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Real Quantifier Elimination: Example and Definition

A simple (and well-known example)

X ER aX?+bX +c=0+—=
(a#0Ab*—4ac>0)V(a=0Ab#£0)V(a=0Ab=0Ac=0)

More generally, consider
m Blocks of variables X1 ... X() (X = [X{i), . ,X,gi)])
m A set of free variables Y (parameters)

m Boolean conjunctions of polynomial equations and inequalities ¥¢,..., ¥,
lying in QXM ... X&) Y]

m A formula

QXD e RO XE) e RFs T (Y) V- VEL(Y) (Q; € {V,3})



Real Quantifier Elimination: specifications

XD e RF QX e RFs U (Y) V- VTL(Y) (9 € {V,T)
» Decide if the formula is feasible?

» Compute at least one point in each connected component of the feasicility
set (in the real Y-space)

» Compute an equivalent formula without quantifiers

Alfred Tarski (1902-1983). All these problems are
decidable.

Sur les ensembles définissables de mombres réels,
Fund. Math., 1931

A decision method for elementary algebra and geom-

etry, California Press, 1951.



Motivations

Many applications of Real Quantifier Elimination’s algorithms

» Historical problem shared by logic, computer algebra, and real algebraic

geometry

» Fngineering sciences (stability analysis of numerical schemes, control

theory, global optimization, computer vision, etc.)

» Automated reasonning, Geometric theorem proving (see D. Kapur’s
works, Univ. of New Mexico and/or A. Mahboubi’s works, INRITA
Saclay /LIX)

» Program verification (see D. Monniaux’s works, VERIMAG)



uantifier elimination and Euclide’s algorithm
Q g

Toy-example: values of a, b, ¢ for which aX? + bX + ¢ has a multiple root.

4 ac — b?
a

Remainder(aX? 4 bX +¢,2aX +b) = 1/4

m Condition a # 0 and discussion about the sign of 4 ac — b? come naturally
m Other conditions corresponds to the case study a = 0

Ensuring that the number of real roots of aX? + bX + ¢ vary continuously as

(a, b, c) varies in R? is central and crucial for eliminating the quantifiers

m GCD-computations appear as a central tool — Elimination of

variables/projection of solutions

m This is achieved by computing parametric polynomial remainder sequences

(leading coefficients, see also Sturm sequences)



From Tarski to Collins

» Tarski’s algorithm: parametric computations of polynomial remainder
sequences — Complexity not bounded by a tower of exponents of finite
height.

» Collins’Cylindrical Algebraic Decomposition: based on the same
geometric ideas as those used by Tarski.

s Main improvement: use of subresultant sequences (tool similar to

polynomial remainder sequences, avoids denominators)

m Complexity doubly exponential in the (total) number of variables and

polynomial in the degree
m Software: RedLog, Mathematica, Maple, QEPCAD

m Practical limitations: 3 (sometimes 4) variables

» Complexity of QE: doubly exponential in the number of alternates of
quantifiers (Heintz/Davenport).



Improvement through the critical point method

m Originally designed to decide if a polynomial system of equations and/or

inequalities has real solutions
m (Grigoriev/Vorobjov, Heintz/Roy/Solerno, Renegar, Basu/Pollack/Roy)
Consider a quantified formula: QX € R™ U(Y)
» Run the critical point method on ¥ over Q(Y) (the Ys are parameters)

» Parametric solutions are encoded by

(

X, =q,(T,Y) ™ g;’s lie in Q(Y)[T]

m /' is a new variable

Z(Y) = | . L
X, =q(T,Y) ™ Compute sign conditions in the Y-space

ensuring the existence of a real root of ¢

q(T,Y)=0

\
» Complexity doubly exponential in the number of alternates of

quantifiers

» A lot of things (which make the algorithms relying on this method
unefficient in practice) are hidden in this simplified description.



