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Real Quantifier Elimination: Example and Definition

A simple (and well-known example)

∃X ∈ R aX2 + bX + c = 0⇐⇒(
a 6= 0 ∧ b2 − 4ac ≥ 0

)
∨ (a = 0 ∧ b 6= 0) ∨ (a = 0 ∧ b = 0 ∧ c = 0)

More generally, consider

� Blocks of variables X(1), . . . ,X(s) (X(i) = [X(i)
1 , . . . , X

(i)
ki

])

� A set of free variables Y (parameters)

� Boolean conjunctions of polynomial equations and inequalities Ψ1, . . . ,Ψr

lying in Q[X(1), . . . ,X(s),Y]

� A formula

Q1X(1) ∈ Rk1 · · ·QsX(s) ∈ Rks Ψ1(Y) ∨ · · · ∨Ψr(Y) (Qi ∈ {∀,∃})



Real Quantifier Elimination: specifications

Q1X(1) ∈ Rk1 · · ·QsX(s) ∈ Rks Ψ1(Y) ∨ · · · ∨Ψr(Y) (Qi ∈ {∀,∃})

I Decide if the formula is feasible?

I Compute at least one point in each connected component of the feasicility
set (in the real Y-space)

I Compute an equivalent formula without quantifiers

Alfred Tarski (1902-1983). All these problems are
decidable.
Sur les ensembles définissables de nombres réels,
Fund. Math., 1931
A decision method for elementary algebra and geom-
etry, California Press, 1951.



Motivations

Many applications of Real Quantifier Elimination’s algorithms

I Historical problem shared by logic, computer algebra, and real algebraic
geometry

I Engineering sciences (stability analysis of numerical schemes, control
theory, global optimization, computer vision, etc.)

I Automated reasonning, Geometric theorem proving (see D. Kapur’s
works, Univ. of New Mexico and/or A. Mahboubi’s works, INRIA
Saclay/LIX)

I Program verification (see D. Monniaux’s works, VERIMAG)



Quantifier elimination and Euclide’s algorithm

Toy-example: values of a, b, c for which aX2 + bX + c has a multiple root.

Remainder(aX2 + bX + c, 2aX + b) = 1/4
4 ac− b2

a

� Condition a 6= 0 and discussion about the sign of 4 ac− b2 come naturally

� Other conditions corresponds to the case study a = 0

Ensuring that the number of real roots of aX2 + bX + c vary continuously as
(a, b, c) varies in R3 is central and crucial for eliminating the quantifiers

� GCD-computations appear as a central tool – Elimination of
variables/projection of solutions

� This is achieved by computing parametric polynomial remainder sequences
(leading coefficients, see also Sturm sequences)



From Tarski to Collins

I Tarski’s algorithm: parametric computations of polynomial remainder
sequences – Complexity not bounded by a tower of exponents of finite
height.

I Collins’Cylindrical Algebraic Decomposition: based on the same
geometric ideas as those used by Tarski.

� Main improvement: use of subresultant sequences (tool similar to
polynomial remainder sequences, avoids denominators)

� Complexity doubly exponential in the (total) number of variables and
polynomial in the degree

� Software: RedLog, Mathematica, Maple, QEPCAD

� Practical limitations: 3 (sometimes 4) variables

I Complexity of QE: doubly exponential in the number of alternates of
quantifiers (Heintz/Davenport).



Improvement through the critical point method

� Originally designed to decide if a polynomial system of equations and/or
inequalities has real solutions

� (Grigoriev/Vorobjov, Heintz/Roy/Solerno, Renegar, Basu/Pollack/Roy)

Consider a quantified formula: QX ∈ Rn Ψ(Y)

I Run the critical point method on Ψ over Q(Y) (the Ys are parameters)

I Parametric solutions are encoded by

R(Y) =



Xn = qn(T,Y)
...

X1 = q1(T,Y)

q(T,Y) = 0

� qi’s lie in Q(Y)[T ]

� T is a new variable

� Compute sign conditions in the Y-space
ensuring the existence of a real root of q

I Complexity doubly exponential in the number of alternates of
quantifiers

I A lot of things (which make the algorithms relying on this method
unefficient in practice) are hidden in this simplified description.



