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Conductivity equation

Let Q € R? smooth and 0 € C(Q),0<c<o<C

div (cVu) =0in Q (1)

e Cauchy problems: 1, 16Q\ 1] > 0
tr u and Opu prescribed on | C 09

recover u in  and Cauchy data on J =0Q \ /

e Dirichlet problem:
tr u prescribed on 0N

recover u in Q and 0,u on 0f2



A motivation...

Recover shape of plasma boundary in a tokamak
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... A motivation...

Maxwell equations, cylindrical coordinates (x, y, ¢) of magnetic
induction, axial symmetry (indep. of ¢)

Poloidal Plasma
field electric current

Toroidal
field

Resultant helical field
(Pitch exaggerated)




... A motivation

~~ in poloidal section (annular domain) (x,y) € Q C R2
poloidal magnetic induction BI:

Be| |0 -1 . 1
B—[By]—[l 0 ]JVU, conductlwtyofx

for poloidal magnetic flux u:
div (cVu)=0in Q
given u and B =~ g0,u on | C 92

look for u and d,u on 9\ I? level line of u (plasma boundary)?



Conjugated (IR-linear) Beltrami equation

u solution to (1): div (¢Vu) = 0 iff
u=Ref

where f = f(z, z) satisfies first order elliptic equation

Of = vdf in Q
with respect to complex variable z = x 4 iy and

71—0
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v € C(Q) real-valued, |v| <k <1in Q

[AP]

C-linear Beltrami equation: dg = vdg quasi-conformal map. [Ahlf., Ast.]



Generalized o-harmonic conjugation

we have
f=u+iv

where v o-harmonic conjugated function Hilbert-Riesz transform
(1 :
div [ =Vv | =0inQ
o

generalized Cauchy-Riemann equations in Q:

|10 -1 _ Oxv = —00yu
Vv—[l 0 ]Uvu' {ayv:oaxu

unique up to additive constant



Proof

_ 1
0=0;=3(0x—idy), 9=0;=3(0x +i0y)

generalization of B (o constant)
Au =0 (u harmonic) < 0 f = 0 (f analytic) in Q



Smooth solutions to Dirichlet problem

Thm [Campanato] 1< p < 00
Vo € Wﬂg‘”"”’(am, there exists £ € W1P(Q) solution to (2) in Q
such that Retr £ = ¢ on 00

unique if normalization condition / Imtr fdo=0 (3)
o

further Hf”WLp(Q) < C HSDHWl*l/p'P(f)Q)

u=Ref e WHP(Q), u= ¢ on 9Q unique solution to (1)
(in W1’2(Q) Lax-Milgram - also for o € L°°(Q) - in Wz'p(ﬂ) [ADN]; for o € VMO(Q) [AQ])

allows to solve boundary approximation problems but with Sobolev
norms and smooth boundary data



With LP(0K2) boundary data?

Q - ]D) Unit dISk, LP(T) data simply connected Q
smooth o, v € W1>(DD)

Generalized Hardy spaces HY = H(DD) of solutions:
funCtionS f on ]D) SatISfyIng T, circle radius r

1[I e = ess sup ||| p(r,) < +o0
0<r<1
solutions to (2) in I as distributions
2 .
(IF s,y = 2 ST 1F(rei®) Pd0)

HJ C LP(D) real Banach space



Harmonic and analytic functions

oc=1(cst), Au=0inD =0
classical Hardy spaces HP = HE(DD) of analytic functions

Of =0 and |||, < +oo
f=u -+ iv, conjugated function v: Av =0 in D Hilbert-Riesz transform

Cauchy-Riemann equations:

Oxv = —0yuinD Opv = —0Opuon T
Oyv = Oxu Opv = Opu



Hardy spaces HP

Properties of HP Banach spaces (below..)

Poisson-Cauchy-Green representation formulas, analytic
projection
Hilbert H?, Fourier basis:

sz{zfnzn, Zlfnlz},tr H?:z=¢%€cT

n>0 n>0

allow to state and solve above issues as best approximation
problems on LP(/) or LP(T) @&y



Properties of HP...

