La fonction à trois points des quadrangulations planaires

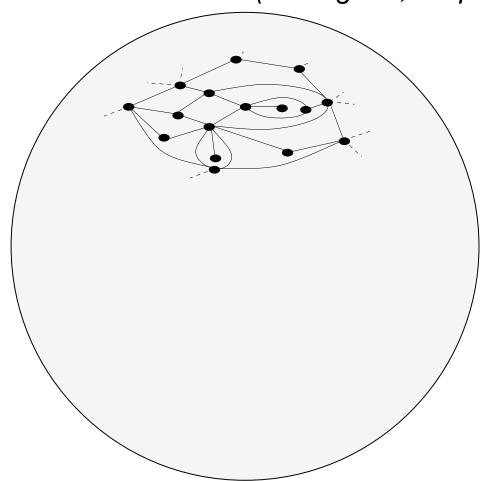
travail en commun avec J. Bouttier

J. Stat. Mech. (2008) P07020, arXiv:0805.2355

Institut de Physique Théorique CEA Saclay, France

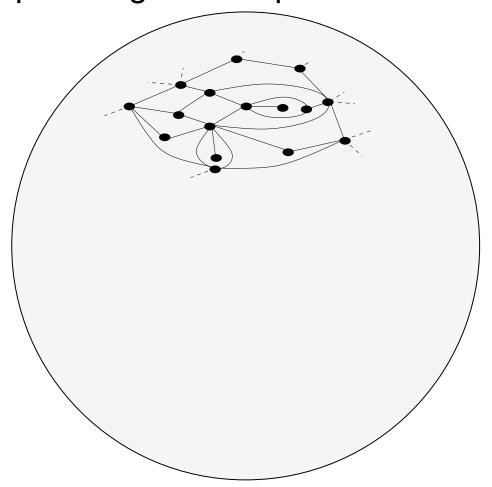
quadrangulations planaires

quadrangulation planaire \equiv carte dessinée sur la sphère dont toutes les faces sont des carrés (\equiv degré 4, simplement connexes)

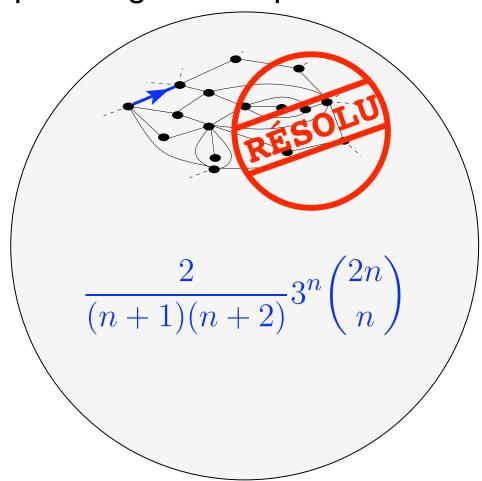


considérée à déformations continues près

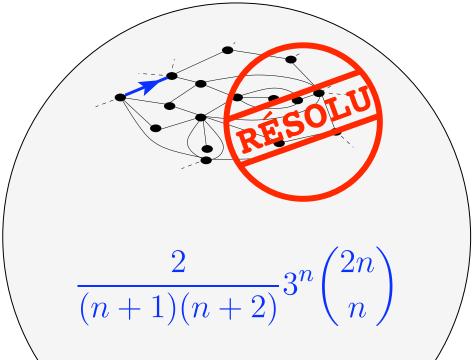
énumérer les quadrangulations planaires à n faces



énumérer les quadrangulations planaires à n faces

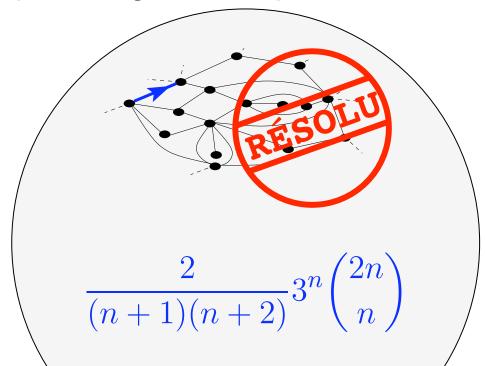


énumérer les quadrangulations planaires à n faces



Tutte (1962) décomposition récursive

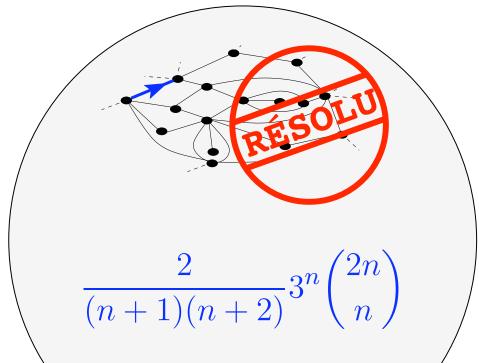
énumérer les quadrangulations planaires à n faces



Tutte (1962) décomposition récursive

Brézin Itzykson Parisi Zuber (1978) intégrales de matrices

énumérer les quadrangulations planaires à n faces

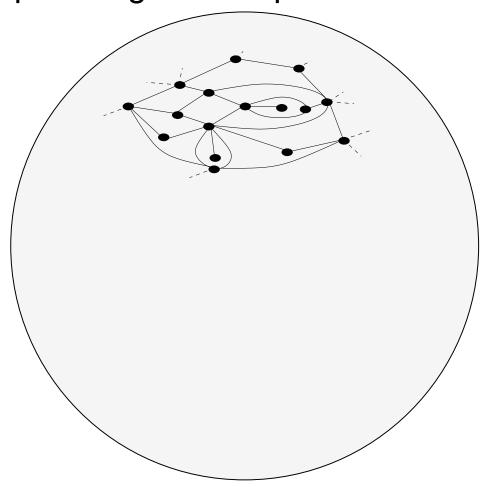


Tutte (1962) décomposition récursive

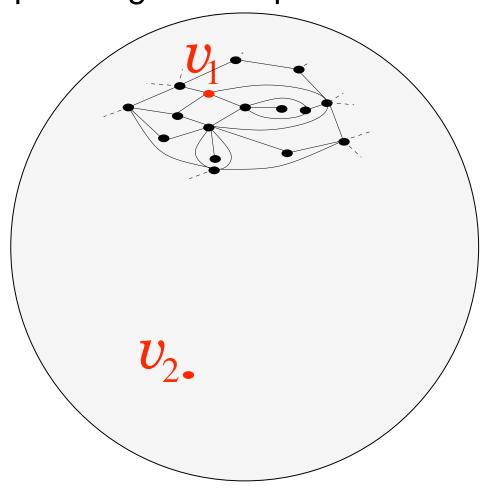
Brézin Itzykson Parisi Zuber (1978) intégrales de matrices

Schaeffer (1997) bijection avec des arbres

énumérer les quadrangulations planaires à n faces

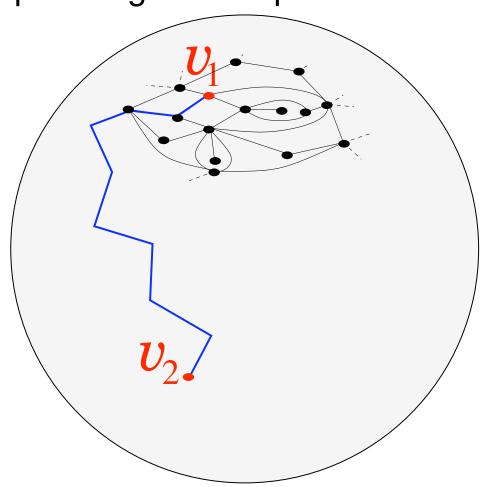


énumérer les quadrangulations planaires à n faces



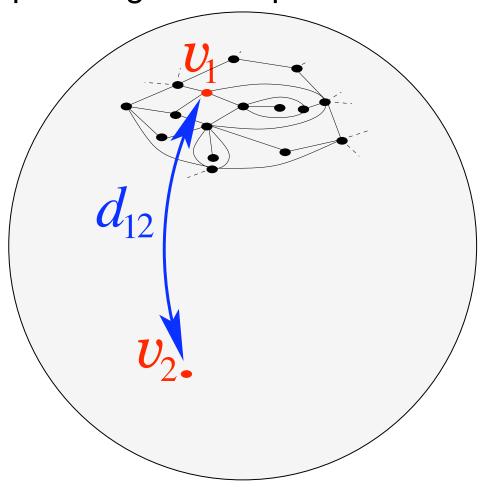
et avec 2 sommets marqués

énumérer les quadrangulations planaires à n faces



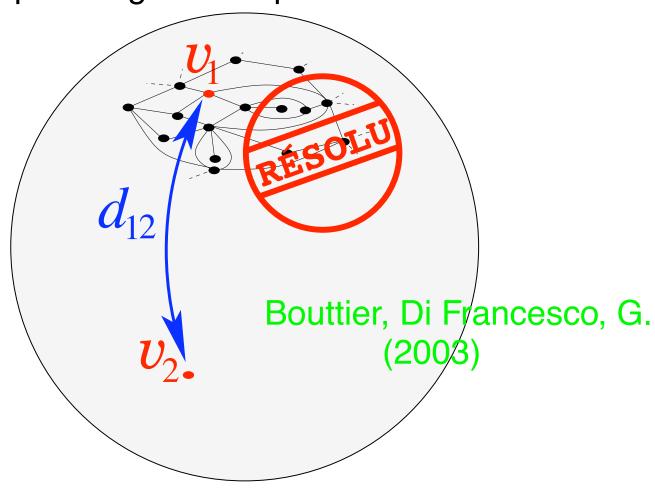
et avec 2 sommets marqués

énumérer les quadrangulations planaires à n faces



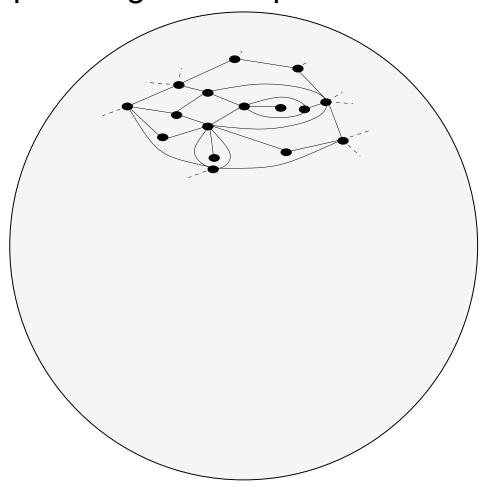
et avec 2 sommets marqués à distance prescrite

