Calcul du groupe de monodromie d'une courbe algébrique plane

Poteaux Adrien

XLIM Université de Limoges

Séminaire ALGO du 23 avril 2007

Problématique

- ullet $\mathcal K$ sous-corps de $\mathbb C$.
- $F = Y^d + a_{d-1}(X)Y^{d-1} + \cdots + a_0(X) \in \mathcal{K}[X, Y]$ irréductible.
- $C = \{(x, y) \in \mathbb{C}^2 \mid F(x, y) = 0\}$ la courbe affine associée.
- **Fibre** en $x_0 : \mathcal{F}(x_0) = \{ \text{racines de } F(x_0, Y) = 0 \}.$
- Point régulier : $\#\mathcal{F}(x_0) = d$.
- Point critique : $\#\mathcal{F}(x_0) < d$.
- $\delta(x_0)$: distance entre x_0 et son plus proche point critique

Points réguliers

Soit x_0 régulier et $\mathcal{F}(x_0) = \{y_1, y_2, \dots, y_d\}$ la fibre en x_0 .

- Théorème des fonctions implicites : il existe d séries $Y_i(X) = \sum_{k=0}^{\infty} \alpha_{ik} (X x_0)^k$ t.q. $F(X, Y_i(X)) = 0$ sur un voisinage de x_0 et $Y_i(x_0) = y_i$.
- Le rayon de convergence de ces séries est égal à $\delta(x_0)$.

• Si γ est un chemin qui ne passe par aucun point critique, les Y_i peuvent être prolongées analytiquement le long de γ .

x₀ point critique : Séries de Puiseux

II existe
$$d$$
 séries $Y_{ij}(X) = \sum_{k=0}^{\infty} \alpha_{ik} \zeta_{e_i}^{jk} (X - x_0)^{\frac{k}{e_i}}$ t.q.

$$F(X,Y_{ij}(X))=0$$
 pour tout $1\leq j\leq e_i$, $1\leq i\leq s$, avec :

- $\zeta_e = \exp\left(\frac{2\pi i}{e}\right)$
- e_1, \ldots, e_s partition de d.
- ▷ e_i est l'indice de ramification

x₀ point critique : Séries de Puiseux

II existe
$$d$$
 séries $Y_{ij}(X) = \sum_{k=0}^{\infty} \alpha_{ik} \zeta_{e_i}^{jk} (X - x_0)^{\frac{k}{e_i}}$ t.q.

$$F(X, Y_{ij}(X)) = 0$$
 pour tout $1 \le j \le e_i$, $1 \le i \le s$, avec :

- $\zeta_e = \exp\left(\frac{2\pi i}{e}\right)$
- e_1, \ldots, e_s partition de d.
- \triangleright e_i est l'indice de ramification

Exemples en $x_0 = 0$:

•
$$G(X,Y) = Y^3 - X$$

$$\Rightarrow Y_1(X) = X^{\frac{1}{3}}, Y_2(X) = jX^{\frac{1}{3}}, Y_3(X) = j^2X^{\frac{1}{3}}.$$

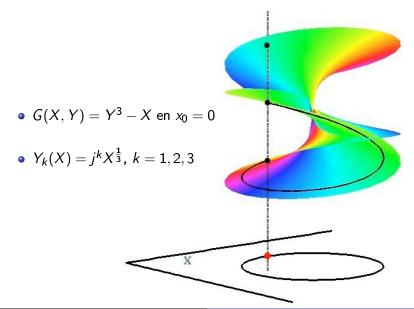
•
$$H(X, Y) = (Y^3 - X)((Y - 1)^2 - X)(Y - 2 - X^2) + X^2 Y^5$$

$$\Rightarrow Y_k(X) = j^k X^{\frac{1}{3}} + \frac{1}{6} X^3 + \frac{5}{12} j^k X^{\frac{10}{3}} + \cdots, k = 1, 2, 3.$$

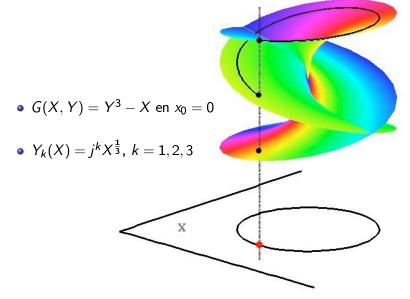
$$Y_4(X) = 1 + X^{\frac{1}{2}} \pm \frac{1}{2} X^{\frac{3}{2}} + \frac{3}{2} X^2 \pm \frac{19}{8} X^{\frac{5}{2}} + 2X^3 + \cdots$$

$$Y_6(X) = 2 - 3X^2 - \frac{9}{2} X^3 + \cdots$$

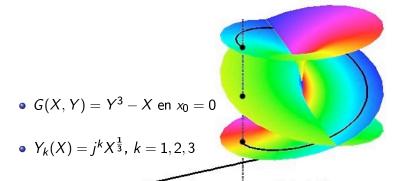
Monodromie locale



Monodromie locale



Monodromie locale



X

 \Rightarrow Monodromie locale :

permutation engendrée sur la fibre.

