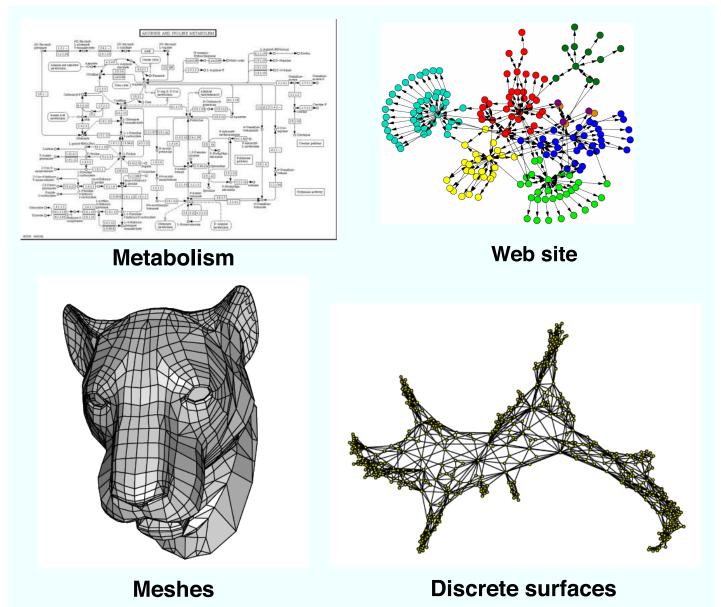
Dessin de triangulations: algorithmes, combinatoire, et analyse

Éric Fusy

Projet ALGO, INRIA Rocquencourt et LIX, École Polytechnique

Motivations

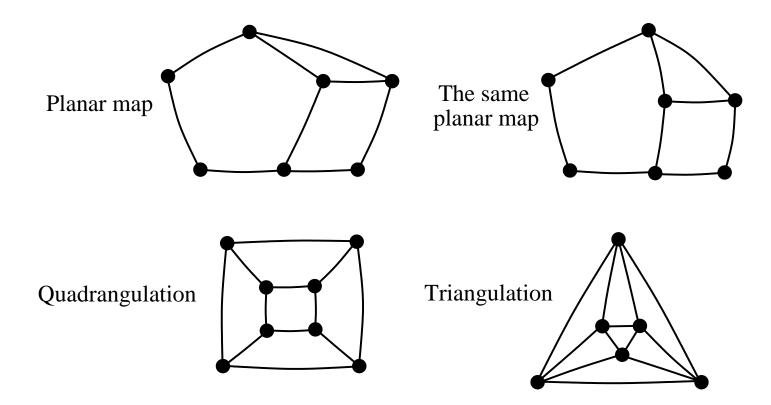
Display of large structures on a planar surface



- p.2/53

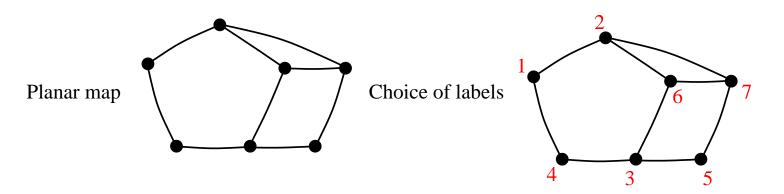
Planar maps

- A planar map is obtained by embedding a planar graph in the plane without edge crossings.
- A planar map is defined up to continuous deformation



Planar maps

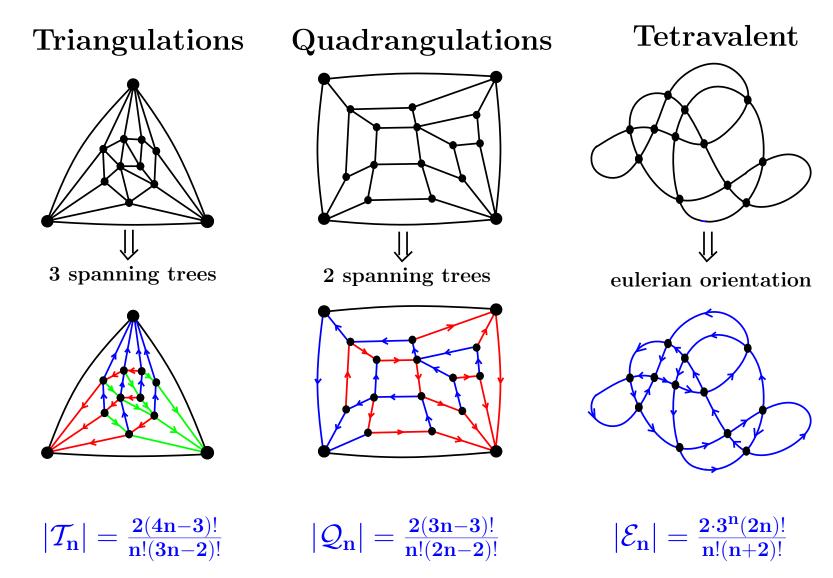
- Planar maps are combinatorial objects
- They can be encoded without dealing with coordinates



Encoding: to each vertex is associated the (cyclic) list of its neighbours in clockwise order

1: (2, 4) 2: (1, 7, 6) 3: (4, 6, 5) 4: (1, 3) 5: (3, 7) 6: (3, 2, 7) 7: (2, 5, 6)

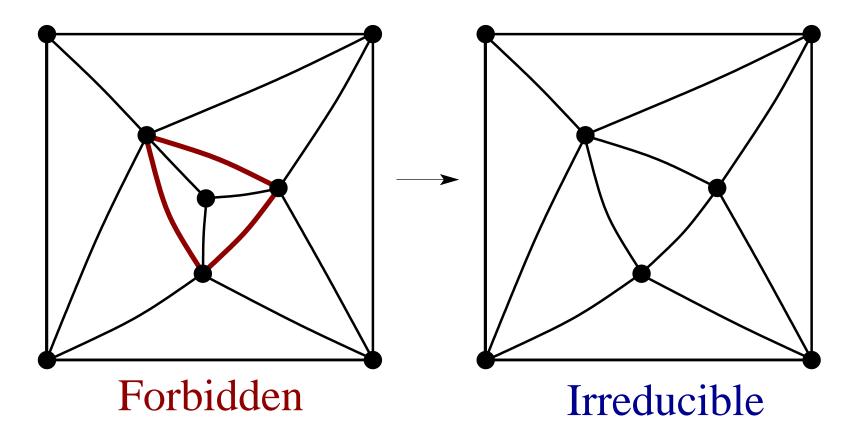
Combinatorics of maps



 \Rightarrow Tutte, Schaeffer, Schnyder, De Fraysseix et al...

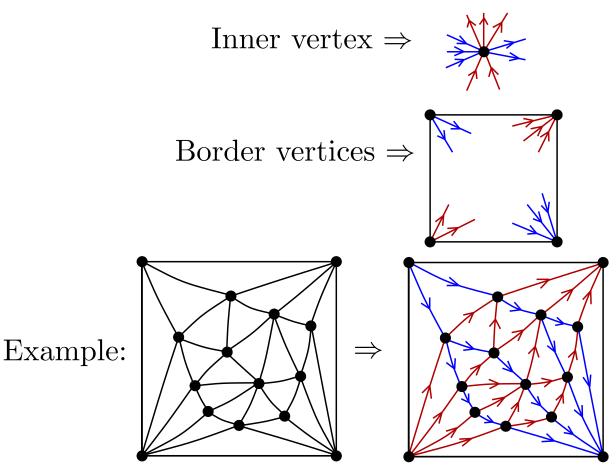
A particular family of triangulations

- We consider triangulations of the 4-gon (the outer face is a quadrangle)
- Each 3-cycle delimits a face (irreducibility)



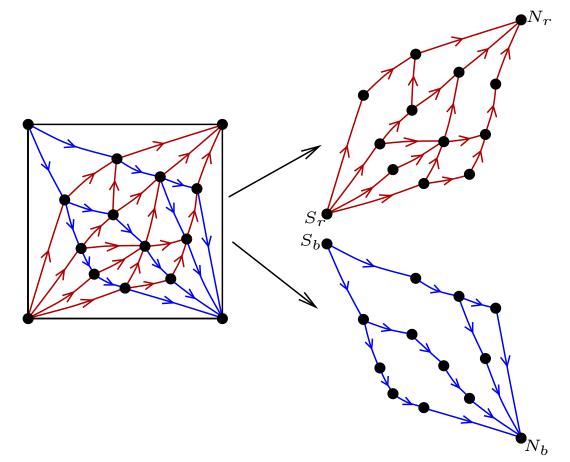
Transversal structures

We define a transversal structure using local conditions Inner edges are colored blue or red and oriented:



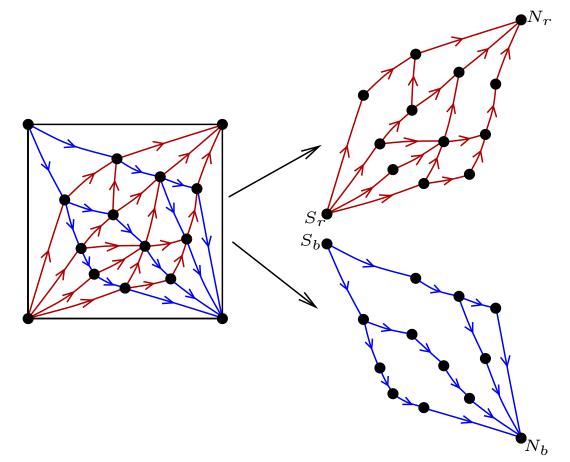
Link with bipolar orientations

bipolar orientation = acyclic orientation with a unique minimum and a unique maximum The blue (resp. red) edges give a bipolar orientation The two bipolar orientations are transversal



Link with bipolar orientations

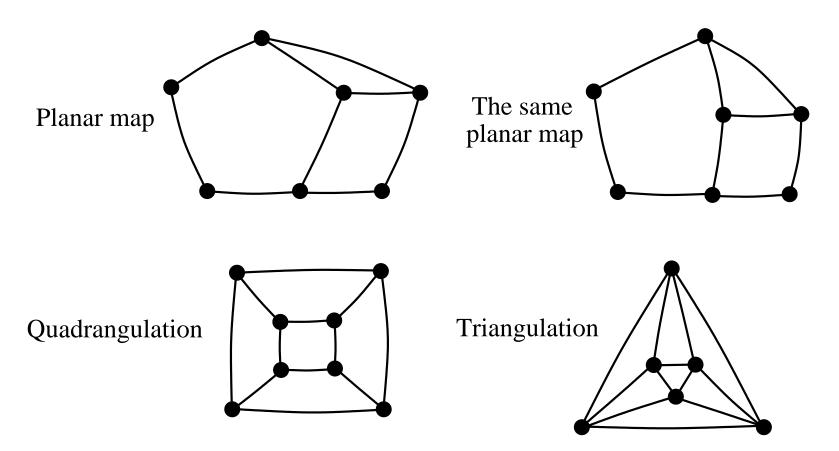
bipolar orientation = acyclic orientation with a unique minimum and a unique maximum The blue (resp. red) edges give a bipolar orientation The two bipolar orientations are transversal



Definition and properties of transversal structures on triangulations

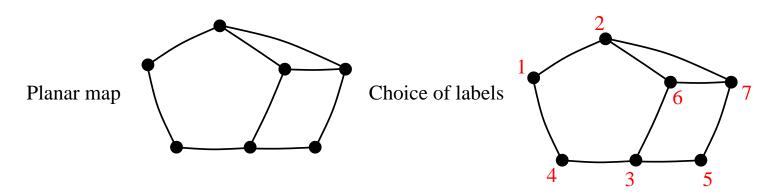
Planar maps

- A planar map is obtained by drawing a planar graph in the plane without edge crossings.
- A planar map is defined up to continuous deformation