énumérer les quadrangulations planaires à n faces

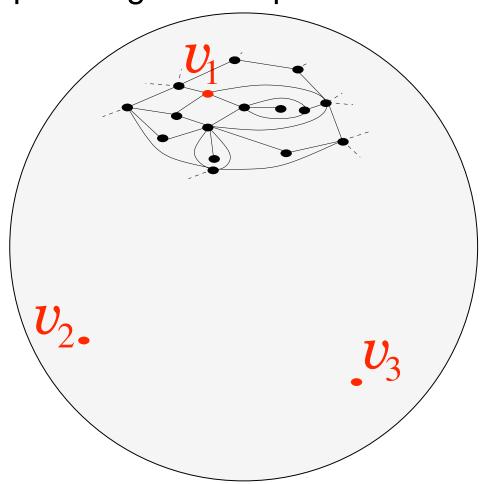


et avec 2 sommets marqués à distance prescrite

énumérer les quadrangulations planaires à n faces

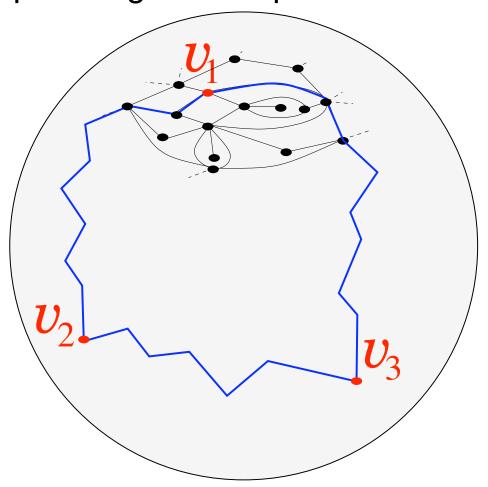


énumérer les quadrangulations planaires à n faces



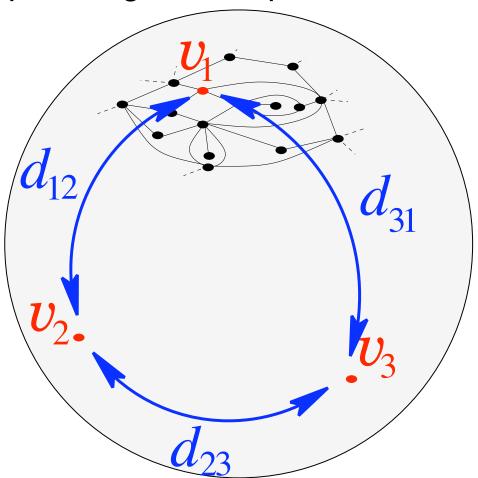
et avec 3 sommets marqués

énumérer les quadrangulations planaires à n faces



et avec 3 sommets marqués

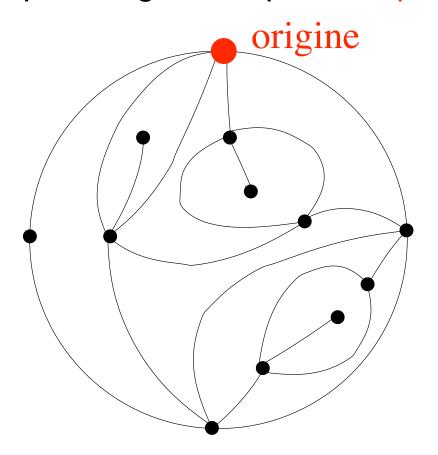
énumérer les quadrangulations planaires à n faces



et avec 3 sommets marqués à distances prescrites

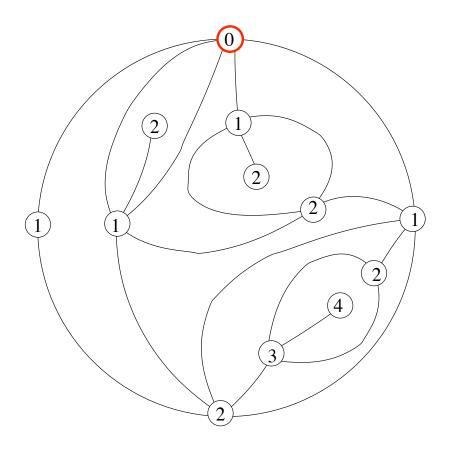
la bijection de Schaeffer

partant d'une quadrangulation planaire pointée



la bijection de Schaeffer

partant d'une quadrangulation planaire pointée



chaque sommet v reçoit une étiquette $\ell(v)$ égale à sa distance à l'origine

la bijection de Schaeffer

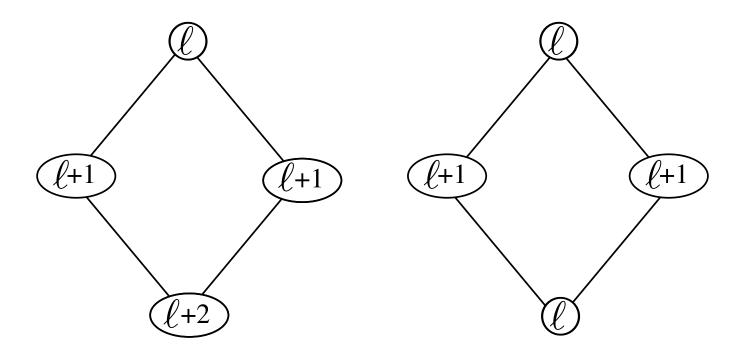
partant d'une quadrangulation planaire pointée



 $|\ell(v) - \ell(v')| = 1$ si v et v' sont voisins sur la quadrangulation

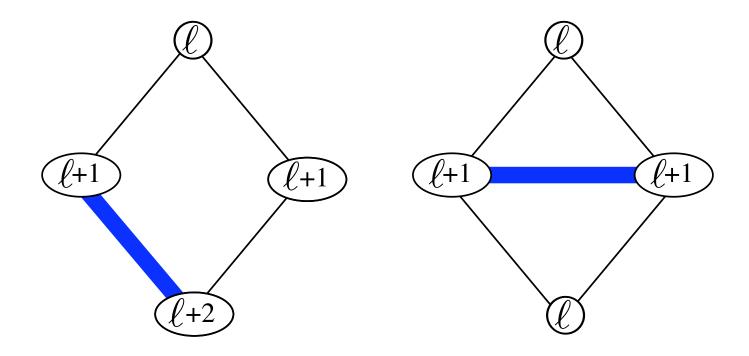
$faces \rightarrow arêtes$

 \rightarrow deux types de faces



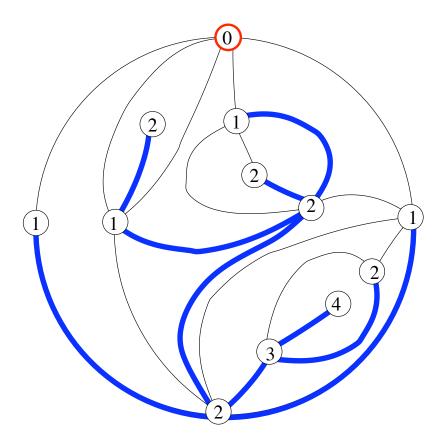
faces → arêtes

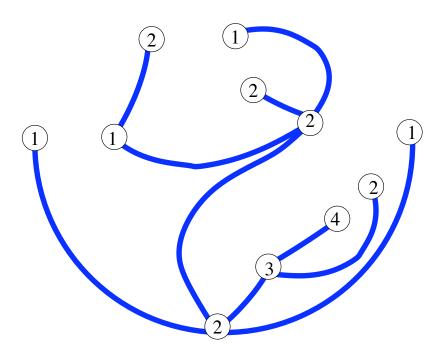
→ deux types de faces

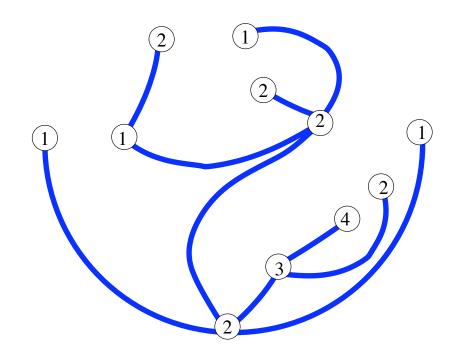


construction de Schaeffer:

associer une arête à chaque face

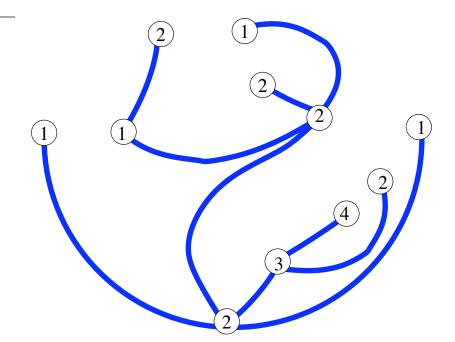






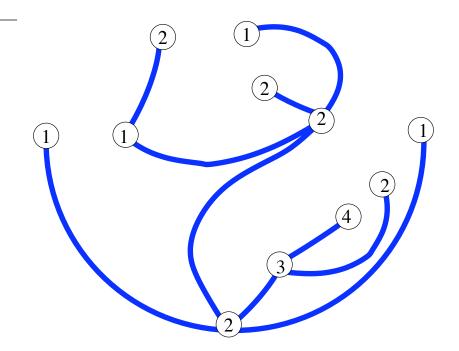
on obtient un arbre planaire bien-étiqueté

arbres bien-étiquetés



bien-étiqueté:

arbres bien-étiquetés

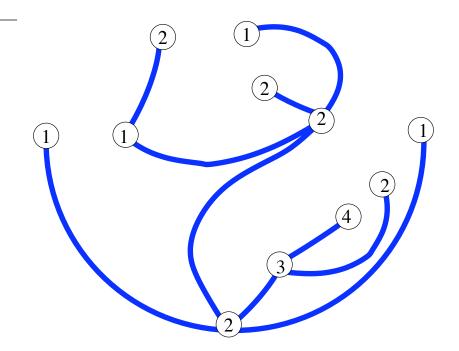


bien-étiqueté:

les étiquettes varient d'au plus 1 entre voisins

 $|\ell(v) - \ell(v')| \le 1$ si v et v' sont voisins sur l'arbre

arbres bien-étiquetés



bien-étiqueté:

les étiquettes varient d'au plus 1 entre voisins

$$|\ell(v) - \ell(v')| \le 1$$
 si v et v' sont voisins sur l'arbre

$$\diamond \min_{v \in \text{ arbre}} \ell(v) = 1$$

bijection 1:

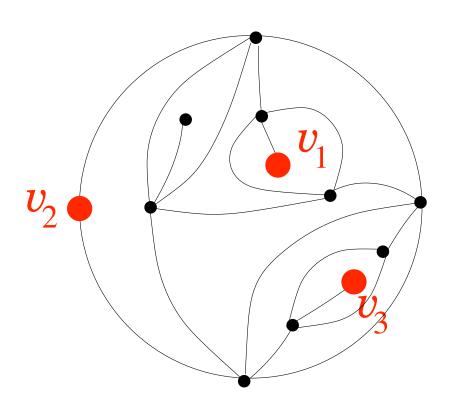
quadrangulations pointées

arbres bien-étiquetés

- $\diamond |\ell(v) \ell(v')| \le 1 \text{ si } v \text{ et } v' \text{ sont voisins}$
- $\underset{v \in \text{ arbre}}{\diamond} \min_{v \in \text{ arbre}} \ell(v) = 1$

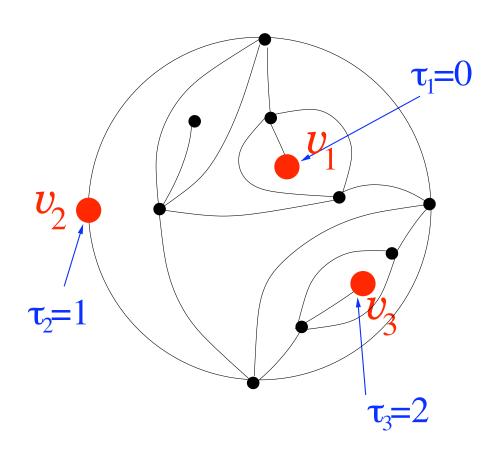
la bijection de Miermont

partant d'une quadrangulation planaire multi-pointée avec p sommets marqués (et distingués) v_1, \ldots, v_p satisfaisant $d(v_i, v_i) \geq 2$



la bijection de Miermont

à chaque sommet marqué v_i est associé un retard τ_i (entier)



la bijection de Miermont

à chaque sommet marqué v_i est associé un retard τ_i (entier)

les retards doivent satisfaire:

$$\diamond |\tau_i - \tau_j| < d(v_i, v_j) \ \forall i \neq j$$
 (cond. 1)

$$\bullet \tau_i - \tau_j = d(v_i, v_j) \bmod 2$$
 (cond. 2)

pour chaque sommet v, on considère la "distance retardée" à v_j

$$\ell_j(v) \equiv d(v, v_j) + \tau_j$$

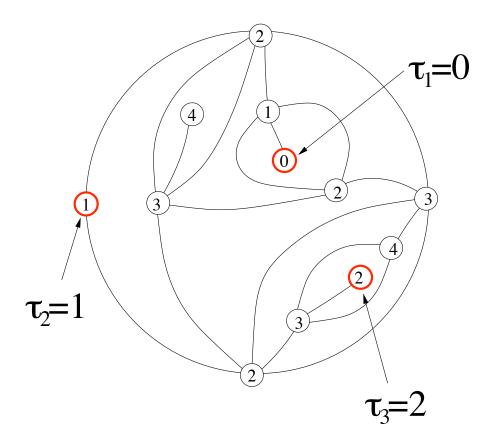
le sommet v reçoit maintenant une étiquette:

$$\ell(v) \equiv \min_{j=1,...p} \ell_j(v) = \min_{j=1,...p} (d(v, v_j) + \tau_j)$$

qui est la "distance" au sommet marqué le plus proche, où la distance à v_j incorpore une pénalité τ_j

