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Presentation of Arenaire
I Arenaire team : the main goal is the practical computation of

mathematical functions.

I General scheme :
I we want to compute a mathematical operator Θ ;
I we may use an approximation Θ̂ of Θ ;
I we implement it with inexact arithmetic, controlling the

round-off error.
I The scheme covers :

I hardware implementation of mathematical functions ;
I software implementation targeting IEEE correct rounding in

double precision format ;
I certified software implementation with arbitrary high precision ;
I certified implementation of numerical algorithms

(QR decomposition, lattice reduction...)
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Why an approximation ?

Graph of f : x 7→ arctan(x)

I Let f be a real valued
function : f : R→ R.

I The function may take
irrational values : f (x) is
thus not exactly
representable.

I We can only compute
approximated values and
hopefully bound the
approximation error.
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About the error of approximation

(n : degree of the polynomial)

I Consider a closed interval
[a, b]. Replacing f by a
polynomial p leads at each
point x to :

I an absolute error
ε(x) = f (x)− p(x) ;

I a relative error
δ(x) = ε(x)/f (x).

I The worst approximation is
reached when |ε(x)| has its
maximal value.

‖ε‖∞ = max
x∈[a, b]

{|ε(x)|}
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Focus on polynomial approximation
I The definition often gives a natural way to compute

approximations of f . For instance : a power series and a
formally computed bound on the error.

I Remark : a truncated power series is a polynomial
↪→ especially nice to evaluate : it requires only additions and
multiplications (fast on modern processors).

I Truncated power series are useful but. . .

. . . usually inefficient in term of number of operations.
↪→ exp(x) on [−1; 2] with an absolute error ≤ 0.01 :

7 terms of the series / a degree 4 polynomial is sufficient.

I Natural question : what degree should have a polynomial to
give a suitable approximation ?
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Reminder of approximation theory

I Polynomial approximation theory has been deeply studied
since the XIXth century.

I Th. (Weierstrass) : the set R[X ] is dense in C([a, b]).
Bernstein gave an effective polynomial sequence.

I Th. (Chebyshev) : given n and f there is a unique
polynomial p of degree ≤ n minimizing ‖f − p‖∞.
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Reminder of approximation theory (2)

n + 2 oscillations

I Th. (Chebyshev) :
characterization of the
optimal error.

I Th. (La Vallée Poussin) :
links the quality of an
approximation with its error
function.

I Remez’ algorithm : given n,
computes the optimal
polynomial of degree ≤ n
(called minimax).
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Representing real numbers in computers
I In general a real number is not finitely representable.
↪→ one has to choose a subset S and approximate the real line
by the elements of S.

I A usual choice : floating-point numbers (IEEE-754 standard).
I A floating-point number with radix β and precision t is a

number of the form
m · βe

where :
I m ∈ Z is the mantissa and is written with exactly t digits ;
I e ∈ Z is the exponent. It is usually bounded in a

range [emin, emax].
I IEEE double format : β = 2, t = 53, and e ∈ J−1074, 971K.
I From now on, we will assume that [emin, emax] = [−∞, +∞].
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Polynomials with floating-point coefficients
I Each coefficient of a polynomial is represented by a

floating-point number.

I Naive method to obtain a polynomial approximation of f :
I compute the real minimax p∗ ;
I replace each coefficient ai of p∗ by the nearest floating-point

number âi ;
I use p̂ = â0 + â1 X + · · ·+ ân X n.

I p̂ may be far from being optimal.
I Example with f (x) = log2(1 + 2−x ), n = 6, on [0; 1] with

single precision coefficients (24 bits).
Minimax Naive method Optimal

8.3 · 10−10 119 · 10−10 10.06 · 10−10
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I p̂ may be far from being optimal.
I Example with f (x) = log2(1 + 2−x ), n = 6, on [0; 1] with

single precision coefficients (24 bits).
Minimax Naive method Optimal

8.3 · 10−10 119 · 10−10 10.06 · 10−10

Sylvain Chevillard Polynomial approximation and floating-point numbers 10



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete case
Conclusion

Previous works

I W. Kahan claims to have studied the question and proposed
an efficient method. No published work, no draft.

I D. Kodek has studied a similar problem in signal processing.
Limited to small precision and degree
(typically t < 10, n < 20).

