Problèmes inverses à la frontière pour l'équation de Beltrami dans des domaines plans, approximation dans des classes de Hardy généralisées

Juliette Leblond

joint work with

L. Baratchart, S. Rigat, E. Russ

INRIA, Sophia-Antipolis, LATP-CMI, Univ. Provence, U. Paul Cézanne, Marseille

Conductivity equation

Let
$$\Omega \subset \mathbb{R}^2$$
 smooth and $\sigma \in C(\overline{\Omega})$, $0 < c \le \sigma \le C$
div $(\sigma \nabla u) = 0$ in Ω (1)

• Cauchy problems: $|I|, |\partial \Omega \setminus I| > 0$

tr *u* and $\partial_n u$ prescribed on $I \subset \partial \Omega$ recover *u* in Ω and Cauchy data on $J = \partial \Omega \setminus I$

• Dirichlet problem:

tr *u* prescribed on $\partial \Omega$

recover u in Ω and $\partial_n u$ on $\partial \Omega$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

A motivation...

Recover shape of plasma boundary in a tokamak

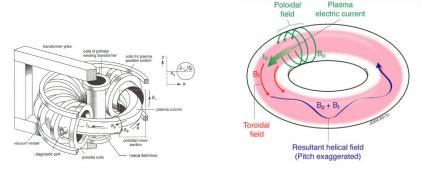
04.08

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Tore Supra (CEA-IRFM Cadarache)

... A motivation...

Maxwell equations, cylindrical coordinates (x, y, ϕ) of magnetic induction, axial symmetry (indep. of ϕ)



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ●

... A motivation

 \rightarrow in poloidal section (annular domain) (x, y) ∈ Ω ⊂ ℝ² poloidal magnetic induction

$$B = \begin{bmatrix} B_x \\ B_y \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \sigma \nabla u \quad , \quad \text{conductivity } \sigma = \frac{1}{x}$$

[BI]:

うしつ 山田 ふかく ボット うちょう

for poloidal magnetic flux u:

div $(\sigma \nabla u) = 0$ in Ω

given *u* and $B \approx \sigma \partial_n u$ on $I \subset \partial \Omega$

look for *u* and $\partial_n u$ on $\partial \Omega \setminus I$? level line of *u* (plasma boundary)?

Conjugated (\mathbb{R} -linear) Beltrami equation

u solution to (1): div $(\sigma \nabla u) = 0$ iff

 $u = \operatorname{Re} f$

where $f = f(z, \bar{z})$ satisfies first order elliptic equation

$$\overline{\partial} f = \nu \overline{\partial} \overline{f}$$
 in Ω (2)

with respect to complex variable z = x + iy and [AP]

$$\nu = \frac{1-\sigma}{1+\sigma}$$

 $u \in \mathcal{C}(ar{\Omega})$ real-valued, $|
u| \leq \kappa < 1$ in Ω

 \mathbb{C} -linear Beltrami equation: $\bar{\partial}g = \nu \partial g$

quasi-conformal map. [Ahlf., Ast.]

Generalized σ -harmonic conjugation

we have

$$f = u + i v$$

where $v \sigma$ -harmonic conjugated function

Hilbert-Riesz transform

div
$$\left(\frac{1}{\sigma}\nabla v\right) = 0$$
 in Ω

unique up to additive constant

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

generalized Cauchy-Riemann equations in Ω :

$$\nabla \mathbf{v} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \sigma \nabla u : \begin{cases} \partial_x \mathbf{v} = -\sigma \partial_y u \\ \partial_y \mathbf{v} = \sigma \partial_x u \end{cases}$$

Proof

$$\partial = \partial_z = \frac{1}{2}(\partial_x - i\,\partial_y), \ \bar{\partial} = \partial_{\bar{z}} = \frac{1}{2}(\partial_x + i\,\partial_y)$$

. . . .

generalization of $(\sigma \text{ constant})$ $\Delta u = 0 \text{ (}u \text{ harmonic)} \Leftrightarrow \overline{\partial} f = 0 \text{ (}f \text{ analytic)} \text{ in } \Omega$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Smooth solutions to Dirichlet problem

Thm [Campanato] 1 $<math>\forall \phi \in W^{1-1/p,p}_{\mathbb{R}}(\partial \Omega)$, there exists $f \in W^{1,p}(\Omega)$ solution to (2) in Ω such that Retr $f = \phi$ on $\partial \Omega$

unique if normalization condition
$$\int_{\partial\Omega} \operatorname{Im} \operatorname{tr} f \, d\theta = 0$$
 (3)

further $\|f\|_{W^{1,p}(\Omega)} \leq C \|\varphi\|_{W^{1-1/p,p}(\partial\Omega)}$

 $u = \operatorname{Re} f \in W^{1,p}(\Omega)$, $u = \phi$ on $\partial \Omega$ unique solution to (1)

(in $W^{1,2}(\Omega)$ Lax-Milgram - also for $\sigma \in L^{\infty}(\Omega)$ - in $W^{2,p}(\Omega)$ [ADN]; for $\sigma \in VMO(\Omega)$ [AQ])

allows to solve boundary approximation problems but with Sobolev norms and smooth boundary data

With $L^{p}(\partial \Omega)$ boundary data?

