Polynomial approximation and floating-point numbers Algorithms Project Seminar

Sylvain Chevillard Advisors: Nicolas Brisebarre and Jean-Michel Muller joint work with Serge Torres

Laboratoire de l'informatique du parallélisme Arenaire team

June, 12. 2007

イロト イポト イラト イラト

Contents

Scope of my researches

Approximation theory

Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete case

Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト

Presentation of Arenaire

 Arenaire team : the main goal is the practical computation of mathematical functions.

< ロ > < 同 > < 三 > < 三 >

Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
 - we want to compute a mathematical operator Θ ;
 - we may use an approximation $\widehat{\Theta}$ of Θ ;
 - we implement it with inexact arithmetic, controlling the round-off error.

・ 同 ト ・ ヨ ト ・ ヨ ト

Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
 - we want to compute a mathematical operator Θ ;
 - we may use an approximation $\widehat{\Theta}$ of Θ ;
 - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
 - hardware implementation of mathematical functions;
 - software implementation targeting IEEE correct rounding in double precision format;
 - certified software implementation with arbitrary high precision;
 - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)

▲ 御 ▶ ▲ 王

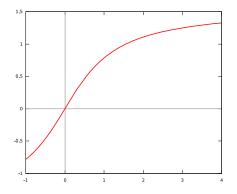
Presentation of Arenaire

- Arenaire team : the main goal is the practical computation of mathematical functions.
- General scheme :
 - we want to compute a mathematical operator Θ ;
 - we may use an approximation $\widehat{\Theta}$ of Θ ;
 - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers :
 - hardware implementation of mathematical functions;
 - software implementation targeting IEEE correct rounding in double precision format;
 - certified software implementation with arbitrary high precision;
 - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)

▲ 同 ▶ ▲ 王

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

Why an approximation?

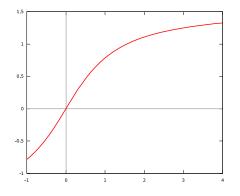


• Let f be a real valued function : $f : \mathbb{R} \to \mathbb{R}$.

Graph of $f : x \mapsto \arctan(x)$

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

Why an approximation?



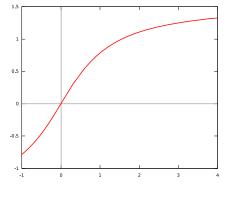
- Let f be a real valued function : $f : \mathbb{R} \to \mathbb{R}$.
- The function may take irrational values : f(x) is thus not exactly representable.

▲ 同 ▶ → 三 ▶

 $\arctan(1) = \pi/4 = 0.78539...$

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

Why an approximation?



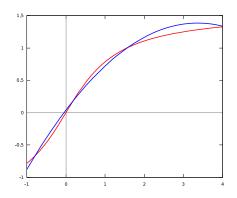
 $\arctan(1) = 0.785 + \varepsilon, |\varepsilon| < 4e - 4$

- Let f be a real valued function : $f : \mathbb{R} \to \mathbb{R}$.
- The function may take irrational values : f(x) is thus not exactly representable.
- We can only compute approximated values and hopefully bound the approximation error.

< ロ > < 同 > < 三 > < 三

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

About the error of approximation

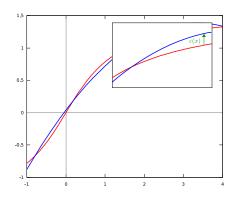


 Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to :

(n: degree of the polynomial)

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

About the error of approximation



- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to :
 - an absolute error

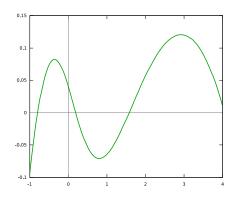
$$\varepsilon(x) = f(x) - p(x);$$

• a relative error $\delta(x) = \varepsilon(x)/f(x)$.

(n: degree of the polynomial)

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

About the error of approximation



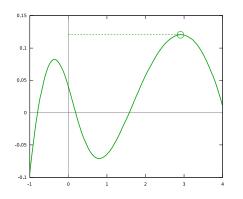
(n: degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to :
 - an absolute error $\varepsilon(x) = f(x) - p(x);$
 - a relative error $\delta(x) = \varepsilon(x)/f(x)$.
- The worst approximation is reached when |ε(x)| has its maximal value.