$$H(X,Y) = (Y^3 - X)((Y - 1)^2 - X)(Y - 2 - X^2) + X^2 Y^5$$

$$Y_6(X) = 2 - 3X^2 - \frac{9}{2}X^3 + \cdots$$

 $\Rightarrow e = 1 : 1$ -cycle.

$$Y_4(X) = 1 + X^{\frac{1}{2}} \pm \frac{1}{2}X^{\frac{3}{2}} + \cdots$$

 $\Rightarrow e = 2 : 2$ -cycle.

$$Y_1(X) = j^k X^{\frac{1}{3}} + \frac{1}{6} X^3 + \frac{5}{12} j^k X^{\frac{10}{3}} + \cdots$$

 $\Rightarrow e = 3: 3 - \text{cycle.}$

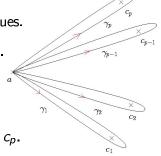
La monodromie locale se lit sur les

indices de ramification!

Monodromie globale

• On note c_1, \ldots, c_p les points critiques.

• On fixe un point de base régulier a.

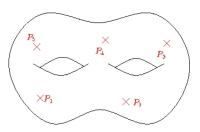


• On cherche les p permutations $\sigma_1, \ldots, \sigma_p$ correspondant à c_1, \ldots, c_p .

• Ces permutations engendrent le groupe de monodromie.

Motivations

 \mathcal{C} est une surface de Riemann homéomorphe à une sphère à g poignées où g est le genre de la courbe.



- diviseur $D = \sum n_{\mathcal{P}} \mathcal{P}$: somme formelle de points.
- degré d'un diviseur : $deg(D) = \sum n_{\mathcal{P}}$
- Diviseur de fonction $(f) = \sum v_{\mathcal{P}}(f)\mathcal{P}$: défini par les pôles et les zéros de f.

Questions liées aux diviseurs

- On note $-\mathcal{F}$ l'ensemble des diviseurs de fonctions.
 - \mathcal{D}_0 l'ensemble des diviseurs de degré 0.

On a $\mathcal{F} \subset \mathcal{D}_0$ mais pas égalité.

Problèmes:

- Soit $D \in \mathcal{D}_0$. Comment déterminer si $D \in \mathcal{F}$?
- Existe-t-il $n \in \mathbb{Z}$ tel que $nD \in \mathcal{F}$?
- Etant donnés $D_1, \ldots, D_k \in \mathcal{D}_0$, existe-t-il $n_1, \ldots, n_k \in \mathbb{Z}$ tels que $n_1 D_1 + \cdots + n_k D_k \in \mathcal{F}$?

Une résolution : le théorème d'Abel Jacobi

L'application d'Abel

$$\begin{array}{ccc} \mathcal{A}: & \mathcal{D}_0/\mathcal{F} & \longrightarrow & \mathbb{C}^g/\Gamma \\ & \sum n_{\mathcal{P}}\mathcal{P} & \longmapsto & \sum n_{\mathcal{P}}\left(\int_{\mathcal{O}}^{\mathcal{P}}\omega_1, \cdots, \int_{\mathcal{O}}^{\mathcal{P}}\omega_g\right) \end{array}$$

est un isomorphisme de groupe.

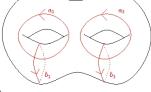
- les ω_i forment la base de l'espace des différentielles sans pôle.
- Γ est le réseau des périodes.
- O est un point de base sur la courbe.
- ⇒ Calculer l'application d'Abel donne les informations souhaitées sur les diviseurs!

L'application d'Abel

$$\begin{array}{ccc} \mathcal{A}: & \mathcal{D}_0/\mathcal{F} & \longrightarrow & \mathbb{C}^g/\Gamma \\ & \sum n_{\mathcal{P}}\mathcal{P} & \longmapsto & \sum n_{\mathcal{P}}\left(\int_{\mathcal{O}}^{\mathcal{P}}\omega_1, \cdots, \int_{\mathcal{O}}^{\mathcal{P}}\omega_g\right) \end{array}$$

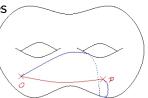
• Il y a 2 g cycles qui ne peuvent être contractés à un point.

 \Rightarrow base de l'homologie.



 Périodes : intégrales des différentielles sans pôle sur cette base.

• Modulo les périodes, $\int_{\mathcal{O}}^{\mathcal{P}} \omega_i$ ne dépend pas du chemin choisi.