Planar maps

- Planar maps are combinatorial objects
- They can be encoded without dealing with coordinates

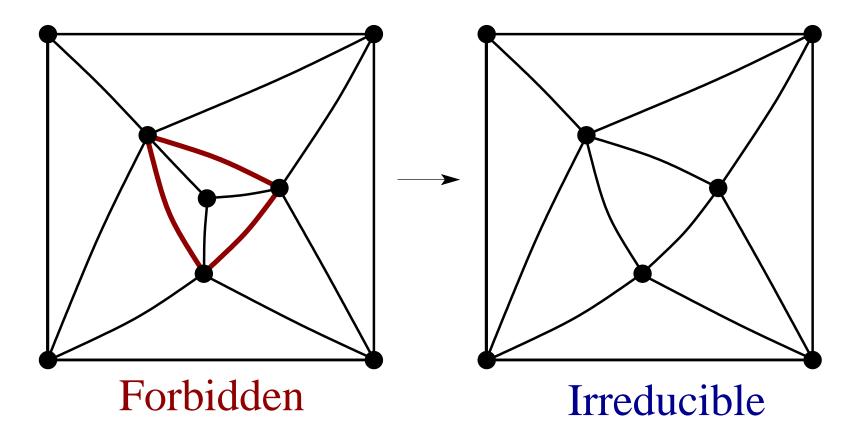


Encoding: to each vertex is associated the (cyclic) list of its neighbours in clockwise order

1: (2, 4) 2: (1, 7, 6) 3: (4, 6, 5) 4: (1, 3) 5: (3, 7) 6: (3, 2, 7) 7: (2, 5, 6)

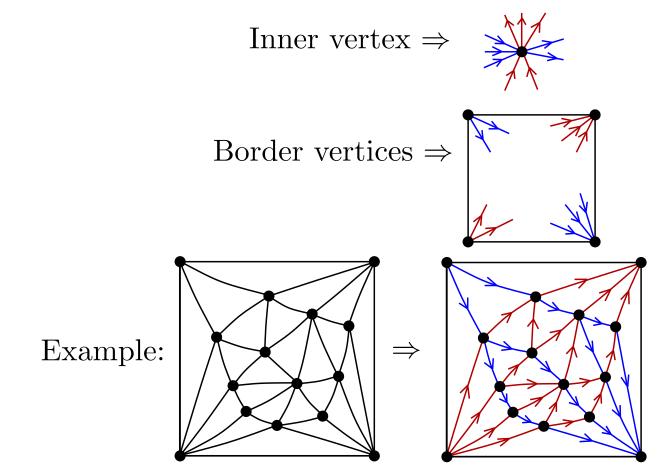
A particular family of triangulations

- We consider triangulations of the 4-gon (the outer face is a quadrangle)
- Each 3-cycle delimits a face (irreducibility)



Transversal structures

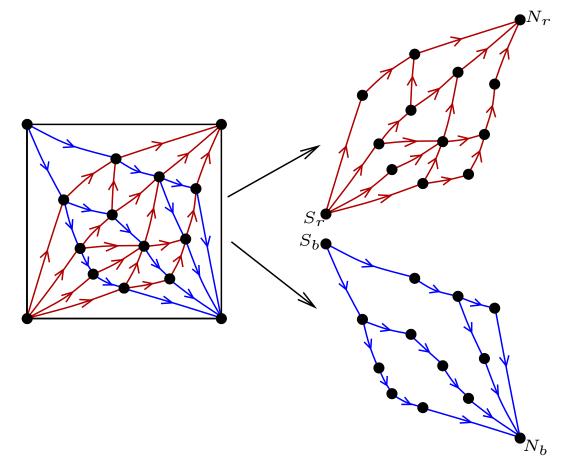
We define a transversal structure using local conditions Inner edges are colored blue or red and oriented:



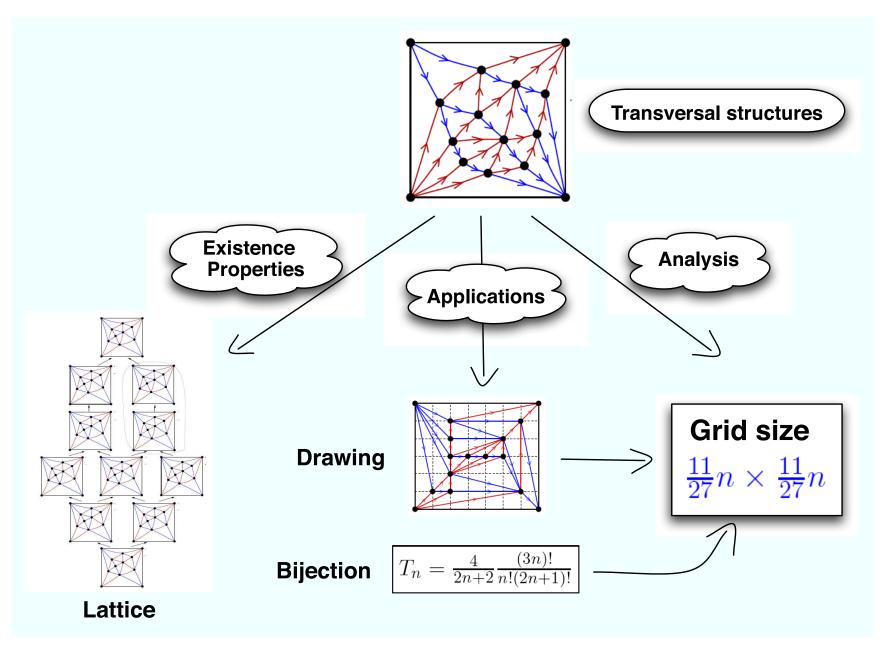
cf Regular edge 4-labelings (Kant, He)

Link with bipolar orientations

bipolar orientation = acyclic orientation with a unique minimum and a unique maximum The blue (resp. red) edges give a bipolar orientation The two bipolar orientations are transversal

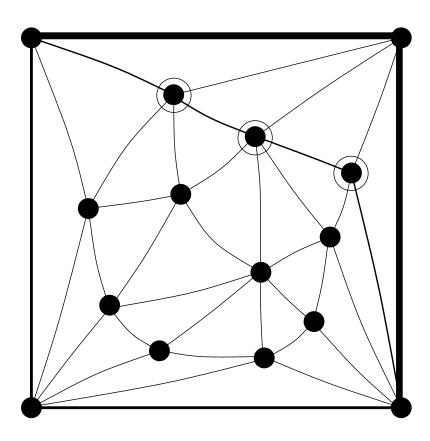


Overview

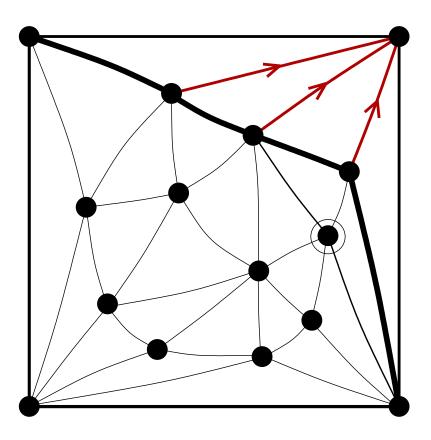


Definition and properties of transversal structures on triangulations

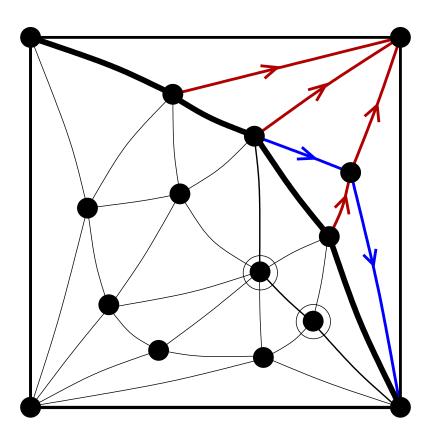
- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



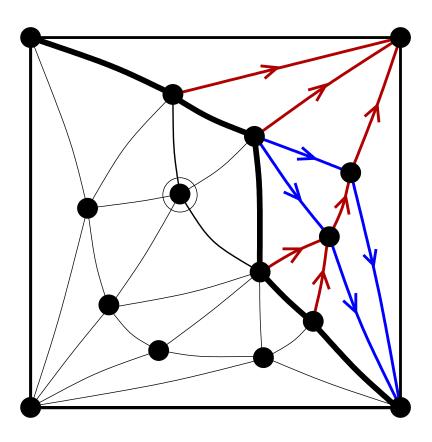
- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



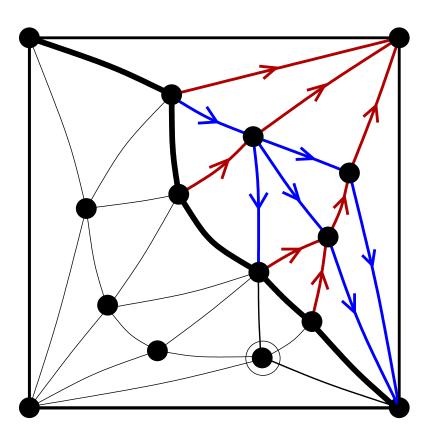
- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



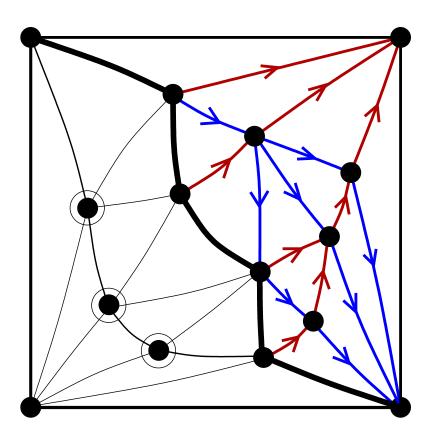
- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



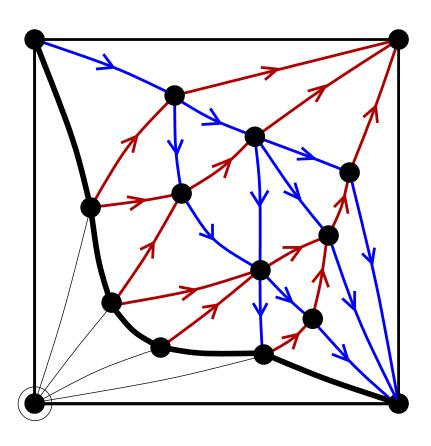
- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



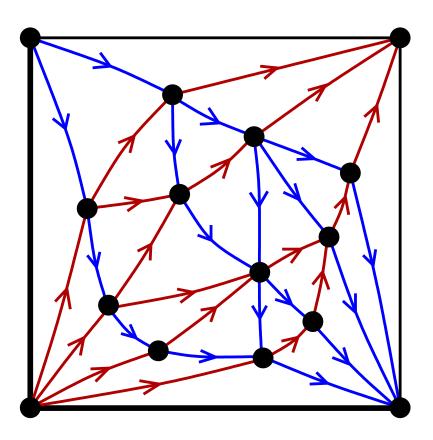
- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures

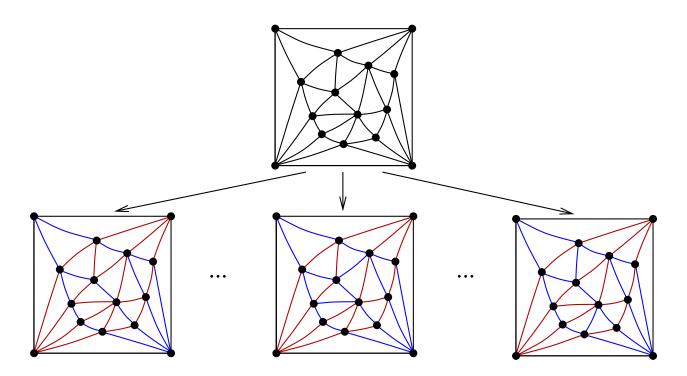


- For each triangulation, there exists a transversal structure (Kant, He 1997)
- There exists linear time iterative algorithms to compute transversal structures



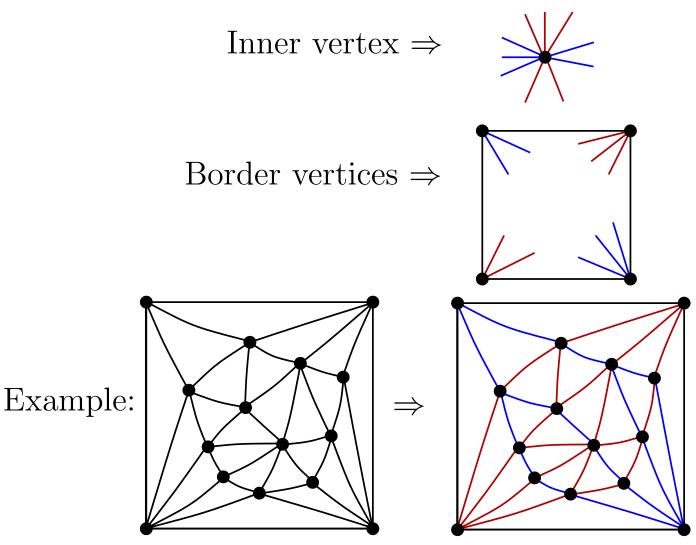
The structure of transversal structures

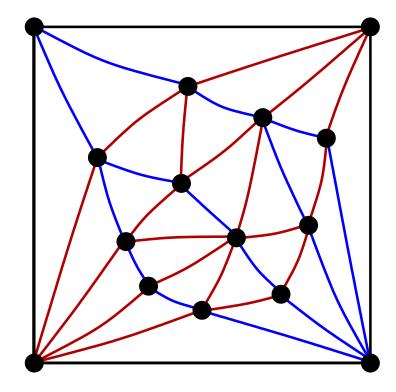
- For each triangulation T, such transversal structures are not unique
- Let X_T be the set of transversal bicolorations of T
- What is the structure of X_T ?

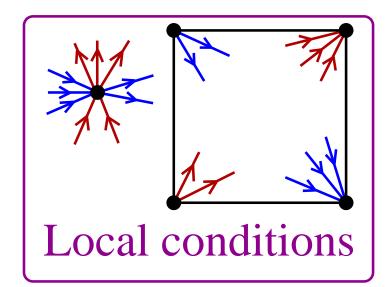


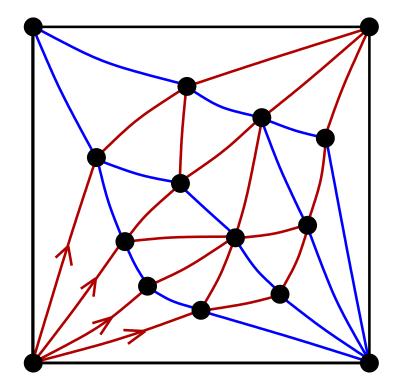
Without orientations

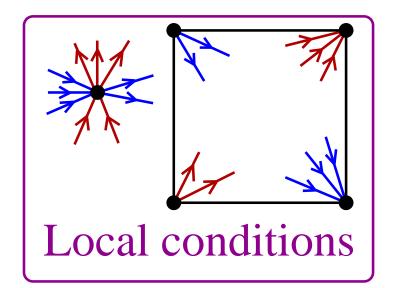
The orientation of edges are not necessary. The local conditions can be defined just with the bicoloration:

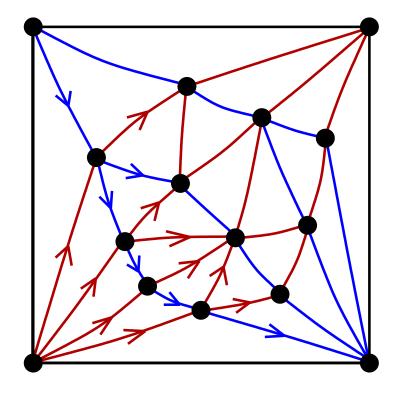


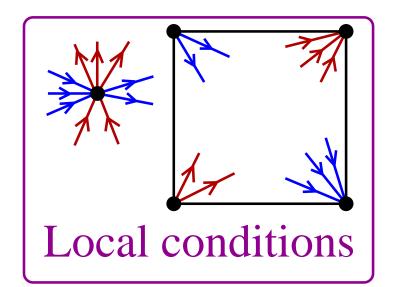


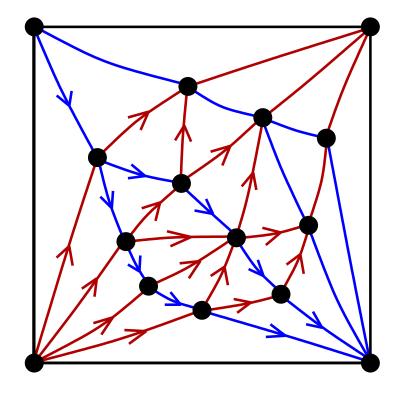


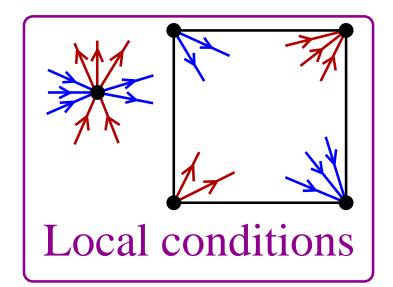


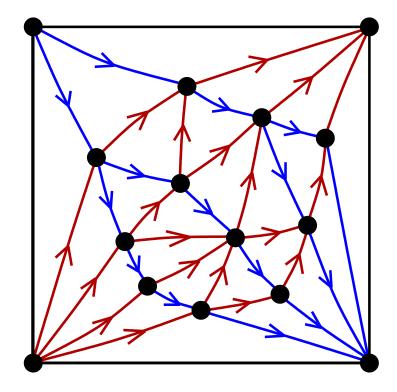


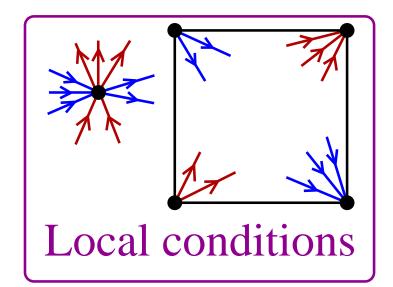


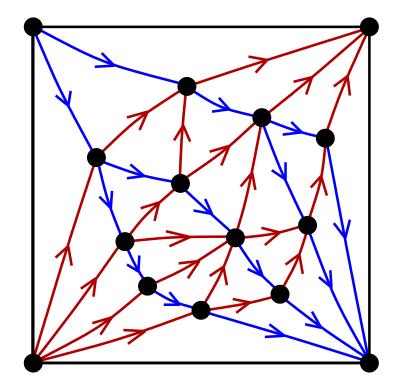


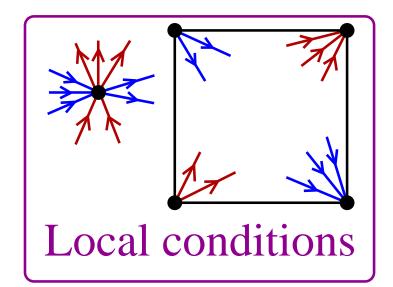


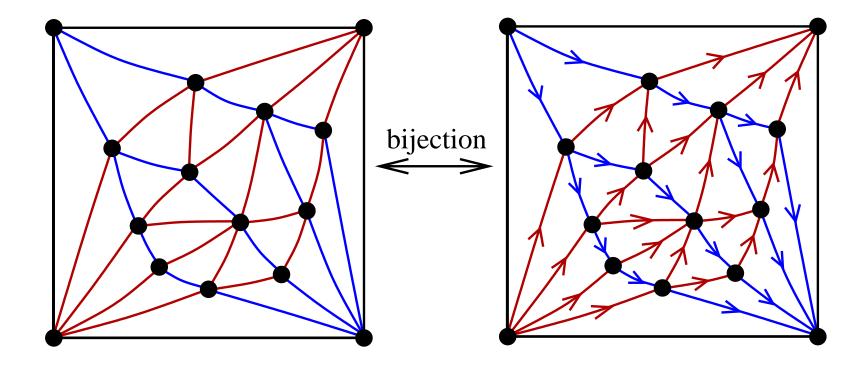




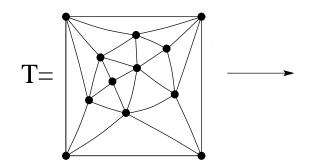


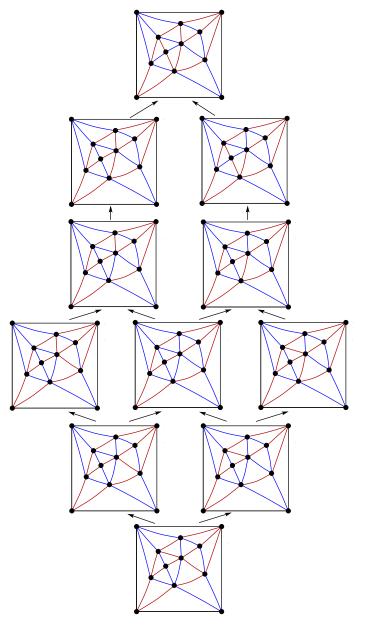




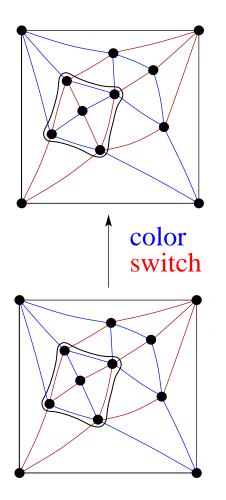


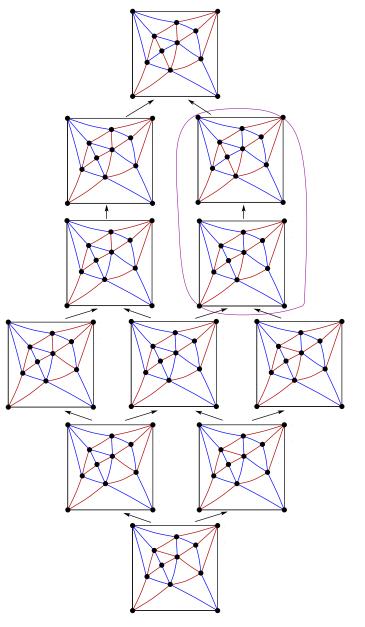
The set X_T is a distributive lattice





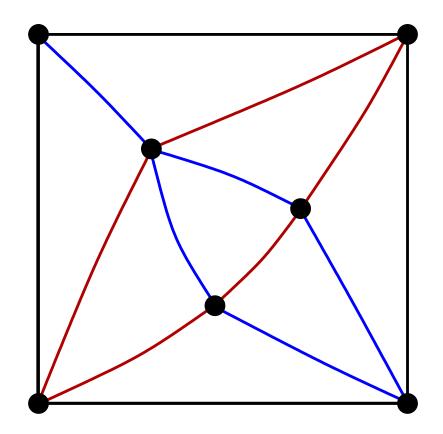
The set X_T is a distributive lattice





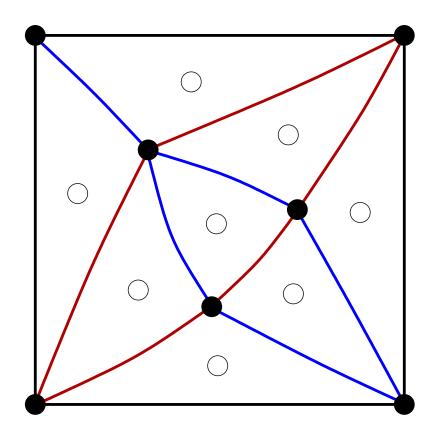
We associate to T an angular graph Q(T):

