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Motivations
Display of large structures on a planar surface
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Planar maps
• A planar map is obtained by embedding a planar graph

in the plane without edge crossings.

• A planar map is defined up to continuous deformation

Triangulation

Planar map The same
planar map

Quadrangulation
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Planar maps
• Planar maps are combinatorial objects

• They can be encoded without dealing with coordinates

1

2

34 5

6 7

Encoding: to each vertex is associated the (cyclic) list of its neighbours in clockwise order

1: (2, 4)
2: (1, 7, 6)
3: (4, 6, 5)
4: (1, 3)
5: (3, 7)
6: (3, 2, 7)
7: (2, 5, 6)

Choice of labelsPlanar map
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Combinatorics of maps
Triangulations

3 spanning trees

Quadrangulations

2 spanning trees

Tetravalent

eulerian orientation

|Tn| =

2(4n−3)!
n!(3n−2)! |Qn| =

2(3n−3)!
n!(2n−2)! |En| =

2·3n(2n)!
n!(n+2)!

⇒ Tutte, Schaeffer, Schnyder, De Fraysseix et al...
– p.5/53



A particular family of triangulations
• We consider triangulations of the 4-gon (the outer face

is a quadrangle)

• Each 3-cycle delimits a face (irreducibility)

Forbidden Irreducible
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Transversal structures
We define a transversal structure using local conditions
Inner edges are colored blue or red and oriented:

Border vertices ⇒

Inner vertex ⇒

⇒Example:
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Link with bipolar orientations
bipolar orientation = acyclic orientation with a unique
minimum and a unique maximum
The blue (resp. red) edges give a bipolar orientation
The two bipolar orientations are transversal

Sr

Nr

Nb

Sb
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Definition and properties of
transversal structures on

triangulations
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Planar maps
• A planar map is obtained by drawing a planar graph in

the plane without edge crossings.

• A planar map is defined up to continuous deformation

Triangulation

Planar map The same
planar map

Quadrangulation
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Planar maps
• Planar maps are combinatorial objects

• They can be encoded without dealing with coordinates

1

2

34 5

6 7

Encoding: to each vertex is associated the (cyclic) list of its neighbours in clockwise order
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A particular family of triangulations
• We consider triangulations of the 4-gon (the outer face

is a quadrangle)

• Each 3-cycle delimits a face (irreducibility)

Forbidden Irreducible

– p.13/53



Transversal structures
We define a transversal structure using local conditions
Inner edges are colored blue or red and oriented:

Border vertices ⇒

Inner vertex ⇒

⇒Example:

cf Regular edge 4-labelings (Kant, He)
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Link with bipolar orientations
bipolar orientation = acyclic orientation with a unique
minimum and a unique maximum
The blue (resp. red) edges give a bipolar orientation
The two bipolar orientations are transversal

Sr

Nr

Nb

Sb

– p.15/53



Overview
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Definition and properties of
transversal structures on

triangulations

– p.17/53



Existence of transversal structures
• For each triangulation, there exists a transversal

structure
(Kant, He 1997)

• There exists linear time iterative algorithms to compute
transversal structures
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Existence of transversal structures
• For each triangulation, there exists a transversal

structure
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The structure of transversal structures
• For each triangulation T , such transversal structures are

not unique

• Let XT be the set of transversal bicolorations of T

• What is the structure of XT ?

... ...
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Without orientations
The orientation of edges are not necessary.
The local conditions can be defined just with the bicoloration:

Example:

Border vertices ⇒

Inner vertex ⇒

⇒
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The two definitions are equivalent
The orientations of edges can be recovered in an unique way
⇒ bijection between the two structures

Local conditions
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The two definitions are equivalent
The orientations of edges can be recovered in an unique way
⇒ bijection between the two structures

bijection
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The set XT is a distributive lattice

T=
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The set XT is a distributive lattice

color
switch
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Angular graph of T
We associate to T an angular graph Q(T ):

• The black vertices of Q(T ) are the vertices of T
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Angular graph of T
We associate to T an angular graph Q(T ):

• There is a white vertex of Q(T ) in each face of T

– p.23/53



Angular graph of T
We associate to T an angular graph Q(T ):

• To each angle of T corresponds an edge of Q(T )
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Angular graph of T
We associate to T an angular graph Q(T ):
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Angular graph of T
We associate to T an angular graph Q(T ):

T Q(T )
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Induced orientation on Q(T )

Vertex−condition:

Angle of T Edge of Q(T)

Face−condition:
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Bijective correspondences

outdegree 4

outdegree 1

Local rule
angle of T → edge of Q(T )

Transversal
without orientations

orientation of Q(T )

Remove
orientations

with orientations
Transversal

iterative
algorithm

– p.25/53



Bijective correspondences

(Ossona de Mendez, Felsner)

outdegree 4

outdegree 1

DISTRIBUTIVE LATTICE

Local rule
angle of T → edge of Q(T )

Transversal
without orientations

orientation of Q(T )

Remove
orientations

with orientations
Transversal

iterative
algorithm
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Flip on Q(T ) and then on T
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Flip on Q(T ) and then on T
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Flip on Q(T ) and then on T

color
switch
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The set XT is a distributive lattice

The unique transversal bicoloration of T without

We distinguish:

left alternating 4-cycles

right alternating 4-cycles

right alternating 4-cycle is said minimal

Flip operation: switch colors inside a right alternating
4-cycle
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Straight-line drawing algorithm
from the transversal structures
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Application to graph drawing
The transversal structure can be used to produce a planar
drawing on a regular grid
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The red map and the blue map of T

Red map

Blue map
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The red map gives abscissas (1)
Let v be an inner vertex of T
Let Pr(v) be the unique path passing by v which is:

• the rightmost one before arriving at v

• the leftmost one after leaving v

v v⇒

Pr(v)
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The red map gives abscissas (2)
The absciss of v is the number of faces of the red map on the
left of Pr(v)

AA

⇒ A has absciss 2
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The blue map gives ordinates (1)
Similarly we define Pb(v) the unique blue path which is:

• the rightmost one before arriving at v

• the leftmost one after leaving v

v
⇒ Pb(v)

v
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The blue map gives ordinates (2)
The ordinate of v is the number of faces of the blue map
below Pb(v)

BB

⇒ B has ordinate 4
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Execution of the algorithm
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Execution of the algorithm
Let fr be the number of faces of the red map

fr = 8
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Execution of the algorithm
Let fb be the number of faces of the blue map

fb = 7
fr = 8

– p.35/53



Execution of the algorithm
Take a regular grid of width fr and height fb and place the 4
border vertices of T at the 4 corners of the grid
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate

– p.35/53



Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate

4 faces on the left
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate

3 faces below
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate
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Execution of the algorithm
Link each pair of adjacent vertices by a segment
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Execution of the algorithm
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Results
• The obtained drawing is a straight line embedding

• The drawing respects the transversal structure:
• Red edges are oriented from bottom-left to top-right
• Blue edges are oriented from top-left to bottom-right

• If T has n vertices, the width W and height H verify

W + H = n − 1

similar grid size as He (1996) and Miura et al (2001)
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Compaction step
• Some abscissas and ordinates are not used

• The deletion of these unused coordinates keeps the
drawing planar

unused

unused
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Compaction step
• Some abscissas and ordinates are not used

• The deletion of these unused coordinates keeps the
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Size of the grid after deletion
• If the transversal structure is the minimal one, the

number of deleted coordinates can be analyzed:

• After deletion, the grid has size 11
27n× 11

27n“almost surely”

• Reduction of 5
27 ≈ 18% compared to He and Miura et al
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Bijection between triangulations
and ternary trees
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Ternary trees
A ternary tree is a plane tree with:

• Vertices of degree 4 called inner nodes

• Vertices of degree 1 called leaves

• An edge connected two inner nodes is called inner edge

• An edge incident to a leaf is called a stem

A ternary tree can be endowed with a transversal structure
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From a ternary tree to a triangulation
Local operations to“close”triangular faces
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From a ternary tree to a triangulation
Local operations to“close”triangular faces
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From a ternary tree to a triangulation
Draw a quadrangle outside of the figure
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From a ternary tree to a triangulation
Merge remaining stems to form triangles
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Properties of the closure-mapping
• The closure mapping is a bijection between ternary trees

with n inner nodes and triangulations with n inner
vertices.

• The closure transports the transversal structure

• The obtained transversal structure on T is minimal

left alternating
4−cycle... ...
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Observation to find the inverse mapping
The original 4 incident edges of each inner vertex of T remain
the clockwise-most edge in each bunch

Tree

...

– p.43/53



Recover the tree
Compute the minimal transversal structure
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Recover the tree
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Recover the tree
Remove quadrangle
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Recover the tree
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Recover the tree
Keep the clockwisemost edge in each bunch
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Recover the tree
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Applications of the bijection

• Enumeration:⇒ Tn = 4
2n+2

(3n)!
n!(2n+1)!

• Random generation: linear-time uniform random sampler
of triangulations with n vertices

• Analysis of the grid size: almost surely 5n/27 deleted
coordinates for a random triangulation with n vertices
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Analysis of the size of the grid
using the bijection
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Size of the compact drawing ?
Let T be a triangulation with n vertices endowed with its
minimal transversal structure

• Unoptimized drawing: W + H = n − 1

• Delete unused coordinates⇒Compact drawing:

Wc + Hc = n − 1−#(unused coord.)

unused

unused

⇒

Theorem: #(unused coord.) ∼ 5n
27 almost surely
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Rule to give abscissa
The absciss of v is the number of faces of the red map on the
left of Pr(v)

AA

⇒ A has absciss 2
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Absciss ↔ face of the red-map
• Let fr be the number of faces of the red-map

• Let i ∈ [1, fr] be an absciss-candidate

• There exists a face fi of the red-map such that:

Abs(v) ≥ i ⇔ fi is on the left of Pr(v)

Example: i = 6

v
v

f6f6

Abs(v) = 2 < 6 Abs(v) = 6 ≥ 6
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Unused abscissa
An absciss-candidate i ∈ [1, fr] is unused iff:

Abs(v) ≥ i ⇒ Abs(v) ≥ i + 1

⇒ Faces fi and fi+1 can not be separated by a path Pr(v)
⇒ fi and fi+1 are contiguous

fi

BottomRight(fi)=TopLeft(fi+1)

v

⇒

CAN NOT HAPPEN

fi

fi+1

fi+1
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Unused abscissa and opening

Ternary tree

opening

Unused abscissa

Triangulation

Internal edge such that
cw−consecutive edge
at each extremity
is an internal edge
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Reduction to a tree-problem

How many

How many in a random ternary tree

in a random triangulation

How many unused abscissas in a random triangulation

Width of the grid of the compact drawing ?

⇒ ∼ 1

2

5n
27

(using generating functions)
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Analysis of the tree parameter

• One-variable grammar

T = Z × (1 + T )3 ⇒

⇒ T (z) =
∑

n Tnzn

T (z) = z(1 + T (z))3

Ternary trees

• Two-variables grammar ⇒ T (z, u) =
∑

n,k Tn,kznuk

node marked by z marked by u

• Use quasi-power theorem (Hwang, Flajolet Sedgewick)

ρ(u) := Sing(u → T (z, u)) −
ρ′(1)
ρ(1) = 5

27

⇒ The number of is ∼
5n
27 almost surely
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