Application (Stability of MacCormack’s scheme)

∀(c1, s1, c2, s2) ∈ R4, c21 + s21 − 1 = c22 + s22 − 1 = 0 =⇒

4 a6b2c1
4c2

2 − 8 a5b3s1s2c1
3c2 − 8 a5b3s1s2c1

2c2
2 + 4 a4b4c1

4c2
2 + 16 a4b4c1

3c2
3 +

4 a4b4c1
2c2

4 − 8 a3b5s1s2c1
2c2

2 − 8 a3b5s1s2c1c2
3 + 4 a2b6c1

2c2
4 − 4 a7bs1s2c1

3 +

4 a6b2c1
4c2 − 4 a6b2c1

3c2
2 + 8 a5b3s1s2c1

3 + 12 a5b3s1s2c1
2c2 + 16 a5b3s1s2c1c2

2 −
8 a4b4c1

4c2 − 24 a4b4c1
3c2

2 − 24 a4b4c1
2c2

3 − 8 a4b4c1c2
4 + 16 a3b5s1s2c1

2c2 +

12 a3b5s1s2c1c2
2 + 8 a3b5s1s2c2

3 − 4 a2b6c1
2c2

3 + 4 a2b6c1c2
4 − 4 ab7s1s2c2

3 +

a8c1
4 + 12 a7bs1s2c1

2 − 8 a6b2c1
4 − 12 a6b2c1

3c2 − 12 a6b2c1
2c2

2 − 4 a5b3s1s2c1
2 −

8 a5b3s1s2c2
2 + 4 a4b4c1

4 + 22 a4b4c1
2c2

2 + 4 a4b4c2
4 − 4 a4b2c1

4c2
2 − 8 a3b5s1s2c1

2 −
4 a3b5s1s2c2

2 + 8 a3b3s1s2c1
2c2

2 − 12 a2b6c1
2c2

2 − 12 a2b6c1c2
3 − 8 a2b6c2

4 −
4 a2b4c1

2c2
4 +12 ab7s1s2c2

2 +b8c2
4−4 a8c1

3−12 a7bs1s2c1 +16 a6b2c1
3 +12 a6b2c1

2c2 +

20 a6b2c1c2
2 − 16 a5b3s1s2c1 − 4 a5b3s1s2c2 + 4 a5bs1s2c1

3 + 8 a4b4c1
3 + 12 a4b4c1

2c2 +

12 a4b4c1c2
2 + 8 a4b4c2

3 + 4 a4b2c1
4c2 + 4 a4b2c1

3c2
2 − 4 a3b5s1s2c1 − 16 a3b5s1s2c2 −

12 a3b3s1s2c1
2c2 − 12 a3b3s1s2c1c2

2 + 20 a2b6c1
2c2 + 12 a2b6c1c2

2 + 16 a2b6c2
3 +

4 a2b4c1
2c2

3 +4 a2b4c1c2
4 − 12 ab7s1s2c2 +4 ab5s1s2c2

3 − 4 b8c2
3 +6 a8c1

2 +4 a7bs1s2 −
4 a6b2c1c2− 8 a6b2c2

2− 2 a6c1
4 +12 a5b3s1s2− 12 a5bs1s2c1

2− 14 a4b4c1
2 +8 a4b4c1c2−

14 a4b4c2
2−4 a4b2c1

3c2+10 a4b2c1
2c2

2+12 a3b5s1s2+4 a3b3s1s2c1
2+16 a3b3s1s2c1c2+

4 a3b3s1s2c2
2 − 8 a2b6c1

2 − 4 a2b6c1c2 + 10 a2b4c1
2c2

2 − 4 a2b4c1c2
3 + 4 ab7s1s2 −

12 ab5s1s2c2
2 +6 b8c2

2−2 b6c2
4−4 a8c1−16 a6b2c1 +8 a6c1

3 +12 a5bs1s2c1−12 a4b4c1−
12 a4b4c2 − 8 a4b2c1

2c2 − 16 a4b2c1c2
2 − 4 a3b3s1s2c1 − 4 a3b3s1s2c2 − 16 a2b6c2 −

16 a2b4c1
2c2 − 8 a2b4c1c2

2 + 12 ab5s1s2c2 − 4 b8c2 + 8 b6c2
3 + a8 + 8 a6b2 − 12 a6c1

2 −
4 a5bs1s2 + 14 a4b4 − 2 a4b2c1

2 + 12 a4b2c1c2 + 6 a4b2c2
2 + a4c1

4 + 8 a2b6 + 6 a2b4c1
2 +

12 a2b4c1c2−2 a2b4c2
2+2 a2b2c1

2c2
2−4 ab5s1s2+b8−12 b6c2

2+b4c2
4+8 a6c1+4 a4b2c1−

4 a4b2c2 − 4 a4c1
3 − 4 a3bs1s2c1 − 4 a2b4c1 + 4 a2b4c2 − 4 ab3s1s2c2 + 8 b6c2 − 4 b4c2

3 −
2 a6−2 a4b2 +8 a4c1

2 +4 a3bs1s2−2 a2b4−2 a2b2c1
2 +4 a2b2c1c2−2 a2b2c2

2 +4 ab3s1s2−
2 b6 +8 b4c2

2−8 a4c1−4 a2b2c1−4 a2b2c2−8 b4c2 +3 a4 +6 a2b2−2 a2c1
2 +3 b4−2 b2c2

2 +

4 a2c1 + 4 b2c2 − 2 a2 − 2 b2 ≤ 0

Degree 14, 163 terms... Indeed, we are going to suffer...



