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Conductivity equation

Let Ω ⊂ R2 smooth and σ ∈ C (Ω̄), 0 < c ≤ σ ≤ C

div (σ∇u) = 0 in Ω (1)

• Cauchy problems: |I | , |∂Ω \ I | > 0

tr u and ∂nu prescribed on I ⊂ ∂Ω

recover u in Ω and Cauchy data on J = ∂Ω \ I

• Dirichlet problem:

tr u prescribed on ∂Ω

recover u in Ω and ∂nu on ∂Ω



A motivation...
Recover shape of plasma boundary in a tokamak

Tore Supra (CEA-IRFM Cadarache)



... A motivation...

Maxwell equations, cylindrical coordinates (x , y ,φ) of magnetic
induction, axial symmetry (indep. of φ)



... A motivation

! in poloidal section (annular domain) (x , y) ∈ Ω ⊂ R2

poloidal magnetic induction [Bl]:

B =

[
Bx

By

]
=

[
0 −1
1 0

]
σ∇u , conductivity σ =

1

x

for poloidal magnetic flux u:

div (σ∇u) = 0 in Ω

given u and B ≈ σ∂nu on I ⊂ ∂Ω

look for u and ∂nu on ∂Ω \ I? level line of u (plasma boundary)?



Conjugated (R-linear) Beltrami equation

u solution to (1): div (σ∇u) = 0 iff

u = Re f

where f = f (z , z̄) satisfies first order elliptic equation

∂̄f = ν∂f in Ω (2)

with respect to complex variable z = x + iy and [AP]

ν =
1− σ

1 + σ

ν ∈ C (Ω̄) real-valued, |ν| ≤ κ < 1 in Ω

C-linear Beltrami equation: ∂̄g = ν∂g quasi-conformal map. [Ahlf., Ast.]



Generalized σ-harmonic conjugation

we have
f = u + i v

where v σ-harmonic conjugated function Hilbert-Riesz transform

div

(
1

σ
∇v

)
= 0 in Ω

unique up to additive constant

generalized Cauchy-Riemann equations in Ω:

∇v =

[
0 −1
1 0

]
σ∇u :

{
∂xv = −σ∂yu
∂yv = σ∂xu



Proof

∂ = ∂z =
1

2
(∂x − i ∂y ) , ∂̄ = ∂z̄ =

1

2
(∂x + i ∂y )

....

generalization of (σ constant)

∆u = 0 (u harmonic) ⇔ ∂̄ f = 0 (f analytic) in Ω



Smooth solutions to Dirichlet problem

Thm [Campanato] 1 < p <∞
∀φ ∈W 1−1/p,p

R (∂Ω), there exists f ∈W 1,p(Ω) solution to (2) in Ω
such that Re tr f = φ on ∂Ω

unique if normalization condition

∫

∂Ω
Im tr f dθ = 0 (3)

further ‖f ‖W 1,p(Ω) ≤ C ‖ϕ‖W 1−1/p,p(∂Ω)

u = Re f ∈W 1,p(Ω), u = φ on ∂Ω unique solution to (1)

(in W 1,2(Ω) Lax-Milgram - also for σ ∈ L∞(Ω) - in W 2,p(Ω) [ADN]; for σ ∈ VMO(Ω) [AQ])

allows to solve boundary approximation problems but with Sobolev
norms and smooth boundary data



With Lp(∂Ω) boundary data?

Ω = D unit disk, Lp(T) data simply connected Ω

smooth σ, ν ∈W 1,∞(D)

Generalized Hardy spaces Hp
ν = Hp

ν (D) of solutions:
functions f on D satisfying Tr circle radius r

‖f ‖Hp
ν

= ess sup
0<r<1

‖f ‖Lp(Tr ) < +∞

solutions to (2) in D as distributions

(‖f ‖pLp(Tr )
= 1

2π

∫ 2π
0 |f (re iθ)|pdθ)

Hp
ν ⊂ Lp(D) real Banach space



Harmonic and analytic functions

σ ≡ 1 (cst), ∆u = 0 in D (ν = 0)

classical Hardy spaces Hp = Hp
0 (D) of analytic functions

∂̄f = 0 and ‖f ‖Hp < +∞

f = u + i v, conjugated function v : ∆v = 0 in D Hilbert-Riesz transform

Cauchy-Riemann equations:

{
∂xv = −∂yu in D
∂yv = ∂xu

{
∂nv = −∂θu on T
∂θv = ∂nu



Hardy spaces Hp

• Properties of Hp Banach spaces (below...)

