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Introduction

Reminder : geodesic = shortest path between two points
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Quadrangulations with geodesic boundary
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Quadrangulations with geodesic boundary

simply pointed
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Quadrangulations with geodesic boundary

min !(v) = 1
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Quadrangulations with geodesic boundary
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Quadrangulations with geodesic boundary

The generating function for quadrangulations with geodesic
boundary is therefore:

Zi (g) =
i∏

j=1

Rj = R i (1− x)(1− x i+3)

(1− x3)(1− x i+1)

Reminder: g weight per square,

R(g) =
1−

√
1− 12g

6g
x(g) +

1

x(g)
+ 1 =

1

gR(g)2



Quadrangulations with a marked geodesic

Almost the same as quadrangulations with geodesic boundary...
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Quadrangulations with a marked geodesic

Almost the same as quadrangulations with geodesic boundary...
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Quadrangulations with a marked geodesic

Arbitrary geodesic boundaries may have “pinch points”.
Marked geodesics correspond to irreducible boundaries.

0

1 1

2 2

i

i−1 i−1

2i−

3

0

1

2

3

i

i−1

i

i−1 i−1

2i−

3

2

0

1 1



Quadrangulations with a marked geodesic

An arbitrary geodesic boundary may be decomposed into
irreducible components.

Z =i U =i

Zi−j

Uj

j=1

= Z −i Σ
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Quadrangulations with a marked geodesic

Ui (g) = Zi (g)−
i−1∑

j=1

Uj(g)Zi−j(g) i.e. Û(g ; t) =
Ẑ (g ; t)

1 + Ẑ (g ; t)

From the exact formula for Zi we can perform asymptotic analysis:

Ui (g)|gn ∼
12n

2
√

πn5/2
δi as n →∞

where:

δ̂(t) =
3t(2t(3+177t−412t2+708t3−624t4+224t5)+3(1−2t)6 log(1−2t))

70(1−2t)4(t−(1−2t) log(1−2t))2



Quadrangulations with a marked geodesic

Ui (g) = Zi (g)−
i−1∑

j=1

Uj(g)Zi−j(g) i.e. Û(g ; t) =
Ẑ (g ; t)

1 + Ẑ (g ; t)

From the exact formula for Zi we can perform asymptotic analysis:

Ui (g)|gn ∼
12n

2
√

πn5/2
δi as n →∞

where:

δi ∼
9

7
2i i3 as i →∞



Quadrangulations with a marked geodesic

In the local limit:

Ui (g)|gn ∼
12n

2
√

πn5/2
× 3

7
· i3 × 3 · 2i

! 12n

2
√

πn5/2 : asymptotic number of pointed quadrangulations

! 3
7 · i3: average number of vertices at distance i ' 1 from the
origin

! 3 · 2i : mean number of geodesics between two given points at
distance i ' 1

A similar result holds in the scaling limit i = r · n1/4:

Ui (g)|gn ∼
12n

2
√

πn7/4
× ρ(r)× 3 · 2i

ρ(r): canonical two-point function
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Geodesic watermelons
Our method does not easily give access to higher moments for the
number of geodesics. We shall consider quadrangulations with
several marked geodesics, which might have complicated crossings.

However one can consider “geodesic watermelons”: sets of k
non-crossing geodesics with common endpoints. These correspond
to k quadrangulations with geodesic boundary placed side-by-side.

! Weakly avoiding case: the whole must be irreducible

U(k)
i = (Zi )

k −
i−1∑

j=1

U(k)
j (Zi−j)

k

! Strongly avoiding case: each part must be irreducible

Ũ(k)
i = (Ui )

k
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Ũ(k)
i = (Ui )

k



Geodesic watermelons
Our method does not easily give access to higher moments for the
number of geodesics. We shall consider quadrangulations with
several marked geodesics, which might have complicated crossings.