Applications d'une version effective du théorème

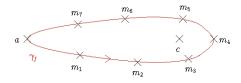
- Primitive de fonctions algébriques (partie logarithmique) : Risch 69, Davenport 81, Trager 84, Bronstein 90, Bertrand 95...
- Etude symbolique d'EDO: existence et calcul des solutions algébriques, calcul du groupe de Galois différentiel.
 Baldassarri-Dwork 79, Compoint-Singer 98...
- Calcul des solutions quasi-périodiques des équations KP (Kadomtsev-Petviashvili): B. Deconinck et H. Segur 98
- Solutions solitons des équations KdV (Korteweg-de Vries) et NLS (Nonlinear Schrödinger).

Calcul des périodes

M. van Hoeij, B. Deconinck (1996):

- Calcul de la monodromie.
- Calcul d'une base de l'homologie à l'aide d'une représentation de la monodromie (Tretkoff & Tretkoff, 1984).
- Calcul d'une base de l'espace des différentielles sans pôle (les ω_i).
- Calcul des périodes (intégrales des ω_i le long des cycles de l'homologie).

Résumé de la méthode employée



- **①** On choisit $a = m_0, m_1, \dots, m_k = a$ des points sur la boucle γ_j .
- ② On calcule les fibres $F_i = \{y_{i,1}, \dots, y_{i,d}\}$ en m_i .
- **3** On connecte les éléments de F_i à ceux de F_{i+1} à l'aide de développements en série de Puiseux, de sorte que chaque couple corresponde au même prolongement.

Monodromie : état de l'art (sketch)

- 1 Relier les fibres
 - ♦ Van Hoeij & Deconinck (1999)
 - Fonction monodromy de Maple.
 - Fibres reliées à l'aide des dérivées premières.
 - Critère de connexion et contrôle de l'erreur heuristiques.
 - ♦ Van Hoeij & Rybowicz (com. perso.)
 - Théorème de Smith + arithmétique numérique/intervalles.
 - Algorithme fiable mais trop lent
- 2 Equation différentielle
- Méthodes basées sur l'homotopie

Monodromie : état de l'art (sketch)

- Relier les fibres
- 2 Equation différentielle
 - Intérêt : calcul rapide des développements à ordre élevé.
 Chudnovsky & Chudnovsky, Van der Hoeven 2000,
 Cormier-Singer-Trager-Ulmer 2002 ...
 - Temps de passage potentiellement coûteux.
 - Taille de l'équation différentielle importante.
 - On utilise des développements à ordre petit.
- Méthodes basées sur l'homotopie

Monodromie : état de l'art (sketch)

- Relier les fibres
- 2 Equation différentielle
- 3 Méthodes basées sur l'homotopie

Problème formulable dans cette classe de problème.

Deux principaux inconvénients :

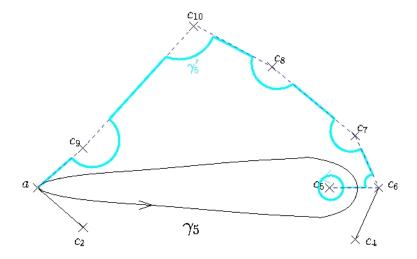
- Situation générale qui n'utilise pas toute l'information à notre disposition.
- Stratégie qui évite les points critiques : pas toujours faisable.

Contributions

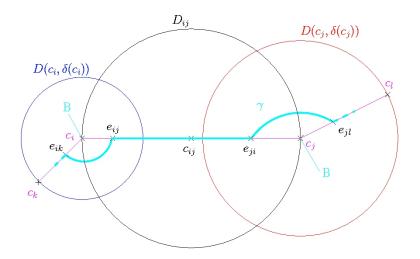
- Optimiser les chemins parcourus : borne sur le nombre de points intermédiaires.
- Connexions contrôlées.
- Utilisation de développements de Puiseux en des points critiques : algorithme numérique/modulaire.
- Prototype d'implémentation en Maple.

Utilisation d'un arbre de recouvrement minimum

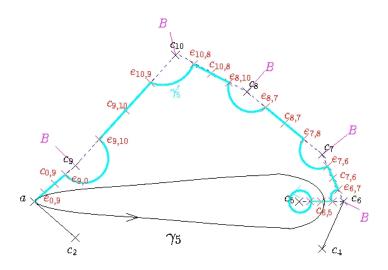
Un exemple : $F(x, y) = (x - 1) y^3 - 2 x^3 y^2 + x y + 1$.



Connexions le long de l'arbre



Nombres de points intermédiaires



 \Rightarrow A ce stade, on utilise $O(p) = O(D^2)$ points intermédiaires.

Théorème de Smith: racines isolées

Théorème

Soit P un polynôme de $\mathbb{C}[Z]$ possédant d racines distinctes. Soient z_1, \ldots, z_d des nombres complexes distincts. On pose :

$$\rho_i = d \left| \frac{f(z_i)}{\prod_{j \neq i} (z_i - z_j)} \right|.$$

Si les disques $D_i = D(z_i, \rho_i)$ sont 2 à 2 disjoints, alors pour tout i, il existe une unique racine de P dans D_i .

