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Questions

® How many of planar structures are there ?
(exactly / asymptotically)

® \What properties does a random planar structure have ?

® what is the probability of being connected?

® what is the chromatic number?

® How can we efficiently sample a random instance uniformly at
random?

® average case analysis

® empirical properties
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Let £(n) be the number of rooted trees on |n|
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Recursive method
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Recursive method

[ NIJENHUIS, WILF 79; FLAJOLET, ZIMMERMAN, VAN CUTSEM 94 ]
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Uniform sampling algorithm for trees:

Generate(n): returns a random tree on [n].
choose a root vertex r with probability 1/n

return Generate(n, r)

Generate(n, r): returns a random tree on [n| with the root vertex r
choose the order i of the split subtree with probability n ("~ 2)¢(i)t(n — i)/((n — i)t(n))
let s = min([n]|\ {r})
choose a random subset {s} C {wi,...,w;} C [n] \ {r} (with relative order)
let {vi,...,vp—s} = [n] \ {w1,...,w;} (with relative order)
T1 = Generate(:); relabel vertex j in T with w; (denote by r’ the root vertex of 1)
T> = Generate(n — ¢, r); relabel vertex j # r in T with v;
return 77 U T U {(r, w,~ )} with marked r
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Generating function

Let T'(z) be the exponential generating function for rooted trees defined
by
Zn
T(z) = Zt(n)a.

T(z) ( > = zel(?),

Then
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Exact number

LAGRANGE INVERSION THEOREM [ FLAJOLET, SEDGEWICK 07+ ]

Let p(u) = >, éru” be a power series of C[[u]] with ¢g # 0. Then the
equation

y = 2¢(y)

admits a unique solution in C||z]] whose coefficients are given by

v(z) = Y wm" where y, = [ o)

From T'(z) = 2¢(T(2)) with ¢(u) = e, we have

tn) 1. . 41 uyn 1. .. (un)® 1 nnl n—1
= e =~ ) k! nn—1! nl

Thus the number of labeled trees on n vertices equals @ = n"2,
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Asymptotic number

View a generating function 7'(z) = ) _ t(n)% as a complex-valued
function that is analytic at the origin.

Let R be the radius of convergence of T'(z). Then

2"T(z) = 6(n)R™™, where limsupl|f(n)|"/" = 1.

n—oo

[Pringsheim’s Theorem]
The point = = R is a dominant singularity of 7'(z), since T'(z) has
non-negative Taylor coefficients.

How to determine
® the dominant singularity R and

® the subexponential factor 6(n)?
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[ FLAJOLET, SEDGEWICK 07+ ]
Let ¢(u) be the functional inverse of T'(z).
(Indeed v (u) = ue™" for rooted trees.)

Let » > 0 be the radius of convergence of v, and suppose there exists
uo € (0,7) such that ¢/ (ug) = 0 and " (ug) # 0.

Indeed, >y = ¢! and thus t%—?}) —f(n)e”, where limsup |8(n)|'/" = 1.
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Local dependency

[ FLAJOLET, SEDGEWICK 07+ ]

Taylor expansion of z = v (u) at ug is of the form
1
Y(u) = P(ug) + §¢”(u0)(u — )+

It implies a locally quadratic dependency between z and u = T'(2):

2 (Z—Z ):_Q@D(UO)
" (ug) 0 " (ug)

Since T'(z) is increasing along the positive real axis, we have

(T'(2) = T(20))" = (u—ug)® ~

(1 —2z/2)

T(z) = T(z0) ~ — /=20(u0)/¥" (o) (1 — 2/20)"/?

Using A-analycity of T'(z) and transfer theorem, we have

2T (2) ~ =/ =24 (uo) /4" (uo) [2"](1 — 2/20)"/*
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Basic scale

[ FLAJOLET, SEDGEWICK 07+ ]

We have zp = e, ug = 1, (u) = ue™* and

2T (2) ~ =/ =20 (uo) /4" (uo) [2"](1 — 2/20)"/*.

RESCALING RULE/ GENERALIZED BINOMIAL THEOREM

2 (1= 2/20) /2 = (” _n?’/ 2) 2 fz—ﬁz()—n.

We have that the number of rooted trees on n vertices equals

1
(n) \/%n e'n
L _3/2 n(M\" iy
~ \/ﬂn e ((3) 21N (Stirling’s formula)

= pn ! (Cayley’s formula)
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Block structure of a graph

A block of a graph is a maximal connected subgraph without a cutvertex:
® a maximal biconnected subgraph,
® an edge (including its ends), or

® an isolated vertex

The block structure of a graph is a forest with two types of vertices:
the blocks and the cutvertices of the graph.

