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Overview of the Results

Problem statement
We propose a classification of the subgroups, and their conjugacy
classes, in a free product of cyclic groups like Z, Z/nZ.

Examples of such groups are :

Free groups on 2,

3, ..., n generators.

The Modular Group PSL2(Z) ' Z/2Z ∗ Z/3Z.

Various Cartographic Groups like C +
2 ' Z/2Z ∗ Z.

The Hecke Groups Hn ' Z/2Z ∗ Z/nZ.

Etc..
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Overview of the Results

We obtain :
Beautiful structures.

A fully explicit and computable classification.

Counting principles.

A new way to compute cycle index series.

A new family of CAT algorithms to generate the examples.

A fascinating connection with Combinatorial Maps.

For the sake of simplicity, we shall focus on the modular group
example.
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Part I

Beautiful Structures

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Definition 1
Trivalent Diagrams are bicolored { •, ◦ } connected graphs with
cyclic orientation and degree conditions at the vertices.

Black (•) vertices are either trivalent or univalent.

White (◦) vertices are either bivalent or univalent.

Trivalent black vertices are cyclically oriented.

Definition 2
A morphism ϕ between two trivalent diagrams is a collection of three
maps ϕ•, ϕ◦ and ϕ− sending the black vertices, white vertices, and
the edges of the first diagram to corresponding elements of the second
diagram, preserving adjacencies and cyclic orientations.

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Definition 1
Trivalent Diagrams are bicolored { •, ◦ } connected graphs with
cyclic orientation and degree conditions at the vertices.

Black (•) vertices are either trivalent or univalent.

White (◦) vertices are either bivalent or univalent.

Trivalent black vertices are cyclically oriented.

Definition 2
A morphism ϕ between two trivalent diagrams is a collection of three
maps ϕ•, ϕ◦ and ϕ− sending the black vertices, white vertices, and
the edges of the first diagram to corresponding elements of the second
diagram, preserving adjacencies and cyclic orientations.

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Definition 1
Trivalent Diagrams are bicolored { •, ◦ } connected graphs with
cyclic orientation and degree conditions at the vertices.

Black (•) vertices are either trivalent or univalent.

White (◦) vertices are either bivalent or univalent.

Trivalent black vertices are cyclically oriented.

Definition 2
A morphism ϕ between two trivalent diagrams is a collection of three
maps ϕ•, ϕ◦ and ϕ− sending the black vertices, white vertices, and
the edges of the first diagram to corresponding elements of the second
diagram, preserving adjacencies and cyclic orientations.

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Definition 1
Trivalent Diagrams are bicolored { •, ◦ } connected graphs with
cyclic orientation and degree conditions at the vertices.

Black (•) vertices are either trivalent or univalent.

White (◦) vertices are either bivalent or univalent.

Trivalent black vertices are cyclically oriented.

Definition 2
A morphism ϕ between two trivalent diagrams is a collection of three
maps ϕ•, ϕ◦ and ϕ− sending the black vertices, white vertices, and
the edges of the first diagram to corresponding elements of the second
diagram, preserving adjacencies and cyclic orientations.

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Definition 1
Trivalent Diagrams are bicolored { •, ◦ } connected graphs with
cyclic orientation and degree conditions at the vertices.

Black (•) vertices are either trivalent or univalent.

White (◦) vertices are either bivalent or univalent.

Trivalent black vertices are cyclically oriented.

Definition 2
A morphism ϕ between two trivalent diagrams is a collection of three
maps ϕ•, ϕ◦ and ϕ− sending the black vertices, white vertices, and
the edges of the first diagram to corresponding elements of the second
diagram, preserving adjacencies and cyclic orientations.

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Examples : trivalent diagrams of size up to five.

Examples : trivalent diagrams of size six.

Samuel Alexandre VIDAL Cycle Index Series Factoring in Enumerative Group Theory



Beautiful Structures

Examples : trivalent diagrams of size seven.
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Beautiful Structures

Examples : trivalent diagrams of size eight.
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Beautiful Structures
Examples : trivalent diagrams of size nine.
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Beautiful Structures

Definition 3
Pointed Trivalent Diagrams are trivalent diagrams with a
distinguished edge, which is called the base point of the diagram (sic).

Definition 4
Pointed morphisms are supposed to send base points to base points.