Idée : plus les z_i sont de bonnes approximations des racines de P, plus les rayons sont petits.

Contrôle de la connexion

On note:

- $Y_1(X), \ldots, Y_d(X)$ les d séries de Puiseux au dessus de x_0 .
- $\tilde{Y}_1(X), \dots, \tilde{Y}_d(X)$ les séries tronquées.
- $x_1 \in D(x_0, \delta(x_0))$ et $\{y_1, \dots, y_d\} = \mathcal{F}(x_1)$.

On calcule:

- les \tilde{y}_i approximations des y_i .
- ρ_i les rayons de Smith associés.
- $\varepsilon = \min_{i \neq j} |\tilde{y}_i \tilde{y}_j|$.
- $r = \max(\rho_1, \ldots, \rho_d)$.

On suppose que $\frac{\varepsilon}{2}-r>0$. Alors :

Proposition

$$|\tilde{Y}_i(x_1) - y_k| < \frac{\varepsilon}{2} - r \Rightarrow Y_i(x_1) = y_k$$
 : on connecte \tilde{Y}_i à \tilde{y}_k .

Contrôle de la connexion : ordre de troncation ?

Proposition

Soit

- $Y(X) = \sum_{k=0}^{\infty} \mu_k (X x_0)^{\frac{k}{e}}$ une série de Puiseux,
- $\tilde{Y}(X) = \sum_{k=0}^{n} \mu_k (X x_0)^{\frac{k}{e}}$ la série tronquée à l'ordre n,
- $x_1 \in D(x_0, \delta(x_0))$,
- $\bullet \ M \ge \sup_{x \in D(x_0, \delta(x_0))} |Y(x)|.$
- $\eta \in \mathbb{R}^{+*}$ la précision requise,

$$\bullet \ \beta = \left(\frac{|x_1 - x_0|}{\delta(x_0)}\right)^{\frac{1}{e}},$$

Alors,
$$n \geq \frac{\ln\left(\frac{\eta}{M}\right) + \ln(1-\beta)}{\ln(\beta)} - 1 \Rightarrow \left|Y(x_1) - \tilde{Y}(x_1)\right| \leq \eta$$
.

Cas régulier : formule de Cauchy.

Cas ramifié : considérer $G(X, Y) = F(x_0 + X^e, Y)$.

Gestion du nombre de pas

- Si $\beta = \frac{1}{2}$, il suffit d'avoir $n \geq 1 \log_2 \left(\frac{\varepsilon 2r}{M} \right)$.
- Pour $[c_{kl}, c_k]$, nombre de points intermédiaires ajoutés :

$$s = \left\lceil \log_3 \left(rac{\delta(c_{kl})}{\delta(c_k)}
ight) + (e-1)\log_3(2)
ight
ceil + 1$$

Théorème

Nombre total de points : $O(p \log \frac{L_M}{L_m} + g) = O(D^2 \log \frac{L_M}{L_m})$.

Corollaire

Si $F \in \mathbb{Z}[X, Y]$, on a $O(D^6 \log ||F||_{\infty})$ points intermédiaires.

 \Rightarrow borne cubique en la sortie.

Utilisation de développements au-dessus des points critiques

• Développement de Puiseux : $\sum_{k=1}^{\infty} \mu_k \, \zeta_e^k \, (X-c)^{\frac{k}{e}}$

Intérêt:

- Faire un tour autour d'un point critique est gratuit.
- Contourner un point critique : 2 évaluations.
- Contrôle numérique lors de l'intégration ultérieure.
- Newton : utilise des changements de variable successifs :

$$F(X,Y) \leftarrow \frac{F(\xi^{\nu}X^{q},\xi^{u}X^{m}(1+Y))}{X^{I}}$$

où u, v, q, m et I viennent d'une arête Δ du polygone de Newton et ξ est une racine du polynôme caractérisitique de Δ

Polygone de Newton

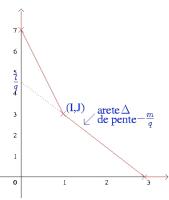
$$F(X,Y) \leftarrow \frac{F(\xi^{\nu}X^{q},\xi^{u}X^{m}(1+Y))}{X^{I}}$$

$$F(X,Y) = \sum_{i,j} a_{ij} X^j Y^i$$

• polynôme caractéristique :

$$\varphi(T) = \sum_{(i,j)\in\Delta} a_{ij} T^{\frac{i-1}{q}}.$$

- ξ racine de φ .
- u, v tels que uq vm = 1.



Calcul des développements de Puiseux

- Calcul numérique pur délicat.
- Calcul symbolique : deux principaux problèmes.
 - Croissance des coefficients (augmentation des temps de calcul et problème d'évaluation).
 - Calcul dans des extensions de degré potentiellement élevé.