A\ 4
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Blocks of planar structures

2-connected outerplanar graphs:

[ BODIRSKY, GIMENEZ, K., NOY 07+ ]

# outerplanar graphs on n vertices ~ an=%2 p?n!, p=17.32

2-connected series-parallel graphs:

[ BODIRSKY, GIMENEZ, K., NOoY 07+ ]

# series-parallel graphs on n vertices ~ S n 52" nl, ~=19.07
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Labeled planar graphs

2-connected graphs [ TRAKHTENBROT 58; TUTTE 63; WALSH 82 ]

[ BENDER, GAO, WORMALD 02 ]

The growth constant for biconnected planar graphs: ~ 26.18

[ BENDER, RICHMOND 84 ; BODIRSKY, GROPL, JOHANNSEN, K. 05; Fusy, POULALHON, SCHAEFFER 05 ]

The growth constant for 3-connected planar graphs: ~ 21.05
Uniform sampling algorithm

[ BoDIRSKY, GROPL, K. 03; Fusy 05 ; GIMENEZ, NOY 05 ]
Uniform sampling algorithm for planar graphs O(n"); O(n?)
The number of planar graphsis ~ cn= 7/227.22"]
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Labeled cubic planar graphs

[ BODIRSKY, K., LOFFLER, MCDIARMID 07 ]

Dy e &

The number of cubic planar graphs on n vertices is asymptotically

~an~"?p"n!,  where p=3.1325

What is the chromatic number of a random cubic planar graph ¢ that is
chosen uniformly at random among labeled cubic planar graphs on [n|?
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Chromatic number

What is the chromatic number of a random cubic planar graph G?

@ [Four colour theorem]

® For any connected graph G that is neither a complete graph nor an
odd cycle, [Brooks’ theorem)]

If G contains a component isomorphic to Ky, then x(G) = 4.

If G contains no isolated K4, but at least one triangle, then \(G) = 3.
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Random cubic planar graphs

[ BODIRSKY, K., LOFFLER, MCDIARMID 07 ]

Let Ggf) be a random £ connected cubic planar graph on n vertices.

SUBGRAPH CONTAINMENTS
Let X,, be # isolated K,’s in G\Y) and Y;, # triangles in G\, k > 0. Then

4

lim Pr(X, >0)=1—e 4, lim Pr(Y, >0)= 1.

n—oo n—aoeo

CHROMATIC NUMBER

4
P

lim Pr(x(Gflo)) =4)= lim Pr(X, >0)=1—¢ «

4
lim Pr(x(G®) =3)= lim Pr(X,=0,Y, >0)=e 7 = 0.9995.

Fork=1,2,3, limy_oo Pr(x(GY)) = 3) = limy,_,e0 Pr(Y,, > 0) = 1.
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Labeled planar structures

The number of planar structures on n vertices is asymp. ~ an~"~"nl.

Let GG, be a random planar structure on n vertices. Then as n — oo,
e the expected number of edges in GG, iIs ~ pun,
e (7, Is connected with probability tending to a constant p..,,, and
e ((,) is three with probability tending to a constant p, .

Running time of uniform sampler (recursive method): O(n*)

Classes 16} ~ L4 Pcon Dx k

Trees 5/2 2.71 1 1 0 4
Outerplanar graphs 5/2 7.32 1.56 0.861 1 4
Series-parallel graphs 5/2 9.07 1.61 0.889 ? ?
Planar graphs 7/2 27.2 2.21 0.963 ? 7
6

Cubic planar graphs 7/2 3.13 1.50 > 0.998 0.999
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2—con planar graphs Bodirsky, Groepl, K. 05
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® Decomposition
® Recursive method
® Singularity analysis

® Probabilistic analysis
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Let M = (M;;) be an N x N Hermitian matrix (i.e., M;; = M ;;) and
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Gaussian matrix integral

Let M =
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(M;;) be an N x N Hermitian matrix (i.e., M;; = M ;;) and
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where the integration is over N x N Hermitian matrices.
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Gaussian matrix integral

Let M =
dM =]

[ Wick 50 ]
(M;;) be an N x N Hermitian matrix (i.e., M;; = M ;;) and
[; dM;; [T, ; d Re(Mi;)d Tm(M;;) the standard Haar measure.

The Gaussian matrix integral is defined by

M2
ff —N Tr(&4 )dM
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where the integration is over N x N Hermitian matrices.

Using

the source integral < ¢"(M5) = "we obtain
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Pictorial interpretation

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

L . 516
Pictorial interpretation from < M;; My, > = —52=:
7 e——
M;; " e

1 Q+Ql, [
< MMy >= ~ <~ je—< ok, k

=1

J




Pictorial interpretation

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

e . 5416,
Pictorial interpretation from < M;; My, > = —52=:
1 &————
Mz’j - j

<

Z'n'il




Pictorial interpretation

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

. L . 516
Pictorial interpretation from < M;; My, > = —52=:
7 o—>
Mz’j - ]
1 e—=> e, [=1
<MiyMu>=§ <+ e <« ok k=
Tr(M™) = Z My io Migig -+ - Mi, i,

MiiMigig " Mip g | int




Pictorial interpretation

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

L . 516
Pictorial interpretation from < M;; My, > = —52=:
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where P is a partition of {i1i2, 1213, -- ,in%1 } INtO pairs. \(\
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Fat graphs
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A pairing P with non-zero contribution to < Tr(M") >
<= a fat graph with one island and » /2 fat edges




Fat graphs

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

0; d;

< Tr(M™) > = Z Z H Zk:ik:Jrjlv 141 .

