INRIA, Paris-Rocquencourt, October 12, 2009

The limit shape of large
Alternating Sign Matrices

A.G. Pronko, PDMI Steklov, Saint Petersbourg
F.C. INFN, Florence



Six-vertex model,
alternating sign matrices,
and orthogonal polynomals

A.G. Pronko, PDMI Steklov, Saint Petersbourg
F.C. INFN, Florence

« On the refined 3-enumeration of alternating sign matrices
arXiv:math-ph/0404045  Adv. Appl. Math. 34 (2005) 798

« Square ice, alternating sign matrices and classical orthogonal polynomials
arXiv:math-ph/0411076 J. Stat. Mech. 05601 (2005) P0O05



Alternating Sign Matrices

N x Nmatrix with entries € {0,1,—1} and such that: 8 (1) (1) 8 8
1 0 -1 1 O
: L. 00 1 -1 1
« non-zero entries alternate in sign; 00 O 1 O
« for each line or column, sum of entries equals 1.
How many of them? 1, 2, 7, 42, 429, ...

: N—1 (3j41)! : : \
Conjecture: An = szo % [Mills-Robbins—-Rumsey'82]
Proved in '95! [Zeilberger'95]

2 months later, another much simpler proof [Kuperberg'95] which exploits the

bijection between ASMs and the configurations of the 6-vertex model with "Domain Wall'
b.c.

Thus: Ay =2y where Zy is the partition function of the model with trivial weights

(more on this later)



« Weighted countings: ASMs ¢- enumeration: A (q)
assign weight ¢* to an ASM with k “-1” entries
Explicit answer known for g=1 [Zeilberger'95]
gq=2 [Mills-Robbins-Rumsey'83]
g=3 [Kuperberg'95]
The ¢ = 2 case is closely related to “Domino Tilings of Aztec Diamond”

[Jockush-Propp-Shor '98]
(more on this later)

« Refined countings: ASMs refined ¢— enumeration: An.-(q)

count only N x N ASMs whose sole +1 entry in the first row is exactly at the
r' position

Explicit answer known only for ¢=1 [Zeilberger'96]
q=2 [Mills-Robbins-Rumsey'83]

« Doubly refined countings .... AN r.5(q)



An(q)
Zeilberger'9b
Mills-Robbins-Rumsey'83

Kuperberg'95

An(q)

Zellberger'96

M-R-R'83

AN,’I",S(Q)

Stroganov'02



The six-vertex model
[Lieb 'o67] [Sutherland'o67]
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The Domain Wall siX VerteX model
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The Domain Wall six-vertex model

[Korep 82]
+ =
a a b b C C

0

0

0

ity

o~ O O O

1

o O = OO

— | oo r




« Partition function [Izergin'87]:

_ [sin(A + ) sin(A — )]V ke sin 27 N
N = T dety |0, — =5
[[n—o(m!)? sin(A — ) sin(A + n) j k=1

« One-point boundary correlation function [Bogoliubov-Pronko-Zvonarev'02] :

H
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« Partition function [Izergin'87]:

[sin(A + ) sin(A — )]V "

[T (m!)?

sin 27
sin(A —n) sin(A +n) |, -

ZN = detN 8§+k_2

« One-point boundary correlation function [Bogoliubov-Pronko-Zvonarev'02] :
()
Hy

(analogous expression in terms of Hankel determinants)



« Partition function [Izergin'87] :

. . . N2 ' . N
Iy — [sin(\ + Z)_Slm()\ n)] detn 8§\+k_2 | sin 2.77
[1,.,—o(m!)? sin(A —n) sin(A +n) |, -

« One-point boundary correlation function [Bogoliubov-Pronko-Zvonarev'02] :
(T)
Hy

(analogous expression in terms of Hankel determinants)

« Two-point boundary correlation function [Colomo-Pronko'05]

(again, expressed in terms of Hankel determinants)



A well-known theorem concerning orthogonal polynomials

N—-1

Gram determinant: Gy = det [ / pItF ,u(x)dx]
4 k=0

Let {Pj(z)},_o,, . acompleteset of OP, with respect to the measure p(z):