Some preliminary remarks

I Let’s try to solve it with the existing softwares:

� Mathematica just crashed after 20 minutes

� RedLog crashed after 2 days

� QEPCAD crashed after 2 weeks

� OpenCAD did not give an answer after 1 month.

I Algorithms based on the critical point method are not usable.

I The real solution set of c21 + s21 − 1 = c22 + s22 − 1 = 0 is compact in R4

I Specification: we don’t need a full description of the feasibility set.
This problem is a stability analysis problem: we only need a description of
the interior of the feasibility set.
The feasibility set is the stability region of a numerical scheme of
resolution of a pde.



Solution set of polynomial systems of equations

Let V ⊂ Cn be the solution set of g1 = · · · = gk = 0.

Example: X1(X1 − 1) = X1X2 = 0 or X2
1 +X2

2 = 0 or X2
1 = 0

Its dimension dim(V ) is an integer d s.t. for a generic choice of hyperplanes
H1, . . . ,Hd, V ∩ (H1 ∩ · · · ∩Hd) is a finite set of points.

Let I(V ) be the set of polynomials s.t. g ∈ I ⇔ ∀x ∈ V g(x) = 0.

V can be decomposed as the union of irreducible components W1 ∪ · · · ∪Wr

(“I(Wi) can not be factored”)

V is equidimensional iff all its irreducible components have the same
dimension.

I The solution set of c21 + s21 − 1 = c22 + s22 − 1 = 0 is equidimensional

I This property is natural and arises frequently.



Solution set of polynomial systems of equations

Let TxV the vector space defined by the equations gradx(g).v = 0 (for g ∈ I).

When V is equidimensional, x is a regular point if dim(TxV ) = dim(V ) else it
is a singular point.

In many situations, V contains only regular points and
(gradx(g1), . . . , gradx(gk)) spans the co-tangent space of V at x.

I TxV is a local first-order approximation of V at x.

I The solution set of c21 + s21 − 1 = c22 + s22 − 1 = 0 contains only regular
points

I The set of gradient vectors spans the co-tangent space.

I These properties (smoothness) is natural and arises frequently.



Problem statement

Consider a polynomial system G = {g1, . . . , gk} ⊂ Q[X] and suppose that

H′1 : 〈G〉 is radical and the complex variety defined by G is
equidimensional, and of co-dimension k

H′′1 : the complex variety defined by G is smooth

H2 : the real variety defined by G in the X-space is compact.

Two formulas Ψ and Φ are almost equivalent iff the interior of the solution set
of Ψ is the same as the interior of the solution set of Φ.