Generalize those of HP

e Fatou:
Itr fll pery < [If]

2
lim
r—1 Jo

e tr HY closed subspace of LP(T)
If f e HY:
° |0g |tr f| S LI(T) (does not vanish on positive measure subsets) un|eSS f = 0 in ]D)

ne < 6t fll oy

f(re’) —tr f(e?) "d9=0

e If f £ 0, then its zeros «aj are isolated in D

e}

Z(l — |aj|) < 400 (with muttiplicity)
j=1



... Properties of HP

Let H2® € HE of f such that (3) holds

o If f € HE is such that Re (tr f) =0 ae. on T,
then f =0inD

o If f € WLHP(D) solution of (2), then f € HE with

1llke < Cop [Fllwrn (o)

+ orthogonal space and duality



Density results

Thm | C T measurable subset, [T\ /| >0

e the space of restrictions to / of functions in tr HY is dense in
LP(1)
e tr HY weakly closed in LP(T)

o let (fx)k>1 € HY whose trace on | converges to ¢ in LP(/):
either ¢ is already the trace on / of an HY function
or [[tr il p(mjy — +00

~~ bounded approximation problems (BEP)

if | = Int [ # T (in particular, I is open), the space of restrictions to | of traces on T of solutions to (CB) in

WLP(D) is dense in W1=1/P:P(])



Dirichlet theorem

Thm For all ¢ € L2(T), 3 unique f € H?" such that a.e. on T:
Re(tr f) = ¢

moreover ||f|,» < ¢, H@”Lp(qr)

hence, Hilbert transform (conjugation op.) continuous LP(T):

Re(tr f) = u, = go?ii Im (tr f) = v, = Hu(p)

+ higher regularity results, H,, ctn on W1 ~1/P:P(T) then W-P(T)

Dirichlet-Neumann map A, = 9gH, [AP], Calderén



Tools and ideas of the proof...

Thm ey Let a € L*(D)

51/ 80’ = 1/2
a=-—7—7 20:8|ogrf

f—vf
_ H p _ 1/2 - _—1/2 p
f—U+IV€HV<:>W—m o/futio ve Gh

Hardy spaces of solutions to
ow = aw

f € WLHP(D) solves (2) & w € WLP(D) solves (4)

GPO . with normaliz. cond. /01/2|mtr wdd =0
T

w solves Schrédinger equ.



... Tools and ideas of the proof...

Thm @y Every w € G admits in D a representation
w=¢e’F
for s € W19(D), Vg € (1,+00) and F € HP
further  |[s]| L) < cllallLom)

s can be chosen such that Res =0 0on T (orims=0)
(hence s € C®V(D), VY~ € (0,1); also w € Wli’cq(ﬂ)), Vq € (1, +00))

Proof: take r = aw/w if w #0 (r = 0if w = 0) and &s = r in D



. Tools and ideas of the proof-...

Properties of Gg similar to H,e non tangential limit, Fatou, uniqueness

Representation: for w € GF(D) and a.e. z€ D Catichy-Green formula

= [ 50 ]

whence w = C (tr w) + Tow

boundedness properties of Cauchy operators C, T,

= (I = T,)7C (tr w)

Re (tr w) +— tr w continuous on GZ’O



... Tools and ideas of the proof

Dirichlet: for all ¢ € LB(T), 3 unique w € G£ such that

Re(trw)=¢ ae. . onT

moreover |[w| g < o |2l 1oy

For HP fos: for all ¢ € HP, 3 unique w € Gg’o such that
P (trw)=trey ae onT
a.e. in D, w = ¢ + T,(w); moreover

||WHG5 < Gollell e



Back to conductivity equation

e solve Dirichlet problem with given data ¢ = v, in LP(T)
e Cauchy type issues? on /, from (noisy) data, get

f=uu+i /i(a(?n)u, in LP(1) but f & (tr HY),,

in view of density:

inf f—nh =0
heltr He | HLP(I)

while for such a sequence hy, [|hn| 1oy /00



Bounded extremal problems

However, with norm constraint M > 0 the BEP:

min f—h
minIF = bl
Al <M

achieved by a unique ho € tr HJ such that |[ho|[ () < M
further, if f ¢ (tr HY),

HhOHLP(T\I) =M

~ solution to Cauchy problem



Further results in H?

e orthogonal space and duality

e higher regularity results



Conclusion...

simply connected smooth Q: conformal mapping ¢ : D — Q

I(forp) = (vorh)d(f o)

annulus A == ]D) \ Qﬁ annular domains

?ﬂ(gﬂ)): Hardy space of solutions to (2) in C \ oD

HP(A) = HP (D) & HE.(oD)
vi € Wh°(D), ve € WH2°(C\ ¢D) such that v, = v, =v

as for classical Hardy spaces, with v, vj, ve =0

related PDES Schrodinger (Aw = aw + bw in C), Laplace (AU =0 in R3)



... Conclusion...

computation of solutions to (BEP) for p = 2:

H,? ~~L projection LP(T) — tr HJ?

application to plasma/tokamaks: o(x,y) = 1/(x + xp)
bases of H2? families of Bessel functions?

z+Z+2x —2

v(z,z) =
( ) z+Z+2x+2

geometrical issues: free boundary Bernoulli pb?

ITER

in H?
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