[ P Pe@u@ds = by

Let k; be the leading coefficient: Pi(x) = kjz? + ...
Then:
- N-1
Gy = det /x9+k () d:c]
! 4, k=0
S P(r) P N-1
= det / Jk(x) Z(x) () d:c]
! J k 3,k=0
B N-1 h,
— 1.2
=0 ¥



Rewriting:

we have:




N sin 2n too .y sinhnz
Rewriting: A) = = Ao
ewriting 90( ) sin()\+77)(>\—77) /_OO © sinh ga:
we have:
Foo hnx
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Continuous Hahn Polynomials !

2(3n+1)! o (2n)!
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Pafa) = P (55 ) =7 o (0}

e

Meixner-Pollaczek polynomials

Continuous Dual Hahn polynomials

For g = 1, 2, 3 and only for these values, g—enumeration is related to some classical
(in the sense of belonging to Askey scheme) orthogonal polynomials



This classical OP structure (in particular, the fact that they obey some known finite
difference equation) give rise to recurrence relations for refined ¢— enumerations, which

can be turned into differential eqs. for their generating functions. These can be solved.



This classical OP structure (in particular, the fact that they obey some known finite
difference equation) give rise to recurrence relations for refined ¢— enumerations, which

can be turned into differential eqs. for their generating functions. These can be solved.

An(q) An.r(q) AN.rs(q)
qg=1 Zeilberger'95 Zeilberger'96 Stroganov'02
q=2 Mills-Robbins-Rumsey'82 M-R-R'83 C-P'05

qg=3 Kuperberg'95 C-P'05 C-P'05
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Emptiness Formation Probability in the domain wall six-vertex model,
arXiv:0712.1524 Nucl. Phys. B 798 (2008) 340

The Arctic Circle revisited, arXiv:0704.0362 Contemp. Math. 458 (2008) 361

The limit shape of large Alternating Sign Matrices, arXiv:0803.2697
subm. to SIAM J. Discr. Math.

The Arctic curve of the domain-wall six-vertex model, arXiv:0907.1264
subm. to Comm. Math. Phys.



Domino Tiling of a square:

http://www.math.wisc.edu/~propp


http://www.math.wisc.edu/~propp

Domino tiling of an Aztec diamond
[Jockush-Propp-Shor '95]

http:/faculty.uml.edu/jpropp



The Arctic Circle Theorem

[Jockush-Propp-Shor '95]

Ve >0, dN such that “almost all” (i.e. with probability
P > 1 —¢) randomly picked domino tilings of AD(N) have

a temperate region whose boundary stays uniformly within
distance eN from the circle of radius N/ \/§ .



The Arctic Circle Theorem

[Jockush-Propp-Shor '95]

Ve >0, dN such that “almost all” (i.e. with probability
P > 1 —¢) randomly picked domino tilings of AD(N) have

a temperate region whose boundary stays uniformly within
distance eN from the circle of radius N/ \/§ )

Fluctuations:

« boundary fluctuations N'/3 [Johansson'00]

o fluctuations of boundary intersection with main diagonal obey Tracy-Widom
distribution [ Johansson'02]

o after suitable rescaling, boundary has limit as a random function, governed by
an Airy stochastic process [ Johansson'05]



The Arctic Circle Theorem

[Jockush-Propp-Shor '95]

Ve >0, dN such that “almost all” (i.e. with probability
P > 1 —¢) randomly picked domino tilings of AD(N) have

a temperate region whose boundary stays uniformly within
distance eN from the circle of radius N/ \/§ )

Example of more general phenomena: phase separation, limit shapes,
frozen boundaries/arctic curves, e.g:

e Young diagrams [Kerov-Vershik '77] [Logan-Shepp '77]

« Boxed plane partitions [Cohn-Larsen-Propp '98]

o Corner melting of a crystal [Ferrari-Spohn '02]

o Plane partitions [Cerf-Kenyon'01] [Okounkov-Reshetikhin'01]
Skewed plane partitions [Okounkov-Reshetikhin '05]

Dimer models and algebraic geometry
[Kenyon, Sheffield, Okounkov, '03-'05]



The DW 6VM as a model of interacting dimers

[Elkies—-Kuperberg-Larsen-Propp'92]

enumeration of the Domino Tilings of Aztec Diamond; in
particular a weight ¢?/2 is assigned to configurations:

S Q0

j> DW 6VM can be seen as a model of Z

interacting dimers on Aztec Diamond.

