domains
computes CF expansion (i.e. best rational approximations) of the
coordinates of the roots

Overview

1 Representation / Subdivision

2 Reduction Step

3 Inclusion/Exclusion Criteria

4 Complexity

5 Implementation / Example

Representation

Homography (or Möbius transformation)

Bijective projective transformation H = (H1, ..,Hn) over P1 × · · · × P1,

xk 7→ Hk (xk) =
αkxk + βk

γkxk + δk
, αk , βk , γk , δk ∈ Z, γkδk 6= 0, k = 1, ..,n

H(f) :=
n∏

k=1

(γkxk + δk)dk · (f ◦ H)(x)

Base homographies:
translation by c ∈ Z: T c

k (f) = f |xk=xk+c

contraction by c ∈ Z: Cc
k (f) = f |xk=cxk

reciprocal polynomial: Rk (f) = xdk
k f |xk=1/xk

Lemma
The group of homographies is generated by Rk ,Cc

k ,T
c
k , k = 1, ..,n.

Representation

Homography (or Möbius transformation)

Bijective projective transformation H = (H1, ..,Hn) over P1 × · · · × P1,

xk 7→ Hk (xk) =
αkxk + βk

γkxk + δk
, αk , βk , γk , δk ∈ Z, γkδk 6= 0, k = 1, ..,n

H(f) :=
n∏

k=1

(γkxk + δk)dk · (f ◦ H)(x)

Base homographies:
translation by c ∈ Z: T c

k (f) = f |xk=xk+c

contraction by c ∈ Z: Cc
k (f) = f |xk=cxk

reciprocal polynomial: Rk (f) = xdk
k f |xk=1/xk

Lemma
The group of homographies is generated by Rk ,Cc

k ,T
c
k , k = 1, ..,n.

Representation

H = (x , y)

f

Initial system f = (f1, f2) of two ellipses.
We compute a homography representation over the box

[1,3]× [1,2]

Representation

H = (x + 1, y + 1)

T 1
1 T 1

2

(f)

Translate both variables by 1 (using Horner’s scheme).

H(f) = (f ◦ H)(x , y)

Representation

H = (2x + 1, y + 1)

C2
1

T 1
1 T 1

2

(f)

Contract x−variable by a factor of 2 (multiply coeff. of x iy j by 2i).

H(f) = (f ◦ H)(x , y)

Representation

H =

(
x + 2

x
,
y + 1

y

)
R1R2

C2
1

T 1
1 T 1

2

(f)

Invert both variables (swap coefficients x iy j and x2−iy2−j).

H(f) = x2y2(f ◦ H)(x , y)

Representation

H =

(
x + 3
x + 1

,
y + 2
y + 1

)
T 1

1 T 1
2

R1R2

C2
1

T 1
1 T 1

2

(f)

Translate both variables by 1. Now H(R2
+) = [1,3]× [1,2].

H(f) = (x + 1)2(y + 1)2(f ◦ H)(x , y) =
2∑

i=0

2∑
j=0

(
2
i

)(
2
j

)
b2−i,2−j · x iy j

Representation

H =

(
x + 3
x + 1

,
y + 2
y + 1

)
T 1

1 T 1
2

R1R2

C2
1

T 1
1 T 1

2

(f)

Translate both variables by 1. Now H(R2
+) = [1,3]× [1,2].

H(f) = (x + 1)2(y + 1)2(f ◦ H)(x , y) =
2∑

i=0

2∑
j=0

(
2
i

)(
2
j

)
b2−i,2−j · x iy j

Subdivision

T1R1T2(f)

T1T2R2(f)

(0, 0)

T1T2(f)

T1R1T2R2(f)

β1
δ1

α1
γ1

β2
δ2

α2
γ2

(1, 1)

Keep in memory:
Transformed polynomials: H(f1), . . . ,H(fs) as coefficient tensors.
4n integers: αk , βk , γk , δk , k = 1, . . . ,n to keep track of the
domain.