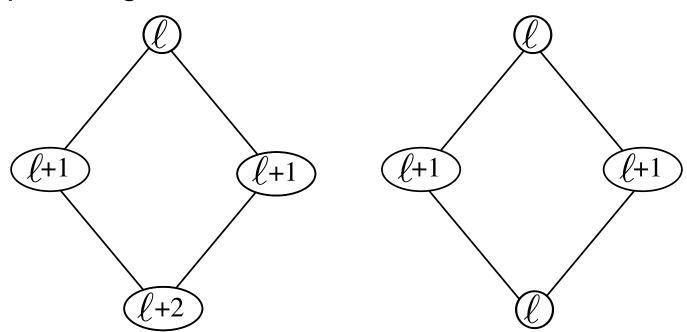
→ en particulier, la condition 1 assure que

$$\ell(v_i) = \tau_i$$



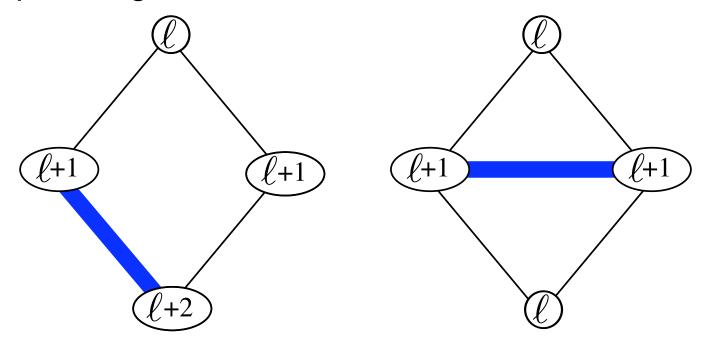
faces → arêtes

grâce à la condition 2, la parité de $\ell_j(v)$ est indépendante de j et, de nouveau, $|\ell(v) - \ell(v')| = 1$ si v et v' sont voisins sur la quadrangulation

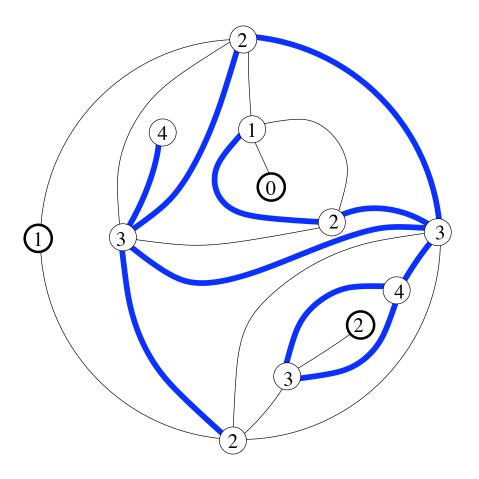


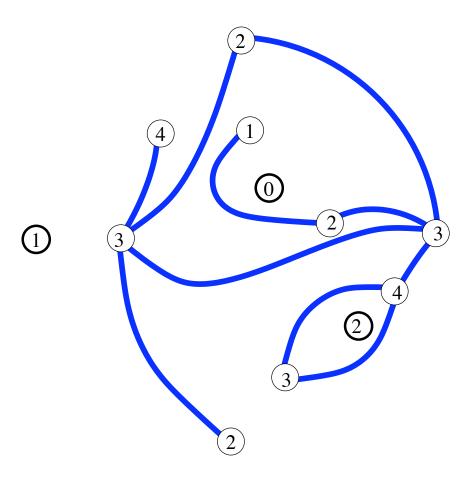
faces → **arêtes**

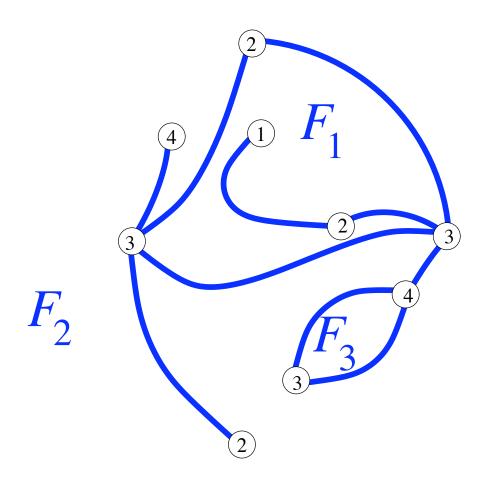
grâce à la condition 2, la parité de $\ell_j(v)$ est indépendante de j et, de nouveau, $|\ell(v) - \ell(v')| = 1$ si v et v' sont voisins sur la quadrangulation



associer une arête à chaque face

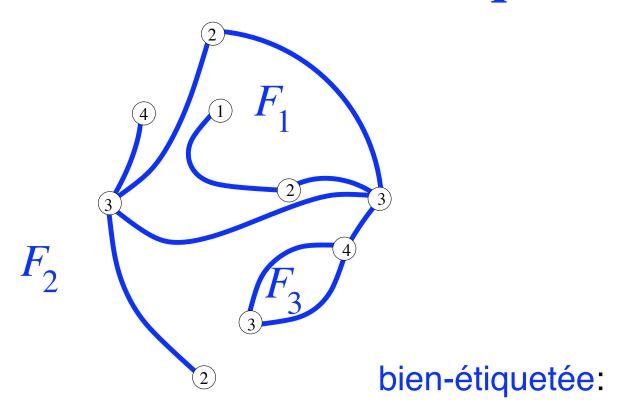




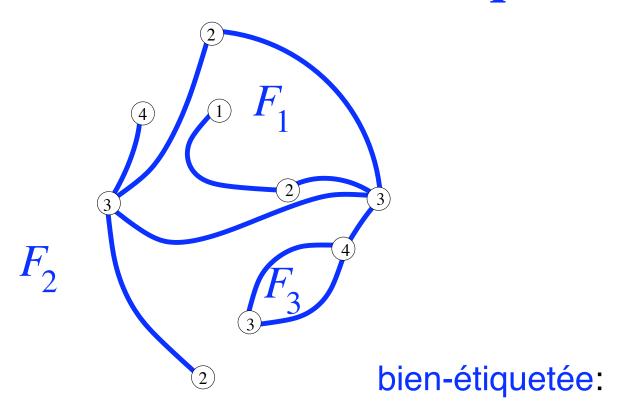


on obtient une carte planaire bien-étiquetée à p faces

cartes bien-étiquetées



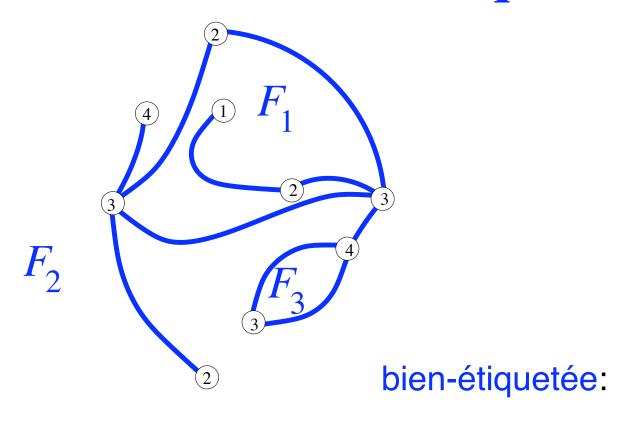
cartes bien-étiquetées



les étiquettes varient d'au plus 1 entre voisins

 $|\ell(v) - \ell(v')| \le 1$ si v et v' sont voisins sur la carte

cartes bien-étiquetées



les étiquettes varient d'au plus 1 entre voisins

 $|\ell(v) - \ell(v')| \le 1$ si v et v' sont voisins sur la carte

$$\diamond \min_{v \; \textit{incident à} \; F_i} \ell(v) = 1 + au_i$$

bijection 2: pour une valeur fixée des retards

quadrangulations p-pointées

avec des sommets marqués satisfaisant

- $\diamond d(v_i, v_j) > |\tau_i \tau_j| \ \forall \ i \neq j$
- $\diamond d(v_i, v_j) = \tau_i \tau_j \bmod 2$

cartes bien-étiquetées à p faces

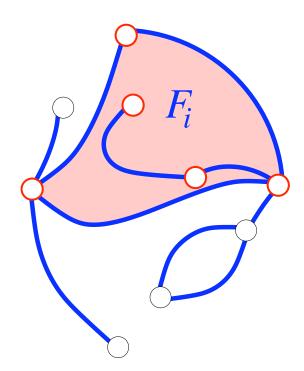
avec de étiquettes satisfaisant

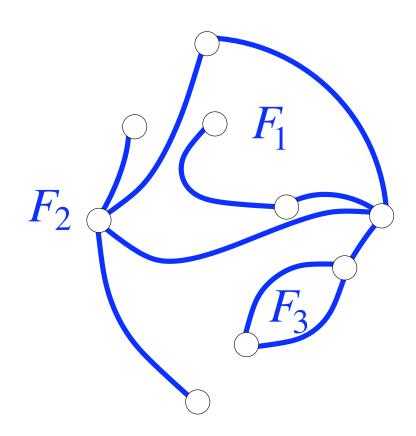
- $\diamond |\ell(v) \ell(v')| \leq 1 \text{ si } v \text{ et } v' \text{ sont voisins}$
- $\displaystyle \min_{v \; \textit{incident à} \; F_i} \ell(v) = 1 + au_i$

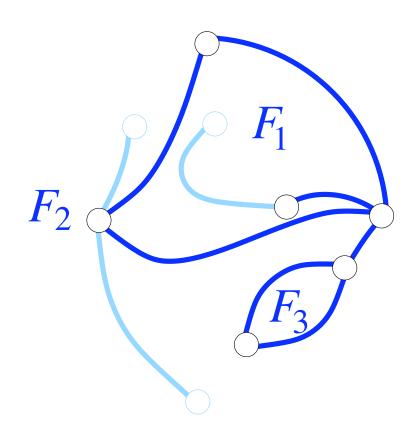
ce codage garde trace de certaines des distances:

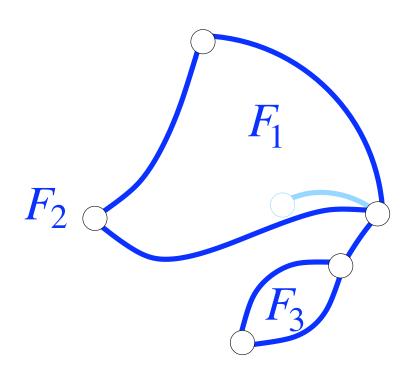
si v est incident à F_i , alors le minimum de $\ell_j = d(v, v_j) + \tau_j$ est atteint pour j = i et on a donc:

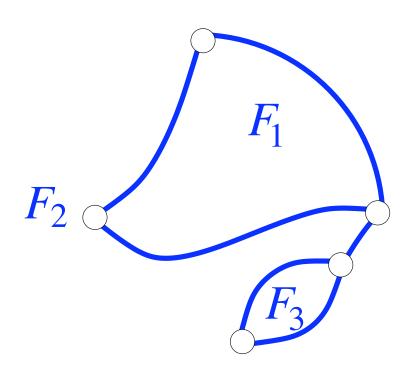
$$d(v, v_i) = \ell(v) - \tau_i$$

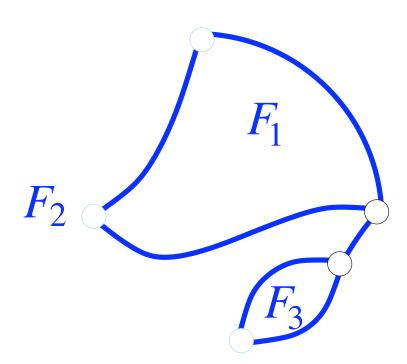


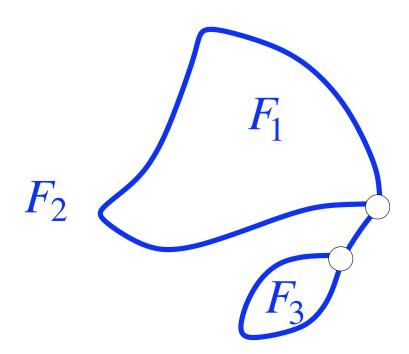










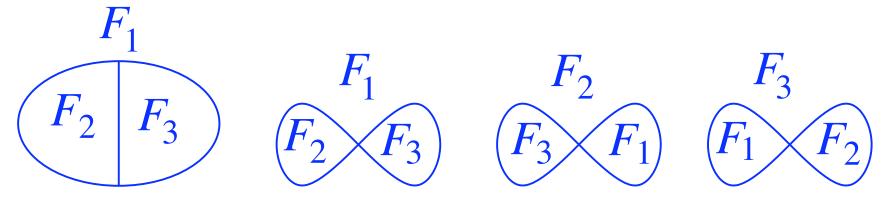


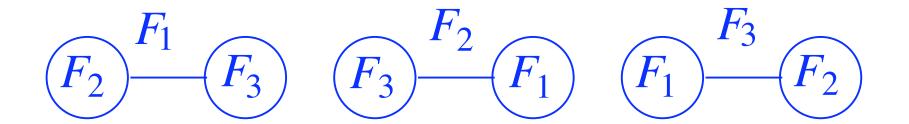
sommets de degré $\geq 3 \Rightarrow$ nombre fini de squelettes

cas de 3 sommets marqués

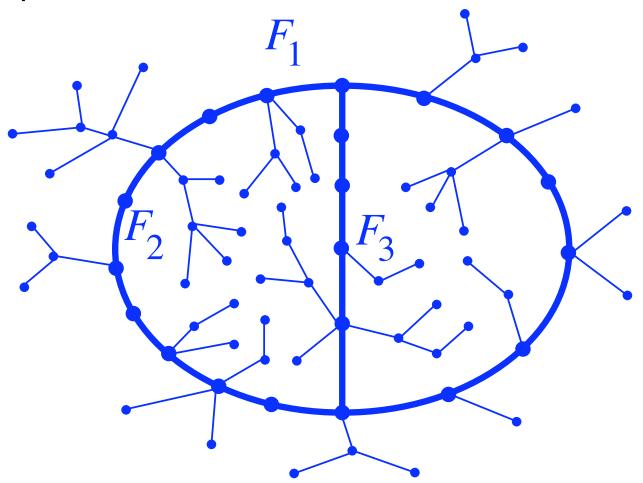
cartes planaires à 3 faces (distinguées)

→ sept squelettes possibles





 $carte = squelette + arbres \ attachés$

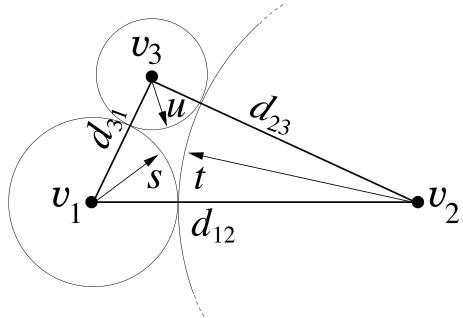


paramétrisation des distances

pour 3 points, on peut utiliser la paramétrisation suivante:

$$d_{12} \equiv d(v_1, v_2) = s + t$$

 $d_{23} \equiv d(v_2, v_3) = t + u$
 $d_{31} \equiv d(v_3, v_1) = u + s$



avec $s, t, u \ge 0$

choix des retards

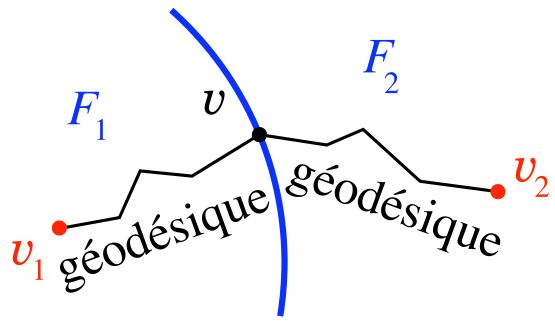
idée: relier les retards aux distances en choisissant:

$$\tau_1 = -s \; , \quad \tau_2 = -t \; , \quad \tau_3 = -u$$

- $triangleright ag{7} ag{7}$
- $|\tau_1 \tau_2| = |d_{23} d_{31}| \le d_{12}$ (inégalités triangulaires) et égalité seulement si les 3 sommets sont "alignés": par exemple $d_{23} d_{31} = d_{12}$ seulement si v_1 se trouve sur un chemin géodésique entre v_2 et v_3
- on suppose les 3 sommets non-alignés $\Leftrightarrow s, t, u > 0$
- on traitera le cas de sommets alignés plus tard (inclut le cas où deux sommets sont voisins immédiats)

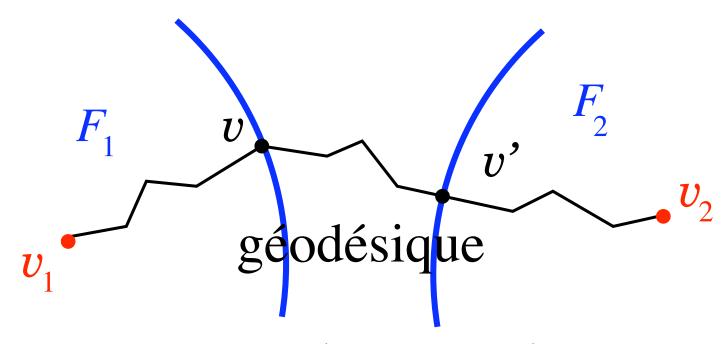
nouvelles contraintes sur les étiquettes:

sommet à la frontière entre deux faces



longueur =
$$\ell(v) - \tau_1 + \ell(v) - \tau_2 = 2\ell(v) + (s+t) \ge s + t = d_{12}$$

 $\Rightarrow \ell(v) \geq 0$ pour les sommets à la frontière entre deux faces sur la carte bien-étiquetée



$$s + t = d_{12} = \ell(v) - \tau_1 + \ell(v') - \tau_2 + d(v, v')$$

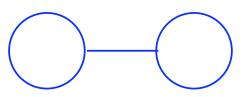
= $\ell(v) + \ell(v') + d(v, v') + s + t$

$$\Rightarrow \ell(v) + \ell(v') + d(v, v') = 0$$

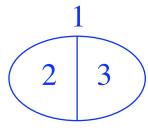
\Rightarrow v = v' et \ell(v) = 0

 F_1 et F_2 doivent avoir une frontière commune (+ permutations)

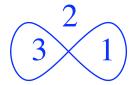
élimine les squelettes du type:

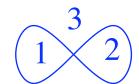


les seuls squelettes possibles sont



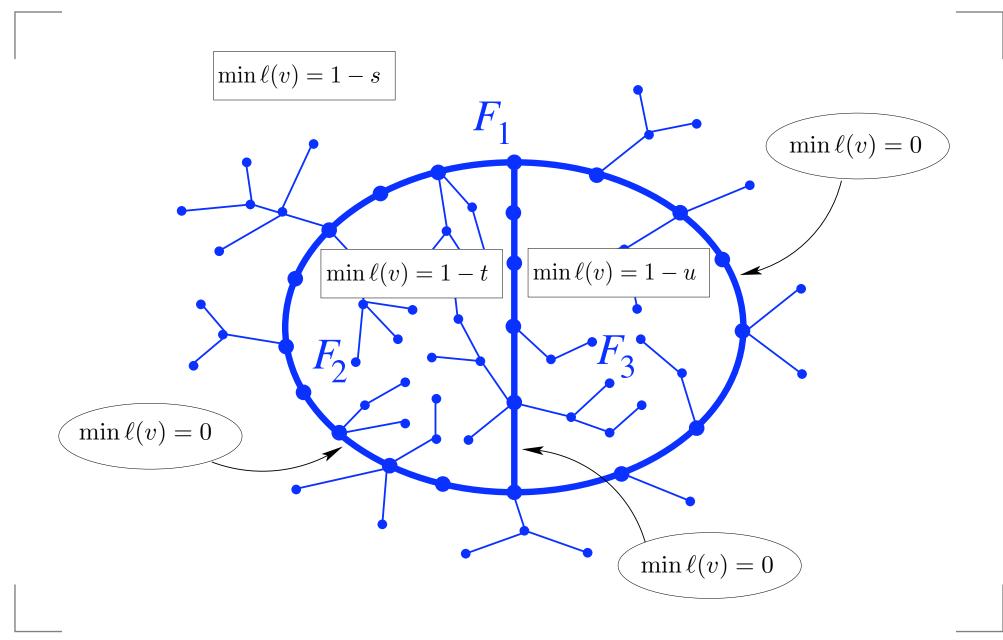
et





en pratique, ces derniers cas peuvent être vus comme des versions dégénerées du précédent quand une des frontières est réduite à un seul sommet.

règles sur les étiquettes



bijection 3:

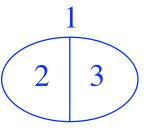
quadrangulations triplement-pointées

avec sommets marqués à distances prescrites

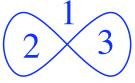
$$d_{12} = s + t$$
, $d_{23} = t + u$ et $d_{31} = u + s$ avec $s, t, u > 0$

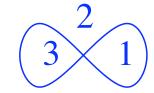
cartes bien-étiquetées à 3 faces

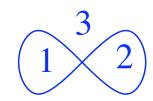
avec un squelette



ou ses versions dégénérées







bijection 3:

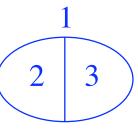
quadrangulations triplement-pointées

avec sommets marqués à distances prescrites

$$d_{12} = s + t$$
, $d_{23} = t + u$ et $d_{31} = u + s$

cartes bien-étiquetées à 3 faces

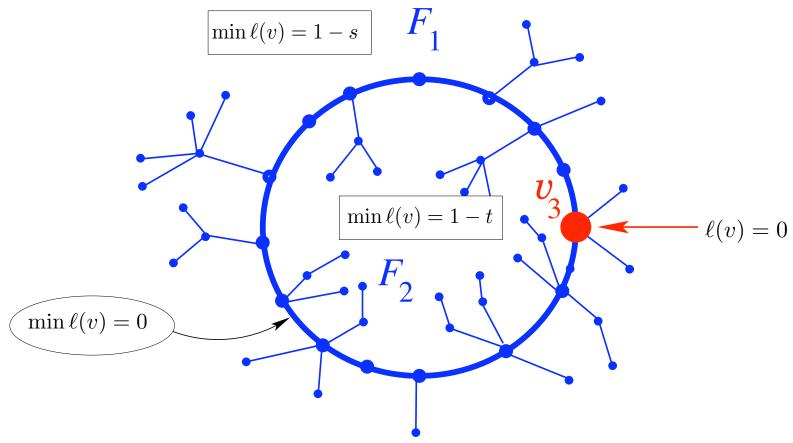
avec un squelette



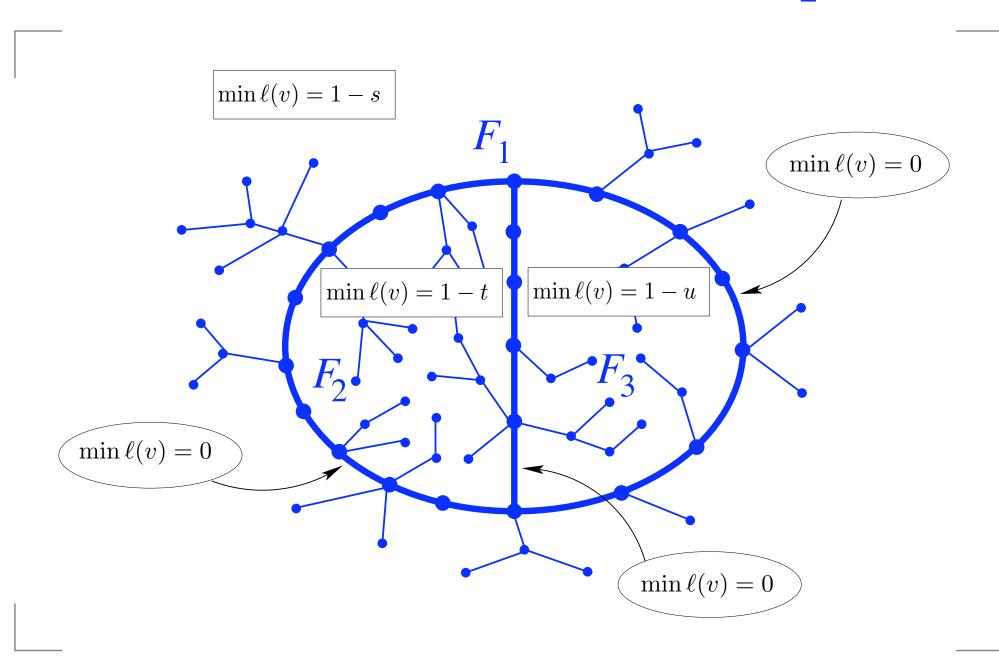
ou ses versions dégénérées 2 + 3 + 3 + 1 + 2 ou ses versions dégénérées 2 + 3 + 3 + 1 + 2

cas aligné

si v_3 se trouve entre v_1 et v_2 ($d_{31}=s$, $d_{23}=t$, $d_{12}=s+t$) appliquer la construction de Miermont pour v_1 et v_2 seulement, avec des retards $\tau_1=-s$ et $\tau_2=-t$