DW 6VM partition function can be seen as a weighted X




The six-vertex model
[Lieb 'o67] [Sutherland'o67]
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The Domain Wall six-vertex model

[Korep 82]
+ =
a a b b C C
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Domain Wall six vertex model: known results

o« Izergin'87: I-K determinant representation and Hankel determinant
representation for Zy ;

e« Bogoliubov-Pronko-Zvonarev '02 :one point boundary correlation
function;

e Colomo-Pronko'05: two point boundary correlation function.

All above results have rather implicit form, in terms of determinants.



Domain Wall six vertex model: known results

o« Izergin'87: I-K determinant representation and Hankel determinant
representation for Zy ;

e« Bogoliubov-Pronko-Zvonarev '02:one point boundary correlation
function;

o« Colomo-Pronko'05: two point boundary correlation function.

All above results have rather implicit form, in terms of determinants.

e Korepin Zinn-Justin'(00, Zinn-Justin'(Ol, Bleher-
Fokin'05, Bleher-Liechty'07-09: Large N behaviour of Zy:

Bulk free energy: DWBC # PBC

In addition, there are many other results, of more explicit form, for the three
specific cases of A=0, 1/2, —1/2.



Domain Wall six vertex model: numerical results
[Eloranta'99] [Zvonarev-Syluasen'04] [Allison-Reshetikhin'05]

i ‘1|.:1=|::‘."u s
e | EE Ay
e T

= -3 A =0 (free fermions) A=0.707

N =225 [Allison-Reshetikhin'05]



ASMs: N=500

A=1/2

199 samples

Ben Wieland (October 2007) http://www.math.brown.edu/~wieland



The problem

Extend the Arctic Circle Theorem [DWBC 6VM at A = 0] to generic values of
A (includinge.g. A= %: limit shape of ASMs).

« Compute a suitable bulk correlation function
Fy(r,s) 1<rs<N
« Evaluate it in the “scaling” limit:

N,r,s — oo

2|~

Z|e
|

=

I.e.: evaluate asymptotic behaviour of

F(x,y) := lim Fy(xN,yN) x,y €[0,1]



Fn(r,s)  Emptiness Formation Probability (EFP)




Fn(r,s)  Emptiness Formation Probability (EFP)

r
- °




Multiple Integral Representation for EFP

Define the generating function for the 1-point boundary correlator:

hy(z) =Y Hy(r)z"™',  hy(l)=1.

Now define, fors =1,..., N:

1

(s) o N . — 1\k—1,5—k
hy' (z1,...,2s) = Ao o) 13(},61%3 (hN—stk(25) (25 — 1) Z; }
« The functions hg\‘?) (#1,...,2s) are totally symmetric polynomials of order N — 1 in

Rlgeeeyglge
« They encode the full functional dependence of the partially inhomogeneous partition
function from its spectral parameters.

Two important properties of hg{;) (z1,...,2s):

P (21,0 2s-1,0) = by ()RS "V (21, .., 2e21)
hg{?)(zl, ey Rg—1, 1) = hg\?_l) (Zl, c ooy Zs—l) .

NB: An explicit expression of hx(z) is known for A = 0,1/2, —-1/2 .



The following Multiple Integral Representation 1s valid for EFP (r,s = 1,2,..., N):

Fy(r,s) = <2m> /{; ]{jodszh()zl,... )Jf[lzj(zjl_l)
< 7] (2 = Dk = 1)(z5 — 21)

2jZk —1

1<5<k<s

where
oty
7T 2Atz; — 17

7=1,...,s8.