Exemple :
$$F = (Y^3 - X)((Y - 1)^2 - X)(Y - 2 - X^2) + X^2 Y^5$$
 a pour discriminant $X^3 P(X)$ avec $deg_X(P) = 23$.

Les coefficients de son développement de Puiseux à l'ordre 1 ont une taille de 136 chiffres!

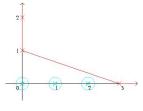
Approche numérique/modulaire

Algorithme de Puiseux :

- Informations qui doivent être exactes :
 - Les polygones de Newton.
 - Les multiplicités des racines des polynômes caractéristiques.
- Informations que l'on peut traiter numériquement :
 - Les coefficients des développements calculés.

⇒ Idée :

On fait les calculs numériquement. On obtient les informations exactes à l'aide d'un calcul modulaire parallèle.



⇒ Difficulté :

Connecter les calculs numériques et les calculs modulo p.

Hypothèses sur le premier p utilisé

On suppose que le premier *p* utilisé vérifie les hypothèses suivantes :

- Les coefficients de F peuvent être réduits modulo p. On note F_p l'image de F dans $\overline{\mathbb{F}}_p[X,Y]$.
- ② F_p est sans carré et p > d (assure l'existence des séries).
- 3 La forme de la partie sans carré du discriminant est conservée.
- 4 La suite des polygones de Newton rencontrés est inchangée par réduction modulo p.

Partie ramifiée de l'algorithme

$$F(X,Y) = \sum_{i,j} a_{ij} X^j Y^i$$

On note

- $\mathcal{I}(F)$ le plus petit i tel que $a_{i,0} \neq 0$.
- $\mathcal{N}(F)$ le polygone de Newton associé au polynôme F

But de l'algorithme : trouver G(X, Y), P(X), Q(X, Y) et L t.q.

- $\mathcal{I}(G) = 1$
- $X^{L}G(X, Y) = F(P(X), Q(X, Y))$

Un exemple

```
r := RootOf(y^6-x,y) : F := evala(Norm((y-1-r^2-r^5)*(y+1-r^3-r^5)*
   (y-2-r^2-r^7)*(y+2-r^3-r^5))+x^16*y^10:
deg_{v}(F) = 24, deg_{x}(F) = 22, tdeg(F) = 26.
253 monômes. \max |a_{ij}| = 1603614
   F := 4096 - 34071x^{11}y^8 - 30241x^{11}y^6 + 170364x^{11}y^5 + 222144x^{11}y^4 + 91714x^{11}y^3 + 170364x^{11}y^4 + 17036x^{11}y^4 + 17036x^{11}y^4 + 17036x^{11}y^4 + 17036x^{11}y^4 + 17036
   152439x^{11}y^2 + 5616x^{11}y + 3x^{12}y^{12} - 48x^{12}y^{11} - 534x^{12}y^{10} - 1434x^{12}y^9 + 4239x^{12}y^8 + 4237x^{12}y^8 + 4237x^{12}y^8 + 4237x^{12}y^8 + 4237x^{12}y^8 + 4237x^{12}y^8 + 4237x^{12
31212x^{12}y^7 + 74500x^{12}y^6 + 65364x^{12}y^5 - 58749x^{12}y^4 - 123408x^{11}y^7 - 21702x^{14}y - 198400y^6 + 12400x^{11}y^7 - 12400x^{11
55962x^2y^{14} + 9000x^2y^{11} - 727956x^2y^4 + 137664x^2y^3 + 15576x^{14}y^5 + 54x^{10}y^{13} - 46914x^2y^9 + 16000x^2y^{14} + 10000x^2y^{14} + 10000x^2y^{1
2818x^{16}y^3 - 114416x^3 + 57600xy^2 + 2715x^{16}y^2 + x^{16}y^{10} + 648x^{14}y^7 - 6x^2y^{21} - 6x^2y^{10} + 648x^{10}y^2 + 648x^{10}y^2
```

 $126060x^4 - 351461x^5 + 319163x^6 - 311700x^{10}y^4 + 116478x^{10}y^7 - 930x^2y^{13}$

Algorithme symbolique en x = 0

F(0, Y) a 4 racines de multiplicité 6 : -2,-1,1,2.

On a donc 4 polynômes à regarder :

•
$$F_1(X, Y) = F(X, Y + 1)$$

•
$$F_2(X, Y) = F(X, Y + 2)$$

•
$$F_3(X, Y) = F(X, Y - 1)$$

•
$$F_4(X, Y) = F(X, Y - 2)$$

On traite chaque polynôme séparément.

Regardons $F_1(X, Y)$.

$$P_1(X) \leftarrow X$$
, $Q_1(X) \leftarrow Y$.

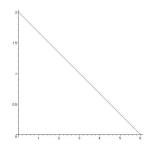
On calcule $\mathcal{N}(F_1)$.