Application (Stability of MacCormack’s scheme)

‘v’(cl,sl,c2,52)€R4, c%+s%—1:c%—|—s%—1:02>

4a6b2c14022 - 8a5b33132c1302 - 8a5b33132c12c22 + 4a4b4cl4022 + 16a4b4013c23 +
4a4b4c12024 — 8a3b53132c12022 8a3b5315261c23 + 4a2b6612c24 — 4a7b3182c13 +
4a6b201402 — 4a6b2013022 + 8a5b33182013 —+ 12a5b38152012c2 + 16a5b3315201022 —
8a4b4c14c2 — 24a4b4013c22 — 24a4b4c12023 - 8a4b4c1024 + 16a3b58132012c2 +
12a3b5818201622 + 8a3b53152623 — 4a2b6c12023 + 4a2b6clc24 — 4ab73152623 +

a8014 + 12a7bslsgc12 — 8a6b2014 — 12a6b2c1302 — 12a6b2012022 — 4a5b33132c12 —
8a5b33132c22 + 4a4b4c14 + 22 a4b4cl2c22 + 4a4b4024 — 4a4b2014022 — 8a3b53132c12 —
4a3b58182622 + 8a3b33132012022 — 12 a2b6cl2c22 — 12 a2b6c1023 — 8a2b6024 —
4a2b4012024—|—12 ab75132022—|—b8c24—4a8013—12 a7b3182c1—|—16a6b2c13+12 a6b201202—|—
20 a6b201c22 — 16 a5b33152c1 — 4a5b38132c2 + 4a5b8182013 + 8a4b4c13 + 12 a4b4c12c2 +
12 a4b401022 + 8a4b4c23 + 4a4b2cl4c2 + 4a4b2013022 — 4a3b55132cl — 16 a3b5313202 —
12a3b33132012c2 - 12a3b33132c1c22 + 2Oa2b6c1202 + 12a2b6clc22 + 16a2b6023 +
4a2b4c12023 —|—4a2b401024 —12 ab7813202 —|—4ab53182c23 — 4b8c23 —|—6a8c12 —|—4a7b8132 —
4a6b20102 — 8a6b2022 — 2a6cl4 + 12 a5b3sls2 — 12 a5bsls2cl2 — 14 a4b4012 —{—8a4b4clc2 —
14a4b4022—4a4b2c13c2+1Oa4b2012c22+12 a3b53132—|—4a3b33132c12—|—16a3b33132c1c2—|—
4a3b3sls2022 — 80¢2b6cl2 — 4a2b6clc2 + 10a2b4612022 — 4a2b4clcg3 + 4ab73182 —
12 ab53152022 + 6 b8022 —2 b6024 —4a801 — 16 a6b201 +8a6013 + 12 a5b318201 — 12 a4b4cl —
12a4b402 — 8a4b2c12c2 — 16a4b2c1022 — 4a3b33132c1 — 4a3b3$1s202 — 16a2b602 —
16a2b4012c2 — 8a2b401022 + 12 ab5813202 — 4b862 + 8b6023 + a® + 8a6b2 — 12 a6012 —
4a5b3132 + 14 a4b4 — 2a4b2012 + 12 a4b2c102 + 6a4b2022 + a4cl4 + 8a2b6 + 6a2b4012 +
12 a2b4clc2—2 a2b4022—|—2 a2b2012022—4ab53132+b8—12 b6c22+b4c24+8 a6cl—|—4a4b201—
4a4b202 — 4a4cl3 — 4a3b313201 — 4a2b4cl + 4a2b4c2 — 4ab3313202 + 8b602 — 4b4023 —
2a6—2a4b2—|—8a4c12—|—4a3b3132—2a2b4—2a2b2012—|—4a2b20102—2a2b2022+4ab33132—
260 4 8b%c92 —8atcy —4a?b2cy —4a2b2cy —8b%cg+3at+6a%b2 —2a2c12+3b%F—20b2c52 +
4a%cy +4b%¢cy —2a% —2b2 <0
Degree 14, 163 terms... Indeed, we are going to suffer...



Some preliminary remarks

Let’s try to solve it with the existing softwares:
m Mathematica just crashed after 20 minutes
m RedLog crashed after 2 days

m QEPCAD crashed after 2 weeks
m OpenCAD did not give an answer after 1 month.

Algorithms based on the critical point method are not usable.
The real solution set of ¢? + s? — 1 = ¢5 + s5 — 1 = 0 is compact in R?

Specification: we don’t need a full description of the feasibility set.

This problem is a stability analysis problem: we only need a description of
the interior of the feasibility set.

The feasibility set is the stability region of a numerical scheme of

resolution of a pde.



Solution set of polynomial systems of equations

Let V C C™ be the solution set of gy = --- = g = 0.
Example: X1(X; —1)=X1Xo=0o0r X+ X2 =0o0r X? =0

Its dimension dim(V') is an integer d s.t. for a generic choice of hyperplanes
Hy,...,Hg, VN (HiN---N Hy) is a finite set of points.