1<i1,t2,,in <N P (igipq,9941)EF

A pairing P with non-zero contribution to < Tr(M") >
<= a fat graph with one island and » /2 fat edges ordered cyclically.
(It defines uniguely an embedding on a surface: a map!)
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Fat graphs

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

) 0

< Tr(M™) > = Z Z H ik’ik+]1v 119141 .

1<i1,t2,,in <N P (igig4q1,91941)EP

Let F' be a fat graph with one island, e(F') edges and f(F') faces.
® The edges contribute N/, since each edge contributes N 1.

® The faces contribute N7(!') since each face attains independently
any index from 1 to V.




Fat graphs

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

) 0

< Tr(M") > = > > 11 i’“i’”]lv

1<i1,t2,,in <N P (igig4q1,91941)EP
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Let F' be a fat graph with one island, e(F') edges and f(F') faces.
® The edges contribute N/, since each edge contributes N 1.

® The faces contribute N7(!') since each face attains independently
any index from 1 to V.

Thus
< Tr(M") >="> N I+
F

where the sum is over all fat graphs F' with one island.
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Similarly we obtain
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F

where the sum is over all fat graphs F' with four islands of degree 3, and
three islands of degree 2.




Fat graphs

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

Similarly we obtain

< [NTe(M*)]* [NTe(M?)]? > = 5 NI+,
F

where the sum is over all fat graphs F' with four islands of degree 3, and
three islands of degree 2.

An example of such a fat graph

Q@




Fat graphs

[ BREZIN, ITZYKSON, PARISI, ZUBER 78; ZVONKIN 97; DI FRANCESCO 04]

Similarly we obtain

< [NTe(M*)]* [NTe(M?)]? > = 5 NI+,
F

where the sum is over all fat graphs F' with four islands of degree 3, and
three islands of degree 2.

An example of such a fat graph (i.e., a map)
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Planar maps

[ BOUTTIER, DI FRANCESCO, GUITTER 02 ]
Let g(M) = e2iz1 7 [NTFD] Then

Uz

<g>= Y ZN”(F I )Hi;in.,,

a=(ny, - ,ng) i<k

where F'is a map with n; vertices of degree 1.
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[ BOUTTIER, DI FRANCESCO, GUITTER 02 ]
Let g(M) = e2iz1 7 [NTFD] Then
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where F'is a map with n; vertices of degree :. Furthermore,
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. log < g > i
lim = N29 ~ Z Z Hz”inz'

N—o00 :
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where F'., is a connected planar map with n; vertices of degree <.




Planar maps

[ BOUTTIER, DI FRANCESCO, GUITTER 02 ]

Let g(M) = e2iz1 7 [NTFD] Then

AP YD YR 1

a=(ny, i<k

where F'is a map with n; vertices of degree :. Furthermore,

g

. log < g > i
lim = N29 ~ Z Z Hz“inz'

N—o00 :
=(ny,- 1<k

where F'., is a connected planar map with n; vertices of degree <.

[ K., LOEBL 06+ ]

The number of planar graphs with a given degree sequence can also be
formulated by a Gaussian matrix intergral.




Concluding remarks

Relevant work

e There exists a constant ¢ such that the number of graphs in a proper
minor-closed class < " n! [ NORINE, SEYMOUR, THOMAS, WOLLAN 06 ]



Concluding remarks

Relevant work

e There exists a constant ¢ such that the number of graphs in a proper
minor-closed class < " n! [ NORINE, SEYMOUR, THOMAS, WOLLAN 06 ]
e Asymptotic growth of minor-closed classes of graphs

[ BERNARDI, NOY, WELSH 07+ ]



Concluding remarks

Relevant work
e There exists a constant ¢ such that the number of graphs in a proper
minor-closed class < " n! [ NORINE, SEYMOUR, THOMAS, WOLLAN 06 ]
e Asymptotic growth of minor-closed classes of graphs
[ BERNARDI, NOY, WELSH 07+ ]
Open problems
What are the asymptotic numbers of
(1) unlabeled planar graphs
(2) planar graphs with a given degree sequence

(3) embeddable graphs on a surface with higer genus?



Concluding remarks

Relevant work
e There exists a constant ¢ such that the number of graphs in a proper
minor-closed class < " n! [ NORINE, SEYMOUR, THOMAS, WOLLAN 06 ]
e Asymptotic growth of minor-closed classes of graphs
[ BERNARDI, NOY, WELSH 07+ ]

Open problems

What are the asymptotic numbers of
(1) unlabeled planar graphs

(2) planar graphs with a given degree sequence

(3) embeddable graphs on a surface with higer genus?

What do random graphs chosen among (1), (2) or (3) look like?



Concluding remarks
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Open problems

What are the asymptotic numbers of
(1) unlabeled planar graphs

(2) planar graphs with a given degree sequence

(3) embeddable graphs on a surface with higer genus?

What do random graphs chosen among (1), (2) or (3) look like?

What structural properties of graphs determine the critical exponents of
their asymptotic numbers?