• The black vertices of Q(T) are the vertices of T



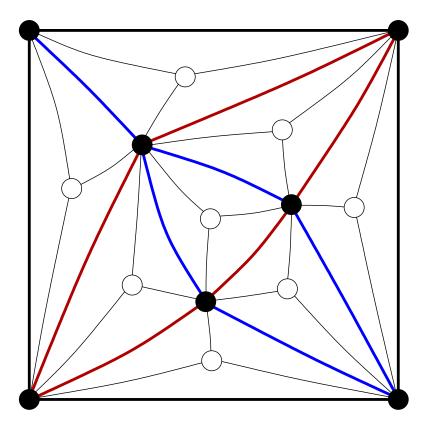
We associate to T an angular graph Q(T):

• There is a white vertex of Q(T) in each face of T

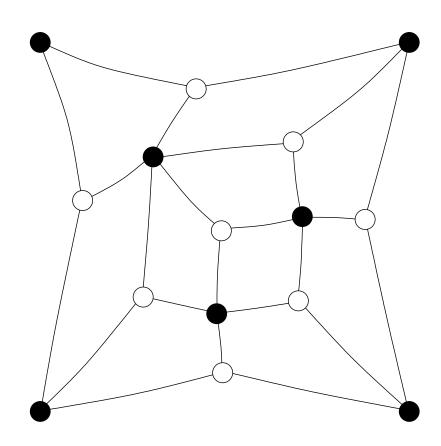


We associate to T an angular graph Q(T):

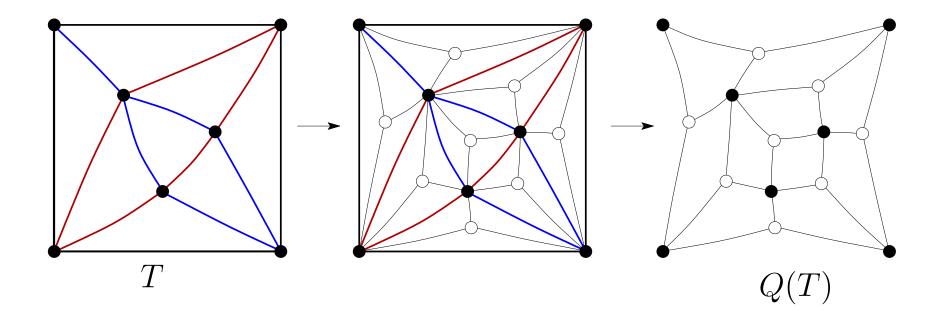
• To each angle of T corresponds an edge of Q(T)



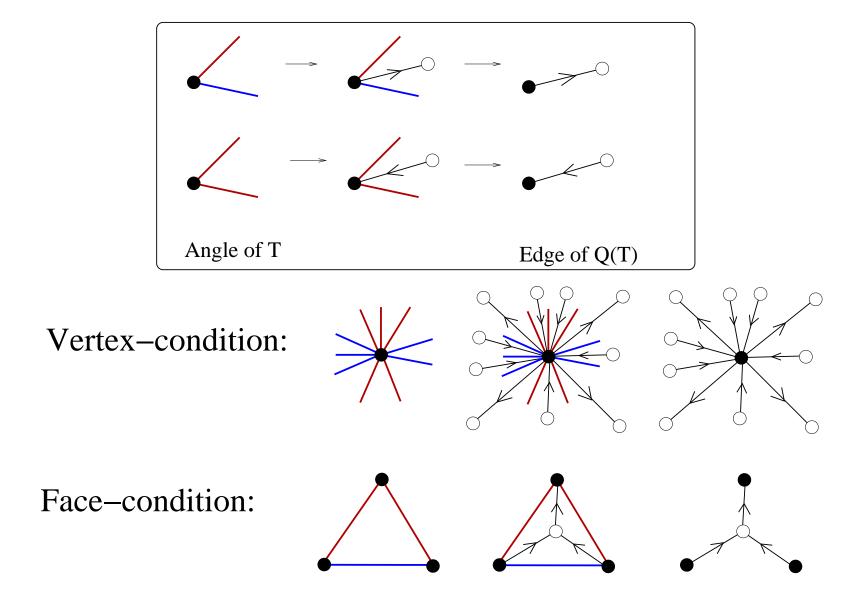
We associate to T an angular graph Q(T):



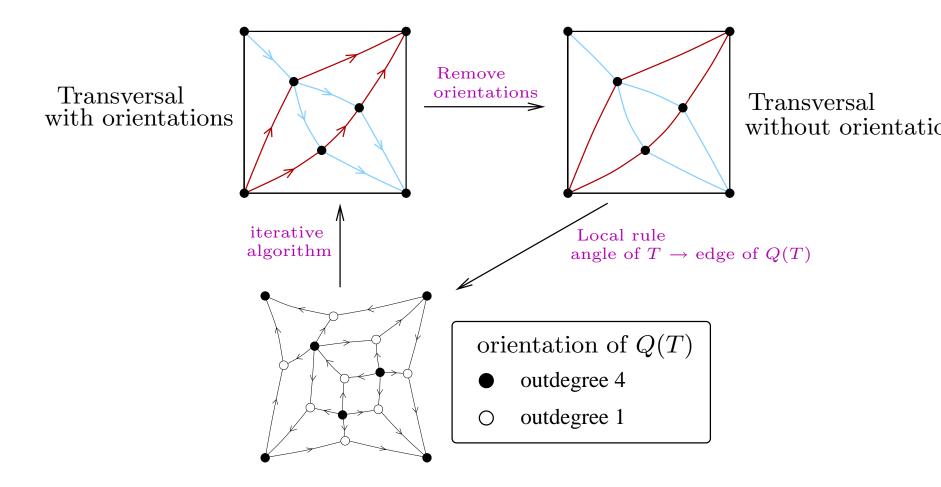
We associate to T an angular graph Q(T):



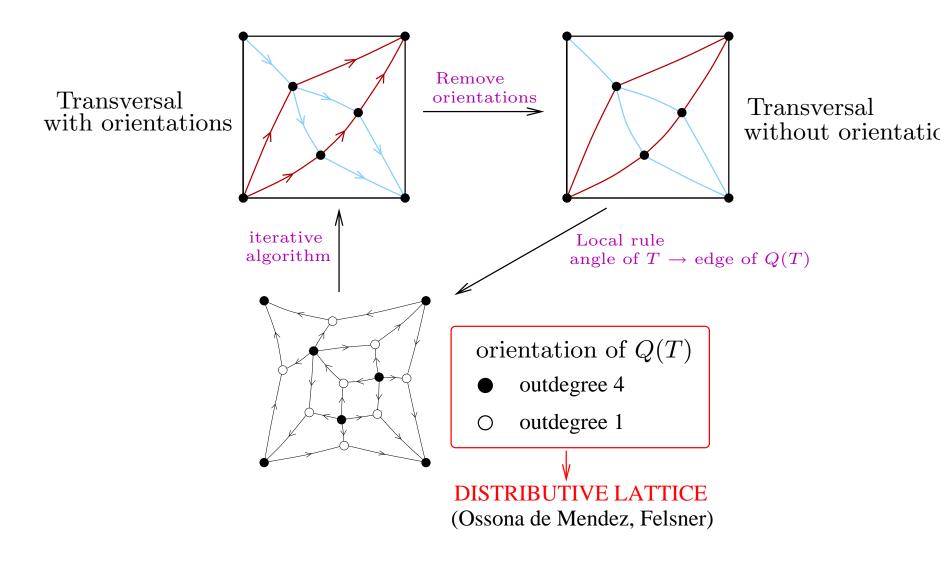
Induced orientation on $Q({\boldsymbol{T}})$

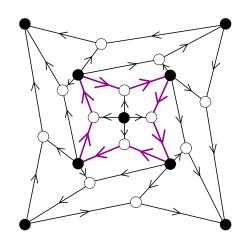


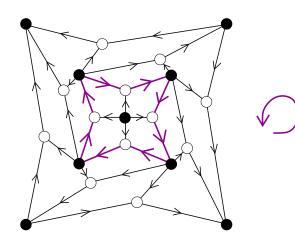
Bijective correspondences

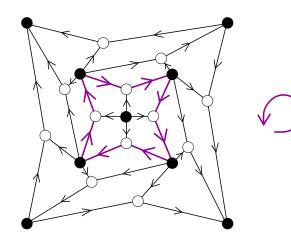


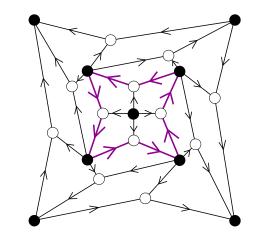
Bijective correspondences

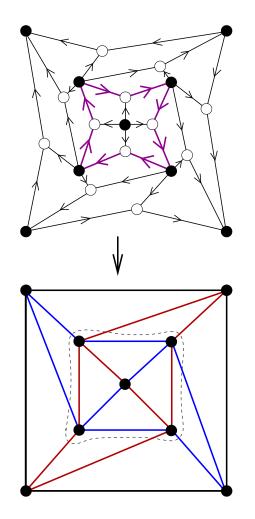


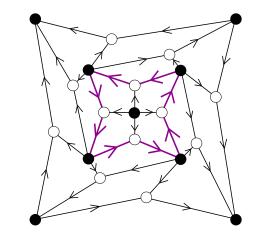


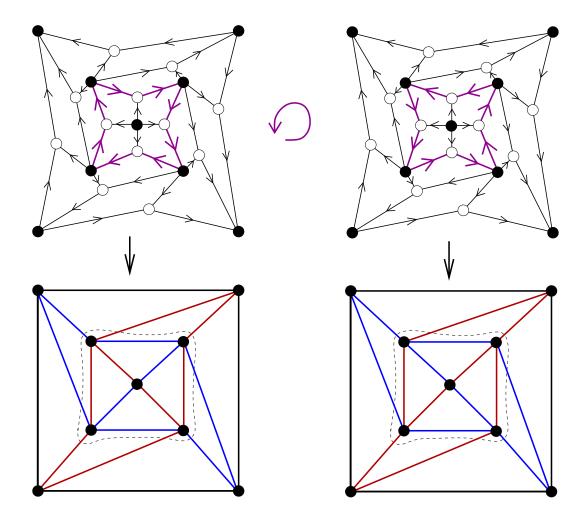


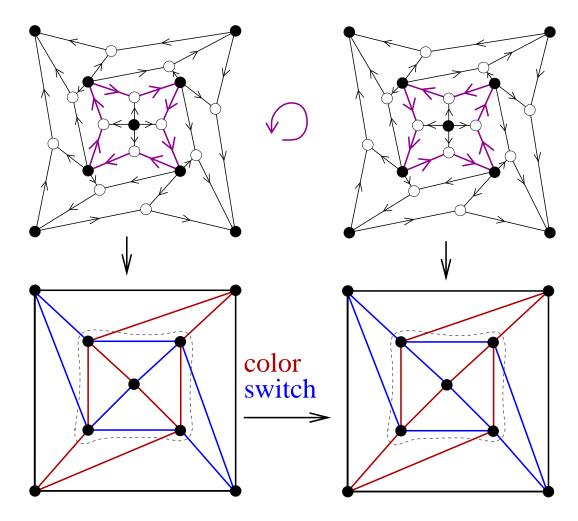












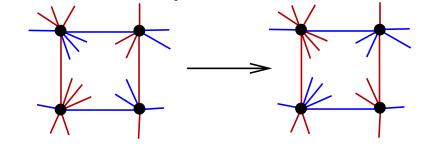
The set X_T is a distributive lattice

We distinguish:

left alternating 4-cycles

right alternating 4-cycles

Flip operation: switch colors inside a right alternatin 4-cycle

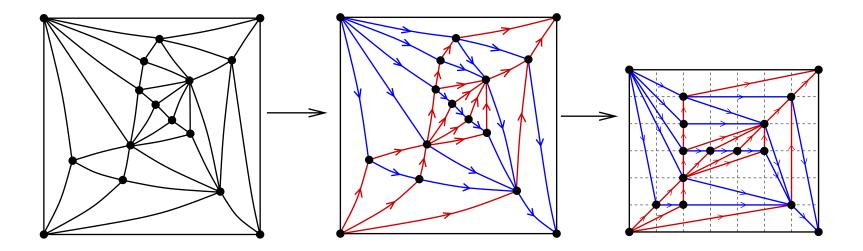


The unique transversal bicoloration of T without right alternating 4-cycle is said minimal

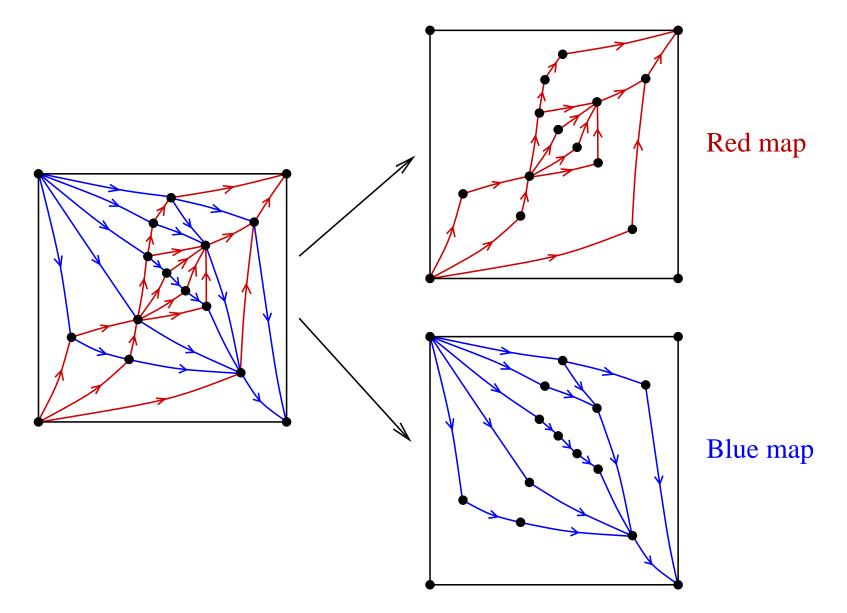
Straight-line drawing algorithm from the transversal structures

Application to graph drawing

The transversal structure can be used to produce a planar drawing on a regular grid



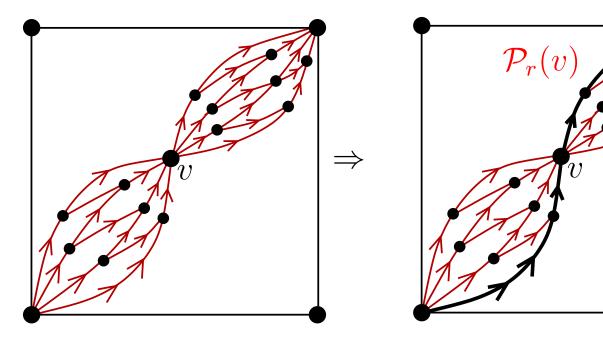
The red map and the blue map of ${\cal T}$



The red map gives abscissas (1)

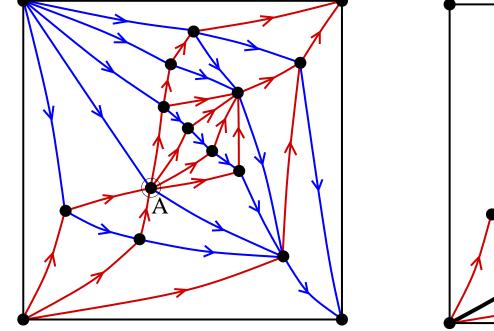
Let v be an inner vertex of TLet $\mathcal{P}_r(v)$ be the unique path passing by v which is:

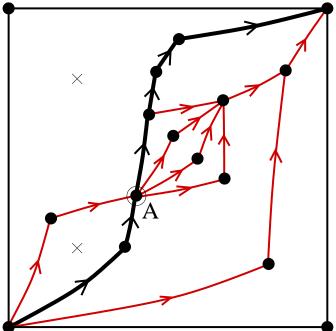
- the rightmost one before arriving at \boldsymbol{v}
- the leftmost one after leaving \boldsymbol{v}



The red map gives abscissas (2)

The absciss of v is the number of faces of the red map on the left of $\mathcal{P}_r(v)$



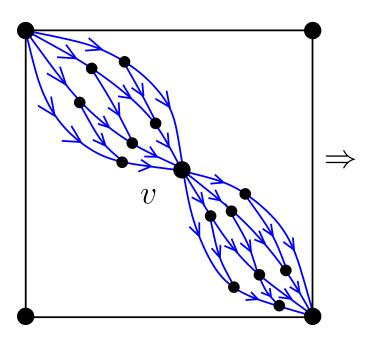


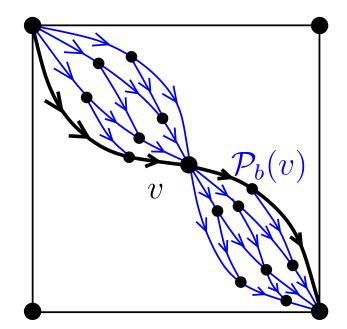
 \Rightarrow A has absciss 2

The blue map gives ordinates (1)

Similarly we define $\mathcal{P}_b(v)$ the unique blue path which is:

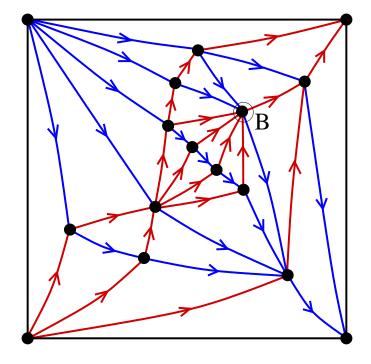
- the rightmost one before arriving at \boldsymbol{v}
- the leftmost one after leaving v

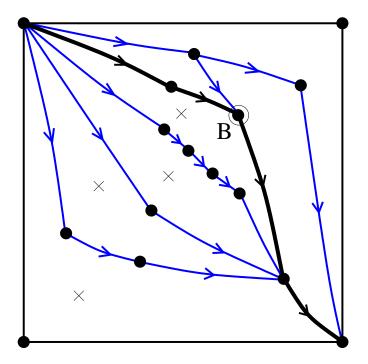




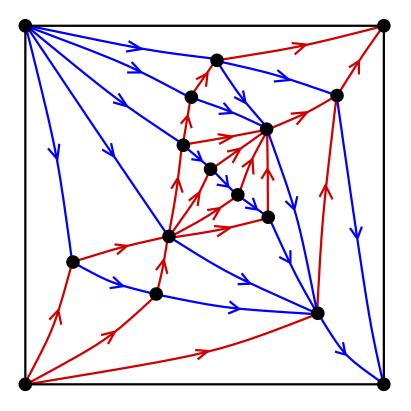
The blue map gives ordinates (2)

The ordinate of v is the number of faces of the blue map below $\mathcal{P}_b(v)$

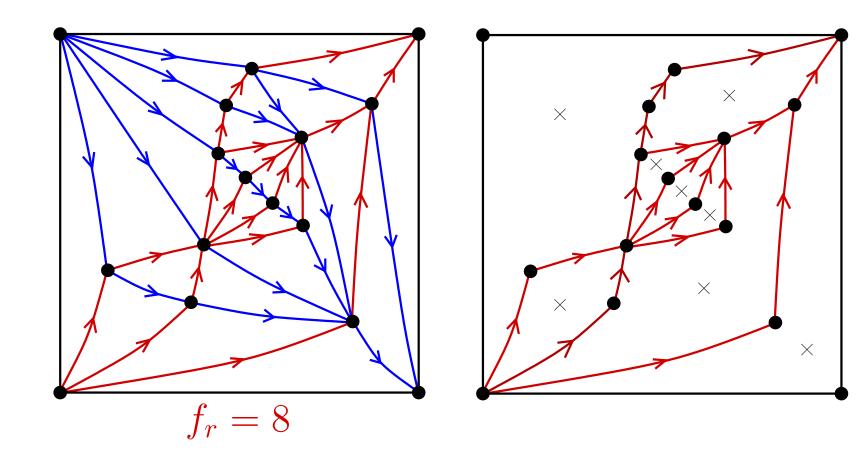




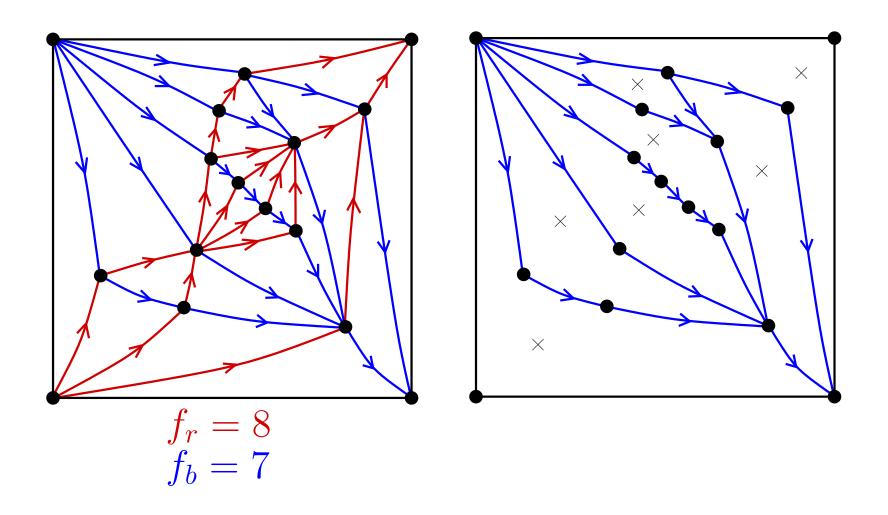
 $\Rightarrow B$ has ordinate 4



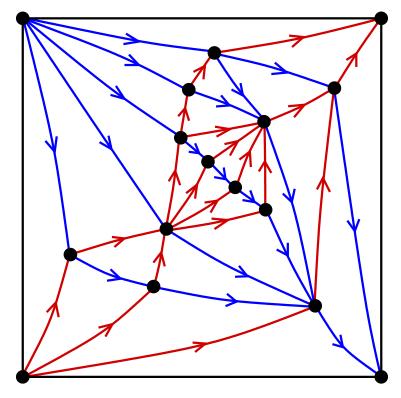
Let f_r be the number of faces of the red map