→ < ∃ →</p>

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete case Conclusion

About the error of approximation



(*n* : degree of the polynomial)

- Consider a closed interval [a, b]. Replacing f by a polynomial p leads at each point x to :
 - an absolute error $\varepsilon(x) = f(x) - p(x);$
 - a relative error $\delta(x) = \varepsilon(x)/f(x)$.
- ► The worst approximation is reached when |ε(x)| has its maximal value.

$$\|\varepsilon\|_{\infty} = \max_{x \in [a, b]} \{|\varepsilon(x)|\}$$

Focus on polynomial approximation

The definition often gives a natural way to compute approximations of *f*. For instance : a power series and a formally computed bound on the error.

A (1) > (1) = (1) (1)

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of *f*. For instance : a power series and a formally computed bound on the error.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of *f*. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of *f*. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...
 - ... usually inefficient in term of number of operations.
 - $\hookrightarrow \exp(x)$ on [-1; 2] with an absolute error ≤ 0.01 :
 - 7 terms of the series / a degree 4 polynomial is sufficient.

イロト イポト イラト イラト

Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of *f*. For instance : a power series and a formally computed bound on the error.
- Truncated power series are useful but...
 - ... usually inefficient in term of number of operations.
 - $\hookrightarrow \exp(x)$ on [-1; 2] with an absolute error ≤ 0.01 :

7 terms of the series / a degree 4 polynomial is sufficient.

Natural question : what degree should have a polynomial to give a suitable approximation ?

< ロ > < 同 > < 三 > < 三 >

Reminder of approximation theory

 Polynomial approximation theory has been deeply studied since the XIXth century.

< ロ > < 同 > < 三 > < 三 >

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- ► Th. (Weierstrass) : the set ℝ[X] is dense in C([a, b]). Bernstein gave an effective polynomial sequence.

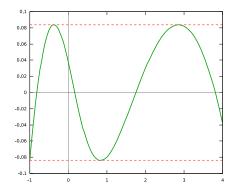
・ 同 ト ・ ヨ ト ・ ヨ

Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- ► Th. (Weierstrass) : the set ℝ[X] is dense in C([a, b]). Bernstein gave an effective polynomial sequence.
- ► Th. (Chebyshev) : given n and f there is a unique polynomial p of degree ≤ n minimizing ||f p||_∞.

イロト イポト イラト イラト

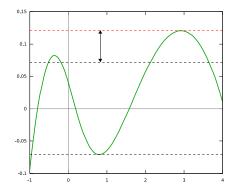
Reminder of approximation theory (2)



 Th. (Chebyshev) : characterization of the optimal error.

n+2 oscillations

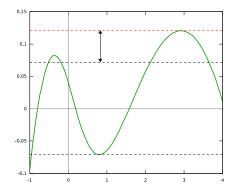
Reminder of approximation theory (2)



- Th. (Chebyshev) : characterization of the optimal error.
- Th. (La Vallée Poussin) : links the quality of an approximation with its error function.

-

Reminder of approximation theory (2)



- Th. (Chebyshev) : characterization of the optimal error.
- Th. (La Vallée Poussin) : links the quality of an approximation with its error function.
- Remez' algorithm : given n, computes the optimal polynomial of degree ≤ n (called minimax).

・ロッ ・行 ・ ・ ヨッ ・ ヨ

Representing real numbers in computers

In general a real number is not finitely representable.
 → one has to choose a subset S and approximate the real line by the elements of S.

A (1) > (1) = (1) (1)

Representing real numbers in computers

- In general a real number is not finitely representable.
 → one has to choose a subset S and approximate the real line by the elements of S.
- ► A usual choice : floating-point numbers (IEEE-754 standard).

Representing real numbers in computers

- ► In general a real number is not finitely representable.
 → one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (IEEE-754 standard).
- A floating-point number with radix β and precision t is a number of the form

$$m\cdot\beta^{\rm e}$$

where :

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly *t* digits;
- ▶ $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.