Problem: Variant Quantifier Elimination (VQE)

Input: Ψ, a quantified formula of the form

∀X G(X) = 0 =⇒ f(X,Y) ≤ 0

where X and Y are lists of variables, f ∈ Q[X,Y], and G ⊂ Q[X]
satisfies H1 and H2.

Output: Φ, a quantifier-free formula almost equivalent to Ψ.



Polynomial mappings and Critical points

Let V ⊂ Cn be the solution set of g1 = · · · = gk = 0 satisfying H′1.

We consider ϕ : x ∈ V → (ϕ1(x), . . . , ϕs(x)) ∈ Cs

dxϕ : v ∈ TxV → gradx(ϕ1).v, . . . , gradx(ϕs).v

crit(ϕ, V ) = {x ∈ reg(V ) | rank(dxϕ) ≤ s− 1} ∪ sing(V )

crit(ϕ, V ) is defined by the vanishing of all (k + s, k + s)-minors of
jac([g1, . . . , gk, ϕ1, . . . , ϕs)

Example: X2
1 +X2

2 +X2
3 −1 = 0,

ϕ : (x1,x2,x3)→ (x1,x2),
crit(ϕ, V ) = {x | x3 = 0,x2

1 +
x2

2 − 1 = 0}
Under H′1, sing(V ) is defined by
the vanishing of all (k, k)-minors
of jac([g1, . . . , gk]).



Properties

Critical values are the values taken by ϕ at critical points. They are enclosed
in an algebraic variety (Sard’s theorem).

The smallest variety of Cs containing the set of critical values is denoted by
D(ϕ, V ).

Suppose that V is smooth and let y ∈ Cs \D(ϕ, V ). The variety V ∩ ϕ−1(y)
is smooth.

Notion of properness of ϕ at y: Given y ∈ Cs, there exists B(y, r) s.t.
ϕ−1(B(y, r)) ∩ V ∩ Rn is compact.

Let C be a connected component of V ∩ Rn. If, for all y ∈ Cs, ϕ is proper at
y, the frontier of ϕ(C) is contained in D(ϕ, V )



Some ideas

Back to our QE problem: ∀X ∈ Rn,G(X) = 0⇒ f(X,Y) ≤ 0
X = [X1, . . . , Xn] and Y = [Y1, . . . , Yp]

Sard’s theorem implies that G = f − e = 0 defines a smooth variety for all
e ∈ R \ E where ]E <∞
Consider the mapping (x,y)→ f(x,y)
Ve denotes the complex solution set of G = f − e = 0

This implies that one (k + 1, k + 1)-minor of jac(G, f) does not vanish at
points of Ve for a generic e.

The compacity of the real variety defined by G = 0 in the X-space implies the
properness of the projection Π : (x,y)→ y restricted to Ve ∩ Rn+p.

This allows us to prove that the frontier of the feasibility set is contained in
lime→0 Π(crit(Π, Ve))



Some ideas

The idea: Compute lime→0 Π(crit(Π, Ve))
to obtain the boundary of the feasibility set

� All (k + 1, k + 1)-minors of jacX(G, f) vanish at points of crit(Π, Ve) →
∆1 denotes this set of minors.

� For a generic e, at least one (k + 1, k + 1)-minor of jac(G, f) does not
vanish (because Ve is smooth) → ∆1 denotes the set of all these minors.

� Compute W = V (G,∆) \ V (G,∆)

� Compute Π(W ∩ V (f)).



A simple example

Figure 1: Example: Consider G = {X2
1 + X2

2 − 1} (cylinder in red) and f =
X2

1Y − (X2 − 1)2 (the blue surface, this is the Whitney umbrella) Here the
Y -axis is the cylinder axis.