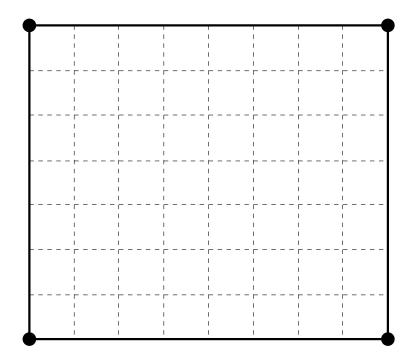


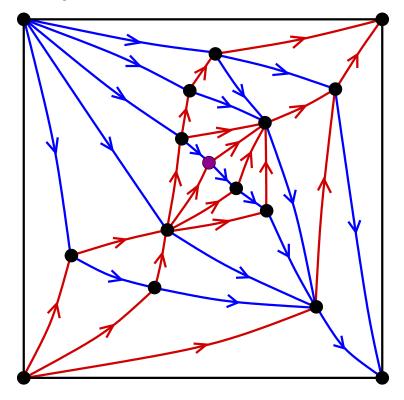
Let f_b be the number of faces of the blue map

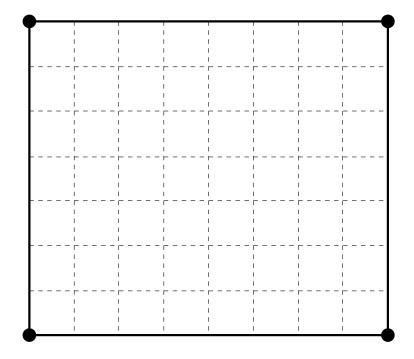


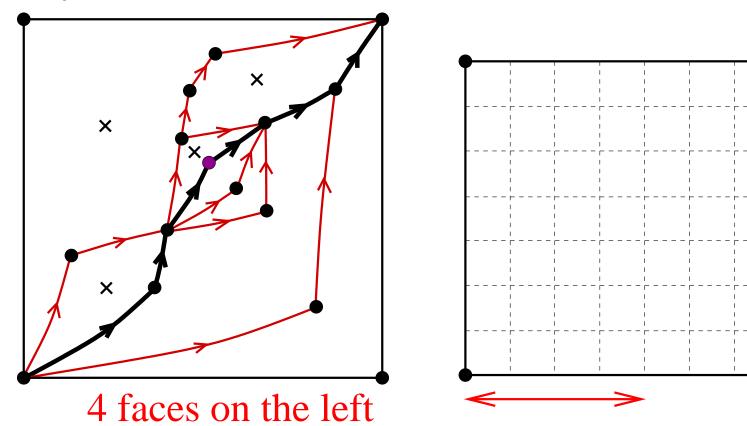
Take a regular grid of width f_r and height f_b and place the 4 border vertices of T at the 4 corners of the grid

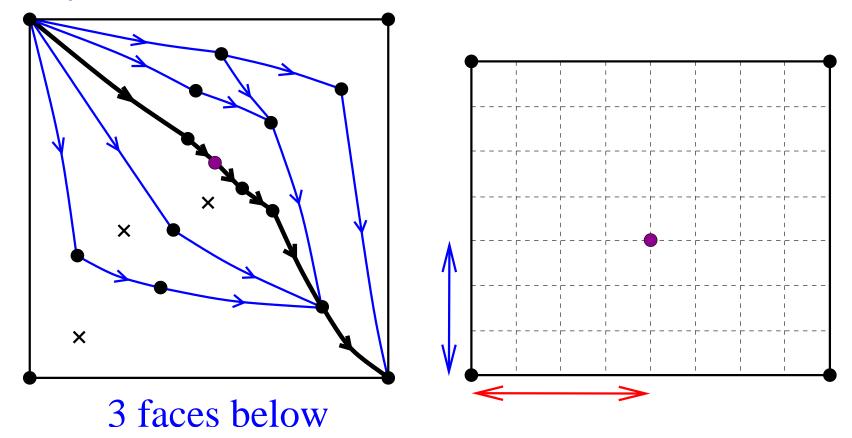


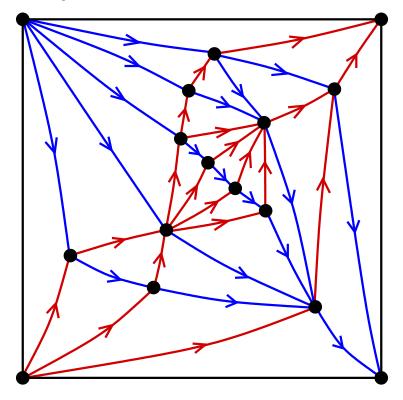


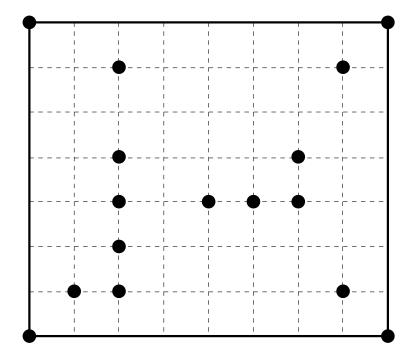




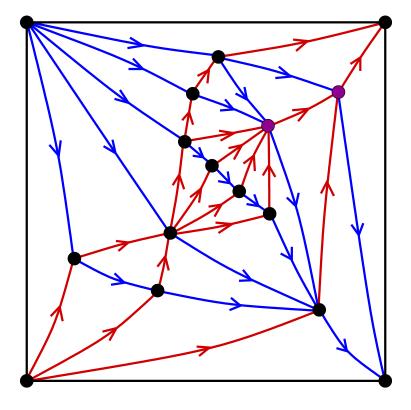


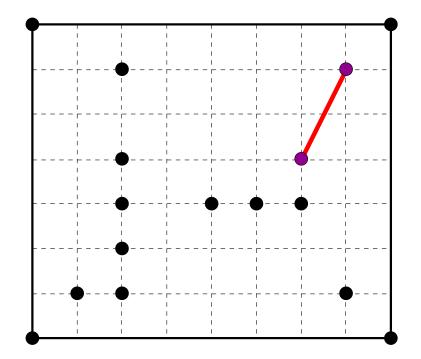


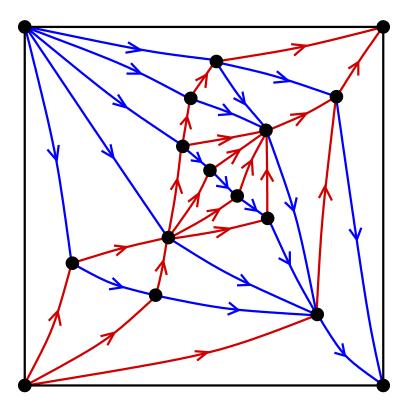


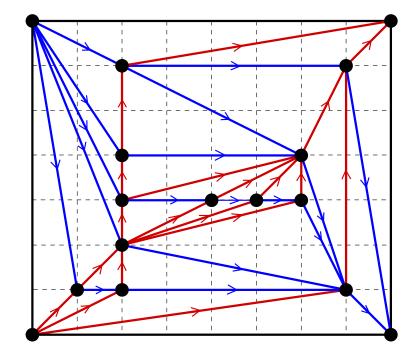


Link each pair of adjacent vertices by a segment









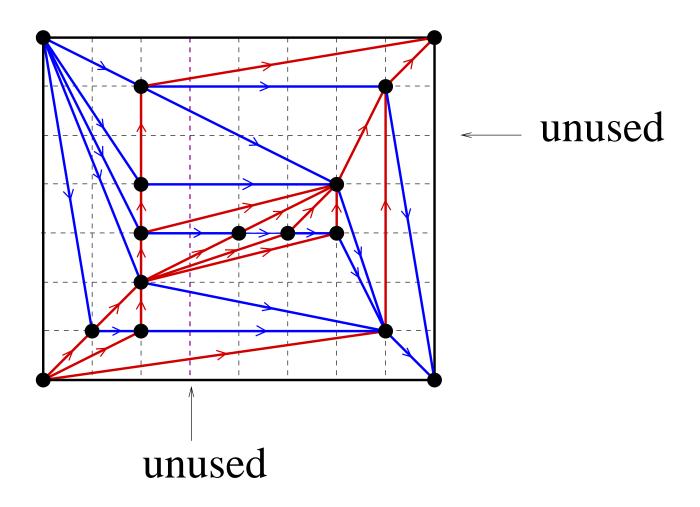
Results

- The obtained drawing is a straight line embedding
- The drawing respects the transversal structure:
 - Red edges are oriented from bottom-left to top-right
 - Blue edges are oriented from top-left to bottom-right
- If T has n vertices, the width W and height H verify W + H = n 1

similar grid size as He (1996) and Miura et al (2001)

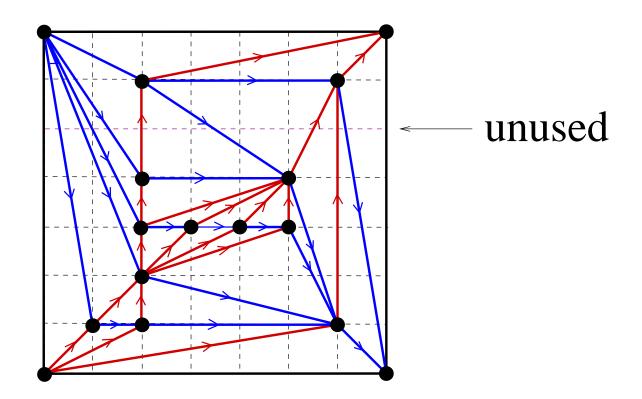
Compaction step

- Some abscissas and ordinates are not used
- The deletion of these unused coordinates keeps the drawing planar



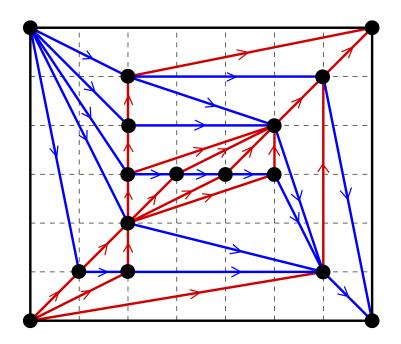
Compaction step

- Some abscissas and ordinates are not used
- The deletion of these unused coordinates keeps the drawing planar



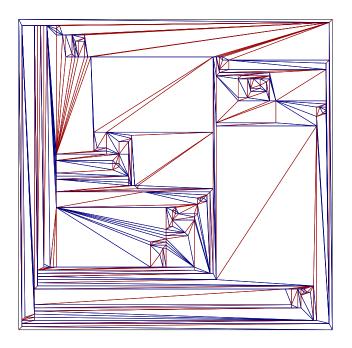
Compaction step

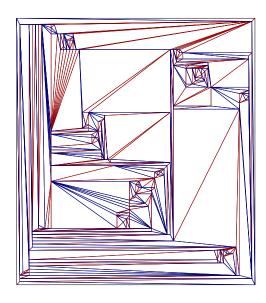
- Some abscissas and ordinates are not used
- The deletion of these unused coordinates keeps the drawing planar