The contours C are simple anticlockwise contours, enclosing z = 0 and no other singularity
of the integrand.

Ingredients:
o Quantum Inverse Scattering Method to obtain a determinant representation on the lines
of Izergin-Korepin formula;
« Orthogonal Polynomial and Random Matrices technologies to rewrite it as a multiple
integral.



Free Fermion point

In this case:
A=0 t=1 =%
Moreover in this case function /iy (z) is exactly known:

1+2\"!
hn (Z) — (T)
MIR for EFP reduces simply to

S 2y (Gt DY
Fn(r,s) = . - d’z Zi— Zk —.
(1:5) s125N=s)2mi)s Je,  Jo, 1§]I-;[k§s(] ) iz (g = 1)

Note the squared Vandermonde determinant.



Saddle point equation and Random Matrices (A = 0)

We can view MIR as a Random Matrix Model with logarithmic potential (Triple Penner
Model):

—1)s(s+1)/2 s
Fy(r,s) = (=1 jé dszexp{ Z In|z; — z|
0

o s128 (=1 (2mi)s Co =
J#k
> 1 X
+s) [(— — 1) In(zj+1)—1In(z; — 1) — —IH(Z]‘)] } :
j=1L\Y y
Saddle Point Equation (SPE) reads:
1 1/y—1 2 < 1
+x/y_(/y ):_Z ’ i=1,2,...s
zji—1  zj zj+1 S 1% — %

There are many standard approaches developed for Random Matrix models, to solve such
saddle-point eq. These methods are of course applicable here too, (this has been done) but 1n
the present case they turn out to be rather involved, and anyway thay cannot be generalized to
the case of generic A = 0.

Even in the A = 0, this is rather complicate. But we do not need the full solution!



A simple exercise: s = 1

1 (z +1)N-1
FN(T’l):_QN—li (Z—l)ZT dz
0

Large N behaviour: x = IL\T fixed.

: : .. X
Solution of saddle point equation is:  z5, = T
—X



A simple exercise: s = 1

1 (z +1)N-1
FN lrj ]- — — f dZ
(r, 1) 2N=1 Jo, (2 —1)z7
Large N behaviour: x = IL\T fixed.
Solution of saddle point equation is:  z5, = %
—X
« When z;, <1 (0<x<?i) weget Fy(x) ~ e N/
« When z;, >1  (5<x<1) weget: Fy(x) ~ —Res,—; +e N1
= 1!
As N — oo we get a step function behavior.
The step occurs when x is such that z;, =1: — Ox—1/2)

This mechanism holds for any finite value of s.



A nice 1dentity

The following identity holds:

1 s(s+1)/2 . 1)V—s
(t2 (_|_ ]_ s(N—s) 2 % % d’z Zj o Zk’)2 (ZJ+ ) o ]-7
mi)* Je, Ch 1<g<k‘<s j=1

Note the different contour C: clockwise, encircling z =1, and no other singularity of the
integrand.



Single Penner Model

[Penner'88] [Ambjorn-Kristjansen—-Makeenko'94]

IN / DMe NIV (M)] M=MT

x /sz A3 (2) SEAPERCH) V(M) =qlogM + aM

When ¢ = 1, the coefficient of In M 1s exactly equal to the order of the Vandermonde. In
this case, possibility of “total' condensation of roots of SPEs into the logarithmic well.

Strictly speaking total condensation is impossible (it does not satisfy SPEs). It is to be
intended in the sense of condensation of "almost all' roots, but a vanishing fraction.

In the case of ‘total condensation', among this vanishing fraction of uncondensed roots, there
must necessarily be a pair of coinciding real roots.



Summarizing:

« EFP has a step function behaviour in the scaling limit;

« EFP behaviour is governed by the position of SPE roots with respect to the pole at z = 1;

« the cumulative residue at such pole is exactly 1;

« Penner model allows for partial/total condensation of eigenvalues in the logarithmic
potential well.

« The coefficient of our logarithmic potential well at z = 1 is exactly s: possibility of total

condensation.