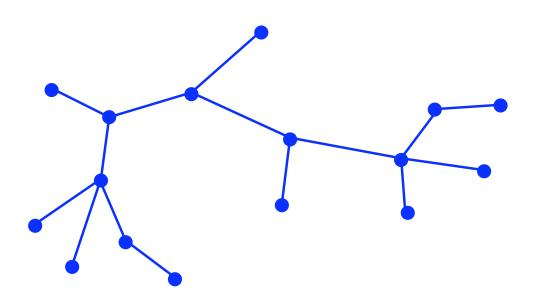
énumération de cartes bien-étiquetées



fonctions génératrices

poids g par face de la quadrangulation \Leftrightarrow poids g par arête de la carte bien-étiquetée

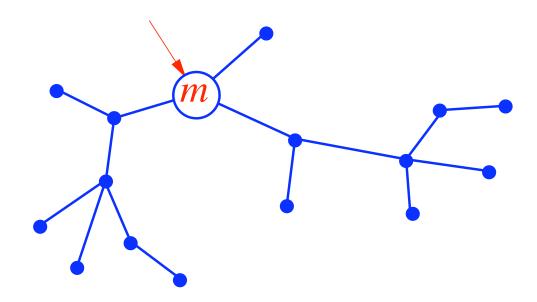
arbre bien-étiqueté



fonctions génératrices

poids g par face de la quadrangulation \Leftrightarrow poids g par arête de la carte bien-étiquetée

arbre bien-étiqueté



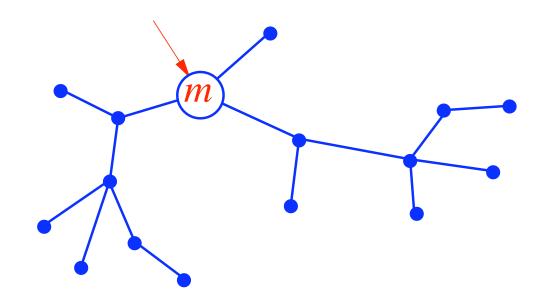
pour avoir une récurrence simple

 \diamond arbres plantés \equiv coin marqué d'étiquette m

fonctions génératrices

poids g par face de la quadrangulation \Leftrightarrow poids g par arête de la carte bien-étiquetée

arbre bien-étiqueté

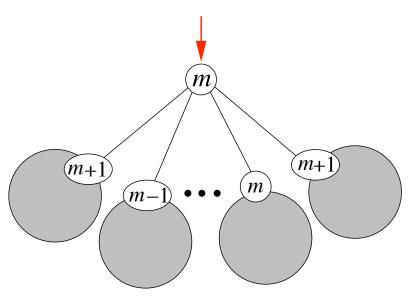


pour avoir une récurrence simple

- \diamond arbres plantés \equiv coin marqué d'étiquette m
- \diamond on impose seulement $\min_{v \in \text{ arbre}} \ell(v) \geq 1$

récurrence

$$R_m = \sum_{k \ge 0} (g (R_{m-1} + R_m + R_{m+1}))^k$$



$$= \frac{1}{1 - g(R_{m+1} + R_m + R_{m-1})}$$

pour $m \ge 1$ avec la condition initiale $R_0 = 0$

solution

$$R_m = R \frac{[m][m+3]}{[m+1][m+2]}$$

où R = 1/(1 - 3 g R) , c.à.d.

$$R = \frac{1 - \sqrt{1 - 12\,g}}{6g}$$

où

$$[m] \equiv \frac{1 - x^m}{1 - r}$$

et où $x + x^{-1} + 1 = 1/(g R^2)$, c.à.d.

$$x = \frac{1 - 24g - \sqrt{1 - 12g} + \sqrt{6}\sqrt{72g^2 + 6g\sqrt{1 - 12g} - 1}}{2(6g + \sqrt{1 - 12g} - 1)}$$

dans la suite, nous aurons à considérer la fonction génératrice des arbres bien-étiquetés avec un coin marqué d'étiquette m et avec la condition:

$$\min_{v \in \text{ arbre}} \ell(v) \ge 1 - s$$

cette fonction génératrice n'est autre que: R_{m+s} comme obtenu par un simple décalage de s des étiquettes.

dans la suite, nous aurons à considérer la fonction génératrice des arbres bien-étiquetés avec un coin marqué d'étiquette m et avec la condition:

$$\min_{v \in \text{ arbre}} \ell(v) \ge 1 - s$$

cette fonction génératrice n'est autre que: R_{m+s} comme obtenu par un simple décalage de s des étiquettes.

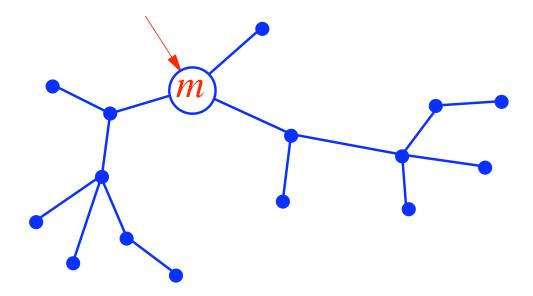
si nous voulons plutôt: $\min_{v \in \text{ arbre}} \ell(v) = 1 - s$

alors nous devons soustraire les configs. avec $\min \ge 2 - s = 1 - (s - 1)$, c.à.d. prendre

$$R_{m+s} - R_{m+(s-1)}$$

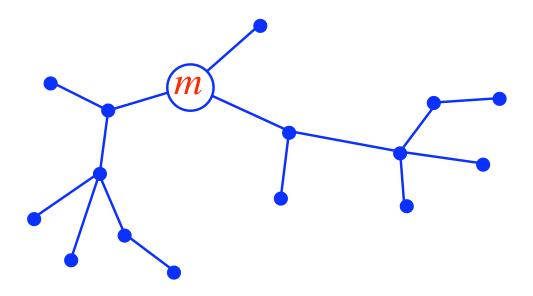
une origine marquée + un sommet marqué à distance m \Leftrightarrow arbre bien-étiqueté avec un sommet marqué d'étiquette m

une origine marquée + un sommet marqué à distance m \Leftrightarrow arbre bien-étiqueté avec un sommet marqué d'étiquette m



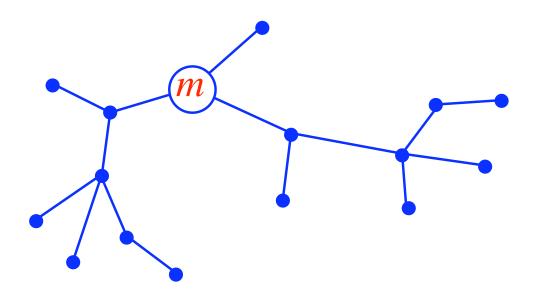
 \diamond coin marqué d'étiquette m: R_m

une origine marquée + un sommet marqué à distance m \Leftrightarrow arbre bien-étiqueté avec un sommet marqué d'étiquette m



 \diamond sommet marqué d'étiquette m: $L_m = \log R_m$

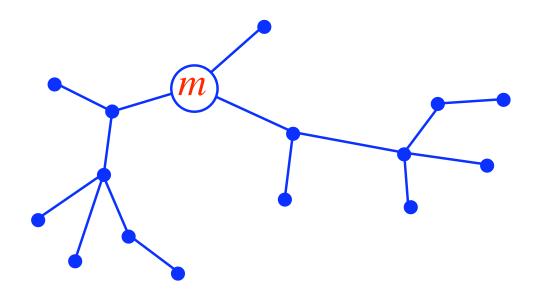
une origine marquée + un sommet marqué à distance m \Leftrightarrow arbre bien-étiqueté avec un sommet marqué d'étiquette m



- \diamond sommet marqué d'étiquette m: $L_m = \log R_m$
- \diamond on impose $\min_{v \in \text{ arbre}} \ell(v) \geq 1$

fonction à deux points

une origine marquée + un sommet marqué à distance m \Leftrightarrow arbre bien-étiqueté avec un sommet marqué d'étiquette m



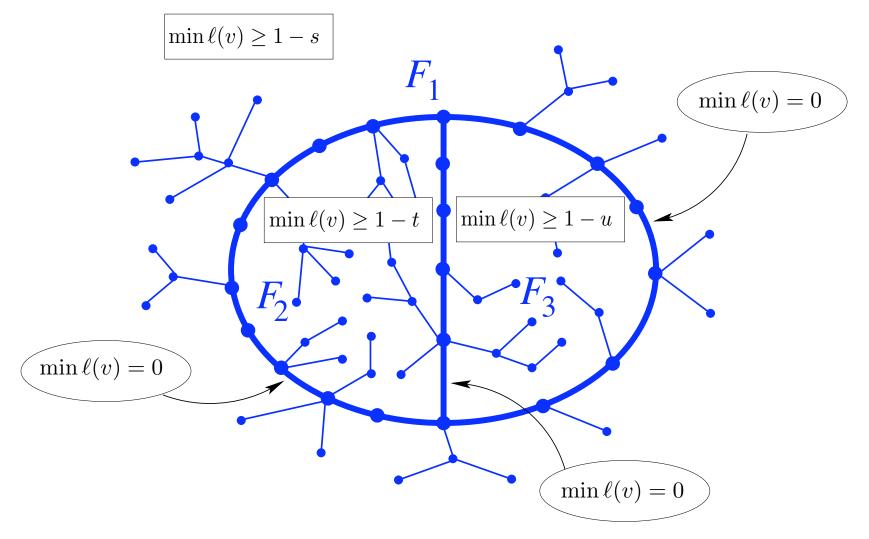
- \diamond sommet marqué d'étiquette m: $L_m L_{m-1} = \log(R_m/R_{m-1})$
- \diamond on impose $\min_{v \in \text{ arbre}} \ell(v) = 1$