Size of the grid after deletion

- If the transversal structure is the minimal one, the number of deleted coordinates can be analyzed:
- After deletion, the grid has size $\frac{11}{27}n \times \frac{11}{27}n$ "almost surely"
- Reduction of $\frac{5}{27} \approx 18\%$ compared to He and Miura et al





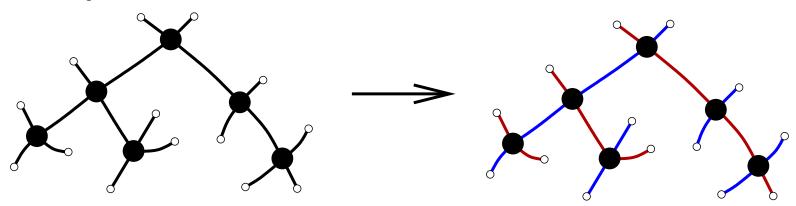
Bijection between triangulations and ternary trees

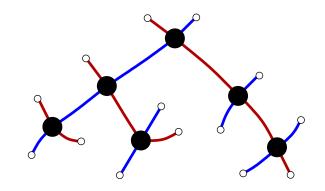
Ternary trees

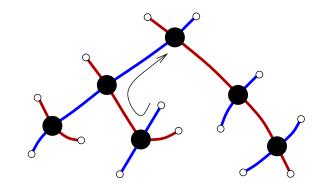
A ternary tree is a plane tree with:

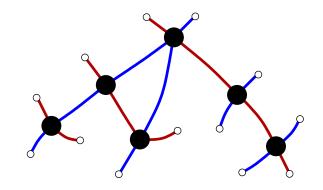
- Vertices of degree 4 called inner nodes
- Vertices of degree 1 called leaves
- An edge connected two inner nodes is called inner edge
- An edge incident to a leaf is called a stem

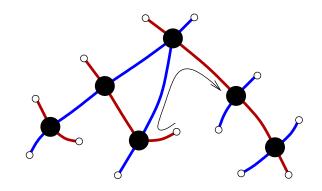
A ternary tree can be endowed with a transversal structure

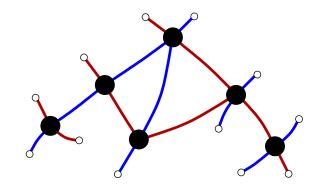


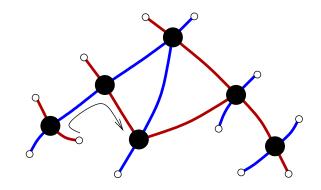


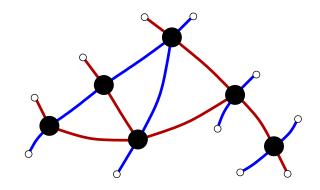




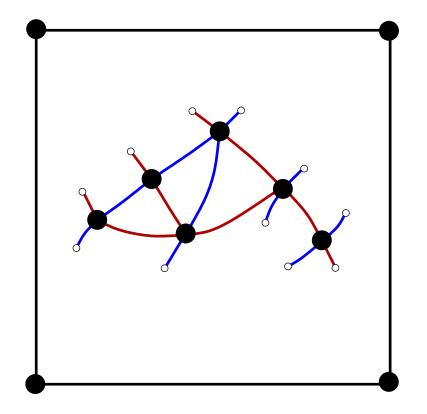


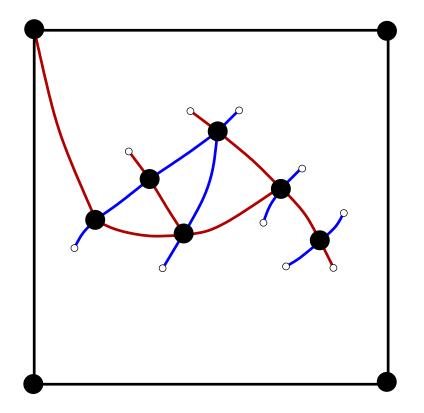


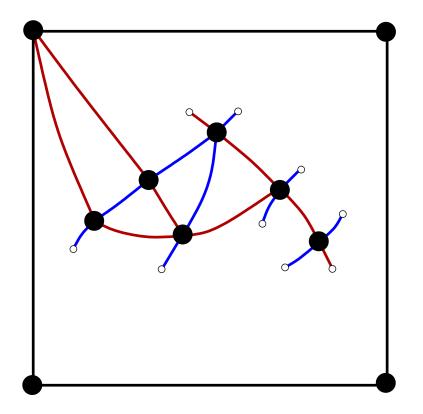


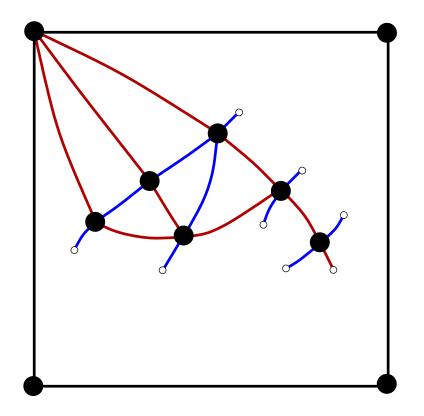


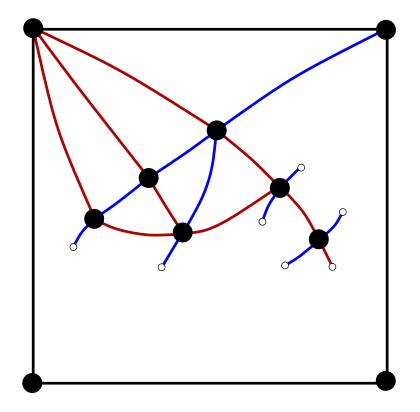
Draw a quadrangle outside of the figure

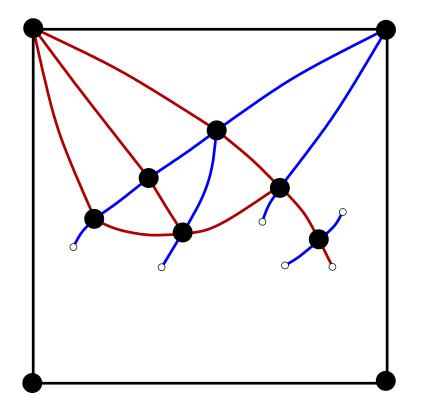


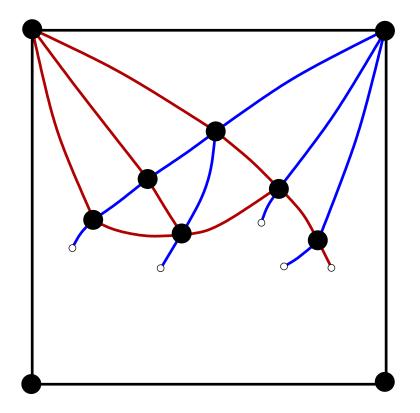


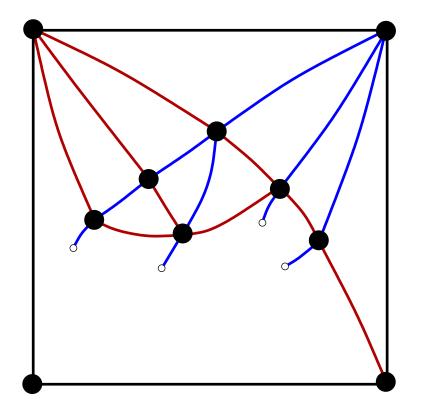


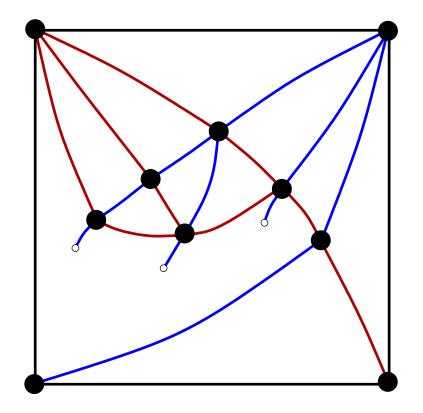


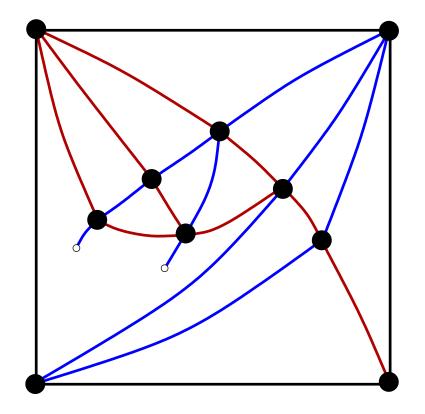


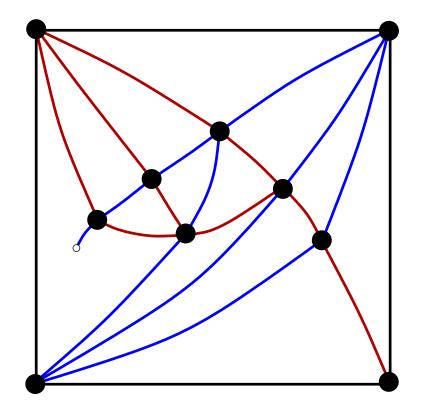


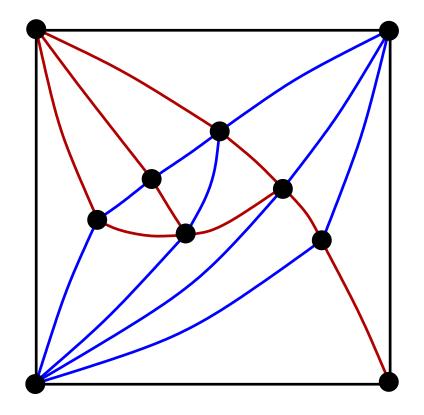






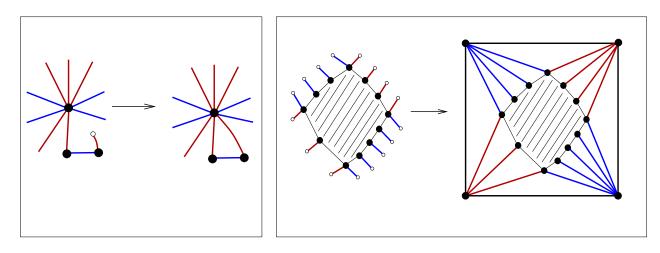




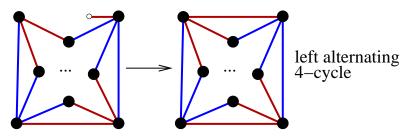


Properties of the closure-mapping

- The closure mapping is a bijection between ternary trees with *n* inner nodes and triangulations with *n* inner vertices.
- The closure transports the transversal structure

