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Distinctive properties of real-life graphs

Number of edges
Of the same order
as the number of
vertices

Connectivity
Degree distribution
Mean distance
Clustering
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Existing models

Scale-free networks

A.-L. Barabási & R. Albert
Emergence of scaling in random
networks
Science 286, 509 (1999)

Number of edges
Connectivity
Degree distribution
Mean distance
Clustering



Existing models

“Small world” networks

Watts D. J. & Strogatz S. H.
Collective dynamics of “small-world”
networks
Nature 393, 440 (1998)

Number of edges
Connectivity
Degree distribution
Mean distance
Clustering



Hierarchical networks

All properties satisfied
A new property : hierarchical modularity
Model is deterministic

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.-L. Barabási
Hierarchical Organization of Modularity in Metabolic Networks
Science 297, 1551 (2002)



A similar model - Apollonian networks

Same properties as the hierarchical networks
Inspired from the apollonian packings

J. S. Andrade, Jr., H. J. Herrmann,
R. F. S. Andrade & L. R. da Silva
Apollonian Networks : Simultaneously Scale-Free, Small
World, Euclidean, Space Filling, and with Matching Graphs
Phys. Rev. Lett. 94, 018702 (2005)
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A randomized variation

random Apollonian networks
Tao Zhou, Gang Yan, & Bing-Hong Wang
Maximal planar networks with large clustering coefficient
and power-law degree distribution
Physical Review E 71, 046141 (2005)

Algorithm
Initial state : a triangle
Iterative state : Choose
a triangle and add to it a
point and link it to the
three vertices of the
triangle



A bijection with ternary increasing trees

ArbreT ou=

ArbreT ArbreT ArbreT
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Random Apollonian network structures

Replace Ternary Increasing Trees with Ternary Trees

Properties
Same bijection
Same class of graphs
Different probability distribution
Properties preserved
Simple combinatorial description of the model

What for ?
General methods for sampling
Efficient generation (Boltzmann)
Greater flexibility



Ternary tree generation
using the Boltzmann model



The Boltzmann model

Specifiable combinatorial classes
Basic operations :
Union, Product, Sequence, Cycle, Set
Recursive definitions

Properties
Uniform generation
Approximate size
Efficiency

P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer
Boltzmann samplers for the random generation of
combinatorial structures



Algorithm for the generation of a ternary tree

T (z) = z + zT (z)3

Algorithm : TernaryTree(p)
if rand(0..1) < p then

Leaf
else

Node(TernaryTree(p),TernaryTree(p),TernaryTree(p))
end if

p = x/T (x), x ≤ ρ

Aim at mean value : x < ρ

Singular sampling : x = ρ

Pointing



Distribution of the sizes of the generated trees

Using the straightforward
algorithm

Most generated trees
are leaves
A few very big trees
Power law distribution

With pointing
Many small trees still
present, but
Less disparity
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Distribution of the sizes of the generated trees

Using the straightforward
algorithm

Most generated trees
are leaves
A few very big trees
Power law distribution

With pointing
Many small trees still
present, but
Less disparity
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Back to the network properties



Properties of the generated networks

By construction :
Number of edges
Equal to 3v − 6, where v the number of vertices

Connectivity
A single component
Mean degree
= 6

Needing further investigation :
Degree distribution
Clustering
Mean distance



Degree

Neighborhood of a vertex
3 ancestors + root neighborhood
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Bivariate generating functions

u marks the neighbors

of the center (root) : RD(z, u) = zu3T 3(z, u)

of an external node : T (z, u) = 1 + zuT 2(z, u)T (z)

The distribution of the value of a parameter on Boltzmann
generated objects

Pr(Ω = k) =
∑

n
Pr (Ω = k/N = n)× Pr(N = n)

=
∑

n

Cn,k

Cn
× Cnxn

C(x)
=

∑
n Cn,kxn

C(x)
=

[uk ]C(x , u)

C(x , 1)
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Degree distribution

Proposition : Statistical properties
Same for :

the set of all subtrees of a random tree
a set of random trees independently generated with a
Boltzmann sampler

Theorem : degree distribution in RANS
Mean value 6 and a Catalan form for the pgf :
Pr(D = 3 + k) = 8

9
1

k+3
(2k+2

k
)
∼ C

(8
9
)k

(k + 3)−3/2
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Degree distribution

P(D = 3 + k) ∼ C
(8

9
)k

(k + 3)−3/2
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Sketch of proof
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Ternary trees marked for degree :
T (z, u) = 1 + zuT 2(z, u)T (z)

Simulated by binary trees :
T (z, u) = B(zuT (z)), where B(t) =

∑
Bntn

Schema is subcritical : ρτ < 1/4
[uk ]B(zuT (z)) = ρkτ k 1

k+1
(2k

k
)



Clustering

Definition : Clustering coefficient of a vertex of degree k

C(k) = number of links between neighbors
k(k−1)

C(k) = 32k−d−1
k(k−1)

Mean value over all vertices independent of size
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Mean distance

Simulation confirms a small mean distance (order
√

N)
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More flexibility :

Variants



Add a dimension
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Higher dimension RANS

Pr(Dd = d + k) ∼ Cαk
(

k + d
d−2

)− 3
2

RDd(z, u) = zudT d
d (z, u) Td(z, u) = Td−1(uzTd(z))
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Reuse triangles

a b

T (z) = z + zT (z)4



Remove siblings

a b

T (z) = z + 3zT (z) + 3zT (z)2 + zT (z)3



Combine models
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Implementation

T (z) = z + zT (z)d

1000 lines of C
Tree and Network
generation
Parameter computation

Sampling of

106 generated trees
106 maximum “usable” size
109 maximum size
in a few seconds time. . .

Simple families of trees Ti(z) = z + φ(< T (z) >)

Sampler compiler
Written in Maple, using Combstruct
Sampler in C, eventually using Maple as a co-routine



Conclusion and Perspectives

A simple and extensible model
Similar models :

k -trees
stacked triangulations

More adequate to model real graphs ?
Different strategies to generate trees
Tree sampling has many more applications
(eg. XML)
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