1. We compute the jacobian of G ∪{f} w.r.t. X,

2. We compute the set of all the minors of J1 of
size 1 + 1, obtaining

∆1 = {−4X1 (X2 − 1 +X2Y )}

3. We compute the jacobian J of G ∪ {f} w.r.t.
X ∪Y,

4. We compute the set of all minors of J of size 1 + 1, obtaining

∆ =
{
−4X1 (X2 − 1 +X2Y ) , 2X1

3, 2X2X1
2
}

5. We compute a set of generators of V (G ∪∆1) \ V (G ∪∆), obtaining

G =
{
X1

2 +X2
2 − 1, X2 − 1 +X2Y

}
6. We compute a set of generators of 〈G ∪ {f}〉 ∩Q[Y], obtaining

E =
{
Y 2
}



The algorithm

1. J1 ← the jacobian of G ∪ {f} with respect to X

2. ∆1 ← the set of all minors of J1 of size k + 1

3. J ← the jacobian of G ∪ {f} with respect to X ∪Y

4. ∆← the set of all minors of J of size k + 1

5. G← a set of generators of V (G ∪∆1) \ V (G ∪∆)

6. E ← a set of generators of 〈G ∪ {f}〉 ∩Q[Y]
Here, we get the boundary of the feasibility set

7. P ← a set of squarefree parts of E

8. C ← SemiAlgebraicDescription(P )
We want to describe the connected components of P 6= 0 and provide
sampling points. This task can be achieved by CAD or roadmap
computations

9. Φ←
∨
{C | (C, S) ∈ C and Ψ(S) is true} Here, one has to decide the

emptiness of polynomial systems of equations and inequalities for each
computed sample point in the parameter-space.



Computations

Many algorithms can be used to implement the VQE algorithm (Gröbner
bases, Triangular sets, Kronecker).

The computations have been performed on a PC Intel(R) Xeon(R) 2.50GHz
with 6144 KB of Cache and 20 GB of RAM.

Computation of V (G ∪∆1) \ V (G ∪∆)

� FGb (Faugère, written in C): 80 sec., Regularity 34, dimension 2, degree
434

� RegularChains (Moreno Maza, written in Maple): > 1 day

� Kronecker (Lecerf, written in Magma) – computing generic fibers: 7
hours



Second step (intersection with f = 0 and projection on the Y-space):
1.5 hours with FGb – regularity 140 produces a single polynomial whose
factorization gives 9 polynomials

a+ 1, a, b, a− 1, a4 − a2 + 1/2. The remaining four are non-trivial:

h1 = a4 − a2 + 1/2− 2a2b2 − b2 + b4

h2 = a4 − a2 − 2a2b2 − b2 + b4

h3 = a6 − 1 + 3b2a4 + 3a2b4 + b6 − 3a4

+21a2b2 − 3b4 + 3a2 + 3b2

h4 = 4627325525704704 b80a18

+ · · ·+ 1199 terms + · · ·+
850320000000000 a2.

Last steps with RAGlib (16 hours):

� computing sampling points outside the computed curve produces
7652 points.

� For all of them one has to decide the emptiness of a semi-algebraic set
lying in R4



Computations

Figure 2: h1 Figure 3: h2

Figure 4: h3 < 0 is
the output

Figure 5: h4



Degree bounds

Let D be an integer dominating the total degree of polynomials in G and f .

I The degree of each variety algebraically represented in the
algorithm VQE is dominated by δ = Dk((k + 1)D)n−k

I One can give more precise estimates using S./Trébuchet’s results about
the degrees of critical loci (using bi-homogeneous Bézout theorems and
Lagrange’s systems to define the critical points)

I Complexity results of Lecerf (inheriting from the works of
Giusti/Heintz/Pardo) yield complexity results for a probabilistic version
of VQE that are polynomial in δp.

I Same complexity class than algorithms based on the critical point method



And now?...

I On-going work : Generalization to quantified formula of the form

∀X ∈ Rn G(X,Y) = 0⇒ f1(X,Y) ≤ 0 ∧ · · · ∧ fs(X,Y) ≤ 0

I Removing the compactness assumption: generalized critical values

� Introduced by Jelonek, Kurdyka, Orro, Simon

� Algorithms for computing them (S. 04/06/07) implemented in
RAGlib

I Specification of quantifier elimination: avoid to write the equivalent
formula (or the almost equivalent formula)

� sampling points in the feasibility set and programs deciding in which
connected component of the feasibility set a given point lies.

� Need of roadmap algorithms (to answer connectivity queries)

� S./Schost 2009 (first improvement of Canny’s approach)

I Need of fast algorithms and implementations for computing sampling
points in semi-algebraic sets (see RAGlib)