Examples : pointed trivalent diagrams of size three.
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Part II

A Fully Explicit and Computable Classification
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A Fully Explicit and Computable Classification

The conjugacy class of subgroups of the modular group are
classified by trivalent diagrams.

The subgroup themselves are classified by pointed trivalent
diagrams.
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Just Another Series of Examples

Recall
The Modular Groups of level n, are the subgroups of PSL2(Z)
consisting of matrix (up to sign) congruent to the identity modulo n.
We have the following short exact sequence.

0 // Γn // PSL2(Z) // PSL2(Z/nZ) // 0
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Just Another Series of Examples
n = 2 : the triangle.

n = 4 : the cube.

n = 3 : the tetrahedron.

n = 5 : the dodecahedron.
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Just Another Series of Examples
n = 7 : Klein’s cubic.
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Part III

Counting Principles
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Counting Principles

Two isomorphisms

The species D∗
3 of not necessarily connected trivalent diagrams is

isomorphic to the direct product of the species S2 and S3 of
permutations of compositional order two and three.

D∗
3 '

nat.
S2 × S3

The species D3 of connected trivalent diagrams is related to D∗
3

by the following isomorphism.

D∗
3 '

nat.
Set(D3)

Expressing the existence and uniqueness of the decomposition of
a diagram in its connected components.
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Counting Principles

Let’s introduce the related generating series

Pointed Not pointed

Labeled D•
3(t) =

∑
n≥0

a•n
n!

tn D3(t) =
∑
n≥0

an

n!
tn

Unlabeled D̃•
3(t) =

∑
n≥0

ã•n tn D̃3(t) =
∑
n≥0

ãn tn
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Counting Principles

We deduce the following equations
On Hurwitz generating series,

D∗
3(t) = S2(t)� S3(t) and

D3(t) = log(D∗
3(t))

On cycle index series,

ZD∗
3
(x1, x2, . . . ) = ZS2(x1, x2, . . . )�ZS3(x1, x2, . . . ) and

ZD3(x1, x2, . . . ) =
∑
k≥1

µ(k)
k

logZD∗
3
(xk, x2k, . . . )
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Counting Principles

Rigidity principle
Pointed trivalent diagrams don’t have any automorphism.

Thus, ordinary and exponential generating series coincide.
We finally get,

D̃•
3(t) = D•

3(t) = t
∂

∂t
D3(t)

Enabling this way, an unlabeled counting from a labeled one.
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Counting Principles

The number of pointed trivalent diagrams. (A005133)

D̃•
3(t) = t + t2 + 4 t3 + 8 t4 + 5 t5 + 22 t6 + 42 t7 + 40 t8

+ 120 t9 + 265 t10 + 286 t11 + 764 t12 + 1729 t13

+ 2198 t14 + 5168 t15 + 12144 t16 + 17034 t17

+ 37702 t18 + 88958 t19 + 136584 t20 + 288270 t21

+ 682572 t22 + 1118996 t23 + 2306464 t24

+ 5428800 t25 + 9409517 t26 + 19103988 t27

+ 44701696 t28 + 80904113 t29 + 163344502 t30 + . . .
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Part IV

A New Way to Compute Cycle Index Series
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A New Way to Compute Cycle Index Series

Recall
A generic cycle index series, or Joyal-Pólya series, has the following
form.

Z(x1, x2, . . . ) =
∑
n≥0

∑
k1+2k2+···+nkn=n

ak1,...,kn

1k1 k1! · · · nkn kn!
xk1

1 · · · xkn
n

Where the degree of the variables xk is taken to be k.

A remark on complexity
The general series contains exactly pn terms in its n-th graduation and
p1 + p2 + · · ·+ pn terms in its n-th filtration.

