Degree distribution in random Apollonian networks structures

Alexis Darrasse joint work with Michèle Soria

26 February 2007

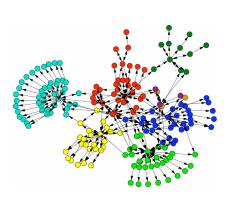
Plan

- Introduction
- Properties of real-life graphs
 - Distinctive properties
 - Existing models
- Random Apollonian networks
 - A bijection with ternary increasing trees
 - Random Apollonian network structures
- Boltzmann sampling
 - The model
 - Generating ternary trees
- Properties
 - Number of edges and connectivity
 - Degree distribution
 - Clustering and mean distance
- Variants

Application domains

- Computer Science
- Biology
- Sociology
- ...

- Needed to simulate real-life networks
- Simple classes of random graphs not a good model

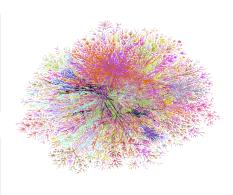


Web site

Application domains

- Computer Science
- Biology
- Sociology
- ...

- Needed to simulate real-life networks
- Simple classes of random graphs not a good model



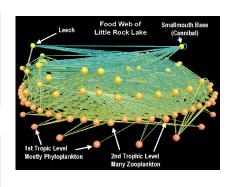
Internet

Application domains

- Computer Science
- Biology
- Sociology
- ...

Models

- Needed to simulate real-life networks
- Simple classes of random graphs not a good model



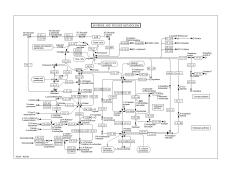
Food web

Application domains

- Computer Science
- Biology
- Sociology
- ...

Models

- Needed to simulate real-life networks
- Simple classes of random graphs not a good model

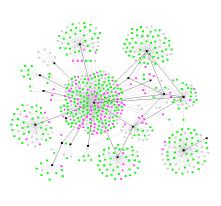


Metabolism

Application domains

- Computer Science
- Biology
- Sociology
- ...

- Needed to simulate real-life networks
- Simple classes of random graphs not a good model

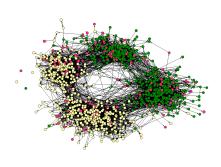


Contagion of diseases

Application domains

- Computer Science
- Biology
- Sociology
- ...

- Needed to simulate real-life networks
- Simple classes of random graphs not a good model

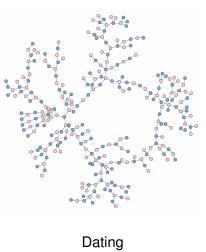


Friendship

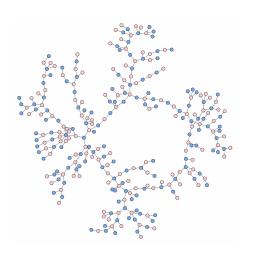
Application domains

- Computer Science
- Biology
- Sociology

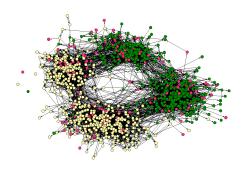
- Needed to simulate real-life networks
- Simple classes of random graphs not a good model



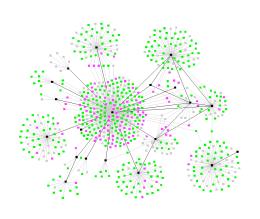
- Number of edges
 - Of the same order as the number of vertices
- Connectivity
- Degree distribution
- Mean distance
- Clustering



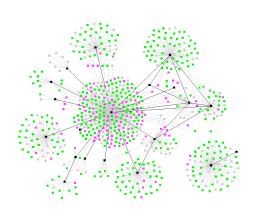
- Number of edges
- Connectivity
 - Strong (Giant component)
- Degree distribution
- Mean distance
- Clustering



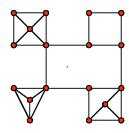
- Number of edges
- Connectivity
- Degree distribution
 - Heavy tailed (Power law, Scale-free)
- Mean distance
- Clustering



- Number of edges
- Connectivity
- Degree distribution
- Mean distance
 - Small
- Clustering

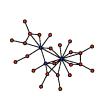


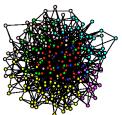
- Number of edges
- Connectivity
- Degree distribution
- Mean distance
- Clustering
 - Strong



Existing models

Scale-free networks



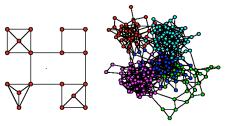


A.-L. Barabási & R. Albert Emergence of scaling in random networks Science 286, 509 (1999)