• Poisson-Cauchy-Green representation formulas, analytic
projection

• Hilbert H2, Fourier basis:

H2 = {
∑

n≥0

fnz
n ,

∑

n≥0

|fn|2} , tr H2 : z = e iθ ∈ T

• allow to state and solve above issues as best approximation
problems on Lp(I ) or Lp(T) [BL]



Properties of Hp
ν ...

Generalize those of Hp

• Fatou:
‖tr f ‖Lp(T) ≤ ‖f ‖Hp

ν
≤ cν ‖tr f ‖Lp(T)

lim
r→1

∫ 2π

0

∣∣∣f (re iθ)− tr f (e iθ)
∣∣∣
p
dθ = 0

• tr Hp
ν closed subspace of Lp(T)

If f ∈ Hp
ν :

• log |tr f | ∈ L1(T) (does not vanish on positive measure subsets) unless f ≡ 0 in D
• If f ,≡ 0, then its zeros αj are isolated in D

∞∑

j=1

(1− |αj |) < +∞ (with multiplicity)



... Properties of Hp
ν

Let Hp,0
ν ⊂ Hp

ν of f such that (3) holds

• If f ∈ Hp,0
ν is such that Re (tr f ) = 0 a.e. on T,

then f ≡ 0 in D
• If f ∈W 1,p(D) solution of (2), then f ∈ Hp

ν with

‖f ‖Hp
ν
≤ Cν,p ‖f ‖W 1,p(D)

+ orthogonal space and duality



Density results

Thm I ⊂ T measurable subset, |T \ I | > 0

• the space of restrictions to I of functions in tr Hp
ν is dense in

Lp(I )

• tr Hp
ν weakly closed in Lp(T)

• let (fk)k≥1 ∈ Hp
ν whose trace on I converges to φ in Lp(I ):

either φ is already the trace on I of an Hp
ν function

or ‖tr fk‖Lp(T\I ) → +∞

! bounded approximation problems (BEP)

if I = Int I #= T (in particular, I is open), the space of restrictions to I of traces on T of solutions to (CB) in

W 1,p(D) is dense in W 1−1/p,p(I )



Dirichlet theorem

Thm For all ϕ ∈ Lp
R(T), ∃ unique f ∈ Hp,0

ν such that a.e. on T:

Re (tr f ) = ϕ

moreover ‖f ‖Hp
ν
≤ cp,ν ‖ϕ‖Lp(T)

hence, Hilbert transform (conjugation op.) continuous Lp(T):

Re (tr f ) = u|T = ϕ
Hν/→ Im (tr f ) = v|T = Hν(ϕ)

+ higher regularity results, Hν ctn on W 1−1/p,p(T) then W 1,p(T)

Dirichlet-Neumann map Λσ = ∂θHν [AP], Calderón



Tools and ideas of the proof...

Thm [BN] Let α ∈ L∞(D)

α = − ∂̄ν

1− ν2
=

∂̄σ

2σ
= ∂̄ log σ1/2

f = u + i v ∈ Hp
ν ⇐⇒ w =

f − νf√
1− ν2

= σ1/2 u + i σ−1/2 v ∈ Gp
α

Hardy spaces of solutions to

∂w = αw (4)

f ∈W 1,p(D) solves (2) ⇔ w ∈W 1,p(D) solves (4)

Gp,0
α : with normaliz. cond.

∫

T
σ1/2 Im tr w dθ = 0

w solves Schrödinger equ.