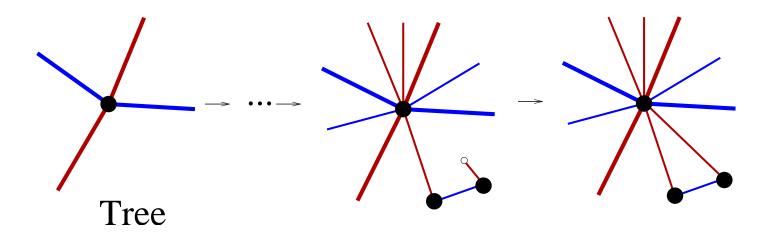


• The obtained transversal structure on T is minimal

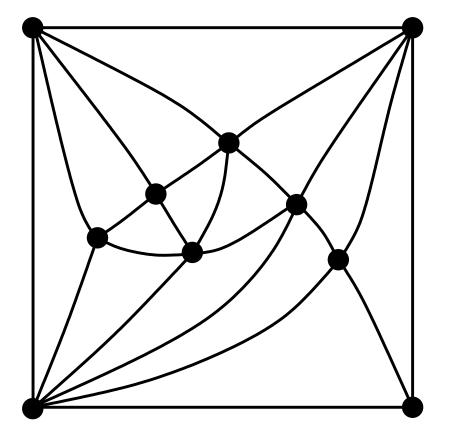


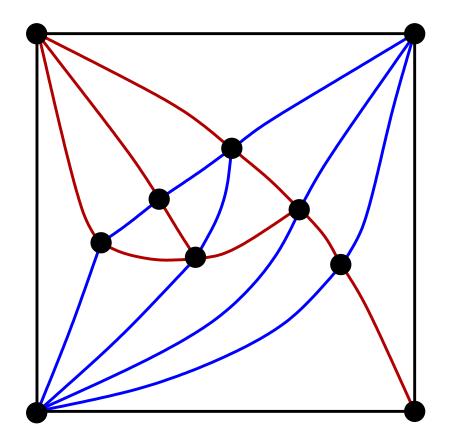
Observation to find the inverse mappir

The original 4 incident edges of each inner vertex of T remain the clockwise-most edge in each bunch

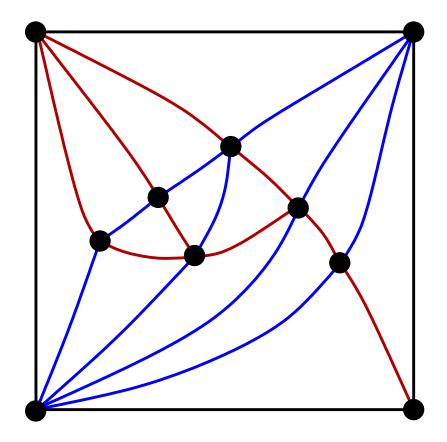


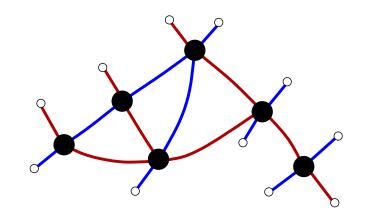
Compute the minimal transversal structure



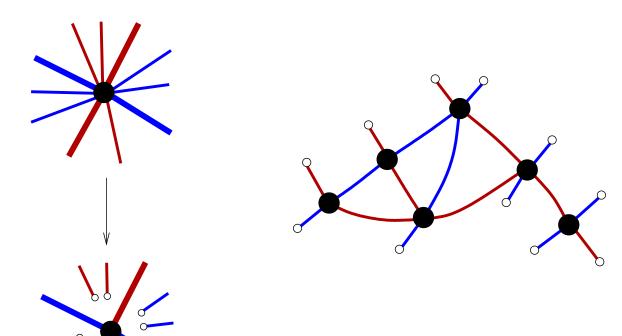


Remove quadrangle

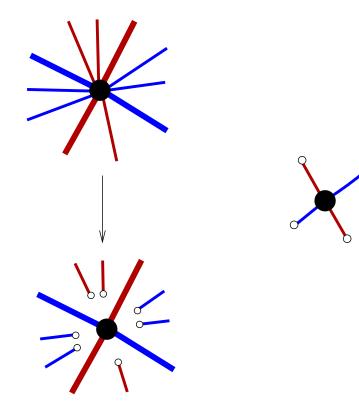




Keep the clockwisemost edge in each bunch

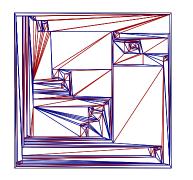


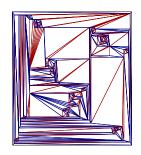
d



Applications of the bijection

- Enumeration: $\Rightarrow T_n = \frac{4}{2n+2} \frac{(3n)!}{n!(2n+1)!}$
- Random generation: linear-time uniform random sampler of triangulations with n vertices





• Analysis of the grid size: almost surely 5n/27 deleted coordinates for a random triangulation with n vertices

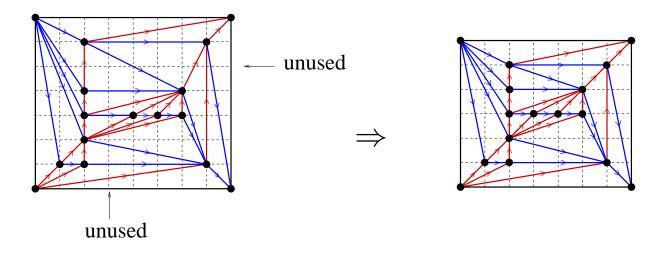
Analysis of the size of the grid using the bijection

Size of the compact drawing ?

Let T be a triangulation with n vertices endowed with its minimal transversal structure

- Unoptimized drawing: W + H = n 1
- Delete unused coordinates⇒Compact drawing:

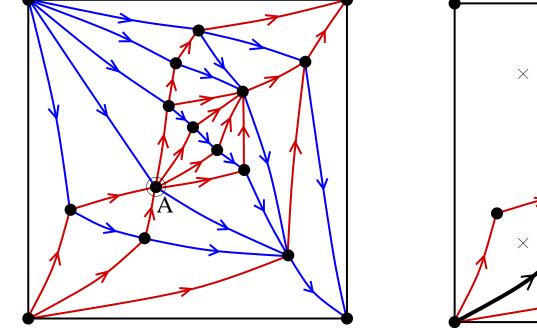
 $W_c + H_c = n - 1 - \#(unused \ coord.)$

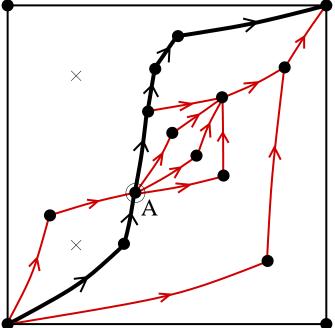


Theorem: $\#(unused \ coord.) \sim \frac{5n}{27}$ almost surely

Rule to give abscissa

The absciss of v is the number of faces of the red map on the left of $\mathcal{P}_r(v)$



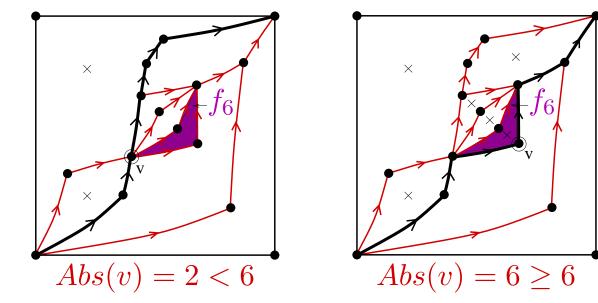


 \Rightarrow A has absciss 2

Absciss \leftrightarrow face of the red-map

- Let f_r be the number of faces of the red-map
- Let $i \in [1, f_r]$ be an absciss-candidate
- There exists a face f_i of the red-map such that: $Abs(v) \ge i \Leftrightarrow f_i$ is on the left of $\mathcal{P}_r(v)$

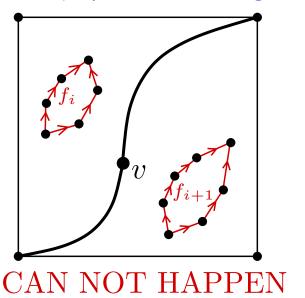
Example: i = 6

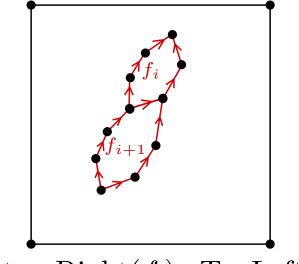


Unused abscissa

An absciss-candidate $i \in [1, f_r]$ is unused iff: $Abs(v) \ge i \Rightarrow Abs(v) \ge i + 1$

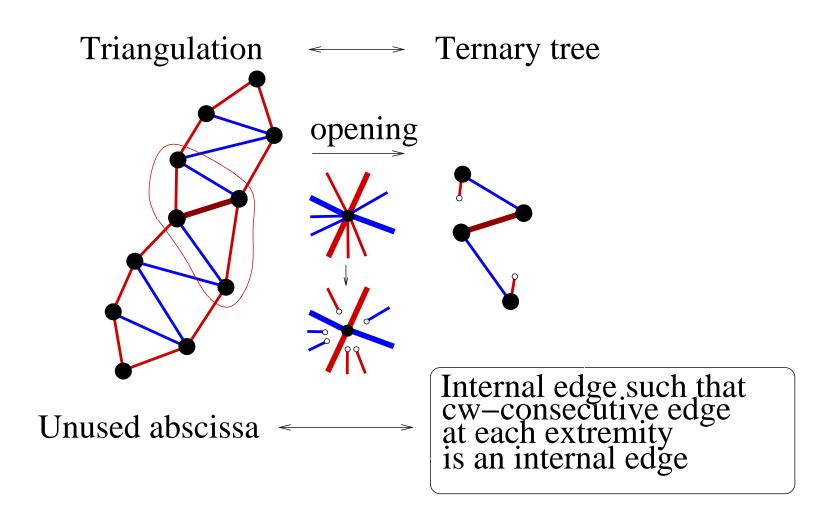
 \Rightarrow Faces f_i and f_{i+1} can not be separated by a path $\mathcal{P}_r(v)$ $\Rightarrow f_i$ and f_{i+1} are contiguous



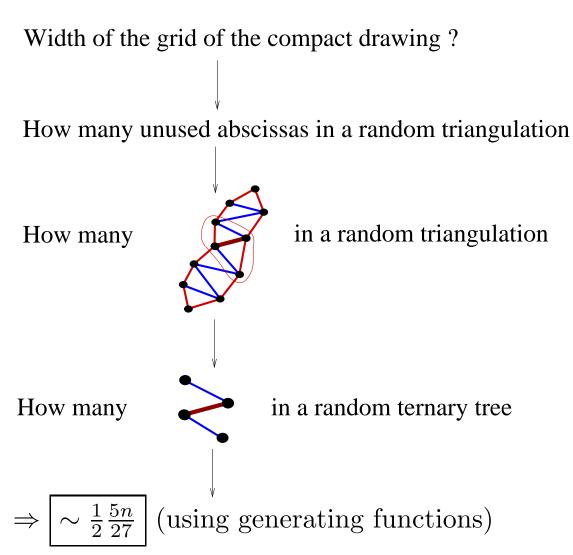


BottomRight(f_i)=TopLeft(f_{i+1})

Unused abscissa and opening



Reduction to a tree-problem



Analysis of the tree parameter

Ternary trees

• One-variable grammar \Rightarrow $T(z) = \sum_{n} T_{n} z^{n}$

$$\mathcal{T} = \mathcal{Z} \times (1 + \mathcal{T})^3 \quad \Rightarrow \quad T(z) = z(1 + T(z))^3$$

- Two-variables grammar \Rightarrow $T(z, u) = \sum_{n,k} T_{n,k} z^n u^k$ node marked by z marked by u
- Use quasi-power theorem (Hwang, Flajolet Sedgewick) $\rho(u) := \operatorname{Sing}(u \to T(z, u)) \qquad -\frac{\rho'(1)}{\rho(1)} = \frac{5}{27}$ $\Rightarrow \text{ The number of } \mathbf{Z} \text{ is } \sim \frac{5n}{27} \text{ almost surely}$