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Sloane Sequence A005470 (core, nice, hard):

Number p(n) of unlabeled planar simple graphs with n nodes.

Initial terms:

1, 2, 4, 11, 33, 142, 822, 6966, 79853, 1140916

For comparison: number of all unlabeled graphs with n nodes

1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168
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Unlabeled Enumeration

Consider graphs ‘up to isomorphism’.

For general graphs: the number of labeled and the number of
unlabeled graphs are asymptotically equal, since almost all graphs are
asymetric.

For planar graphs: the number of labeled graphs is much larger than
the number of unlabeled graphs, since almost all planar graphs have a
large automorphisms group.

Tools for unlabeled enumeration:

1 ordinary generating functions

2 Burnside’s lemma (orbit counting lemma)

3 cycle indices
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Related Tasks

Problems related to the enumeration of planar graphs

A Compute p(n) in polynomial time in n.

B Sample a random planar graph on n vertices in polynomial time in
n from the uniform distribution.

C Determine the asymptotic growth of p(n).

D Devise a Boltzman sampler for random planar graphs.

E Analyse properties of random planar graphs

In our setting, all these tasks are closely related.
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Liskovets and Walsh 1987: Ten Steps

V. A. Liskovets, T. R. Walsh: Ten steps to counting planar graphs,
Congressus Numerantium (1987).

“One well-known long-standing unsolved graph-
enumeration problem is to count (non-isomorphic) planar
graphs. The aim of this brief survey is to draw the reader’s
attention to the considerable progress which has been
achieved to that end, and which suggests that this problem
may soon be completely solved.”

The problem is still open.
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General Approach

Essentially, there is no alternative to the following basic approach:

planar
graphs

connected
planar 
graphs

2-connected
planar 
graphs

3-connected
planar
graphs

Block DecompositionComponent Structure Network Decomposition

Whitney's theorem:
Geometry

For the labeled case, this approach has been successful:

for exact numbers and random generation (B.,Gröpl,Kang’03)

for the asymptotic growth (Gimenez,Noy’05)

for Boltzmann generation (Fusy’05)
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Planar Maps

How to count 3-connected planar maps, i.e., 3-connected plane graphs
on the sphere, up to homeomorphisms?
A question that is credited to Euler −→ polyhedra

Tutte:

First count rooted maps,
(and try to get rid of the root later...)

Go from lower connectivity to higher connectivity
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Ten Steps

symmetry type maps non-sep. maps 3-conn. maps
rooted Tutte’63 Tutte’63 Tutte’63
sense-pres. iso. Liskovets’82 Liskovets,Walsh’83 Walsh’82
all map-iso. Wormald’81 Wormald’xx Wormald’xx

Last step from 3-connected to planar graphs: ‘recursive scheme’

Cubic Planar Graphs:

symmetry type maps non-sep. maps 3-conn. maps
rooted Mullin’66 Mullin’65 Tutte’64
sense-pres. iso. Liskovets,Walsh’87 (Brown’64)
all map-iso. Tutte’80
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The Orbit-counting Lemma

Aka Cauchy-Frobenius, or Burnside Lemma.
G finite group acting on a set X . The number of orbits of G is

1/|G|
∑
g∈G

|Fix(g)|

In our setting, for 3-connected planar graphs:

X : 3-connected labeled planar graphs with vertices {1, . . . , n}

G = {id,reflections,rotations,reflection-rotations}

Orbits of G: unlabeled 3-connected planar graphs
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Quotient Maps

To count graphs with a rotative symmetry of order k , use concept of
quotient maps (Liskovets’82,Walsh’82,Fusy’05).
Example for k = 3 where both poles of the rotation are faces:
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Quotient Maps

To count graphs with a rotative symmetry of order k , use concept of
quotient maps (Liskovets’82,Walsh’82,Fusy’05).
Example for k = 3 where both poles of the rotation are faces:

Obtain a unique map with two distinguished faces
Can be further decomposed
(e.g. by using quadrangulations as in Fusy’04)
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Maps with a Reflective Symmetry

Several Decompositions and Algorithms:

Wormald’xx (unpublished algorithm)

Qadrangulation method in Fusy’05 can in principle be applied
here as well

B.,Groepl,Kang’05: Colored connectivity decomposition

None of the approaches lead to reasonable formulas so far
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Colored Decomposition

Assume that there is a distinguished directed edge on the symmetry
(an arc-root).

Resulting graph is 2-connected, and can be decomposed easily.
But: have two parameters for number of red and blue vertices
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Tutte-like Decomposition

Similarly to the decomposition of triangulations (Tutte’)
and c-nets (B.,Groepl,Johannsen,Kang’05)
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Tutte-like Decomposition

Similarly to the decomposition of triangulations (Tutte’)
and c-nets (B.,Groepl,Johannsen,Kang’05)
Advantage: only one extra variable, simple GF equations.
But: tedious
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Another Line of Research

Can make progress already before we solve Euler’s problem.