イロト イポト イラト イラト

Representing real numbers in computers

- ► In general a real number is not finitely representable.
 → one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (IEEE-754 standard).
- A floating-point number with radix β and precision t is a number of the form

$$m\cdot\beta^{\rm e}$$

where :

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
- ▶ $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.
- ▶ IEEE double format : $\beta = 2$, t = 53, and $e \in [-1074, 971]$.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

Representing real numbers in computers

- ► In general a real number is not finitely representable.
 → one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (IEEE-754 standard).
- A floating-point number with radix β and precision t is a number of the form

$$m \cdot \beta^e$$

where :

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
- ▶ $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.
- ▶ IEEE double format : $\beta = 2$, t = 53, and $e \in [-1074, 971]$.
- From now on, we will assume that $[e_{\min}, e_{\max}] = [-\infty, +\infty]$.

Polynomials with floating-point coefficients

Each coefficient of a polynomial is represented by a floating-point number.

A (1) < A (1) < A (1) < A (1) </p>

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of *f* :
 - compute the real minimax p*;
 - replace each coefficient a_i of p^{*} by the nearest floating-point number â_i;

• use
$$\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$$
.

イロト イポト イラト イラト

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- ▶ Naive method to obtain a polynomial approximation of *f* :
 - compute the real minimax p*;
 - ▶ replace each coefficient a_i of p^{*} by the nearest floating-point number â_i;
 - use $\widehat{p} = \widehat{a_0} + \widehat{a_1} X + \cdots + \widehat{a_n} X^n$.
- \hat{p} may be far from being optimal.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f:
 - compute the real minimax p*;
 - ▶ replace each coefficient a_i of p^{*} by the nearest floating-point number â_i;
 - use $\widehat{p} = \widehat{a_0} + \widehat{a_1}X + \cdots + \widehat{a_n}X^n$.
- \hat{p} may be far from being optimal.
- ► Example with f(x) = log₂(1 + 2^{-x}), n = 6, on [0; 1] with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119\cdot 10^{-10}$	$10.06 \cdot 10^{-10}$

Previous works

 W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.

< ロ > < 同 > < 三 > < 三 >

Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically t < 10, n < 20).

・ 同 ト ・ ヨ ト ・ ヨ ト

Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically t < 10, n < 20).
- N. Brisebarre, J.-M. Muller and A. Tisserand have proposed an approach by linear programming (the implementation relies on P. Feautrier's tool PIP).

イロト イポト イラト イラト

Method of Brisebarre, Muller and Tisserand

► Idea : they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of ℝⁿ⁺¹.

Method of Brisebarre, Muller and Tisserand

- ► Idea : they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of Rⁿ⁺¹.
- This approach is certified...

Method of Brisebarre, Muller and Tisserand

- ► Idea : they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of Rⁿ⁺¹.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).

Method of Brisebarre, Muller and Tisserand

- ► Idea : they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of Rⁿ⁺¹.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
- But :
 - its time is exponential;

Method of Brisebarre, Muller and Tisserand

- ► Idea : they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of Rⁿ⁺¹.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
- But :
 - its time is exponential;
 - it is very sensitive to some parameters.

Method of Brisebarre, Muller and Tisserand

- ► Idea : they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of Rⁿ⁺¹.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
- But :
 - its time is exponential;
 - it is very sensitive to some parameters.
- We developed a new method :
 - fast (it is proven to run in polynomial time);
 - heuristic (there is no proof that the result is always tight);
 - with good practical results.

Formalization of the problem

▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) p of degree ≤ n with floating-point coefficients minimizing ||p - f||_∞.

Formalization of the problem

- ▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) p of degree ≤ n with floating-point coefficients minimizing ||p − f||_∞.
- Remark : the existence is still ensured. The unicity may be lost.