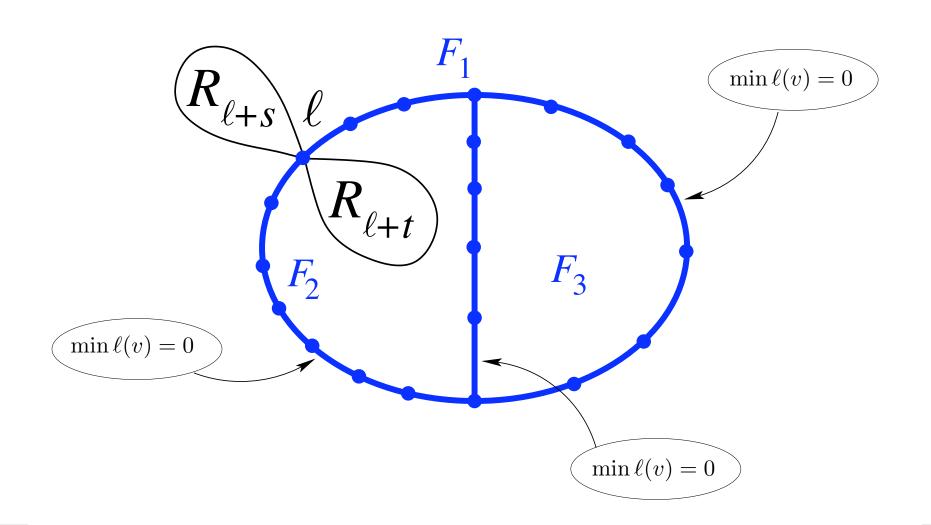
fonction à deux points

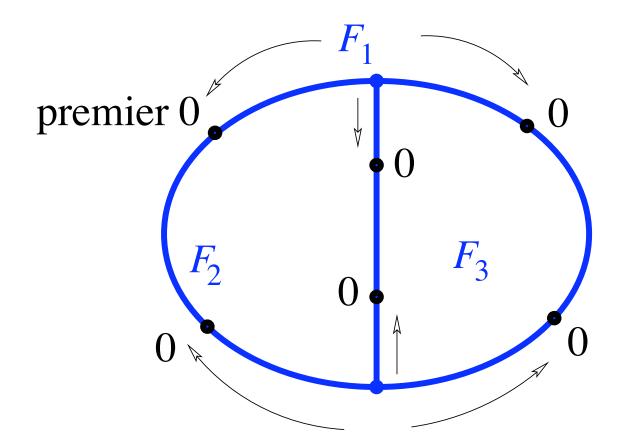
une origine marquée + un sommet marqué à distance m \Leftrightarrow arbre bien-étiqueté avec un sommet marqué d'étiquette m

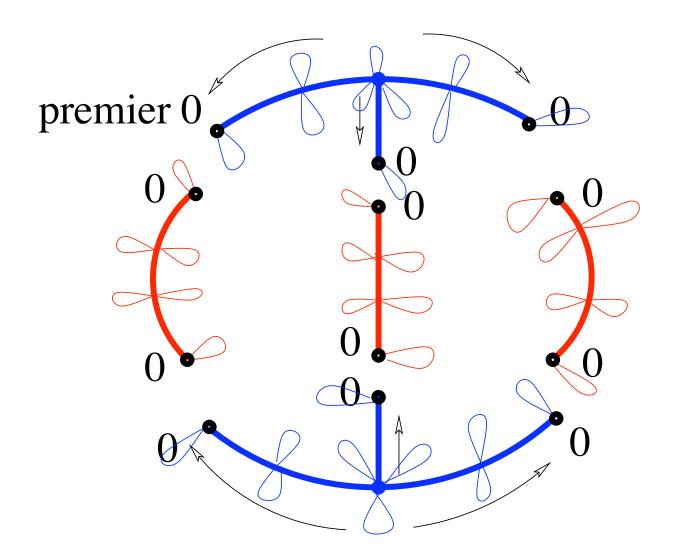
$$G(m;g) = \begin{cases} \log\left(\frac{([m])^2[m+3]}{[m-1]([m+2])^2}\right) & \text{pour } m \ge 2\\ \log\left(R\frac{[1][4]}{[2][3]}\right) & \text{pour } m = 1 \end{cases}$$

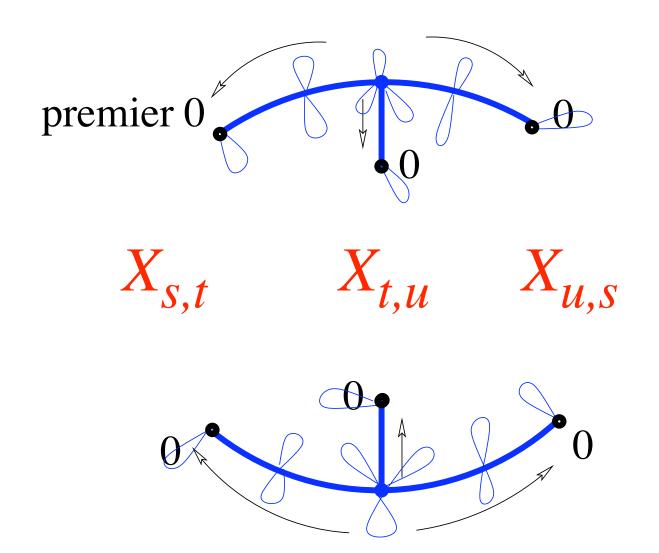
 \equiv fonction génératrice des quadrangulations doublement-pointées dont les deux sommets marqués (et distingués) sont à distance m l'un de l'autre











$$Y_{s,t,u}$$

$$X_{s,t}$$

$$X_{t,u}$$

$$X_{t,u}$$
 $X_{u,s}$

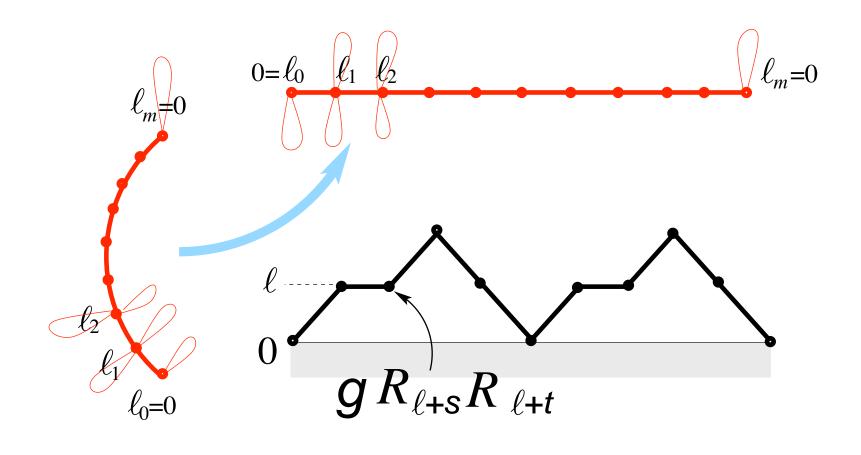
$$Y_{s,t,u}$$

$$F(s, t, u; g) = X_{s,t} X_{t,u} X_{u,s} (Y_{s,t,u})^2$$

$$Y_{s,t,u}$$

$$X_{s,t}$$
 $X_{t,u}$ $X_{u,s}$

$$Y_{s,t,u}$$



$$X_{s,t} = \sum_{m \geq 0} \sum_{\substack{\text{chemins de Motzkin de longueur } m \\ \mathcal{M} = (0 = \ell_0, \ell_1, \dots, \ell_m = 0)}}$$

$$\prod_{k=0}^{m-1} g \, R_{\ell_k+s} \, R_{\ell_k+t}$$

$$X_{s,t} = 1 + gR_sR_t X_{s,t} (1 + gR_{s+1}R_{t+1} X_{s+1,t+1})$$

$$X_{s,t} = 1 + gR_sR_t X_{s,t} (1 + gR_{s+1}R_{t+1} X_{s+1,t+1})$$

solution: -

$$X_{s,t} = \frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}$$

$$X_{s,t} = 1 + gR_sR_t X_{s,t} (1 + gR_{s+1}R_{t+1} X_{s+1,t+1})$$

solution: -

$$X_{s,t} = \frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}$$

de même, récurrence pour $Y_{s,t,u}$:

$$Y_{s,t,u} = 1 + g^3 R_s R_t R_u R_{s+1} R_{t+1} R_{u+1} \times X_{s+1,t+1} X_{t+1,u+1} X_{u+1,s+1} Y_{s+1,t+1,u+1}$$

$$X_{s,t} = 1 + gR_sR_t X_{s,t} (1 + gR_{s+1}R_{t+1} X_{s+1,t+1})$$

solution: -

$$X_{s,t} = \frac{[3][s+1][t+1][s+t+3]}{[1][s+3][t+3][s+t+1]}$$

de même, récurrence pour $Y_{s,t,u}$:

$$Y_{s,t,u} = 1 + g^3 R_s R_t R_u R_{s+1} R_{t+1} R_{u+1} \times X_{s+1,t+1} X_{t+1,u+1} X_{u+1,s+1} Y_{s+1,t+1,u+1}$$

solution:

$$Y_{s,t,u} = \frac{[s+3][t+3][u+3][s+t+u+3]}{[3][s+t+3][t+u+3][u+s+3]}$$

fonction à trois points

$$F(s,t,u;g) = X_{s,t}X_{t,u}X_{u,s}(Y_{s,t,u})^{2}$$

$$= \frac{[3]([s+1][t+1][u+1][s+t+u+3])^{2}}{[1]^{3}[s+t+1][s+t+3][t+u+1][t+u+3][u+s+1][u+s+3]}$$

et la fonction à trois points grand-canonique des quadrangulations s'écrit

$$G(d_{12}, d_{23}, d_{31}; g) = \Delta_s \Delta_t \Delta_u F(s, t, u; g)$$

avec
$$\Delta_s f(s) \equiv f(s) - f(s-1)$$
, et $s = (d_{12} - d_{23} + d_{31})/2$ $t = (d_{12} + d_{23} - d_{31})/2$ $u = (-d_{12} + d_{23} + d_{31})/2$

limite d'échelle

grandes quadrangulations: une limite d'échelle intéressante est obtenue en faisant tendre g vers sa valeur critique 1/12 et en considérant des distances grandes:

$$g = \frac{1}{12} \left(1 - \Lambda \epsilon \right)$$

$$m = D\epsilon^{-1/4}$$

et $\epsilon \to 0$.

$$x = e^{-\sqrt{6}\Lambda^{1/4}\epsilon^{1/4}}$$

et dans toute combinaison bien équilibrée de [·]'s,

$$[m] = \frac{1 - x^m}{1 - x} \to \sinh(\alpha D) , \qquad \alpha = \sqrt{\frac{3}{2}} \Lambda^{1/4}$$

fonction à deux points

$$G(m;g) \sim \epsilon^{3/4} \mathcal{G}(D,\alpha)$$

avec

$$\mathcal{G}(D; \alpha) = 4\alpha^3 \frac{\cosh(\alpha D)}{\sinh^3(\alpha D)}$$

Ambjørn Watabiki (1995)

fonction à trois points

$$d_{12} = D_{12}\epsilon^{-1/4}$$
 $d_{23} = D_{23}\epsilon^{-1/4}$ $d_{31} = D_{31}\epsilon^{-1/4}$ $s = S\epsilon^{-1/4}$ $t = T\epsilon^{-1/4}$ $u = U\epsilon^{-1/4}$

$$F(s, t, u; g) \sim \epsilon^{-1/2} \mathcal{F}(S, T, U; \alpha)$$

avec $\mathcal{F}(S, T, U; \alpha) =$

$$\frac{3}{\alpha^2} \left(\frac{\sinh(\alpha(S+T+U))\sinh(\alpha S)\sinh(\alpha T)\sinh(\alpha U)}{\sinh(\alpha(S+T))\sinh(\alpha(T+U))\sinh(\alpha(U+S))} \right)^2$$

$$G(d_{12}, d_{23}, d_{31}; g) \sim \epsilon^{1/4} \mathcal{G}(D_{12}, D_{23}, D_{31}; \alpha)$$

avec

$$\mathcal{G}(D_{12}, D_{23}, D_{31}; \alpha) = \partial_S \partial_T \partial_U \mathcal{F}(S, T, U; \alpha)$$

$$S = (D_{12} - D_{23} + D_{31})/2$$

$$T = (D_{12} + D_{23} - D_{31})/2$$

$$U = (-D_{12} + D_{23} + D_{31})/2$$

fonction à deux points canonique

ensemble canonique des quadrangulations doublement pointées de taille n fixée (= nombre de faces)

$$G(m;g)|_{g^n} = \oint \frac{dg}{2i\pi g^{n+1}} G(m;g)$$

limite d'échelle: pour n grand et $m = Dn^{1/4}$, calcul par méthode du col:

$$g = \frac{1}{12} \left(1 + \frac{\xi^2}{n} \right)$$

$$o \epsilon = 1/n$$
 et $\Lambda = -\xi^2$ $\left(ext{ c.à.d. } lpha = \sqrt{-rac{3}{2} \mathrm{i} \xi} \;
ight)$