Let I(V) be the set of polynomials s.t. g € I & Vx €V g(x) = 0.

V can be decomposed as the union of irreducible components W7 U---U W,
(“I(W;) can not be factored”)

V' is equidimensional iff all its irreducible components have the same

dimension.
» The solution set of ¢? + 52 —1 = c3 + s3 — 1 = 0 is equidimensional

» This property is natural and arises frequently.



Solution set of polynomial systems of equations

Let TV the vector space defined by the equations grad,(g).v =0 (for g € I).
When V is equidimensional, x is a regular point if dim(7% V) = dim(V') else it

is a singular point.

In many situations, V' contains only regular points and

(grad, (g1),--.,grad, (gx)) spans the co-tangent space of V' at x.
» T,V is a local first-order approximation of V at x.

» The solution set of ¢? + s? — 1 = c3 + s3 — 1 = 0 contains only regular

points
» The set of gradient vectors spans the co-tangent space.

» These properties (smoothness) is natural and arises frequently.



Problem statement

Consider a polynomial system G = {g1,...,gr} C Q|X] and suppose that

H) : (G) is radical and the complex variety defined by G is
equidimensional, and of co-dimension &

HY : the complex variety defined by G is smooth
H5 : the real variety defined by G in the X-space is compact.

Two formulas ¥ and ® are almost equivalent iff the interior of the solution set

of W is the same as the interior of the solution set of P.

Problem: Variant Quantifier Elimination (VQE)

Input: W, a quantified formula of the form
vX GX)=0 = f(X,Y)<0

where X and Y are lists of variables, f € Q[X,Y], and G C Q[X]
satisfies Hy and H,.
Output: P, a quantifier-free formula almost equivalent to W.




Polynomial mappings and Critical points

Let V' C C™ be the solution set of g1 = - -+ = gx = 0 satisfying Hj.
We consider p : x € V — (p1(%x),...,ps(x)) € C*
dxtp: v €TV — grad, (¢1).v,...,grad, (¢s).v
crit(op, V) = {x € reg(V) | rank(dxp) < s — 1} Using(V)

crit(, V') is defined by the vanishing of all (k + s, k + s)-minors of
jac([g1y -y Grs P15 - Ps)

f - Example: X?+ X2+ X2—1=0,
C ‘ Q (Xl,Xg,Xg) — (X17X2)7
g “jl crit(p, V) = {x | x3 = 0,x% +
x3—1=0}

Under HY, sing(V') is defined by
the vanishing of all (k, k)-minors

of jac(|g1,- .-, gx])-




Properties

Critical values are the values taken by ¢ at critical points. They are enclosed

in an algebraic variety (Sard’s theorem).

The smallest variety of C® containing the set of critical values is denoted by

Z(e.V).
Suppose that V is smooth and let y € C5\ 2(¢, V). The variety V Ny ! (y)

is smooth.

Notion of properness of ¢ at y: Given y € C?, there exists B(y,r) s.t.
0o Y (B(y,r)) NV NR" is compact.

Let C' be a connected component of V NR™. If, for all y € C?, ¢ is proper at
y, the frontier of p(C') is contained in Z(p, V)



Some i1deas

Back to our QE problem: VX € R",G(X)=0= f(X,Y) <0
X = [X1,...,X,] and Y = [Vi,....Y})

Sard’s theorem implies that G = f — e = 0 defines a smooth variety for all
e € R\ & where §& < oo
Consider the mapping (x,y) — f(x,y)

Ve denotes the complex solution set of G = f —e =10

This implies that one (k + 1,k + 1)-minor of jac(G, f) does not vanish at
points of V, for a generic e.

The compacity of the real variety defined by G = 0 in the X-space implies the
properness of the projection IT : (x,y) — y restricted to Ve N R"™ P,

This allows us to prove that the frontier of the feasibility set is contained in
lim,_, o I(crit(I1, Vo))



Some i1deas

The idea: Compute lim, o II(crit(IL, V4))
to obtain the boundary of the feasibility set

All (k+ 1,k + 1)-minors of jacx (G, f) vanish at points of crit(Il, V) —
A1 denotes this set of minors.

For a generic e, at least one (k + 1, k + 1)-minor of jac(G, f) does not

vanish (because V, is smooth) — A; denotes the set of all these minors.

Compute W =V (G,A)\ V(G, A)

Compute IIW NV (f)).