Formalization of the problem

- ▶ Problem : given n and a floating-point format, find (one of) the polynomial(s) p of degree ≤ n with floating-point coefficients minimizing ||p − f||_∞.
- Remark : the existence is still ensured. The unicity may be lost.
- A simplification : we may try to guess the value of each e_i (assuming that the coefficients of p and p* have the same order of magnitude)

 \hookrightarrow if e_i is correctly guessed, we are reduced to find $m_i \in \mathbb{Z}$ such that

$$\left\|f(x)-\sum_{i=0}^{n}\mathbf{m}_{i}\cdot\beta^{\mathbf{e}_{i}}x^{i}\right\|_{\infty}$$

is minimal.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Description of our method

Our goal : find p approximating f and with the following form :

 $m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n$

(日)

э

Description of our method

Our goal : find p approximating f and with the following form :

 $m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n$

▶ We use the idea of interpolation :

Description of our method

Our goal : find p approximating f and with the following form :

 $m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n$

We use the idea of interpolation :

• we choose n + 1 points x_0, \dots, x_n in [a, b];

Description of our method

Our goal : find p approximating f and with the following form :

$$m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n$$

▶ We use the idea of interpolation :

- we choose n + 1 points x_0, \dots, x_n in [a, b];
- we search m_0, \dots, m_n such that for all *i*

$$p(x_i) = \mathbf{m}_0 \cdot \beta^{\mathbf{e}_0} + \mathbf{m}_1 \cdot \beta^{\mathbf{e}_1} x_i + \cdots + \mathbf{m}_n \cdot \beta^{\mathbf{e}_n} x_i^n \simeq f(x_i) \quad .$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Description of our method

Our goal : find p approximating f and with the following form :

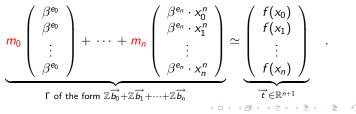
$$m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n$$

We use the idea of interpolation :

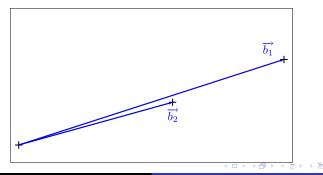
- we choose n + 1 points x_0, \dots, x_n in [a, b];
- we search m_0, \dots, m_n such that for all *i*

$$p(x_i) = m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} x_i + \cdots + m_n \cdot \beta^{e_n} x_i^n \simeq f(x_i) \quad .$$

Rewritten with vectors :



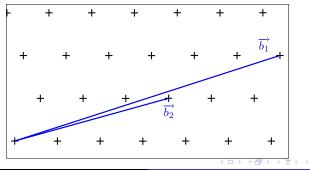
Notions about lattices Let $(\overrightarrow{b_1}, \cdots, \overrightarrow{b_n})$ be a basis of a real vector space.



Notions about lattices

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

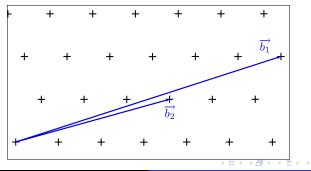


Notions about lattices

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

In general, a lattice has infinitely many bases.

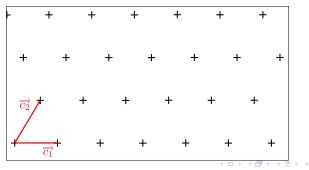


Notions about lattices

Let $(\overrightarrow{b_1}, \cdots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

In general, a lattice has infinitely many bases.

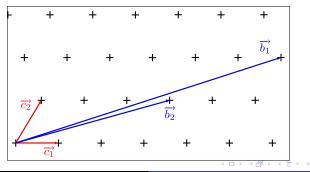


Notions about lattices

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice :

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

In general, a lattice has infinitely many bases.



Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n :

$$\|\overrightarrow{x}\|^2 = \sum_{i=1}^n x_i^2.$$

Shortest vector problem (SVP).

Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n :

$$\|\overrightarrow{x}\|^2 = \sum_{i=1}^n x_i^2.$$

Shortest vector problem (SVP).

► Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor √2.

・ 同 ト ・ ヨ ト ・ ヨ

Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n :

$$\|\overrightarrow{x}\|^2 = \sum_{i=1}^n x_i^2.$$

Shortest vector problem (SVP).

- ► Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor √2.
- There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.

Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n :

$$\|\overrightarrow{x}\|^2 = \sum_{i=1}^n x_i^2.$$

Shortest vector problem (SVP).

- ► Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor √2.
- There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.
- Shortest basis problem (SBP).
 - ► Given a basis of a lattice L, find a basis (b₁, ..., b_n) of L for which ||b₁|| · ||b₂|| ··· ||b_n|| is minimal.

Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n :

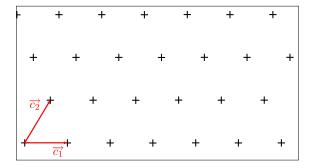
$$\|\overrightarrow{x}\|^2 = \sum_{i=1}^n x_i^2.$$

Shortest vector problem (SVP).

- ► Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor √2.
- There is no polynomial algorithm known to approximate SVP within a factor f(n) where f is a polynomial.
- Shortest basis problem (SBP).
 - ► Given a basis of a lattice L, find a basis (b₁, ..., b_n) of L for which ||b₁|| · ||b₂|| ··· ||b_n|| is minimal.
 - It is NP-hard.

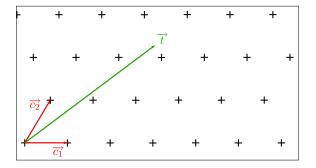
Algorithmic problems

Closest vector problem (CVP).



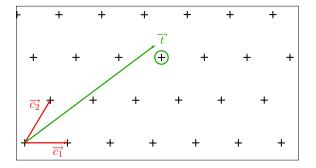
Algorithmic problems

Closest vector problem (CVP).



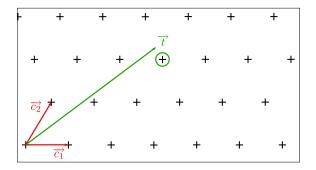
Algorithmic problems

Closest vector problem (CVP).



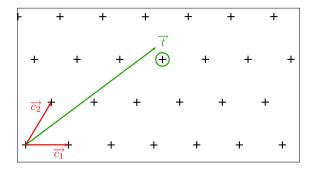
Algorithmic problems

- Closest vector problem (CVP).
 - Emde Boas (1981) : CVP is NP-hard.



Algorithmic problems

- Closest vector problem (CVP).
 - Emde Boas (1981) : CVP is NP-hard.
 - Goldreich and al. : CVP is not easier than SVP.



LLL algorithm

 Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
 Factoring Polynomials with Rational Coefficients, Math. Annalen 261, 515-534, 1982.

LLL algorithm

- Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.
 Factoring Polynomials with Rational Coefficients,
 - Math. Annalen **261**, 515-534, 1982.
- ▶ Given a basis (b₁,..., b_n) of a lattice, the LLL algorithm gives a basis (c₁,..., c_n) composed of pretty short vectors.

LLL algorithm

 Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.

- Given a basis (b₁,..., b_n) of a lattice, the LLL algorithm gives a basis (c₁,..., c_n) composed of pretty short vectors.
 → ||c₁|| ≤ 2^{(n-1)/2}λ₁(L) where λ₁(L) denotes the norm of a shortest nonzero vector of L.
- ► LLL terminates in at most $O(n^6 \ln^3 B)$ operations with $B = \max ||b_i||^2$.

LLL algorithm

 Algorithm developed by A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász.

Factoring Polynomials with Rational Coefficients, Math. Annalen **261**, 515-534, 1982.

- Given a basis (b₁,..., b_n) of a lattice, the LLL algorithm gives a basis (c₁,..., c_n) composed of pretty short vectors.
 → ||c₁|| ≤ 2^{(n-1)/2}λ₁(L) where λ₁(L) denotes the norm of a shortest nonzero vector of L.
- ► LLL terminates in at most $O(n^6 \ln^3 B)$ operations with $B = \max ||b_i||^2$.
- Very good practical results compared to the theoretical bounds.

< ロ > < 同 > < 回 > < 回 > < □ > <

LLL reduction

▶ Gram-Schmidt orthogonalization : to any basis (b₁, ..., b_n) of a vector space is associated an orthogonal basis (b₁^{*}, ..., b_n^{*}) such that Span(b₁, ..., b_j) = Span(b₁^{*}, ..., b_j^{*}) for all j.

イロト イポト イヨト イヨト

LLL reduction

▶ Gram-Schmidt orthogonalization : to any basis (b₁, ..., b_n) of a vector space is associated an orthogonal basis (b₁^{*}, ..., b_n^{*}) such that Span(b₁, ..., b_j) = Span(b₁^{*}, ..., b_j^{*}) for all j. Remark : one may choose it so that b₁ = b₁^{*}.