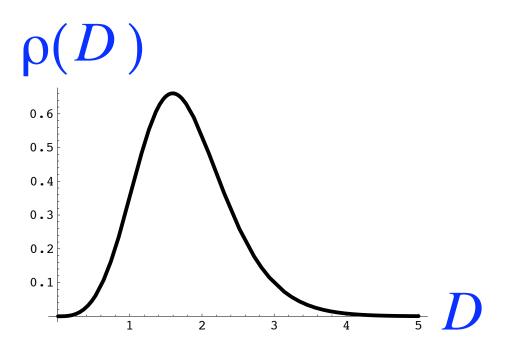
après normalisation, nous obtenons la densité de probabilité

$$\rho(D) = \frac{2}{i\sqrt{\pi}} \int_{-\infty}^{\infty} d\xi \, \xi \, e^{-\xi^2} \mathcal{G}(D; \sqrt{-3i\xi/2})$$

ho(D)dD est la probabilité que les deux sommets marqués soient à une une distance (renormalisée) dans l'intervalle [D,D+dD] dans l'ensemble des quadrangulations doublement pointées de grande taille n fixée

après normalisation, nous obtenons la densité de probabilité

$$\rho(D) = \frac{2}{i\sqrt{\pi}} \int_{-\infty}^{\infty} d\xi \, \xi \, e^{-\xi^2} \mathcal{G}(D; \sqrt{-3i\xi/2})$$



$$O(D)$$
0.6
0.5
0.4
0.3
0.2
0.1
1 2 3 4 5

$$\rho(D) \stackrel{D \to 0}{\sim} \frac{3}{7} D^3, \quad \rho(D) \stackrel{D \to \infty}{\sim} \exp\left(-\frac{3}{4} 3^{2/3} D^{4/3}\right)$$

en accord avec la loi de Fisher $\delta=\frac{4}{3}=\frac{1}{1-\nu}$ avec $\nu=\frac{1}{4}=\frac{1}{d_F}$

fonction à trois points canonique

ensemble des quadrangulations triplement pointées de taille n fixée

$$G(d_{12}, d_{23}, d_{31}; g)|_{g^n} = \oint \frac{dg}{2i\pi g^{n+1}} G(d_{12}, d_{23}, d_{31}; g)$$

limite d'échelle: pour n grand et

$$d_{12} = D_{12}n^{1/4} d_{23} = D_{23}n^{1/4} d_{31} = D_{31}n^{1/4}$$
$$s = Sn^{1/4} t = Tn^{1/4} u = Un^{1/4}$$

nous obtenons la densité de probabilité

$$\rho(D_{12}, D_{23}, D_{31}) = \frac{1}{i\sqrt{\pi}} \int_{-\infty}^{\infty} d\xi \, \xi \, e^{-\xi^2} \mathcal{G}(D_{12}, D_{23}, D_{31}; \sqrt{-3i\xi/2})$$

 $ho(D_{12},D_{23},D_{31})dD_{12}dD_{23}dD_{31}$ est la probabilité que les trois sommets marqués soient à distances mutuelles dans les intervalles $[D_{12},D_{12}+dD_{12}], [D_{23},D_{23}+dD_{23}]$ et $[D_{31},D_{31}+dD_{31}]$ dans l'ensemble des quadrangulations triplement pointées de grande taille fixée n

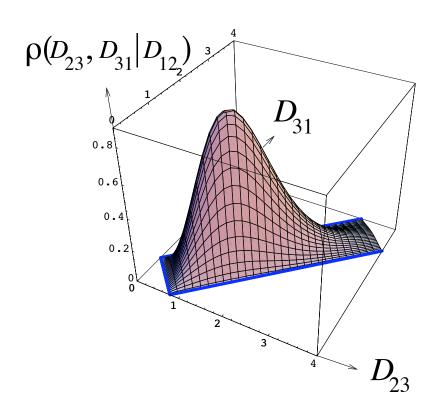
densité de probabilité conditionnelle

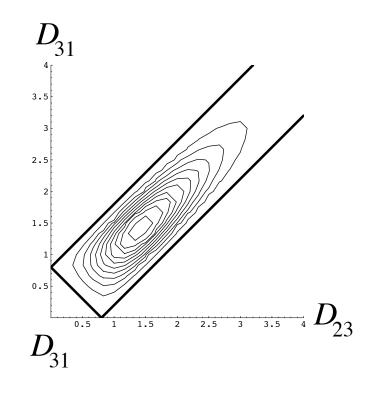
on fixe une des distances, par exemple D_{12} , et on considère la densité de probabilité conditionnelle

$$\rho(D_{23}, D_{31}|D_{12}) \equiv \frac{\rho(D_{12}, D_{23}, D_{31})}{\rho(D_{12})}$$

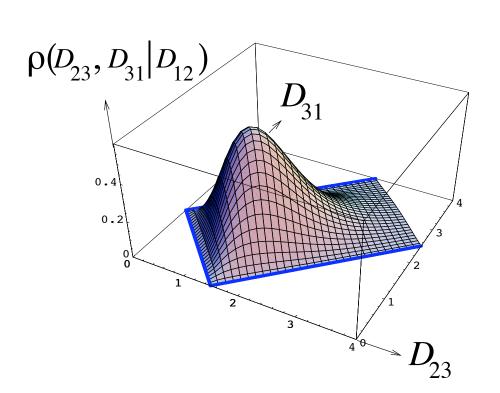
 $ho(D_{23},D_{31}|D_{12})dD_{23}dD_{31}$ est la probabilité que le troisième sommet soit à des distances respectives des deux premiers dans les intervalles $[D_{23},D_{23}+dD_{23}]$ et $[D_{31},D_{31}+dD_{31}]$ dans l'ensemble des quadrangulations triplement pointées de grande taille fixé n, sachant que la distance entre les deux premiers sommets marqués est D_{12}

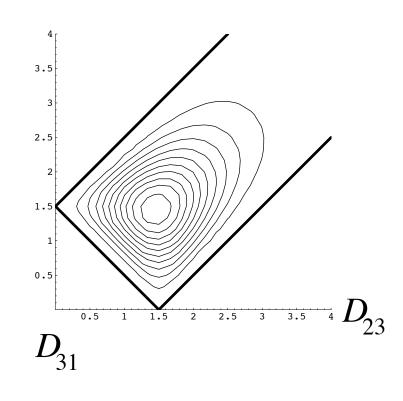
$D_{12} = 0.8$



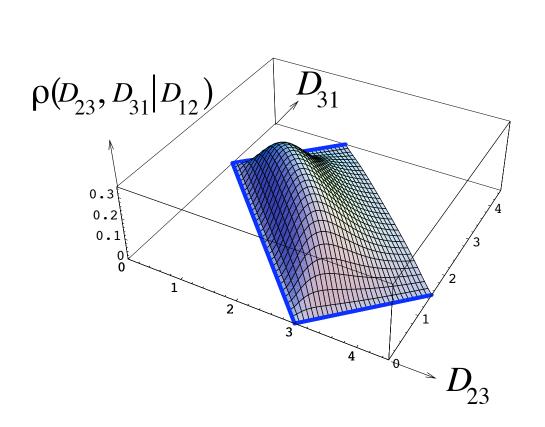


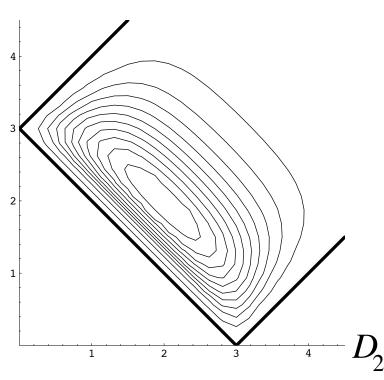
$D_{12} = 1.5$



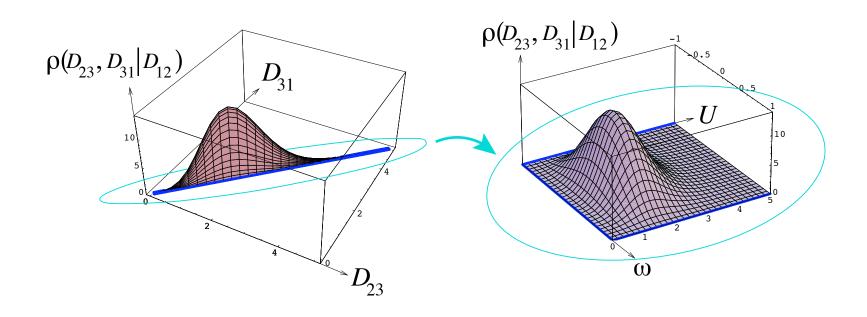


$D_{12} = 3.0$





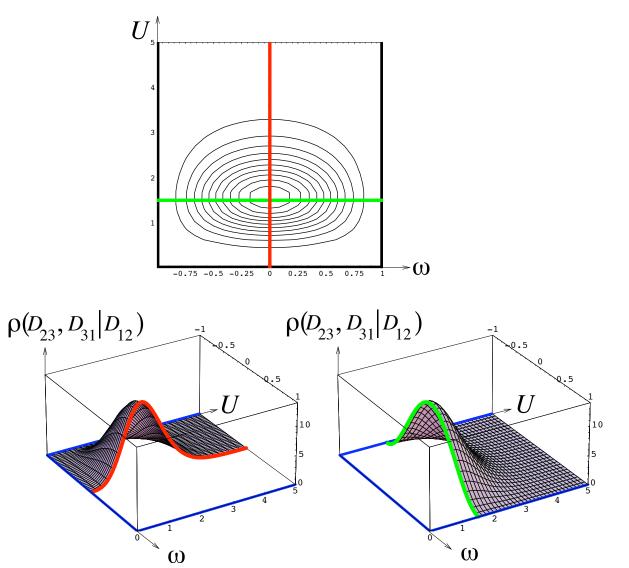
limite D_{12} petit

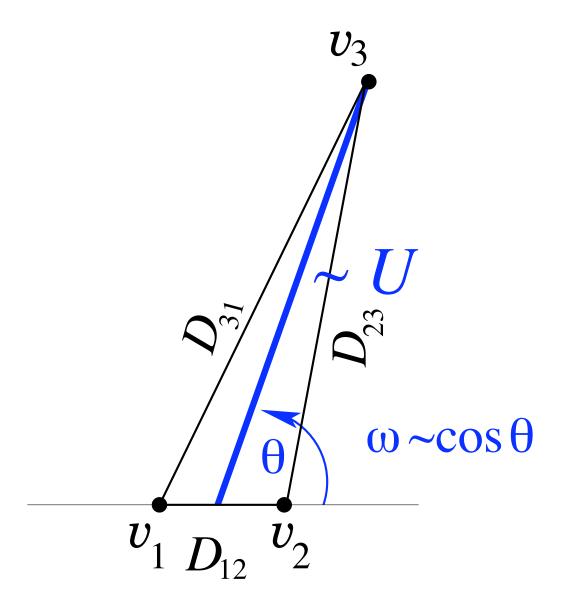


$$\rho(D_{23}, D_{31}|D_{12}) \sim \frac{1}{D_{12}} \times \rho(U) \times \psi(\omega)$$