I N. Brisebarre, J.-M. Muller and A. Tisserand have proposed
an approach by linear programming (the implementation relies
on P. Feautrier’s tool PIP).
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Method of Brisebarre, Muller and Tisserand
I Idea : they reduce the initial problem to the problem of finding

the points with integer coordinates in a polytope of Rn+1.

I This approach is certified. . .
I . . . and flexible (may be used to find real minimax,

constrained real minimax, polynomial with floating-point
coefficients, odd polynomials, etc.).

I But :

I its time is exponential ;
I it is very sensitive to some parameters.

I We developed a new method :
I fast (it is proven to run in polynomial time) ;
I heuristic (there is no proof that the result is always tight) ;
I with good practical results.
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Formalization of the problem
I Problem : given n and a floating-point format, find (one of)

the polynomial(s) p of degree ≤ n with floating-point
coefficients minimizing ‖p − f ‖∞.

I Remark : the existence is still ensured. The unicity may
be lost.

I A simplification : we may try to guess the value of each ei
(assuming that the coefficients of p and p∗ have the same
order of magnitude)
↪→ if ei is correctly guessed, we are reduced to find mi ∈ Z
such that ∥∥∥∥∥f (x)−

n∑
i=0

mi · βei x i
∥∥∥∥∥
∞

is minimal.

Sylvain Chevillard Polynomial approximation and floating-point numbers 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete case
Conclusion

Formalization of the problem
I Problem : given n and a floating-point format, find (one of)

the polynomial(s) p of degree ≤ n with floating-point
coefficients minimizing ‖p − f ‖∞.

I Remark : the existence is still ensured. The unicity may
be lost.

I A simplification : we may try to guess the value of each ei
(assuming that the coefficients of p and p∗ have the same
order of magnitude)
↪→ if ei is correctly guessed, we are reduced to find mi ∈ Z
such that ∥∥∥∥∥f (x)−

n∑
i=0

mi · βei x i
∥∥∥∥∥
∞

is minimal.

Sylvain Chevillard Polynomial approximation and floating-point numbers 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete case
Conclusion

Formalization of the problem
I Problem : given n and a floating-point format, find (one of)

the polynomial(s) p of degree ≤ n with floating-point
coefficients minimizing ‖p − f ‖∞.

I Remark : the existence is still ensured. The unicity may
be lost.

I A simplification : we may try to guess the value of each ei
(assuming that the coefficients of p and p∗ have the same
order of magnitude)
↪→ if ei is correctly guessed, we are reduced to find mi ∈ Z
such that ∥∥∥∥∥f (x)−

n∑
i=0

mi · βei x i
∥∥∥∥∥
∞

is minimal.
Sylvain Chevillard Polynomial approximation and floating-point numbers 13



Scope of my researches
Approximation theory

Polynomial approximation with floating-point numbers
Lattices and LLL algorithm

A concrete case
Conclusion

Description of our method
Our goal : find p approximating f and with the following form :

m0 · βe0 + m1 · βe1X + · · ·+ mn · βenXn

I We use the idea of interpolation :

I we choose n + 1 points x0, · · · , xn in [a, b] ;
I we search m0, · · · , mn such that for all i

p(xi) = m0 · βe0 + m1 · βe1xi + · · ·+ mn · βen xn
i ' f (xi) .

I Rewritten with vectors :

m0


βe0

βe0

...
βe0

+ · · · + mn


βen · xn

0
βen · xn

1
...

βen · xn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


f (x0)
f (x1)

...
f (xn)


︸ ︷︷ ︸
−→t ∈Rn+1

.
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Notions about lattices
Let (
−→
b1, · · · ,

−→
bn) be a basis of a real vector space.

The set of all
integer combinations of the

−→
bi is called a lattice :

Γ = Z
−→
b1 + Z

−→
b2 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.
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Conclusion

Algorithmic problems
In the following we consider the euclidean norm on Rn :

‖−→x ‖2 =
n∑

i=1
x2

i .

I Shortest vector problem (SVP).

I Ajtai (1997) and Micciancio (1998) showed that SVP is
NP-hard under probabilistic randomized reduction ; it is
NP-hard to approximate SVP within a factor

√
2.

I There is no polynomial algorithm known to approximate SVP
within a factor f (n) where f is a polynomial.

I Shortest basis problem (SBP).

I Given a basis of a lattice L, find a basis (b1, · · · , bn) of L for
which ‖b1‖ · ‖b2‖ · · · ‖bn‖ is minimal.