LLL reduction

- ▶ Gram-Schmidt orthogonalization : to any basis (b₁, ..., b_n) of a vector space is associated an orthogonal basis (b₁^{*}, ..., b_n^{*}) such that Span(b₁, ..., b_j) = Span(b₁^{*}, ..., b_j^{*}) for all j. Remark : one may choose it so that b₁ = b₁^{*}.
 ▶ Prop. : if (b₁, ..., b_n) is the basis of a lattice L,
- Prop. : if (b_1, \cdots, b_n) is the basis of a lattice $\lambda_1(L) \geq \min \|b_j^*\|$.

LLL reduction

- Gram-Schmidt orthogonalization : to any basis (b₁, ..., b_n) of a vector space is associated an orthogonal basis (b₁^{*}, ..., b_n^{*}) such that Span(b₁, ..., b_j) = Span(b₁^{*}, ..., b_j^{*}) for all j. Remark : one may choose it so that b₁ = b₁^{*}.
- ▶ Prop. : if (b_1, \dots, b_n) is the basis of a lattice *L*, $\lambda_1(L) \ge \min \|b_j^*\|$.
- Idea of LLL algorithm : control the Gram-Schmidt basis to make b₁^{*} = b₁ minimal among the vectors of the orthogonal basis.

イロト イポト イヨト イヨト

LLL reduction

- ▶ Gram-Schmidt orthogonalization : to any basis (b₁, ..., b_n) of a vector space is associated an orthogonal basis (b₁^{*}, ..., b_n^{*}) such that Span(b₁, ..., b_j) = Span(b₁^{*}, ..., b_j^{*}) for all j. Remark : one may choose it so that b₁ = b₁^{*}.
- ▶ Prop. : if (b_1, \dots, b_n) is the basis of a lattice *L*, $\lambda_1(L) \ge \min \|b_j^*\|$.
- Idea of LLL algorithm : control the Gram-Schmidt basis to make b₁^{*} = b₁ minimal among the vectors of the orthogonal basis.
- Babai's algorithm uses the LLL algorithm to solve an approximation of CVP.

イロト イポト イヨト イヨト

A concrete case

 Example coming from a collaboration with John Harrison from Intel.

イロト イヨト イヨト

A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- ▶ He asked for a polynomial minimizing the absolute error
 - approximating $f: x \mapsto \frac{2^x 1}{x}$
 - ▶ on [-1/16, 1/16]
 - with a degree 9 polynomial.

A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
 - approximating $f: x \mapsto \frac{2^x 1}{x}$
 - ▶ on [-1/16, 1/16]
 - with a degree 9 polynomial.
 - ➤ a degree 0 coefficient of the form : a_{0h} + a_{0l} where a_{0h} and a_{0l} are double extended numbers
 - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.

A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
 - approximating $f: x \mapsto \frac{2^x 1}{x}$
 - ▶ on [-1/16, 1/16]
 - with a degree 9 polynomial.
 - ➤ a degree 0 coefficient of the form : a_{0h} + a_{0l} where a_{0h} and a_{0l} are double extended numbers
 - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.
- ▶ He actually wants to have approximately 74 correct bits. (i.e. $\varepsilon \simeq 5.30e-23$)

イロト イポト イヨト イヨト

First try

Target	Degree 8 minimax	Degree 9 minimax	
5.30e-23	40.1e-23	0.07897e-23	
\hookrightarrow degree 9 should be a good choice.			

*ロト *個ト * ヨト * ヨト

æ

First try

Target	Degree 8 minimax	Degree 9 minimax	
5.30e-23	40.1e-23	0.07897e-23	
\hookrightarrow degree 9 should be a good choice.			

How to choose the points?

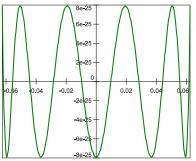
イロト イヨト イヨト

First try

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	0.07897e-23

 \hookrightarrow degree 9 should be a good choice.

How to choose the points?



• We need n + 1 points.

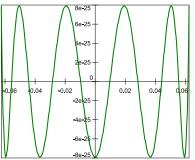
イロト イヨト イヨト

First try

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	0.07897e-23
c domes 0 should be a mood should		

 \hookrightarrow degree 9 should be a good choice.

How to choose the points?



- We need n + 1 points.
- They should correspond to the interpolation intuition.