Reduction Step

Reducing the domain using lower bounds

µ2

µ1

1

1

The graph of fi in Rn+1

Reduction Step

mk (f ; xk) =

dk∑
ik=0

min
i1,..,bik ,..,in ci1..in x ik

k , Mk (f ; xk) =

dk∑
ik=0

max
i1,..,bik ,..,in ci1..in x ik

k

Following ideas of Bernstein algorithm [Mourrain,Pavone’09]

Reduction Step

mk (f ; xk) =

dk∑
ik=0

min
i1,..,bik ,..,in ci1..in x ik

k , Mk (f ; xk) =

dk∑
ik=0

max
i1,..,bik ,..,in ci1..in x ik

k

Lemma

mk (f ; xk) ≤ f (x)∏
s 6=k

∑ds
is=0 x is

s
≤ Mk (f ; xk) , k = 1, ..,n

Corollary (lower bounds on the coordinates of the zeros)

µk :=


min. pos. root of Mk (f , xk) if Mk (f ; 0) < 0
min. pos. root of mk (f , xk) if mk (f ; 0) > 0

0 otherwise

All positive roots of f lie in R>µ1 × · · · × R>µn .

Exclusion Criterion

Vincent Theorem in several variables

Let f (x) =
∑d

i=0 ci x i with ci ∈ R, without (complex) solutions s.t.
<(zk) ≥ 0 for some k . Then all its coefficients ci are of the same sign.

Corollary
If the complex multidisk associated to a domain IH does not intersect
{z ∈ (P1)n : fi(z) = 0} ⇒ the coeffs. of H(fi) have no sign changes.

H1

<(z) ≥ 0

C

IH

Exclusion Criterion

Vincent Theorem in several variables

Let f (x) =
∑d

i=0 ci x i with ci ∈ R, without (complex) solutions s.t.
<(zk) ≥ 0 for some k . Then all its coefficients ci are of the same sign.

Corollary
If the complex multidisk associated to a domain IH does not intersect
{z ∈ (P1)n : fi(z) = 0} ⇒ the coeffs. of H(fi) have no sign changes.

H1

<(z) ≥ 0

C

IH

Inclusion Criterion

Miranda Theorem
If for every pair of parallel faces there exists fi that attains opposite
signs on the faces, then f1, .., fn have at least one root inside the box.

Lemma
If the Jacobian has a constant sign in the box, then there is at most
one root of f1, .., fn inside the box.

Inclusion Criterion

Miranda Theorem
If for every pair of parallel faces there exists fi that attains opposite
signs on the faces, then f1, .., fn have at least one root inside the box.

Lemma
If the Jacobian has a constant sign in the box, then there is at most
one root of f1, .., fn inside the box.

Complexity

ζ1 = µ
(0)
1 +

1

µ
(1)
1 +

1

µ
(2)
1 + · · ·

=
Pki (ζ)

Qki (ζ)
µ2

µ1

1

1

∆i(ζ) : local separation bound of ζi ,
ki(ζ): # of steps that isolate ζi∣∣∣∣Pki (ζ)

Qki (ζ)
− ζi

∣∣∣∣ < φ−2ki (ζ)+1 ≤ ∆i(ζ),

Generalization of DMM bound:∏
ζ∈V

∆i(ζ) ≥ 2−2nτd2n−1−d2n/2 (ndn)−nd2n

[Emiris,Mourrain,Tsigaridas]

Complexity

ζ1 = µ
(0)
1 +

1

µ
(1)
1 +

1

µ
(2)
1 + · · ·

=
Pki (ζ)

Qki (ζ)
µ2

µ1

1

1

∆i(ζ) : local separation bound of ζi ,
ki(ζ): # of steps that isolate ζi∣∣∣∣Pki (ζ)

Qki (ζ)
− ζi

∣∣∣∣ < φ−2ki (ζ)+1 ≤ ∆i(ζ),

Generalization of DMM bound:∏
ζ∈V

∆i(ζ) ≥ 2−2nτd2n−1−d2n/2 (ndn)−nd2n

[Emiris,Mourrain,Tsigaridas]

Complexity

ζ1 = µ
(0)
1 +

1

µ
(1)
1 +

1

µ
(2)
1 + · · ·

=
Pki (ζ)

Qki (ζ)
µ2

µ1

1

1

∆i(ζ) : local separation bound of ζi ,
ki(ζ): # of steps that isolate ζi∣∣∣∣Pki (ζ)

Qki (ζ)
− ζi

∣∣∣∣ < φ−2ki (ζ)+1 ≤ ∆i(ζ),

Generalization of DMM bound:∏
ζ∈V

∆i(ζ) ≥ 2−2nτd2n−1−d2n/2 (ndn)−nd2n

[Emiris,Mourrain,Tsigaridas]

Continued

Two assumptions:
The include() and exclude() tests always give a correct
answer.
The computed lower bound µk is optimal,
i.e. coincides with the partial quotient of the CF expansion.