- Number of edges
- Connectivity
- Degree distribution
- Mean distance
- Clustering

Existing models

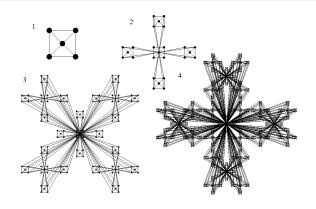
"Small world" networks



- Watts D. J. & Strogatz S. H.
 Collective dynamics of "small-world"
 networks
 - Nature **393**, 440 (1998)

- Number of edges
- Connectivity
- Degree distribution
- Mean distance
- Clustering

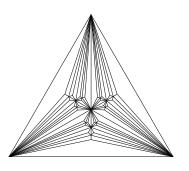
Hierarchical networks



- All properties satisfied
- A new property : hierarchical modularity
- Model is deterministic

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.-L. Barabási Hierarchical Organization of Modularity in Metabolic Networks Science **297**, 1551 (2002)

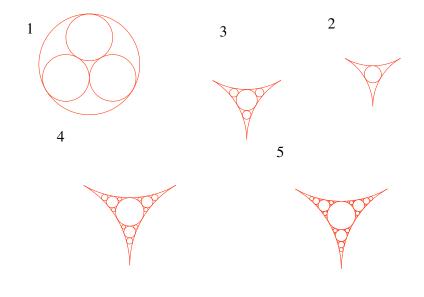
A similar model - Apollonian networks



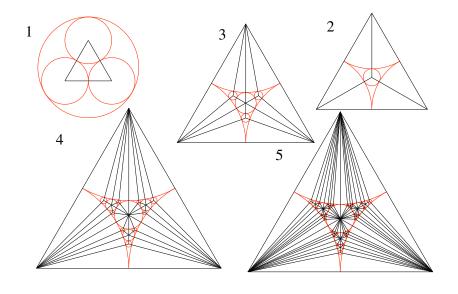
- Same properties as the hierarchical networks
- Inspired from the apollonian packings
- J. S. Andrade, Jr., H. J. Herrmann, R. F. S. Andrade & L. R. da Silva

Apollonian Networks: Simultaneously Scale-Free, Small World, Euclidean, Space Filling, and with Matching Graphs Phys. Rev. Lett. **94**, 018702 (2005)

Apollonian packings, Apollonian networks



Apollonian packings, Apollonian networks



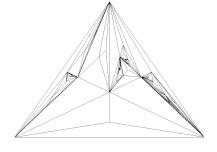
A randomized variation

random Apollonian networks

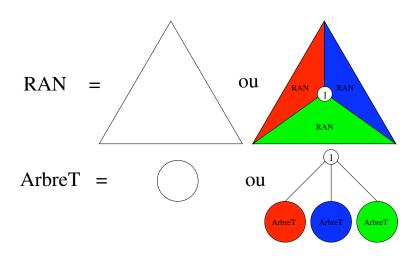
Tao Zhou, Gang Yan, & Bing-Hong Wang
Maximal planar networks with large clustering coefficient
and power-law degree distribution
Physical Review E **71**, 046141 (2005)

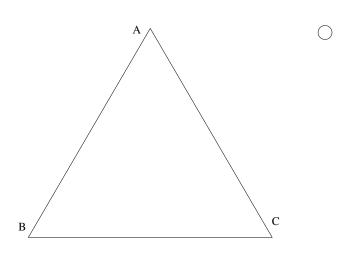
Algorithm

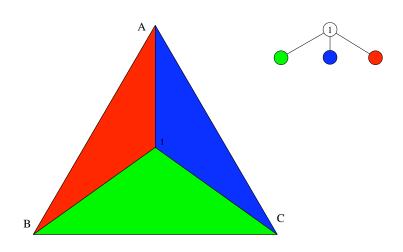
- Initial state : a triangle
- Iterative state: Choose a triangle and add to it a point and link it to the three vertices of the triangle

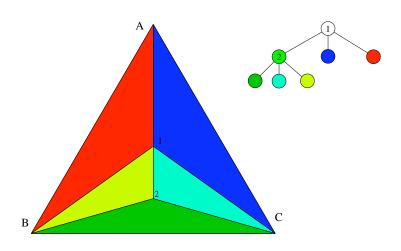


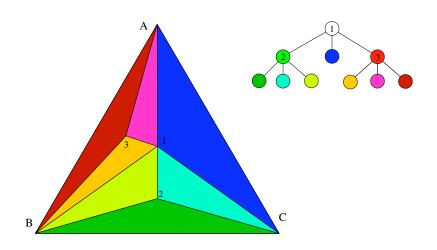
A bijection with ternary increasing trees