Ω = D unit disk, $L^{p}(T)$ data smooth σ, ν ∈ $W^{1,∞}(D)$

simply connected Ω

Generalized Hardy spaces $H^p_{\nu} = H^p_{\nu}(\mathbb{D})$ of solutions: functions f on \mathbb{D} satisfying

 \mathbb{T}_r circle radius r

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

$$\|f\|_{H^p_{\nu}} = \mathop{\mathrm{ess \, sup}}_{0 < r < 1} \|f\|_{L^p(\mathbb{T}_r)} < +\infty$$

solutions to (2) in $\mathbb D$ as distributions

$$(\|f\|_{L^{p}(\mathbb{T}_{r})}^{p} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta)$$

 $H^p_
u \subset L^p(\mathbb{D})$ real Banach space

Harmonic and analytic functions

 $\sigma \equiv 1 \text{ (cst)}, \ \Delta u = 0 \text{ in } \mathbb{D} \qquad (\nu = 0)$ classical Hardy spaces $H^p = H_0^p(\mathbb{D})$ of analytic functions $\overline{\partial}f = 0 \text{ and } \|f\|_{H^p} < +\infty$ f = u + i v, conjugated function v: $\Delta v = 0$ in \mathbb{D} Hilbert-Riesz transform Cauchy-Riemann equations:

$$\begin{cases} \partial_x v = -\partial_y u \text{ in } \mathbb{D} \\ \partial_y v = \partial_x u \end{cases} \begin{cases} \partial_n v = -\partial_\theta u \text{ on } \mathbb{T} \\ \partial_\theta v = \partial_n u \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hardy spaces H^p

- Properties of H^p Banach spaces (below...)
- Poisson-Cauchy-Green representation formulas, analytic projection
- Hilbert *H*², Fourier basis:

$$H^2 = \{\sum_{n\geq 0} f_n z^n , \sum_{n\geq 0} |f_n|^2 \}$$
, tr $H^2 : z = e^{i\theta} \in \mathbb{T}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 allow to state and solve above issues as best approximation problems on L^p(I) or L^p(T) [BL]

Properties of H^p_{ν} ...

Generalize those of H^p

• Fatou:

$$\begin{aligned} \|\mathrm{tr} f\|_{L^{p}(\mathbb{T})} &\leq \|f\|_{H^{p}_{\nu}} \leq c_{\nu} \|\mathrm{tr} f\|_{L^{p}(\mathbb{T})} \\ \lim_{r \to 1} \int_{0}^{2\pi} \left| f(re^{i\theta}) - \mathrm{tr} f(e^{i\theta}) \right|^{p} d\theta = 0 \end{aligned}$$

• tr H^p_{ν} closed subspace of $L^p(\mathbb{T})$

If $f \in H^p_{\nu}$:

- log |tr $f|\in L^1(\mathbb{T})$ (does not vanish on positive measure subsets) unless $f\equiv 0$ in \mathbb{D}
- If $f \not\equiv 0$, then its zeros α_j are isolated in \mathbb{D}

$$\sum_{j=1}^\infty (1-|lpha_j|) < +\infty$$
 (with multiplicity)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... Properties of H^p_{ν}

Let $H_{\nu}^{p,0} \subset H_{\nu}^{p}$ of f such that (3) holds

- If f ∈ H^{p,0}_ν is such that Re (tr f) = 0 a.e. on T, then f ≡ 0 in D
- If $f \in W^{1,p}(\mathbb{D})$ solution of (2), then $f \in H^p_{\nu}$ with

$$\|f\|_{H^p_{\nu}} \leq C_{\nu,p} \|f\|_{W^{1,p}(\mathbb{D})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

+ orthogonal space and duality

Density results

Thm $I \subset \mathbb{T}$ measurable subset, $|\mathbb{T} \setminus I| > 0$

- the space of restrictions to I of functions in tr H^p_ν is dense in $L^p(I)$
- tr H^p_{ν} weakly closed in $L^p(\mathbb{T})$
- let (f_k)_{k≥1} ∈ H^p_ν whose trace on I converges to φ in L^p(I): either φ is already the trace on I of an H^p_ν function or ||tr f_k||_{L^p(T\I)} → +∞

→ bounded approximation problems (BEP)

if $I = \text{Int } \overline{I} \neq \mathbb{T}$ (in particular, I is open), the space of restrictions to I of traces on \mathbb{T} of solutions to (CB) in $W^{1,p}(\mathbb{D})$ is dense in $W^{1-1/p,p}(I)$