Une seule arête :

$$m = 1, q = 3, I = 6, u = 0, v = -1$$
 et $\xi = 1$ de multiplicité 2.

$$F_1(X,Y) \leftarrow \frac{F_1(X^3,X(1+Y))}{X^6}.$$

$$P_1(X) \leftarrow P_1(X^3), \ Q_1(X,Y) \leftarrow Q_1(X^3,X(1+Y)).$$



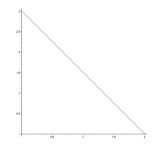
Deuxième transformation

On calcule $\mathcal{N}(F_1)$.

Une seule arête :

$$m = 3, q = 2, I = 6, u = -1, v = -1$$
 et $\xi = 1$ de multiplicité 1.

$$F_1(X,Y) \leftarrow \frac{F_1(X^2,X^3(1+Y))}{X^6}.$$



$$P_1(X) \leftarrow P_1(X^2), \ Q_1(X,Y) \leftarrow Q_1(X^2,X^3(1+Y)).$$

La multiplicité de ξ est 1 : on aura donc $\mathcal{I}(F_1)=1$.

Résultats symboliques

En faisant de même pour F_2 , F_3 et F_4 , on obtient les développements de Puiseux suivants :

•
$$[X = T^6, Y = 1 + T^2 + T^5]$$

•
$$[X = T^6, Y = 2 + T^2 + T^7]$$

•
$$[X = T^6, Y = -1 + T^3 + T^5]$$

•
$$[X = T^6, Y = -2 + T^3 + T^5]$$

Approche numérique-modulaire

On fait des calculs numériques et des calculs modulo p=1009 en même temps.

- On note F_p la réduction de F modulo p.
- Racines de $F_p(0, Y)$ dans \mathbb{F}_p : 1, 2, 1007 et 1008 de multiplicités 6.

Premier problème :

calculer numériquement les racines de F(0, Y) avec multiplicités.

⇒ Utilisation d'une version généralisée du théorème de Smith.

Théorème de Smith : racines multiples

Théorème

Soient $P(Z) \in \mathbb{C}[Z]$ et $(z_1, M_1), \dots, (z_L, M_L)$ des éléments de \mathbb{C} donnés avec multiplicité.

On peut calculer des nombres ρ_1, \ldots, ρ_L tels que : Si les disques $D(z_k, \rho_k)$ ne s'intersectent pas, alors chaque disque $D(z_k, \rho_k)$ contient exactement M_k racines de P(Z) (comptées avec multiplicité).

Théorème de Smith : racines multiples

Théorème

Soient $P(Z) \in \mathbb{C}[Z]$ et $(z_1, M_1), \dots, (z_L, M_L)$ des éléments de \mathbb{C} donnés avec multiplicité.

On peut calculer des nombres ρ_1, \ldots, ρ_L tels que : Si les disques $D(z_k, \rho_k)$ ne s'intersectent pas, alors chaque disque $D(z_k, \rho_k)$ contient exactement M_k racines de P(Z) (comptées avec multiplicité).

Idée:

- On calcule des approximations des racines à l'aide d'un solver.
- On regroupe les racines selon la multiplicité donnée par le calcul modulo p.
- On calcule les rayons donnés par Smith
 - S'il y a intersection, on recommence en augmentant la précision des calculs.
 - Sinon, le théorème certifie le regroupement de racines.

Application à notre exemple

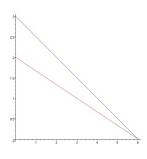
```
 P := eval(F,x=0) : s := [fsolve(P,y,complex)]; \\ s := [-2., -2., -2., -2., -2., -1.000000000, -1.000000000, -1.000000000, \\ -1.000000000, -1.0000000000, -1.0000000000, 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 2.] \\ s := grouproots(s); \\ s := [[-2., 6], [2., 6], [-1.000000000, 6], [1., 6] \\ smith(s,P,y); \\ [0., 0., 0., 0.]
```

Application à notre exemple

```
P := eval(F, x=0) :s := [fsolve(P, y, complex)];
s := [-2., -2., -2., -2., -2., -1.000000000, -1.000000000, -1.000000000]
-1.000000000, -1.000000000, -1.000000000, 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2.
s :=grouproots(s);
                s := [[-2, 6], [2, 6], [-1.000000000, 6], [1, 6]
smith(s,P,y);
                                [0..0..0..0.1
Etape suivante : on traite les racines par multiplicité.
On note:
Fp1 := Eval(Fp, y=y+1) \mod p : Fp2 := Eval(Fp, y=y+2) \mod p :
Fp3 := Eval(Fp, y=y+1007) \mod p : Fp4 := Eval(Fp, y=y+1008) \mod p :
f1 := eval(F, y=y+1.) : f2 := eval(F, y=y+2.) :
f3 := eval(F,y=y-1.) : f4 := eval(F,y=y-2.) :
et on initialise
   P1.P2.P3.P4 :=x$4 : 01.02.03.04 :=v$4 :
```

On calcule $\mathcal{N}(H)$, $H \in \{F_{p1}, F_{p2}, F_{p3}, F_{p4}\}$. On obtient 2 polygones de multiplicité 2.