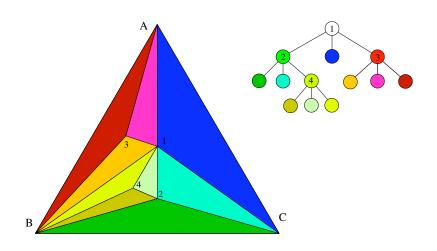


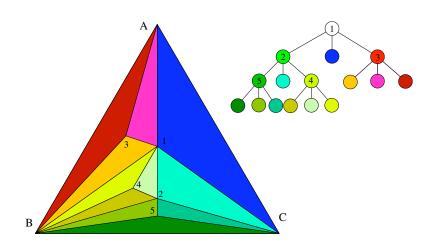


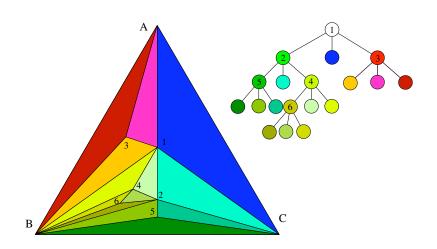


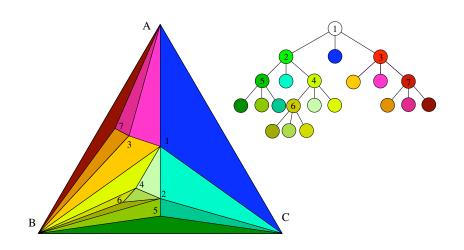


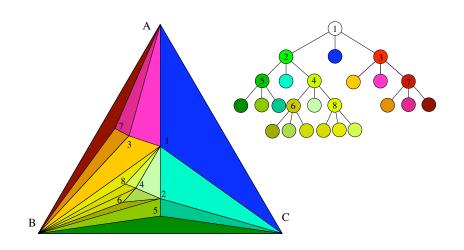












Random Apollonian network structures

Replace Ternary Increasing Trees with Ternary Trees

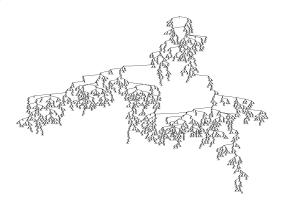
Properties

- Same bijection
- Same class of graphs
- Different probability distribution
- Properties preserved
- Simple combinatorial description of the model

What for?

- General methods for sampling
- Efficient generation (Boltzmann)
- Greater flexibility

Ternary tree generation using the Boltzmann model



The Boltzmann model

Specifiable combinatorial classes

- Basic operations : Union, Product, Sequence, Cycle, Set
- Recursive definitions

Properties

- Uniform generation
- Approximate size
- Efficiency

P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer Boltzmann samplers for the random generation of combinatorial structures

Algorithm for the generation of a ternary tree

$$T(z) = z + zT(z)^3$$

Algorithm : TernaryTree(p)

if rand(0..1) < p then l eaf

else

Node(TernaryTree(p),TernaryTree(p),TernaryTree(p))

end if

$$p = x/T(x), x \leq \rho$$

- Aim at mean value : $x < \rho$
- Singular sampling : $x = \rho$
- Pointing

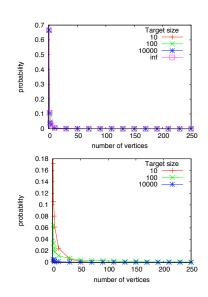
Distribution of the sizes of the generated trees

Using the straightforward algorithm

- Most generated trees are leaves
- A few very big trees
- Power law distribution

With pointing

- Many small trees still present, but
- Less disparity



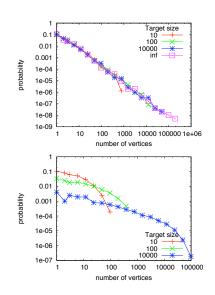
Distribution of the sizes of the generated trees

Using the straightforward algorithm

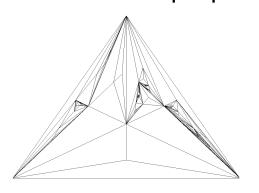
- Most generated trees are leaves
- A few very big trees
- Power law distribution

With pointing

- Many small trees still present, but
- Less disparity



Back to the network properties



Properties of the generated networks

By construction:

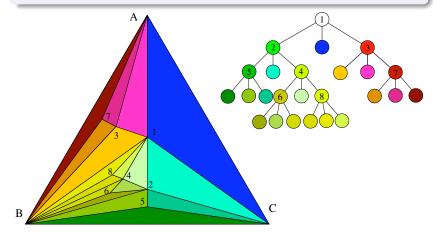
- Number of edges Equal to 3v - 6, where v the number of vertices
- Connectivity
 A single component
- Mean degree