THIS IS BIG !

e.g. more than a million terms in the 50-th filtration.
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A New Way to Compute Cycle Index Series

Lemma
Let ZF and ZG be the cycle index series of two combinatorial species
F and G,

ZF =
∑
n≥0

∑
k1+2k2+···+nkn=n

ak1,...,kn

1k1 k1! · · · nkn kn!
xk1

1 · · · xkn
n et

ZG =
∑
n≥0

∑
k1+2k2+···+nkn=n

bk1,...,kn

1k1 k1! · · · nkn kn!
xk1

1 · · · xkn
n

Then, the cycle index series of their direct product F × G is simply
the Hadamard product of those two series,

ZF �ZG
def.=
∑
n≥0

∑
k1+2k2+···+nkn=n

ak1,...,kn bk1,...,kn

1k1 k1! · · · nkn kn!
xk1

1 · · · xkn
n
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A New Way to Compute Cycle Index Series

Definition
A Joyal-Pólya series is said to be separated if it admits an expression
of the following form,

Z(x1, x2, . . . ) =
∏
k≥1

∑
n≥0

ak,n

kn n!
xn

k

 with ak,0 = 1 for all k ≥ 1.

A remark on complexity
The general series in the factored form is very sparse. It contains
n + n/2 + n/3 + · · · = O(n log n) terms in its n-th filtration.
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A New Way to Compute Cycle Index Series

Lemma
Let,

Z1 =
∏
k≥1

∑
n≥0

ak,n

kn n!
xn

k

 et Z2 =
∏
k≥1

∑
n≥0

bk,n

kn n!
xn

k


are two cycle index series in factored form, then,

Z1 �Z2 =
∏
k≥1

∑
n≥0

ak,n bk,n

kn n!
xn

k


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Counting Principles

The number of trivalent diagrams. (A121350)

D̃3(t) = t + t2 + 2 t3 + 2 t4 + t5 + 8 t6 + 6 t7 + 7 t8 + 14 t9

+ 27 t10 + 26 t11 + 80 t12 + 133 t13 + 170 t14 + 348 t15

+ 765 t16 + 1002 t17 + 2176 t18 + 4682 t19 + 6931 t20

+ 13740 t21 + 31085 t22 + 48652 t23 + 96682 t24

+ 217152 t25 + 362779 t26 + 707590 t27 + 1597130 t28

+ 2789797 t29 + 5449439 t30 + . . .
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Part V

Combinatorial Maps
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Problem Statement

Topologically, a combinatorial map on a closed orientable surface S is
a graph regularly embedded in S such that its complementary is made
of polygonal regions, the faces of the map.

The genus g of the map is the genus of the underlying surface. It can
be computed from the Euler-Poincaré characteristic of the map,

χE = nv − ne + nf g = 1 − 1
2 χE

An isomorphism of map is an orientation preserving diffeomorphism
of the underlying surfaces sending vertices on vertices, edges on
edges, etc...
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Problem Statement

Combinatorial maps can be described up to isomorphism by various
combinatorial invariants. For example triples of permutation σv, σe

and σf on the set of directed edges of the map, with σf σe σv = 1, σa

of order two (σ2
a = 1) and having no fixed point.

The fundamental enumeration problem in combinatorial map theory
is then to count the number of combinatorial maps up to isomorphism
according to various combination of the following parameters, the
number of its vertices nv, the number of its edges ne, the number of its
faces nf , and its genus g.
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State of the Art

For now, only partial results are known. Every known result falls in
two sort of restrictions :

1 Supplements of structure : coloring, pointing, labeling, assigning
a fixed value to some of the parameters, etc...

2 Defects of structure : letting some of the parameters unspecified,
getting ride of some of the constraints, etc...

Results falling in the second class are in general much more difficult
because of the presence of symmetries. In contrast, the considered
supplements of structure kill all the symmetries and counting rigid
structures is much easier.
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State of the Art

The most precise results in the first class known up to now are
contained in,

1 W. T. TUTTE, On the enumeration of planar maps, Bull. Amer.
Math. Soc. 74 (1968), 64-74.

2 T.R.S. WALSH, A.B. LEHMAN, Counting rooted maps by genus
I, J. Combin. Theory Ser. B 13 (1972), 192-218.

3 T. R. S. WALSH, A. B. LEHMAN, Counting rooted maps by
genus II, J. Combin. Theory Ser. B 14 (1973), 122-141.

4 V. A. LISKOVETS, Enumeration of nonisomorphic planar maps,
Selecta Math. Sovietica 4 (1985) 303-323.
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State of the Art

The most precise results in the first class known up to now are
contained in, (continued)

5 E. A. BENDER, E.A. CANFIELD, R.W. ROBINSON, The
enumeration of maps on the torus and on the projective plane,
Canad. Math. Bull. 31 (1988) 257-271.