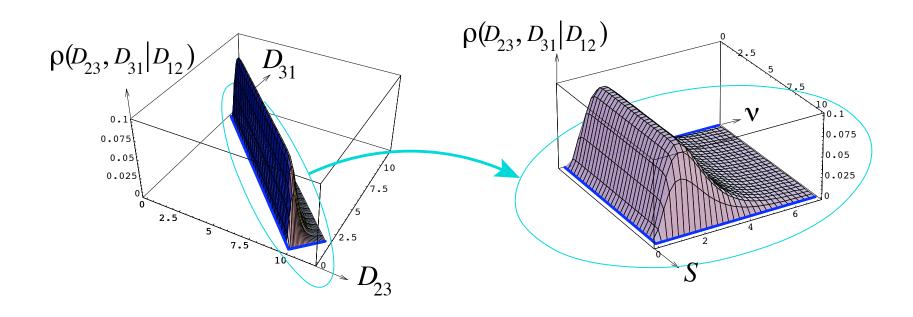
où
$$U=(D_{23}+D_{31}-D_{12})/2$$
, $\omega=(D_{31}-D_{23})/D_{12}$, et

$$\psi(\omega) \equiv \frac{21}{64} (1 - \omega^2)^2 (3 - \omega^2)$$





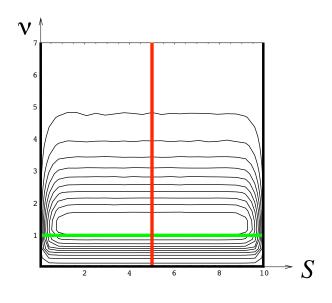
limit D_{12} grand

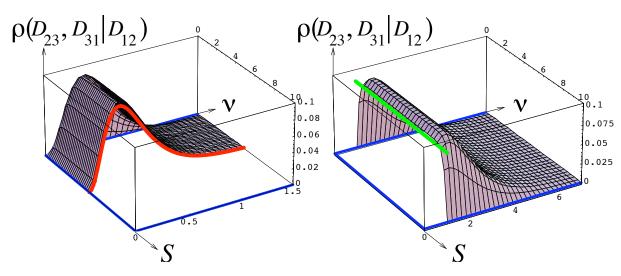


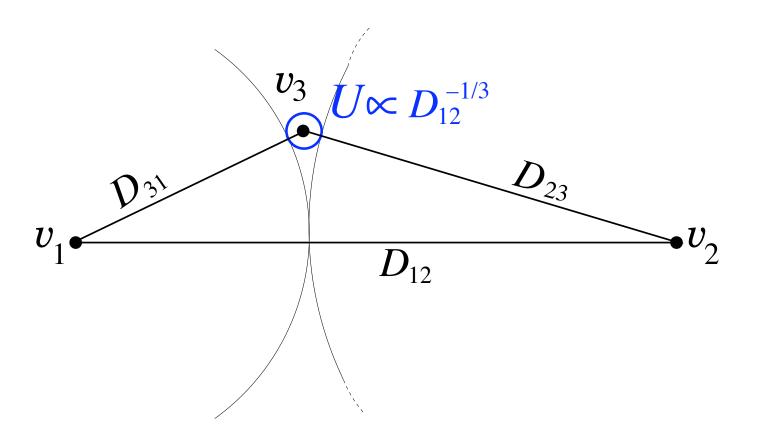
$$\rho(D_{23}, D_{31}|D_{12}) \sim \frac{1}{2D_{12}} \times (9D_{12})^{1/3} \varphi(\nu)$$

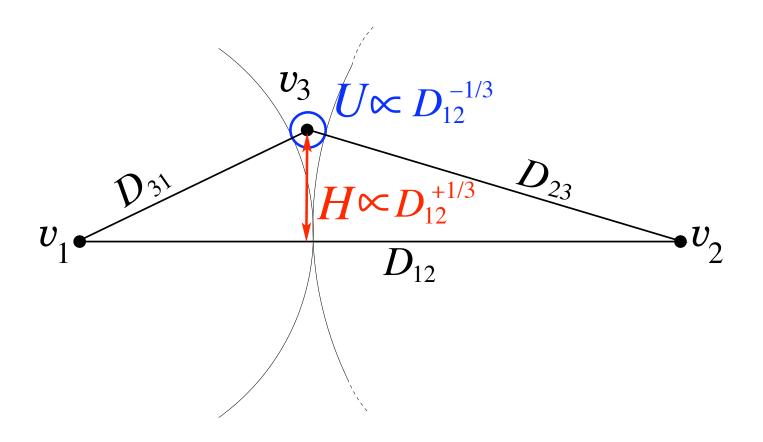
où
$$\nu = (9D_{12})^{1/3}(D_{23} + D_{31} - D_{12})/2$$
, et

$$\varphi(\nu) \equiv \frac{4}{3} \sinh(\nu/2)^2 \left(11e^{-2\nu} - 8e^{-3\nu}\right)$$









conclusion

ullet formule explicite pour la fonction à trois points des quadrangulations $G(d_{12},d_{23},d_{31};g)$

- ullet formule explicite pour la fonction à trois points des quadrangulations $G(d_{12},d_{23},d_{31};g)$
- bijection de Miermont + choix particulier des retards

- formule explicite pour la fonction à trois points des quadrangulations $G(d_{12},d_{23},d_{31};g)$
- bijection de Miermont + choix particulier des retards
- formules explicites pour deux "briques" combinatoires:
- un "propagateur" $X_{s,t}$ (= chaîne d'arbres)
- un "vertex" $Y_{s,t,u}$ (= 3-étoile)

- formule explicite pour la fonction à trois points des quadrangulations $G(d_{12},d_{23},d_{31};g)$
- bijection de Miermont + choix particulier des retards
- formules explicites pour deux "briques" combinatoires:
- un "propagateur" $X_{s,t}$ (= chaîne d'arbres)
- un "vertex" $Y_{s,t,u}$ (= 3-étoile)

autres applications: - géométrie des géodésiques

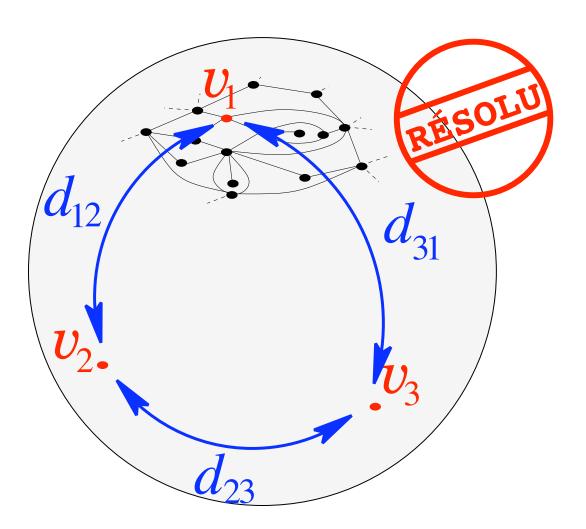
- boucles géodésiques

- formule explicite pour la fonction à trois points des quadrangulations $G(d_{12},d_{23},d_{31};g)$
- bijection de Miermont + choix particulier des retards
- formules explicites pour deux "briques" combinatoires:
- un "propagateur" $X_{s,t}$ (= chaîne d'arbres)
- un "vertex" $Y_{s,t,u}$ (= 3-étoile)

autres applications: - géométrie des géodésiques

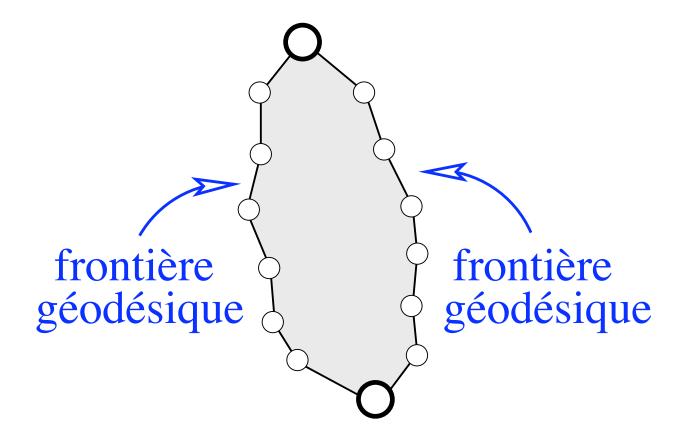
- boucles géodésiques
- limite d'échelle à la fois dans l'ensemble grand canonique et l'ensemble canonique

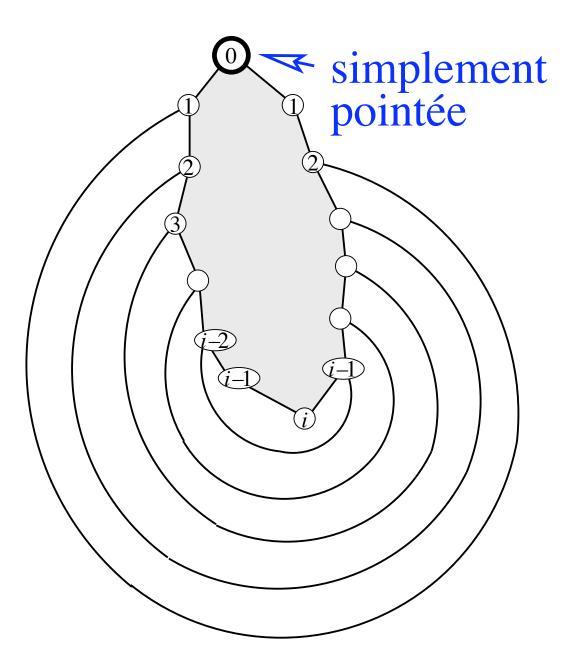
- formule explicite pour la fonction à trois points des quadrangulations $G(d_{12}, d_{23}, d_{31}; g)$
- bijection de Miermont + choix particulier des retards
- formules explicites pour deux "briques" combinatoires:
- un "propagateur" $X_{s,t}$ (= chaîne d'arbres)
- un "vertex" $Y_{s,t,u}$ (= 3-étoile)
- autres applications: géométrie des géodésiques
 - boucles géodésiques
- limite d'échelle à la fois dans l'ensemble grand canonique et l'ensemble canonique
- formules très explicites dans diverses limites

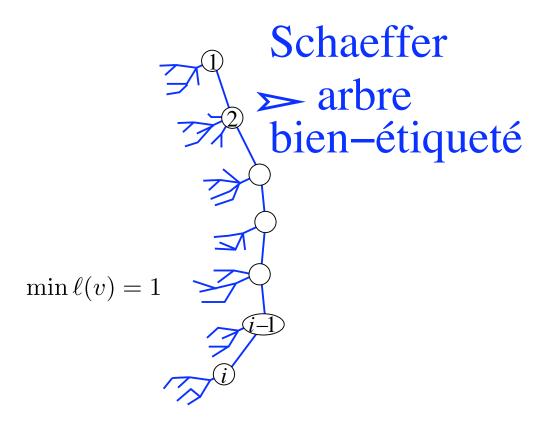


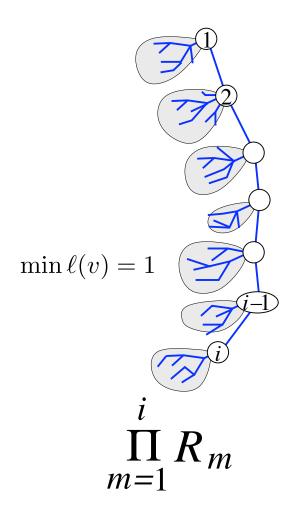
dérivation bijective de la formule pour $X_{s,t}$

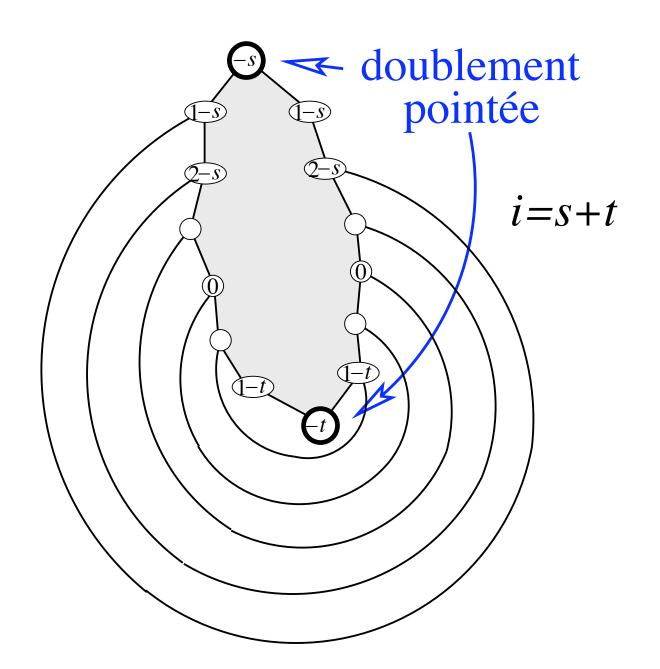
$$X_{s,t} = \frac{\prod_{m=1}^{s+t} R_m}{\prod_{m=1}^{s} R_m \prod_{m=1}^{t} R_m}$$











Miermont