Overall

#STEPS ≤ n
∑
ζ∈V

ki(ζ) ≤ n
1
2

R − n
1
2

∑
ζ∈V

lg ∆i(ζ)

≤ 2nτd2n−1 + 2ndn lg(nd2n)

Lemma

The number of reduction/subdivision steps of mCF is Õ(n2τd2n−1).

Continued

Two assumptions:
The include() and exclude() tests always give a correct
answer.
The computed lower bound µk is optimal,
i.e. coincides with the partial quotient of the CF expansion.

Overall

#STEPS ≤ n
∑
ζ∈V

ki(ζ) ≤ n
1
2

R − n
1
2

∑
ζ∈V

lg ∆i(ζ)

≤ 2nτd2n−1 + 2ndn lg(nd2n)

Lemma

The number of reduction/subdivision steps of mCF is Õ(n2τd2n−1).

Continued

Two assumptions:
The include() and exclude() tests always give a correct
answer.
The computed lower bound µk is optimal,
i.e. coincides with the partial quotient of the CF expansion.

Overall

#STEPS ≤ n
∑
ζ∈V

ki(ζ) ≤ n
1
2

R − n
1
2

∑
ζ∈V

lg ∆i(ζ)

≤ 2nτd2n−1 + 2ndn lg(nd2n)

Lemma

The number of reduction/subdivision steps of mCF is Õ(n2τd2n−1).

Complexity

Complexity of shifting (x = x + u) [Gathen,,Gerhard;1997]:
ÕB(n2dnτ + dn+1n3σ), obtained as ndn−1 univariate shifts
Bound computation with cost C1, Tests evaluation wiith cost C2

Theorem

The total complexity is ÕB(2nn7d5n−1τ2σ + (C1 + C2)n2τdn−1).

Best rational approximation of the (coords. of the) real roots
n = 1: matches average complexity of [Tsigaridas, Emiris’08]

Improvement by initial scaling:
Apply C1/2`

k to the input.
The real roots are multiplied by 2` and their distance increases.
Total complexity improves by an order of d2n.

Complexity

Complexity of shifting (x = x + u) [Gathen,,Gerhard;1997]:
ÕB(n2dnτ + dn+1n3σ), obtained as ndn−1 univariate shifts
Bound computation with cost C1, Tests evaluation wiith cost C2

Theorem

The total complexity is ÕB(2nn7d5n−1τ2σ + (C1 + C2)n2τdn−1).

Best rational approximation of the (coords. of the) real roots
n = 1: matches average complexity of [Tsigaridas, Emiris’08]

Improvement by initial scaling:
Apply C1/2`

k to the input.
The real roots are multiplied by 2` and their distance increases.
Total complexity improves by an order of d2n.

Complexity

Complexity of shifting (x = x + u) [Gathen,,Gerhard;1997]:
ÕB(n2dnτ + dn+1n3σ), obtained as ndn−1 univariate shifts
Bound computation with cost C1, Tests evaluation wiith cost C2

Theorem

The total complexity is ÕB(2nn7d5n−1τ2σ + (C1 + C2)n2τdn−1).

Best rational approximation of the (coords. of the) real roots
n = 1: matches average complexity of [Tsigaridas, Emiris’08]

Improvement by initial scaling:
Apply C1/2`

k to the input.
The real roots are multiplied by 2` and their distance increases.
Total complexity improves by an order of d2n.