Dirichlet theorem

Thm For all $\varphi \in L^p_{\mathbb{R}}(\mathbb{T})$, \exists unique $f \in H^{p,0}_{\nu}$ such that a.e. on \mathbb{T} :

 $\operatorname{\mathsf{Re}}\left(\operatorname{\mathsf{tr}}\,f\right)=\varphi$

moreover $\|f\|_{H^p_{\nu}} \leq c_{p,\nu} \|\varphi\|_{L^p(\mathbb{T})}$

hence, Hilbert transform (conjugation op.) continuous $L^{p}(\mathbb{T})$:

$$\mathsf{Re}\,(\mathsf{tr}\,\,f) = \mathit{u}_{|_{\mathbb{T}}} = \varphi \overset{\mathcal{H}_{\nu}}{\mapsto} \mathsf{Im}\,(\mathsf{tr}\,\,f) = \mathit{v}_{|_{\mathbb{T}}} = \mathcal{H}_{\nu}(\varphi)$$

+ higher regularity results, \mathcal{H}_{ν} ctn on $W^{1-1/p,p}(\mathbb{T})$ then $W^{1,p}(\mathbb{T})$

Dirichlet-Neumann map $\Lambda_{\sigma} = \partial_{\theta} \mathcal{H}_{\nu}$ [AP], Calderón

Tools and ideas of the proof...

Thm [BN] Let $\alpha \in L^{\infty}(\mathbb{D})$

$$\alpha = -\frac{\bar{\partial}\nu}{1-\nu^2} = \frac{\bar{\partial}\sigma}{2\sigma} = \bar{\partial}\log\sigma^{1/2}$$

$$f = u + i v \in H^p_{\nu} \iff w = \frac{f - \nu f}{\sqrt{1 - \nu^2}} = \sigma^{1/2} u + i \sigma^{-1/2} v \in G^p_{\alpha}$$

Hardy spaces of solutions to

$$\overline{\partial} w = \alpha \overline{w} \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$f \in W^{1,p}(\mathbb{D})$$
 solves (2) $\Leftrightarrow w \in W^{1,p}(\mathbb{D})$ solves (4)
 $G^{p,0}_{\alpha}$: with normaliz. cond. $\int_{\mathbb{T}} \sigma^{1/2} \operatorname{Imtr} w \, d\theta = 0$

w solves Schrödinger equ.

... Tools and ideas of the proof...

Thm [BN] Every $w \in G^p_{\alpha}$ admits in $\mathbb D$ a representation

 $w = e^{s} F$

for $s \in W^{1,q}(\mathbb{D})\,, \ \forall q \in (1,+\infty)$ and $F \in H^p$

further $\|s\|_{L^{\infty}(\mathbb{D})} \leq c \|\alpha\|_{L^{\infty}(\mathbb{D})}$

s can be chosen such that $\operatorname{\mathsf{Re}} s=0$ on $\mathbb T$ $_{({\rm or}\,\operatorname{\mathsf{Im}}\, s\,=\,0)}$

 $(\text{hence } s \, \in \, C^{0, \, \gamma}(\overline{\mathbb{D}}) \, , \, \, \forall \gamma \, \in \, (0, 1) \text{; also } w \, \in \, W^{1, q}_{loc}(\mathbb{D}) \, , \, \, \forall q \, \in \, (1, +\infty))$

Proof: take $r = \alpha \overline{w} / w$ if $w \neq 0$ (r = 0 if w = 0) and $\overline{\partial}s = r$ in \mathbb{D}

... Tools and ideas of the proof...

Properties of G^p_{α} : similar to H^p_{ν} non tangential limit, Fatou, uniqueness Representation: for $w \in G^p_{\alpha}(\mathbb{D})$ and a.e. $z \in \mathbb{D}$ Cauchy-Green formula

$$w(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\operatorname{tr} w(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \iint_{\mathbb{D}} \frac{\alpha w(\xi)}{\xi - z} d\xi \wedge d\overline{\xi}$$

whence $w = C(\operatorname{tr} w) + T_{\alpha}w$

boundedness properties of Cauchy operators ${\cal C}$, ${\cal T}_{lpha}$

$$w = (I - T_{\alpha})^{-1} \mathcal{C} (\operatorname{tr} w)$$

 $\operatorname{\mathsf{Re}}(\operatorname{\mathsf{tr}} w)\mapsto\operatorname{\mathsf{tr}} w$ continuous on $G^{p,0}_{lpha}$