= 6

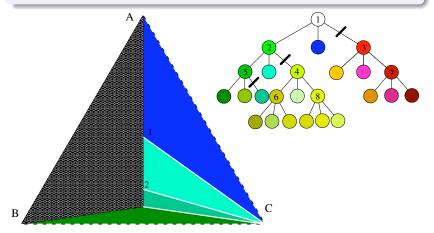
Needing further investigation:

- Degree distribution
- Clustering
- Mean distance

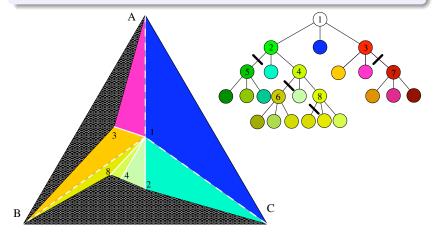
Neighborhood of a vertex



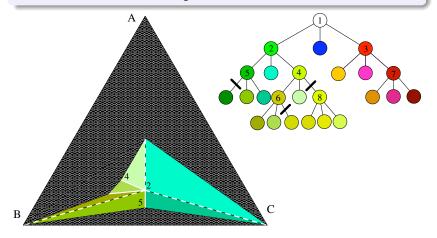
Neighborhood of a vertex



Neighborhood of a vertex



Neighborhood of a vertex



Bivariate generating functions

u marks the neighbors

• of the center (root) : $RD(z, u) = zu^3T^3(z, u)$

Bivariate generating functions

u marks the neighbors

- of the center (root) : $RD(z, u) = zu^3T^3(z, u)$
- of an external node : $T(z, u) = 1 + zuT^2(z, u)T(z)$

Bivariate generating functions

u marks the neighbors

- of the center (root) : $RD(z, u) = zu^3T^3(z, u)$
- of an external node : $T(z, u) = 1 + zuT^2(z, u)T(z)$

The distribution of the value of a parameter on Boltzmann generated objects

$$Pr(\Omega = k) = \sum_{n} Pr(\Omega = k/N = n) \times Pr(N = n)$$

$$= \sum_{n} \frac{C_{n,k}}{C_n} \times \frac{C_n x^n}{C(x)} = \frac{\sum_{n} C_{n,k} x^n}{C(x)} = \frac{[u^k]C(x,u)}{C(x,1)}$$

Degree distribution

Proposition: Statistical properties

Same for:

- the set of all subtrees of a random tree
- a set of random trees independently generated with a Boltzmann sampler

Degree distribution

Proposition: Statistical properties

Same for:

- the set of all subtrees of a random tree
- a set of random trees independently generated with a Boltzmann sampler

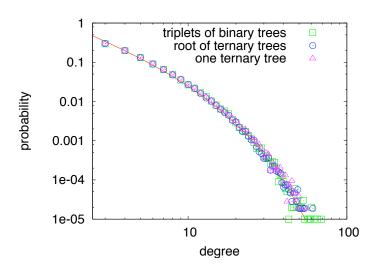
Theorem: degree distribution in RANS

Mean value 6 and a Catalan form for the pgf:

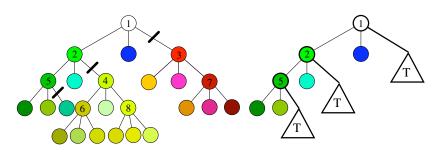
$$\Pr(D=3+k) = \frac{8}{9} \frac{1}{k+3} {2k+2 \choose k} \sim C \left(\frac{8}{9}\right)^k (k+3)^{-3/2}$$

Degree distribution

$$P(D=3+k)\sim C\left(\frac{8}{9}\right)^k(k+3)^{-3/2}$$



Sketch of proof



• Ternary trees marked for degree :

$$T(z,u) = 1 + zuT^2(z,u)T(z)$$

• Simulated by binary trees : T(z, u) = B(zuT(z)), where $B(t) = \sum B_n t^n$

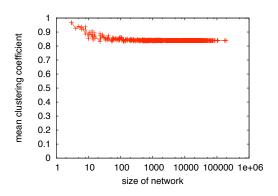
- Schema is subcritical : $\rho \tau < 1/4$
- $[u^k]B(zuT(z)) = \rho^k \tau^k \frac{1}{k+1} {2k \choose k}$