On regarde les coefficients des f_k en X^2 :

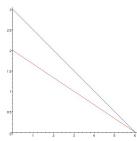


On calcule $\mathcal{N}(H)$, $H \in \{F_{p1}, F_{p2}, F_{p3}, F_{p4}\}$. On obtient 2 polygones de multiplicité 2.

On regarde les coefficients des f_k en X^2 :

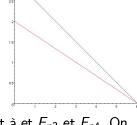
[46656.00000, 2985984.0, 0, 0]

 f_3 et f_4 correspondent au polygone bleu, soit à et F_{p3} et F_{p4} . On traite ces polynômes séparément des autres.



On calcule $\mathcal{N}(H)$, $H \in \{F_{p1}, F_{p2}, F_{p3}, F_{p4}\}$. On obtient 2 polygones de multiplicité 2.

On regarde les coefficients des f_k en X^2 :

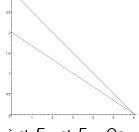


 f_3 et f_4 correspondent au polygone bleu, soit à et F_{p3} et F_{p4} . On traite ces polynômes séparément des autres.

```
polygone rouge: m, q, l, u, v = 1, 3, 6, 0, -1 \xi_p = 1 de multiplicité 2. \xi_1 = 1., \xi_2 = 0.9999609860 + 0.l.
```

On calcule $\mathcal{N}(H)$, $H \in \{F_{p1}, F_{p2}, F_{p3}, F_{p4}\}$. On obtient 2 polygones de multiplicité 2.

On regarde les coefficients des f_k en X^2 :



 f_3 et f_4 correspondent au polygone bleu, soit à et F_{p3} et F_{p4} . On traite ces polynômes séparément des autres.

```
polygone rouge : m, q, I, u, v = 1, 3, 6, 0, -1 \xi_p = 1 de multiplicité 2. \xi_1 = 1., \xi_2 = 0.9999609860 + 0.I.
```

```
polygone bleu : m, q, l, u, v = 1, 2, 6, 0, -1 \xi_p = 1 de multiplicité 3. \xi_3 = 0.9999727626 + 0. l, \xi_4 = 1..
```

Polynômes f_1 et f_2 (polygone rouge)

Pour $k \in \{1, 2\}$:

$$f_k(X,Y) \leftarrow \frac{f_k(\xi_k^{-1}X^3, X(1+Y))}{X^6}, F_{pk}(X,Y) \leftarrow \frac{F_{pk}(\xi_p^{-1}X^3, X(1+Y))}{X^6}$$
$$P_k(X) \leftarrow P_k(\xi_k^{-1}X^3), Q_k(X,Y) \leftarrow Q_k(\xi_k^{-1}X^3, X(1+Y)).$$

Polynômes f_1 et f_2 (polygone rouge)

Pour $k \in \{1, 2\}$:

$$f_k(X,Y) \leftarrow \frac{f_k(\xi_k^{-1}X^3, X(1+Y))}{X^6}, F_{pk}(X,Y) \leftarrow \frac{F_{pk}(\xi_p^{-1}X^3, X(1+Y))}{X^6}$$

$$P_k(X) \leftarrow P_k(\xi_k^{-1}X^3), \ Q_k(X,Y) \leftarrow Q_k(\xi_k^{-1}X^3,X(1+Y)).$$

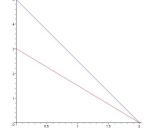
On calcule $\mathcal{N}(F_{p1})$ et $\mathcal{N}(F_{p2})$. 2 polygones différents :

[seq(abs(coeff(coeff(i,x,3),y,0)),i=g2)];

[419904.0000, 95.27800000]

On connecte f_1 à F_{p1} et f_2 à F_{p2} .

Les multiplicités obtenues sont 1 : on passe en numérique pur.