... Tools and ideas of the proof

Dirichlet: for all $\varphi \in L^p_{\mathbb{R}}(\mathbb{T})$, \exists unique $w \in G^{p,0}_{\alpha}$ such that $\operatorname{Re}(\operatorname{tr} w) = \varphi$ a.e. on \mathbb{T} moreover $\|w\|_{G^p_{\alpha}} \leq c_{p,\nu} \|\varphi\|_{L^p(\mathbb{T})}$

For H^p fos: for all $\varphi \in H^p$, \exists unique $w \in G^{p,0}_{\alpha}$ such that

 $P_+(\operatorname{tr} w) = \operatorname{tr} \varphi$ a.e. on $\mathbb T$

a.e. in \mathbb{D} , $w = \varphi + T_{\alpha}(w)$; moreover

 $\|w\|_{G^p_{\alpha}} \leq C_p \|\varphi\|_{H^p}$

Back to conductivity equation

- solve Dirichlet problem with given data φ = u_{|⊥} in L^p(T)
- Cauchy type issues? on I, from (noisy) data, get

$$f = u_{|_{I}}u + i \int (\sigma \partial_{n})u_{|_{I}} \text{ in } L^{p}(I) \text{ but } f \notin (\text{tr } H^{p}_{\nu})_{|_{I}}$$

in view of density:

$$\inf_{h\in \operatorname{tr} H^p_{\nu}} \|f - h\|_{L^p(I)} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

while for such a sequence h_n , $||h_n||_{L^p(\mathbb{T}\setminus I)} \nearrow \infty$

Bounded extremal problems

However, with norm constraint M > 0 the BEP:

$$\min_{\substack{h \in \mathsf{tr} \ H^p_{\nu} \\ |h||_{L^p(\mathbb{T} \setminus I)} \le M}} \|f - h\|_{L^p(I)}$$

achieved by a unique $h_0 \in \operatorname{tr} H^p_{\nu}$ such that $\|h_0\|_{L^p(\mathbb{T} \setminus I)} \leq M$ further, if $f \notin (\operatorname{tr} H^p_{\nu})_{|_I}$

 $\|h_0\|_{L^p(\mathbb{T}\setminus I)}=M$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \rightsquigarrow solution to Cauchy problem

Further results in H^p_{ν}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- orthogonal space and duality
- higher regularity results

Conclusion...

• simply connected smooth Ω : conformal mapping $\psi : \mathbb{D} \to \Omega$

$$\bar{\partial}(f\circ\psi) = (\nu\circ\psi)\,\overline{\partial(f\circ\psi)}$$

• annulus $\mathbb{A} = \mathbb{D} \setminus \varrho \overline{\mathbb{D}}$: annular domains $\overline{H^{\rho}_{\nu}}(\varrho \overline{\mathbb{D}})$: Hardy space of solutions to (2) in $\mathbb{C} \setminus \varrho \overline{\mathbb{D}}$

 $H^p_{\nu}(\mathbb{A}) = H^p_{\nu_i}(\mathbb{D}) \oplus \overline{H^p_{\nu_e}}(\varrho\mathbb{D})$

 $u_i \in W^{1,\infty}(\mathbb{D}), \, \nu_e \in W^{1,\infty}(\mathbb{C} \setminus \varrho \overline{\mathbb{D}}) \text{ such that } \nu_{i|_{\mathbb{A}}} = \nu_{e|_{\mathbb{A}}} =
u$

as for classical Hardy spaces, with $\nu, \nu_i, \nu_e = 0$

• related PDEs Schrödinger ($\Delta w = aw + b\bar{w}$ in \mathbb{C}), Laplace ($\Delta U = 0$ in \mathbb{R}^3)

... Conclusion...

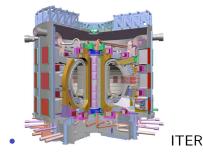
- computation of solutions to (BEP) for p = 2: \mathcal{H}_{ν} ? $\rightsquigarrow \perp$ projection $L^{p}(\mathbb{T}) \rightarrow \text{tr } H^{p}_{\nu}$?
- application to plasma/tokamaks: $\sigma(x, y) = 1/(x + x_0)$
- bases of H_{ν}^2 ? families of Bessel functions?

$$\nu(z,\bar{z}) = \frac{z + \bar{z} + 2x_0 - 2}{z + \bar{z} + 2x_0 + 2}$$

in H^2

・ロト・日本・日本・日本・日本・今日・

• geometrical issues: free boundary Bernoulli pb?



Main references

[Ahl] Ahlfors, Lectures on quasiconformal mappings (1966)

[AP] Astala, Päivärinta, Calderòn inverse conductivity pb in the plane (2006)

[BLRR] Baratchart, Leblond, Rigat, Russ, Hardy spaces of the conjugate Beltrami equation (in preparation)

[BN] Bers, Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications (1954)

[LV] Lehto, Virtanen, Quasiconformal mappings in the plane (1973)[V] Vekua, Generalized analytic functions (1962)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

.