However one can consider “geodesic watermelons”: sets of k
non-crossing geodesics with common endpoints. These correspond
to k quadrangulations with geodesic boundary placed side-by-side.

! Weakly avoiding case: the whole must be irreducible

U(k)
i = (Zi )

k −
i−1∑

j=1

U(k)
j (Zi−j)

k

! Strongly avoiding case: each part must be irreducible
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Geodesic watermelons

In the weakly avoiding case, in the local limit:

U(k)
i (g)

∣∣∣
gn
∼ 12n

2
√

πn5/2
× 3

7
· i3 × k ·

(
3 · 2i

)k

k ·
(
3 · 2i

)k
: mean number of k-watermelons

The k factor corresponds to symmetry breaking: among the k
delimited regions, only one has macroscopic (∝ n) size.
Further computations (k = 2):

! two weakly avoiding geodesics of length i ' 1 have in average
i/3 common vertices

! they delimit two regions with respective areas n vs O(i3)

Similar results hold in the scaling limit:

U(k)
i (g)

∣∣∣
gn
∼ 12n

2
√

πn7/4
× ρ(r)× k ·

(
3 · 2i

)k
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Geodesic watermelons

In the strongly avoiding case, in the local limit:

Ũ(k)
i (g)

∣∣∣
gn
∼ 12n

2
√

πn5/2
× 3 · 4k−1

7
i6−3k × k · (3 · 2i )k

The constraint of strong avoidance is relevant. In the scaling limit:

Ũ(k)
i (g)

∣∣∣
gn
∼ 12n

2
√

πn3k/4+1
× σ(k)(r)× k ·

(
3 · 2i

)k

σ(k)(r): new scaling functions
Interpretation: only a few exceptional pairs of points can be
connected by k ≥ 2 macroscopically disjoint geodesics. The
number of such pairs is of order: n(11−3k)/4.



Geodesic watermelons

In the strongly avoiding case, in the local limit:
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Geodesic points

Consider a quadrangulation with two marked points (1,2) at
distance i . Consider a third point (3) lying on a geodesic between
them, say at distance s from 1 (hence t = i − s from 2).

Apply the Miermont bijection with sources 1,2 and delays τ1 = −s,
τ2 = −t, and obtain a well-labeled map with two faces:

2

3v

1F

F

min !(v) = 1− s

!(v) = 0min !(v) = 1− t

min !(v) = 0
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Geodesic points

The generating function for such objects is

∆s∆tXs,t = Xs,t − Xs−1,t − Xs,t−1 + Xs−1,t−1

where

Xs,t =
[3][s + 1][t + 1][s + t + 3]

[1][s + 3][t + 3][s + t + 1]
with [m] ≡ 1− xm

1− x

Upon evaluating Xs,t |gn for n →∞ and normalizing by the
number of quadrangulations with two marked points at distance
i = s + t, we obtain the mean number of geodesic points:
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(3+s)(3+t)(1+s+t) st(29+20(s+t)+5(s2+t2+st))(4+s+t)

Ni=
3
35 (i+1)(5i2+10i+2)
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The generating function for such objects is
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(3 + s)(2 + s)
for t →∞



Geodesic points

The generating function for such objects is

∆s∆tXs,t = Xs,t − Xs−1,t − Xs,t−1 + Xs−1,t−1

where

Xs,t =
[3][s + 1][t + 1][s + t + 3]

[1][s + 3][t + 3][s + t + 1]
with [m] ≡ 1− xm

1− x

Upon evaluating Xs,t |gn for n →∞ and normalizing by the
number of quadrangulations with two marked points at distance
i = s + t, we obtain the mean number of geodesic points:

〈c(s)〉s+t → 3 for s, t →∞
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Geodesic points

We actually have access to the full probability law for the number
of geodesic points at fixed distances. The g.f. for doubly-pointed
quadrangulations with exactly c geodesic points at distances s, t is:

∆s∆tX
(c)
s,t with X (c)

s,t =
1

c

(
Xs,t − 1

Xs,t

)c

For s, t →∞ we find the probability:

p∞(c) =
1

2

(
2

3

)c

In the scaling limit, we expect all geodesic points to be at distance
o(n1/4). By this argument, Miermont was able to prove that the
unicity of the geodesic between two generic points in the scaling
limit of quadrangulations.
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Geodesic loops
Consider a triply pointed quadrangulation (1,2,3) and study the
length of the shortest cycle going through 3 separating 1 from 2.

u ≤ min(d13, d23)

32d

1

v2
3v

v

d
132u
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Geodesic loops

Apply the Miermont bijection with sources 1,2,3 and delays
τ1 = −s = u − d13, τ2 = −t = u − d23, τ3 = −u.

1v 2v

3v

min !(v) = 0

min !(v) = 0

min !(v) = 1− s min !(v) = 1− t

min !(v) = 1− u

min !(v) = 0
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Geodesic loops

Apply the Miermont bijection with sources 1,2,3 and delays
τ1 = −s = u − d13, τ2 = −t = u − d23, τ3 = −u.

Xs,u s,u,uY Yt,u,u t,uX

Xu,u



Geodesic loops
We arrive at a generating function:

Ḡ (d13, d23, u) = ∆s∆t∆u F̄ (s, t, u)
∣∣
s=d13−u
t=d23−u

where

F̄ (s, t, u) = Xs,uXt,uXu,uYs,u,uYt,u,u

= [3][s+1][t+1][u+1]4[s+2u+3][t+2u+3]
[1]3[s+u+1][s+u+3][t+u+1][t+u+3][2u+1][2u+3]

We may sum over d13, d23 and find:

Ḡ (u) = ∆u

(
[3][u + 1]4

[1]3[2u + 1][2u + 3]

)

We readily perform the scaling limit and find the law for
U = u · n−1/4:

¯ρ(U) = − 4

i
√

π

∫ ∞

−∞
dξ e−ξ2

∂U

(
sinh4(U

√
−3iξ/2)

sinh2(2U
√
−3iξ/2)

)
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F̄ (s, t, u) = Xs,uXt,uXu,uYs,u,uYt,u,u

= [3][s+1][t+1][u+1]4[s+2u+3][t+2u+3]
[1]3[s+u+1][s+u+3][t+u+1][t+u+3][2u+1][2u+3]

We may sum over d13, d23 and find:

Ḡ (u) = ∆u

(
[3][u + 1]4

[1]3[2u + 1][2u + 3]

)

We readily perform the scaling limit and find the law for
U = u · n−1/4:

¯ρ(U) = − 4

i
√

π

∫ ∞

−∞
dξ e−ξ2

∂U

(
sinh4(U

√
−3iξ/2)

sinh2(2U
√
−3iξ/2)

)



Geodesic loops
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Geodesic loops
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Geodesic loops

Asymptotic regimes:

! U . 1: one distance is ∝ U, the other finite.

ρ̄(D13,D23,U) ∼ 1

2

(
ρ(D13)

1

U
ψ

(
D23

U

)
+ ρ(D23)

1

U
ψ

(
D13

U

))

with

ψ(z) =
3

2
· 2z − 1

z4
z ∈ [1,∞)

Consistent with the absence of microscopic cycles separating
two macroscopic components.

! U ' 1: both distances are U + O(U−1/3)

ρ̄(D13,D23,U) ∼ (9U)2/3Φ
(
(D13 − U)(9U)1/3, (D23 − U)(9U)1/3

)

with
Φ(z , z ′) = e−(z+z ′)

(
2− e−z − e−z

)
.
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Confluence of geodesics

Le Gall has shown the surprising phenomenon of confluence of
geodesics.
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v2
3v

v

δ



Confluence of geodesics

Consider the tree obtained by Schaeffer’s bijection with v3 as
origin:

In the discrete setting these correspond to particular geodesics,
nevertheless in the scaling limit this makes no difference. We have
δ ∝ n1/4.
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Confluence of geodesics

We were able to compute the continuous law for δ (δ → δ · n−1/4):

˜̃ρ(δ) =
3

i
√

π

∫ ∞

−∞
dξ e−ξ2√−3iξ/2e−2δ

√
−3iξ/2

∼
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ρ(    )δ



Confluence of geodesics

The shape of a triangle will actually look like:

δ
1

1

v2
3v

v

δ
2

δ
3

Our computation of the three-point function can be refined into an
expression involving six parameters: d12, d23, d23, δ1, δ2, δ3.
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Confluence of geodesics

min=1−

min=1−s’’

s’

max(s ′, s ′′) = s =
d12 + d31 − d23

2
|s ′ − s ′′| = δ1



Confluence of geodesics

Similarly we introduce the parameters t ′, t ′′, u′, u′′.
We arrive at a generating function:

∆s′∆s′′∆t′∆t′′∆u′∆u′′
(
Ys′,t′,u′Ys′′,t′′,u′′Xs′,t′′Xt′,u′′Xu′,s′′

)

Conventions for X become irrelevant in the scaling limit:

∂S′∂S′′∂T ′∂T ′′∂U′∂U′′
3

α2
Y(S ′,T ′,U ′;α)Y(S ′′,T ′′,U ′′;α)

Y(S ,T ,U;α) =
sinh(αS) sinh(αT ) sinh(αU) sinh(α(S + T + U))

sinh(α(S + T )) sinh(α(T + U)) sinh(α(U + S))

In the canonical ensemble we find a probability density function:

2√
π

∫ ∞

−∞
dξ

ξ

i
e−ξ2

(· · · ) |
α=
√

3iξ/2
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Confluence of geodesics

Similarly we introduce the parameters t ′, t ′′, u′, u′′.
We arrive at a generating function:

∆s′∆s′′∆t′∆t′′∆u′∆u′′
(
Ys′,t′,u′Ys′′,t′′,u′′Xs′,t′′Xt′,u′′Xu′,s′′

)

Conventions for X become irrelevant in the scaling limit:

∂S′∂S′′∂T ′∂T ′′∂U′∂U′′
3

α2
Y(S ′,T ′,U ′;α)Y(S ′′,T ′′,U ′′;α)

Y(S ,T ,U;α) =
sinh(αS) sinh(αT ) sinh(αU) sinh(α(S + T + U))

sinh(α(S + T )) sinh(α(T + U)) sinh(α(U + S))

In the canonical ensemble we find a probability density function:

2√
π

∫ ∞

−∞
dξ

ξ

i
e−ξ2

(· · · ) |
α=
√

3iξ/2



Confluence of geodesics
We can compute some marginal laws. δ1 = δ was seen before.

S − δ1 has the same law as δ/2 ! Hence all segments in the

“star-triangle” have the same mean length 2Γ(5/4)√
3π

= 0.590494....

(Grand-canonical) joint law for S and δ1:

˜̃G(S , δ1;α) = 6e−4αSe2αδ1 S > δ1 > 0
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Confluence of geodesics
Side of the “inner” triangle:

δ12 = D12 − δ1 − δ2

12

^
12ρ(     )
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1

δ

δ

We can also study the area of the inner triangle. We find it has an
area βn where β ∈ [0, 1] has density:

√
π

Γ(1/4)2
1

(β(1− β))3/4

(same as the area within a geodesic loop)
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Conclusion

We have computed a number of properties of geodesics in planar
quadrangulations, both in the local and scaling limit.

! the mean number of geodesics between two given points at
distance i ' 1 is 3 · 2i

! the mean number of geodesic points at a given generic
position is 3

! geodesic loops and confluence of geodesics can be
quantitatively studied.

Still, the structure of a large random quadrangulation remains
mysterious, inbetween tree and sphere.