Summarizing:

« EFP has a step function behaviour in the scaling limit;

« EFP behaviour is governed by the position of SPE roots with respect to the pole at z = 1;

« the cumulative residue at such pole is exactly 1;

« Penner model allows for partial/total condensation of eigenvalues in the logarithmic
potential well.

« The coefficient of our logarithmic potential well at z = 1 is exactly s: possibility of total

condensation.

Condensation of "almost all’

 — Arctic Curves
SPE roots at z=1

NB: This last statement is in fact a theorem in the Free Fermion case(A = 0)
[Colomo-Pronko'(07, Bleher-McLaughlin (to appear)]



The Arctic curve (A =0)

SPE reads:
1 _Pﬁy_(Uy—l__%i: |
zi—1  zj zj+1 S =12 %
If we assume condensation, in the large s limit p(w) = 8(w — 1), and LHS in SPE becomes:
2
zj— 1

And the “reduced' SPE thus reads simply

1 1/y—1
ey ey
Zj—l Zj Zj—l—l

and determines the position of the “very few' possibly uncondensed roots.

We require two coinciding roots:
{ (x =122+ (1 =2y)z—x
2(x—1)z+(1-2y)=0
The solution of the above system (linear in x,y) is
1 (z—1)?
Sk YT )

Which is exactly the parametric form of the (top left quarter of the) Arctic Circle!
Indeed, eliminating z :

0

€ [1,+oo)



Generic values of A #0

1) Our nice identity still holds:

() f o f et o 1 G D)

r . ) ~ _
Ci jlej(ZJ 1) 1<j<k<s Zjze—1

2) again the polesat z; = 1 (j = 1, ..., s) have power s just as the order of the Vandermonde
determinant.



Generic values of A #0

1) Our nice identity still holds:

() f o f et o 1 G D)

r . ) 5 . _
Ci jlej(ZJ 1) 1<j<k<s Zjzk—1

2) again the polesat z; = 1 (j = 1, ..., s) have power s just as the order of the Vandermonde
determinant.

Main assumption

Arctic Curve occurs in correspondence to the following configuration of SPE solutions:
« “almost all” SPE solutions condense to the value z=1;
« a vanishing fraction of SPE solutions survive condensation and lies

somewhere in the complex plane; among them there is a pair of coinciding real roots,
lying in [1,4eo] .



Generic values of A #0

The saddle Point Equation now reads:

2
s r 1> — 2At (5
B T d,.Inh
gj—1 Zj+St2Zj—2Ale—|—1+ 5 Inhy (21, %)
12 —2A1 + 1 (5
- Oy, Inhg’ (uy,...,us)+2
(12zj —2A1zj+ 1)2 79 7 (1 ZZ]_Zk
k#J
-y Poo—28 Z 2z,

=Pz 20z 1 S Pz 2Atzk 1
K7 k#]

(“ 2= 2At)z3 11

The procedure of condensation leads to the following equation for the vanishing fraction of

uncondensed roots




The A =1/2 case (ASMs)

In this case the explicit form of /y(z) is known forany N [Zeilberger'95]:

—N+1, N
h = ’ 1 —
~N(Z) =2 1( N | z>

Using Euler integral representation, we readily evaluate its large N behaviour:

Inhy(z) = NIn[4v(1 —v)(1 — v + zv)] + o(N),
where

L2z V2 —z+1
' 3(1—72) '
The reduced SPE now reads:

y _1—x—|—y_|_1—\/z2—z—|—1 B

0.
z—1 Z z(1—2)
Requiring two coinciding roots we obtain:
2z —1)*+ 2y —1)* —4day =1, z,y € [0,1]. "Limit shape' of ASMs

The A = —% can be treated analogously.