Graph Class Forbidden Minors Connectivity Structure
Planar K5, K3,3 Whitney for 3-conn.

Series-parallel K4 No 3-conn. comp.
Outerplanar K4, K2,3 Hamiltonian 2-conn comp.
Forest K3 No 2-conn. comp.

Results:

Graph Class Labeled Unlabeled
Planar
Series-parallel
Outerplanar
Forest Well-known Well-known
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Another Line of Research

Can make progress already before we solve Euler’s problem.

Graph Class Forbidden Minors Connectivity Structure
Planar K5, K3,3 Whitney for 3-conn.
Series-parallel K4 No 3-conn. comp.
Outerplanar K4, K2,3 Hamiltonian 2-conn comp.
Forest K3 No 2-conn. comp.

Results:

Graph Class Labeled Unlabeled
Planar Gimenez,Noy’05 ?
Series-parallel B.,Kang,Gimenez,Noy’05 ?
Outerplanar B.,Kang,Gimenez,Noy’05 B.,Fusy,Kang,Vigerske’07
Forest Well-known Well-known
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Cycle Indices

Polya theory.
Let G be a graph with vertices {1, . . . , n}.

Z (G; s1, s2, . . . ) := 1/|Aut(G)|
∑

g∈Aut(G)

n∏
k=1

sjk
k (g)

where jk (g) is the number of cycles of length k in g.

Let K be a class of graphs.

Z (K; s1, s2, . . . ) :=
∑
G∈K

Z (G; s1, s2, . . . )
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2-Connected Outerplanar Graphs

Cycle index sum for 2-connected outerplanar graphs

Z (D) = −
1
2

∑
d≥1

ϕ (d)

d
log

(
3
4

−
1
4

sd +
1
4

√
s2

d − 6sd + 1
)

+
s2 + s2

1 − 4s1 − 2
16

+
s2

1 − 3s2
1s2 + 2s1s2

16s2
2

+
3 − s1

16

√
s2

1 − 6s1 + 1

−
1

16

(
1 +

s2
1

s2
2

+
2s1

s2

) √
s2

2 − 6s2 + 1,

where ϕ is the Euler-ϕ-function ϕ(n) = n
∏

p|n(1 − p−1)
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From 2-Connected to Connected

Technique be Norman’54, Robinson’70, Harary,Palmer’73

Tool 1: composition

Z (G)[Z (K)] := Z (G; Z (K; s1, s2, . . . ), Z (K; s2, s4, . . . ), . . . )

Tool 2: rooting

Z (Ĝ) = s1
∂

∂s1
Z (G)

Tool 3: unrooting

Z (G) =

∫ s1

0

1
t1

Z (Ĝ)|s1=t1dt1 + Z (G) |s1=0
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From 2-Connected to Connected

D̂: cycle index sum for rooted two-connected outerplanar graphs.
Ĉ: cycle index sum for rooted connected outerplanar graphs.

Z (Ĉ) = s1 exp

∑
k≥1

Z
(
D̂; Z

(
Ĉ; sk , s2k , . . .

)
, Z

(
Ĉ; s2k , s4k , . . .

))
k Z

(
Ĉ; sk , s2k , . . .

)


The cycle index sum for connected outerplanar graphs

Z (C) = Z (Ĉ) + Z
(
D; Z (Ĉ)

)
− Z

(
D̂; Z (Ĉ)

)
Substituting x i for si gives equations for the generating functions
and a polynomial-time algorithm to compute the numbers.
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Asymptotic Results

With singularity analysis (Flajolet,Sedgewick’0x) we get

Theorem 1 (B.,Fusy,Kang,Vigerske’07).
The numbers dn, cn, and gn of two-connected, connected, and general
outerplanar graphs with n vertices have the asymptotic estimates

dn ∼ d n−5/2δ−n,

cn ∼ c n−5/2ρ−n,

gn ∼ g n−5/2ρ−n,

with exponential growth rates δ−1 = 3 + 2
√

2 ≈ 5.82843 and
ρ−1 ≈ 7.50360, and constants d ≈ 0.00596026, c ≈ 0.00760471, and
g ≈ 0.00909941.
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Cubic Planar Graphs

All vertices of degree three.

Analysed for the labeled case in
B.,McDiarmid,Loeffler,Kang’07.

Why interesting?

More difficult than SP graphs in that we have to deal with
3-connected components

However, the number of 3-connected cubic planar graphs is
well-understood (bijective correspondence to triangulations)

2-connected and connected numbers are closely related
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Ten Steps

1 2-connected, connected, and general series-parallel graphs

2 2-connected, connected, and general cubic planar graphs

3 Arc-rooted 3-connected planar maps with a sense-reversing
automorphism

4 3-connected planar graphs with a sense-reversing automorphism

5 3-connected planar graphs with a sense-reversing rotation

6 Polyhedra (3-connected planar graphs)

7 Arc-rooted 2-connected planar graphs

8 2-connected planar graphs

9 Connected planar graphs

10 Planar graphs
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