A simple example

Figure 1: Example: Consider G = {X? + X2 — 1} (cylinder in red) and f =
X2Y — (X3 — 1)? (the blue surface, this is the Whitney umbrella) Here the

Y -axis is the cylinder axis.



1. We compute the jacobian of GU{f} w.r.t. X,

2. We compute the set of all the minors of J; of
size 1 4+ 1, obtaining

AL ={-4X (X — 14 X5Y)}

3. We compute the jacobian J of G U {f} w.r.t.
XUY,

4. We compute the set of all minors of J of size 1 + 1, obtaining

A = {—4X1 (X2—1‘|‘X2Y)7 2X137 2X2X12}

5. We compute a set of generators of V(G U A1) \ V(G U A), obtaining
G={X1’+X2"-1, Xo—1+XY}
6. We compute a set of generators of (G U {f}) N Q[Y], obtaining

E={Y?}



RN e .

=~

The algorithm

J1 < the jacobian of G U {f} with respect to X

A1 < the set of all minors of J; of size k + 1

J « the jacobian of G U {f} with respect to X UY
A «+ the set of all minors of J of size k + 1

G «+ a set of generators of V(GU A1)\ V(GUA)

E « a set of generators of (G U {f}) N Q[Y]

Here, we get the boundary of the feasibility set

P «— a set of squarefree parts of

€ «— SemiAlgebraicDescription(P)

We want to describe the connected components of P # 0 and provide

sampling points. This task can be achieved by CAD or roadmap

computations
¢ — \/{C| (C,S) € € and ¥(95) is true} Here, one has to decide the

emptiness of polynomial systems of equations and inequalities for each

computed sample point in the parameter-space.




Computations

Many algorithms can be used to implement the VQE algorithm (Grobner

bases, Triangular sets, Kronecker).

The computations have been performed on a PC Intel(R) Xeon(R) 2.50GHz
with 6144 KB of Cache and 20 GB of RAM.

Computation of V(GU A1)\ V(GUA)

m FGB (Faugere, written in C): 80 sec., Regularity 34, dimension 2, degree
434

m REGULARCHAINS (Moreno Maza, written in Maple): > 1 day

m KRONECKER (Lecerf, written in Magma) — computing generic fibers: 7

hours



Second step (intersection with f = 0 and projection on the Y-space):
1.5 hours with FGB — regularity 140 produces a single polynomial whose
factorization gives 9 polynomials

a+1,a,b,a —1,a* —a? 4+ 1/2. The remaining four are non-trivial:

hiy = a*—a?+1/2—2a%b% —b? + b

hy = a*—a®—2a*b* —b*+b*

hs = a%—1+4 3b%a* + 3a?b* + b% — 3a?
+21a*b? — 3b* + 3a? + 3b°

he = 4627325525704704 6308
+ -+ 1199 terms + - - - +
850320000000000 a.

Last steps with RAGLIB (16 hours):

m computing sampling points outside the computed curve produces
7652 points.

m For all of them one has to decide the emptiness of a semi-algebraic set
lying in R*



Computations
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Degree bounds

Let D be an integer dominating the total degree of polynomials in G and f.

» The degree of each variety algebraically represented in the
algorithm VQE is dominated by § = D*((k + 1)D)"*

» One can give more precise estimates using S./Trébuchet’s results about
the degrees of critical loci (using bi-homogeneous Bézout theorems and

Lagrange’s systems to define the critical points)

» Complexity results of Lecerf (inheriting from the works of

Giusti/Heintz/Pardo) yield complexity results for a probabilistic version
of VQE that are polynomial in 7.

» Same complexity class than algorithms based on the critical point method



And now?...

» On-going work : Generalization to quantified formula of the form
VX eR"GX,Y)=0= fi(X,Y)<O0A---Afs(X,Y) <O

» Removing the compactness assumption: generalized critical values
m Introduced by Jelonek, Kurdyka, Orro, Simon
m Algorithms for computing them (S. 04/06/07) implemented in
RAGLIB
» Specification of quantifier elimination: avoid to write the equivalent
formula (or the almost equivalent formula)

m sampling points in the feasibility set and programs deciding in which

connected component of the feasibility set a given point lies.
m Need of roadmap algorithms (to answer connectivity queries)
m S./Schost 2009 (first improvement of Canny’s approach)

» Need of fast algorithms and implementations for computing sampling

points in semi-algebraic sets (see RAGLIB)