Generic values of A (disordered regime |A| < 1)

We come back to our fundamental equation for the vanishing fraction of uncondensed roots:

2
y X vt 1
— — - — lim —d.Inh =0.
z—1 z t2z—2At—|—l+Nl—>ooN <Infin(2)

We need now the large N behaviour of /y(z), for generic A:



Generic values of A (disordered regime |A| < 1)

We come back to our fundamental equation for the vanishing fraction of uncondensed roots:

2
y X vt |
— — - — lim —d.Inh =0.
z—1 z tzz—ZAt—|—1+Nl—>ooN < N(Z)

We need now the large N behaviour of /iy (z), for generic A:

| siny(A—m) N sin({+ A —m) sin(YC) Neo(N)
hn(2) N [ysin(k—ﬂ)] [ siny({+ A —m)sin{

where
~ sin(A+n) sin(C+A—mn) om
2(6) = sin(A—m) sin({+A+m)’ and =gz om’
_ _ sin(A—m)
A = cos2n t = sin(h1m)

NB: ze€[l,+) correspondsto &€ [0,m—A—m)



The equation for uncondensed roots now read:

x®(C+A—mn,2n) —yP(C,2n) + P(C,A —n) —yP(VS,¥(A—m)) =0

where
sin(Vv)
sin(u) sin(u—+V)

D(u,v) =

Its derivative 1is:

XP(C+A—n,2n) —y(C,2n) + P (A —1) — V(1 (A —n)) =0,

where

sinvsin(2u+v
R LALLIC )

sin? usin?(u+v)

Solve the above system, linear in x, y:



We get:

1
P(C+A—mn,2n)¥(C,2n) —¥(C+A—n,2n)P(E,2n)
< {[P(CA—n) =P v(A—mn))] @(L,2n)
—[®(E,A—m) —yP(vC,Y(A —m))|¥(E,2n) },

1
P(C+A—n,2n)¥(C,2n) —¥(C+A—n,2n)P(C,2n)
< {[P(CA—n) —7YPOCY(A—n))] P(C+A—n,2n)
— [®(E,A—m) —y@(YC, (A —M))|P(E+A—m,2n)} .

Parametric form of limit shape for generic A, with parameter C € [0. t—A—m], and

T sin(V)

sinvsin(2u+V)
, D(u,v) = Y(u,v)=

sin(u) sin(u+v) ’ sin” usin®(u+v)

Y=

NB: v rational =  algebraic curve
Yy irrational =  non-algebraic curve



Limit shapes for A =0.9, 0.5, 0, —0.5, —0.9.



2z —1)* 4+ 2y — 1)? — 4y = 1, z,y € [0,3].
ASMs: N=500

199 samples

A=1/2

Ben Wieland (January 2008) http://www.math.brown.edu/~wieland



ASMs: N=1500 A= 1/2

10 samples

Ben Wieland (April 2008) http://www.math.brown.edu/~wieland



What about the ¢ — 0 limut?

For finite N, ASMs ,—p ‘permutation matrices'.

We expect a trivial arctic curve, degenerating to the boundary of the unit square



What about the ¢ — 0 limut?

For finite N, ASMs ,—p ‘permutation matrices'.

We expect a trivial arctic curve, degenerating to the boundary of the unit square

From general formula we get instead:

r+y=-——cosm(r—y), z,y € [0, <]

DO | —
3| =

NB: N — oo and ¢ — 0 do not commute.



What about the ¢ — 0 limut?

For finite N, ASMs ,—p ‘permutation matrices'.

We expect a trivial arctic curve, degenerating to the boundary of the unit square

From general formula we get instead:

r+y=-——cosm(r—y), z,y € [0, <]

DO | —
N | =

NB: N — oo and ¢ — 0 do not commute.

Question: What does this curve describe?
Of which model is it the Arctic curve?



Final comments

o Fluctuations of the limit shape are driven by the evaporation of SPE solutions from
the logarithmic well (Penner potential of Random Matrices), just like in the A=0
case. From universality considerations, the Airy process of Arctic Circle
[Johansson'05] 1s again expected.

« Some MIR for correlations function in ASEP has been obtained [Tracy-
Widom'07], which strongly remind our ones for DW 6 VM. “Condensation Ansatz”
could play a role there too?

« The last step of our derivation is not valid in the (physically more interesting) AF
regime, A < —1. Work is in progress.
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