6 E. A. BENDER, E.A. CANFIELD, The number of rooted maps on
an orientable surface, J. Combin. Theory Ser. B 53 (1991)
293-299.

7 M. BOUSQUET, G. LABELLE, P. LEROUX, Enumeration of
planar two-face maps, Discrete Math. 222 (2000), 1-25.
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State of the Art

The most precise results in the second class known up to now are
contained in,

1 T. R. S. WALSH, Generating nonisomorphic maps without
storing them, SIAM J. Algebraic Discrete methods 4 (1983),
161-178.

2 A. MEDNYKH, R. NEDELA, Enumeration of unrooted maps with
given genus. J. Combin. Theory Ser. B 96 (Sept. 2006), 706-729.
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Work in Progress by the lecturer ;-)

1 Compare the output of the new generating algorithms with that
of (T. R. S. WALSH 1983).

2 Compute the number of combinatorial maps up to isomorphism
by genus, number of vertices, edges and faces, with the help of a
new counting principle (tiresome computation...)

3 Compare that result to that of (A. MEDNYKH, R. NEDELA

2006).
4 Refine that result with the degree list of vertex and faces instead

of just their numbers.
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Samples of Results

The three triangular maps with two faces

The eleven triangular maps with four faces
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Samples of Results

The eighty one triangular maps with six faces (first part)
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Samples of Results

The eighty one triangular maps with six faces (part two of four)
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Samples of Results

The eighty one triangular maps with six faces (part three of four)
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Samples of Results

The eighty one triangular maps with six faces (last part)
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Samples of Results

The number of pointed triangular maps on an closed orientable
surface (A062980).

T̃•
3 (t) = 5 t6 + 60 t12 + 1105 t18 + 27120 t24 + 828250 t30

+ 30220800 t36 + 1282031525 t42 + 61999046400 t48

+ 3366961243750 t54 + 202903221120000 t60 + . . .

Recurrence relation

If we note an the coefficient of t6n the recurrence is as follows,

a1 = 5 and an = 6n an−1 +
n−2∑
k=1

ak an−k−1 (n > 1)
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Samples of Results

The number of unlabeled triangular maps on an closed orientable
surface. (New !)

T̃3(t) = 3 t6 + 11 t12 + 81 t18 + 1228 t24 + 28174 t30 + 843186 t36

+ 30551755 t42 + 1291861997 t48 + 62352938720 t54

+ 3381736322813 t60 + 203604398647922 t66

+ 13475238697911184 t72 + 972429507963453210 t78

+ 75993857157285258473 t84

+ 6393779463050776636807 t90 + . . .
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Samples of Results

We have computed a generating series giving the number of
combinatorial maps on a closed surface with a given number of edges
and the list of degree for its faces (or by Poincaré duality, the list of
degree for its vertices).

It comes thus with an infinite set of parameters t, u1, u2, u3 and the
coefficient of tneun1

1 un2
2 un3

3 ... is the number of combinatorial maps with
ne distinct edges and with n1, n2, n3, etc, for the number of its loops,
spindles, triangles, etc, or by Poincaré duality, n1, n2, n3, etc for its
number of vertices having degree 1, 2, 3, etc..
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Samples of Results

The number of unlabeled combinatorial maps on an closed orientable
surface with a given number ne of edges (coeff. of tne) and a given
number n of k-gones (coeff. of un

k) . (New !)

M = (u2 + u1
2) t + (u1

2u2 + u1u3 + u2
2 + 2 u4) t2

+

(
u3u1

3 + u1
2u2

2 + u2
3 + 3 u1u5 + 2 u1

2u4

+ 5 u6 + 2 u2u4 + 2 u3u1u2 + 3 u3
2

)
t3

+


9 u1

2u6 + u1
2u2

3 + 9 u2u6 + 7 u5u3 + 2 u5u1
3

+ 9 u5u1u2 + 4 u2
2u4 + u1

4u4 + 3 u1
2u3

2 + u2
4

+ 7 u4
2 + 18 u8 + 5 u1

2u2u4 + 4 u3
2u2 + 15 u1u7

+ 8 u4u1u3 + u3u1
3u2 + 3 u3u1u2

2

 t4 + . . .
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