I It is NP-hard.
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Algorithmic problems
I Closest vector problem (CVP).

I Emde Boas (1981) : CVP is NP-hard.
I Goldreich and al. : CVP is not easier than SVP.
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LLL algorithm
I Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and

L. Lovász.
Factoring Polynomials with Rational Coefficients,
Math. Annalen 261, 515-534, 1982.

I Given a basis (b1, . . . , bn) of a lattice, the LLL algorithm gives
a basis (c1, . . . , cn) composed of pretty short vectors.

↪→ ||c1|| ≤ 2(n−1)/2λ1(L) where λ1(L) denotes the norm of a
shortest nonzero vector of L.

I LLL terminates in at most O(n6 ln3 B) operations with
B = max ||bi ||2.

I Very good practical results compared to the theoretical
bounds.
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LLL reduction
I Gram-Schmidt orthogonalization : to any basis (b1, · · · , bn)

of a vector space is associated an orthogonal basis
(b∗1 , · · · , b∗n) such that
Span(b1, · · · , bj) = Span(b∗1 , · · · , b∗j ) for all j .

Remark : one may choose it so that b1 = b∗1 .
I Prop. : if (b1, · · · , bn) is the basis of a lattice L,
λ1(L) ≥ min ‖b∗j ‖.

I Idea of LLL algorithm : control the Gram-Schmidt basis to
make b∗1 = b1 minimal among the vectors of the orthogonal
basis.

I Babai’s algorithm uses the LLL algorithm to solve an
approximation of CVP.
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(b∗1 , · · · , b∗n) such that
Span(b1, · · · , bj) = Span(b∗1 , · · · , b∗j ) for all j .
Remark : one may choose it so that b1 = b∗1 .

I Prop. : if (b1, · · · , bn) is the basis of a lattice L,
λ1(L) ≥ min ‖b∗j ‖.

I Idea of LLL algorithm : control the Gram-Schmidt basis to
make b∗1 = b1 minimal among the vectors of the orthogonal
basis.

I Babai’s algorithm uses the LLL algorithm to solve an
approximation of CVP.
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A concrete case

I Example coming from a collaboration with John Harrison
from Intel.

I He asked for a polynomial minimizing the absolute error

I approximating f : x 7→ 2x−1
x

I on [−1/16, 1/16]
I with a degree 9 polynomial.
I a degree 0 coefficient of the form : a0h + a0l where a0h and a0l

are double extended numbers
I other coefficients are double extended numbers.

I A double extended number has 64 bits of mantissa.
I He actually wants to have approximately 74 correct bits.

(i.e. ε ' 5.30e−23)
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First try

Target Degree 8 minimax Degree 9 minimax
5.30e−23 40.1e−23 0.07897e−23

↪→ degree 9 should be a good choice.

I How to choose the points ?

I We need n + 1 points.
I They should correspond to the

interpolation intuition.
I Chebyshev’s theorem gives

n + 1 such points.
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First try : results

Target Degree 9 minimax our polynomial p1 naive method
5.30e−23 0.07897e−23 5.32e−23 40.35e- 23

↪→ pretty good but. . .

I Our polynomial does not respect the interpolation constraint.

I degree 1 coefficient of p1 :

a1 = ◦(log(2)2/2)

→ the slope at 0 is very
constrained.

I we have to take it into account.
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Second try
I The polytope approach confirms that a1 has a constrained

value.

I We compute the best real polynomial of the form
a0 + a2 X 2 + · · ·+ a9 X 9 approximating f − a1 X .

Degree 9 minimax Constrained optimum p1
0.07897e−23 4.44e−23 5.32e−23

I We have only 9 points, but now
only 9 unknowns : it is OK.

I This time, our polynomial p2
gives an error of 4.44e−23 and
is practically optimal.
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Conclusion

I We have developed an algorithm to find very good polynomial
approximants with floating-point coefficients.

I The algorithm is not proven, but works well in practice and
gives certified results with help of the polytope approach.

I The algorithm is flexible : each coefficient may use a different
floating-point format, one may search polynomial with
additional constraints.
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Future work

I We need a good algorithm to find constrained minimax.

↪→ Remez’ algorithm is not sufficient.
I Use similar methods to find other approximants :

I rational fractions ;
I sums of cosines.
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