Polynômes f₃ et f₄ (polygone bleu)

Pour $k \in \{3,4\}$:

$$f_k(X,Y) \leftarrow \frac{f_k(\xi_k^{-1}X^2, X(1+Y))}{X^6}, F_{pk}(X,Y) \leftarrow \frac{F_{pk}(\xi_p^{-1}X^2, X(1+Y))}{X^6}$$

 $P_k(X) \leftarrow P_k(\xi_k^{-1}X^2), Q_k(X,Y) \leftarrow Q_k(\xi_k^{-1}X^2, X(1+Y)).$

Polynômes f_3 et f_4 (polygone bleu)

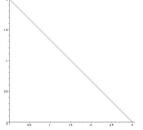
Pour $k \in \{3,4\}$:

$$f_k(X,Y) \leftarrow \frac{f_k(\xi_k^{-1}X^2, X(1+Y))}{X^6}, F_{pk}(X,Y) \leftarrow \frac{F_{pk}(\xi_p^{-1}X^2, X(1+Y))}{X^6}$$

$$P_k(X) \leftarrow P_k(\xi_k^{-1}X^2), \ Q_k(X,Y) \leftarrow Q_k(\xi_k^{-1}X^2,X(1+Y)).$$

On calcule $\mathcal{N}(F_{p3})$ et $\mathcal{N}(F_{p4})$. 2 polygones identiques : on fait le même changement de variable pour les deux polynômes. Les multiplicités obtenues sont 1 :

on passe en numérique pur



Résultats

•
$$[X = 1.0000000000T^6, Y = 1.T^5 + 1.T^2]$$

•
$$[X = (.9998501012 - 0.1)T^6, Y = .9999388687T^2 + .9998166174T^7]$$

•
$$[X = (1.000041304 - .3333608699e^{-11}I)T^6, Y = 1.T^3 + 1.T^5]$$

•
$$[X = (1.000184747 - .3167392738e^{-10}I)T^6, Y = (1.000184747 - .3167392738e^{-10}I)T^5 + (1.000092369 - .1583550098e^{-10}I)T^3]$$

Exemples: monodromie

$$M_{a,d}(X) := X^d - 2(aX - 1)^2 : 2 \text{ racines à distance} < 2a^{-\frac{d+2}{2}}.$$

On considère $F(X,Y) = Y^3 - M_{10,5}(X)$.

- Fonction de Maple : 0.802 secondes. Digits 10.
- Version symbolique/numérique : 0.950 secondes. Précision de 40 chiffres nécessaire pour avoir un résultat correct.

Exemples: monodromie

$$M_{a,d}(X) := X^d - 2(aX - 1)^2 : 2 \text{ racines à distance} < 2a^{-\frac{d+2}{2}}.$$
 On considère $F(X,Y) = Y^3 - M_{10,5}(X)$.

- Fonction de Maple : 0.802 secondes. Digits 10.
- Version symbolique/numérique : 0.950 secondes. Précision de 40 chiffres nécessaire pour avoir un résultat correct.

Algorithme Newton-Puiseux au dessus des racines de $M_{10,5}(X)$ jusqu'au terme en $X^{\frac{16}{3}}$:

Digits	Symbolique + Numerique	Mon algorithme
10	0	7
40	0	36
50	6	47

• Version numérique/modulaire : 0.839 secondes. Digits 10.

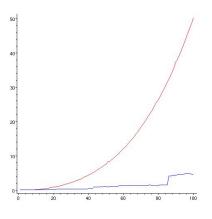
Précision numérique

 $F(X,Y)=(Y^3-M_{10,6}(X))(Y^3-M_{10,3}(X))+Y^2X^5$: le discriminant possède un facteur P(X) de degré 30 et avec des coefficients $>10^{13}$.

Partie ramifiée de l'algorithme de Newton-Puiseux :

Digits	Symbolique + Numerique	Mon algorithme
10	0	4
20	0	15
30	5	29

Temps de calcul



$$F(x,y) = Y^3 - M_{10.5}(X)$$

au-dessus des racines de $M_{10,5}(X)$

Temps de calcul

$$\begin{split} G_n(X,Y) &= \left(Y^{\left\lceil\frac{n}{2}\right\rceil} - P_{\left\lceil\frac{n}{2}\right\rceil}(X)\right) G_{\left\lfloor\frac{n}{2}\right\rfloor}(X,Y) \\ \text{avec } P_{n_0}(X) &= \frac{1}{{n_0}^{3!}} X \left(X^{n_0} + (n_0-1)X - \frac{1}{n_0!}\right). \end{split}$$

Polynôme	temps de calcul	Mon algorithme	
	symbolique	temps	précision
G ₈	0.031 s	0.029 s	9
G ₁₂	0.041 s	0.099 s	9
G ₁₆	2.3 s	0.221 s	9
G ₂₀	0.751 s	0.550 s	9
G ₂₄	2.889 s	0.920 s	9
G ₂₈	8.509 s	1.719 s	9
G ₃₂	30.820 s	5.040 s	9

Premier utilisé : p = 100019.

Conclusions

- Chemins optimisés.
- Stratégie nombre de pas / ordre de troncation : borne sur le nombres d'étapes.
- Développements en des points critiques : algorithme numérique-modulaire.

Perspectives

- Pourquoi le calcul modulaire-numérique semble marcher si bien?
- Finaliser l'algorithme :
 - Choix du premier p (travail en cours).
 - Contrôle de la précision.
- Théorème d'Abel Jacobi effectif.