... Tools and ideas of the proof...

Thm [BN] Every w ∈ Gp
α admits in D a representation

w = es F

for s ∈W 1,q(D) , ∀q ∈ (1,+∞) and F ∈ Hp

further ‖s‖L∞(D) ≤ c‖α‖L∞(D)

s can be chosen such that Re s = 0 on T (or Im s = 0)

(hence s ∈ C0,γ (D) , ∀γ ∈ (0, 1); also w ∈ W 1,q
loc (D) , ∀q ∈ (1, +∞))

Proof: take r = αw/w if w #= 0 (r = 0 if w = 0) and ∂̄s = r in D



... Tools and ideas of the proof...

Properties of Gp
α : similar to Hp

ν non tangential limit, Fatou, uniqueness

Representation: for w ∈ Gp
α(D) and a.e. z ∈ D Cauchy-Green formula

w(z) =
1

2πi

∫

T

tr w(ξ)

ξ − z
dξ +

1

2πi

∫∫

D

αw(ξ)

ξ − z
d ξ ∧ d ξ

whence w = C (tr w) + Tαw

boundedness properties of Cauchy operators C, Tα

w = (I − Tα)−1C (tr w)

Re (tr w) &→ tr w continuous on Gp,0
α



... Tools and ideas of the proof

Dirichlet: for all ϕ ∈ Lp
R(T), ∃ unique w ∈ Gp,0

α such that

Re (tr w) = ϕ a.e. on T

moreover ‖w‖Gp
α
≤ cp,ν ‖ϕ‖Lp(T)

For Hp fos: for all ϕ ∈ Hp, ∃ unique w ∈ Gp,0
α such that

P+(tr w) = tr ϕ a.e. on T

a.e. in D, w = ϕ + Tα(w); moreover

‖w‖Gp
α
≤ Cp ‖ϕ‖Hp



Back to conductivity equation

• solve Dirichlet problem with given data φ = u|T in Lp(T)

• Cauchy type issues? on I , from (noisy) data, get

f = u|I u + i

∫
(σ∂n)u|I in Lp(I ) but f ,∈ (tr Hp

ν )|I

in view of density:

inf
h∈tr Hp

ν

‖f − h‖Lp(I ) = 0

while for such a sequence hn, ‖hn‖Lp(T\I ) ↗∞



Bounded extremal problems

However, with norm constraint M > 0 the BEP:

min
h∈tr H

p
ν

‖h‖Lp(T\I )≤M

‖f − h‖Lp(I )

achieved by a unique h0 ∈ tr Hp
ν such that ‖h0‖Lp(T\I ) ≤ M

further, if f /∈ (tr Hp
ν )|I

‖h0‖Lp(T\I ) = M

! solution to Cauchy problem



Further results in Hp
ν

• orthogonal space and duality

• higher regularity results



Conclusion...

• simply connected smooth Ω: conformal mapping ψ : D → Ω

∂̄(f ◦ ψ) = (ν ◦ ψ) ∂(f ◦ ψ)

• annulus A = D \ ,D: annular domains

Hp
ν (&D): Hardy space of solutions to (2) in C \ &D̄

Hp
ν (A) = Hp

νi
(D)⊕ Hp

νe (,D)

νi ∈W 1,∞(D), νe ∈W 1,∞(C \ ,D) such that νi |A = νe|A = ν
as for classical Hardy spaces, with ν, νi , νe = 0

• related PDEs Schrödinger (∆w = aw + bw̄ in C), Laplace (∆U = 0 in R3)



... Conclusion...

• computation of solutions to (BEP) for p = 2:
Hν? !⊥ projection Lp(T)→ tr Hp

ν ? in H2

• application to plasma/tokamaks: σ(x , y) = 1/(x + x0)

• bases of H2
ν? families of Bessel functions?

ν(z, z̄) =
z + z̄ + 2x0 − 2

z + z̄ + 2x0 + 2

• geometrical issues: free boundary Bernoulli pb?

• ITER
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