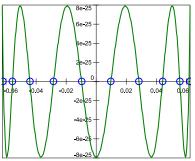
イロト イヨト イヨト

First try

Target	Degree 8 minimax	Degree 9 minimax
5.30e-23	40.1e-23	0.07897e-23
() dograa 0 should be a good shoice		

 \hookrightarrow degree 9 should be a good choice.

How to choose the points?



- We need n + 1 points.
- They should correspond to the interpolation intuition.

イロト イヨト イヨト

 Chebyshev's theorem gives n+1 such points.

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	5.32e-23	40.35e- 23

æ

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	5.32e-23	40.35e- 23
\hookrightarrow pretty good but			

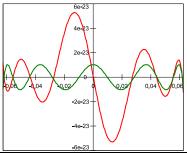
Our polynomial does not respect the interpolation constraint.

イロト イヨト イヨト

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	5.32e-23	40.35e- 23
\hookrightarrow pretty good but			

Our polynomial does not respect the interpolation constraint.



degree 1 coefficient of p₁ :

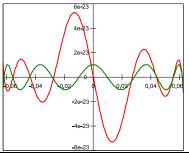
$$a_1 = \circ(\log(2)^2/2)$$

▲ □ ▶ ▲ □ ▶ ▲

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	5.32e-23	40.35e- 23
\hookrightarrow pretty good but			

Our polynomial does not respect the interpolation constraint.



degree 1 coefficient of p₁ :

$$a_1 = \circ(\log(2)^2/2)$$

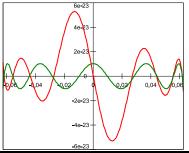
< ロ > < 同 > < 三 > < 三 >

 \rightarrow the slope at 0 is very constrained.

First try : results

Target	Degree 9 minimax	our polynomial p_1	naive method
5.30e-23	0.07897e-23	5.32e-23	40.35e- 23
\hookrightarrow pretty good but			

Our polynomial does not respect the interpolation constraint.



degree 1 coefficient of p₁ :

$$a_1 = \circ(\log(2)^2/2)$$

 \rightarrow the slope at 0 is very constrained.

we have to take it into account.

Second try

The polytope approach confirms that a₁ has a constrained value.

イロト イヨト イヨト

Second try

- The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f a_1 X$.

Second try

- The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form
 - $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f a_1 X$.

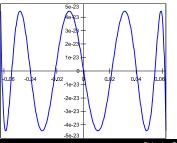
Degree 9 minimax	Constrained optimum	ρ_1
0.07897e-23	4.44e-23	5.32e-23

Second try

- The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form

 $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f - a_1 X$.

Degree 9 minimax	Constrained optimum	p_1
0.07897e-23	4.44e-23	5.32e-23



We have only 9 points, but now only 9 unknowns : it is OK.

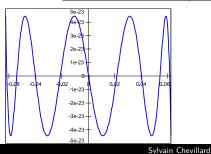
・ 同 ト ・ ヨ ト ・ ヨ ト

Second try

- The polytope approach confirms that a₁ has a constrained value.
- We compute the best real polynomial of the form

 $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f - a_1 X$.

Degree 9 minimax	Constrained optimum	p_1
0.07897e-23	4.44e-23	5.32e-23



- We have only 9 points, but now only 9 unknowns : it is OK.
- This time, our polynomial p₂ gives an error of 4.44e-23 and is practically optimal.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

-

Conclusion

We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.

(日)

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.
- The algorithm is flexible : each coefficient may use a different floating-point format, one may search polynomial with additional constraints.

イロト イポト イラト イラト

Future work

▶ We need a good algorithm to find constrained minimax.

イロト イヨト イヨト

Future work

► We need a good algorithm to find constrained minimax. → Remez' algorithm is not sufficient.

Future work

- ▶ We need a good algorithm to find constrained minimax. → Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :

Future work

- ▶ We need a good algorithm to find constrained minimax. → Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :
 - rational fractions;

・ 同 ト ・ ヨ ト ・ ヨ ト

Future work

- ► We need a good algorithm to find constrained minimax. → Remez' algorithm is not sufficient.
- Use similar methods to find other approximants :
 - rational fractions;
 - sums of cosines.