Implementation

mCF is implemented in MATHEMAGIX, in the C++ module
realroot.
Uses GMP arithmetic to work with large integer coefficients.
Polynomials based on tensor (higher dimensional matrix)
representation. Shift operations performed in place.
Univariate solving by classic CF algorithm, special case of mCF.
DFS traversal of the subdivision tree returns only the (floor of
the) first positive root.
AXEL Algebraic Modeler used for visualization in small
dimensions.
Application to topology and arrangement computations of implicit
curves/surfaces.

Implementation

mCF is implemented in MATHEMAGIX, in the C++ module
realroot.
Uses GMP arithmetic to work with large integer coefficients.
Polynomials based on tensor (higher dimensional matrix)
representation. Shift operations performed in place.
Univariate solving by classic CF algorithm, special case of mCF.
DFS traversal of the subdivision tree returns only the (floor of
the) first positive root.
AXEL Algebraic Modeler used for visualization in small
dimensions.
Application to topology and arrangement computations of implicit
curves/surfaces.

Implementation

mCF is implemented in MATHEMAGIX, in the C++ module
realroot.
Uses GMP arithmetic to work with large integer coefficients.
Polynomials based on tensor (higher dimensional matrix)
representation. Shift operations performed in place.
Univariate solving by classic CF algorithm, special case of mCF.
DFS traversal of the subdivision tree returns only the (floor of
the) first positive root.
AXEL Algebraic Modeler used for visualization in small
dimensions.
Application to topology and arrangement computations of implicit
curves/surfaces.

Implementation

mCF is implemented in MATHEMAGIX, in the C++ module
realroot.
Uses GMP arithmetic to work with large integer coefficients.
Polynomials based on tensor (higher dimensional matrix)
representation. Shift operations performed in place.
Univariate solving by classic CF algorithm, special case of mCF.
DFS traversal of the subdivision tree returns only the (floor of
the) first positive root.
AXEL Algebraic Modeler used for visualization in small
dimensions.
Application to topology and arrangement computations of implicit
curves/surfaces.

Implementation

mCF is implemented in MATHEMAGIX, in the C++ module
realroot.
Uses GMP arithmetic to work with large integer coefficients.
Polynomials based on tensor (higher dimensional matrix)
representation. Shift operations performed in place.
Univariate solving by classic CF algorithm, special case of mCF.
DFS traversal of the subdivision tree returns only the (floor of
the) first positive root.
AXEL Algebraic Modeler used for visualization in small
dimensions.
Application to topology and arrangement computations of implicit
curves/surfaces.

Toy example I = R2

f (x , y) = (f1, f2) = (y2 − xy + x2 − 1, 10xy − 4)

Toy example I = [0, 3]× [0, 3]

f (x , y) f
(

3x
x + 1

,
3y

y + 1

)

Toy example I = [0, 3]× [0, 3]

f
(

3x
x + 1

,
3y

y + 1

)

Toy example I = [3
2 , 3]× [0, 3]

f
(

3x + 3
x + 2

,
3y

y + 1

)

Toy example I = [3
2 , 2]× [0, 3

7]

f
(

6x + 3
3x + 2

,
3y

7y + 1

)

Toy example I = [0, 3
2]× [3

2 , 3]

f
(

3x
2x + 1

,
3y + 3
y + 2

)

Toy example I = [0, 3
2]× [0, 3

2]

f
(

3x
2x + 1

,
3y

2y + 1

)

Toy example I = [1, 3
2]× [0, 3

2]

f
(

3x + 3
2x + 3

,
3y

2y + 1

)

Toy example I = [1, 3
2]× [0, 3

7]

f
(

3x + 3
2x + 3

,
3y

7y + 1

)

Toy example I = [1, 6
5]× [0, 3

7]

f
(

6x + 3
5x + 3

,
3y

7y + 1

)

Toy example I = [1, 6
5]× [0, 3

8]

f
(

6x + 3
5x + 3

,
3y

8y + 1

)

Toy example I1 = [1, 6
5]× [0, 3

8] I2 = [0, 3
8]× [1, 6

5]

f
(

6x + 3
5x + 3

,
3y

8y + 1

)
f
(

3x
8x + 1

,
6y + 3
5y + 3

)

	Representation / Subdivision
	Reduction Step
	Inclusion/Exclusion Criteria
	Complexity
	Implementation / Example