Clustering

Definition : Clustering coefficient of a vertex of degree *k*

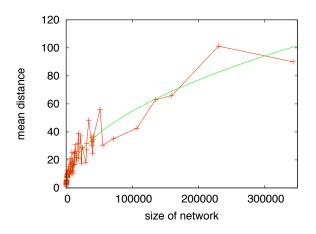
$$C(k) = \frac{\text{number of links between neighbors}}{k(k-1)}$$

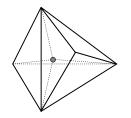
- $C(k) = 3\frac{2k-d-1}{k(k-1)}$
- Mean value over all vertices independent of size

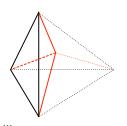


Mean distance

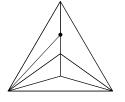
Simulation confirms a small mean distance (order \sqrt{N})

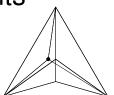




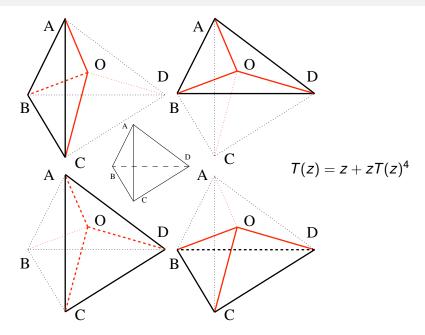


More flexibility : Variants





Add a dimension



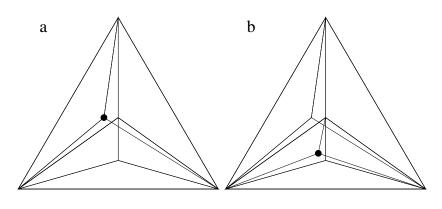
Higher dimension RANS

$$\Pr(D_d = d + k) \sim C\alpha^k \left(k + \frac{d}{d-2}\right)^{-\frac{3}{2}}$$

$$RD_d(z, u) = zu^d T_d^d(z, u) \qquad T_d(z, u) = T_{d-1}(uzT_d(z))$$

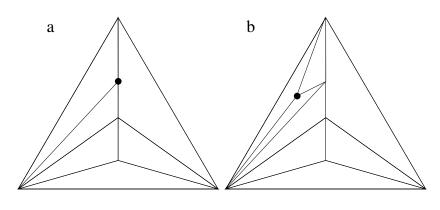


Reuse triangles



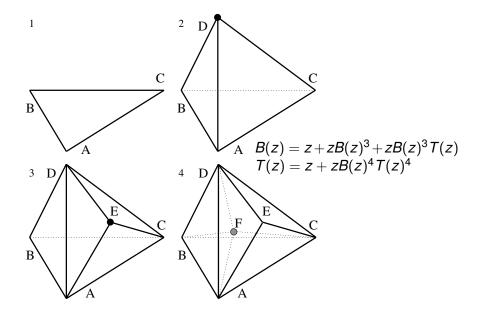
$$T(z) = z + zT(z)^4$$

Remove siblings



$$T(z) = z + 3zT(z) + 3zT(z)^{2} + zT(z)^{3}$$

Combine models



Implementation

$$T(z) = z + zT(z)^d$$

- 1000 lines of C
- Tree and Network generation
- Parameter computation

Sampling of

10⁶ generated trees 10⁶ maximum "usable" size 10⁹ maximum size in a few seconds time...

Simple families of trees $T_i(z) = z + \phi(\langle T(z) \rangle)$

- Sampler compiler
- Written in Maple, using Combstruct
- Sampler in C, eventually using Maple as a co-routine

Conclusion and Perspectives

- A simple and extensible model
- Similar models :
 - k-trees
 - stacked triangulations
- More adequate to model real graphs?
- Different strategies to generate trees
- Tree sampling has many more applications (eg. XML)

Image references

From http://www-personal.umich.edu/ Emejn/networks/

Web site M. E. J. Newman and M. Girvan,

Finding and evaluating community structure in networks,

Physical Review E 69, 026113 (2004).

Internet Hal Burch and Bill Cheswick, Lumeta Corp.

Food web Neo Martinez and Richard Williams

Contagion of diseases Valdis Krebs, www.orgnet.com.

Friendship James Moody,

Race, school integration, and friendship segregation in America.

American Journal of Sociology 107, 679-716 (2001).

Dating Data drawn from Peter S. Bearman, James Moody, and Katherine Stovel,

Chains of affection: The structure of adolescent romantic and sexual networks,

American Journal of Sociology 110, 44-91 (2004),

image made by Mark Newman.

Scale-free & small world E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.-L. Barabási

Hierarchical Organization of Modularity in Metabolic Networks

Science 297, 1551 (2002).