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‘ 1 — Position of the problem I

Let f = (f1,..., fn) = 0 be a system of
e polynomial functions
e analytic functions defined on a connected open subsetd C C"
in . complex variables;;
Let  a zero of this system of finite multiplicity, and thus isolated in f ~*({0}).
Goal : approximate numerically ¢ with the classical Newton’s operator

Nf . C? — C?
22— Df(2)7" f(2)

If C is a regular root of the system, let us mention Smale’s ~y-theorem :
Theorem 1 (7y-Theorem) Let

Y(u) =1 —4u+u”
(HDf(olef(ou)ﬁ

Y(f;¢) := sup

k>2

k!

, Algorithms Project’s Seminar Jean-Luc Laurent Volery May 31, 2002



POSITION OF THE PROBLEM

if a given zg € C" satisfies

wi= (£, 0l — ¢l < 2=

then the Newton sequence, initialized at zg, is well-defined and converge quadratically to ¢ with

”%“”S(a%o Iz — ¢l k>0

Reference :
L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-Verlag, 1998

However, in the singular case, we can observe experimentally that, if Newton’s algorithm converge to (, then the
convergence is linear due to a geometric grow in one direction of space.

What we propose here:
Geometric caracterisation of directions of linear convergence
Quantitative analysis of the behaviour of Newton’s method with a y-theorem in the spirit of the preceeding

result.
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2 — Schroder and Rall’s contribution I
‘ 2.1 — Schroder’s operator I

f a complex polynomial (or holomorphic function)
¢ a zero of f of multiplicity ;1 < 400 ,that is :

FQO=F()=...=f* () =0 and f"()#0

suppose the Newton’s iterates (zx ) x>0 converge to
Rate of convergence : limg_—, 4 oo Nk, Where N := €x+1 — € and € := 2 — C

—1
Ek+1 — ('UJT) €k + O(&?i)

the convergence of the zx’s is geometric with a rate “T_l

f(=)
F) (2)

Schréder : If the Corrected Newton’s method defined by N, £(2) := 2z — converge, then the

convergence is quadratic.
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‘ 2.2 — Multivariable case : Rall’s flag I

f= (fl, Ceey fn) = 0 a system of n polynomial (or analytic) functions of n complex variables z1, ..., 2, ;

¢ = (C1,-..,Cn) azero of this system of multiplicity 1 < p < 400;

w is the dimension of the local algebra C[z1.n]¢ /(f1:n) in the polynomial case and C{x 1. }¢/(f1:n) inthe
analytic case.

Rall defined the flag of vector spaces at the root :

Ni =ker Df(¢) D Ny := Ny Nker D°f(¢) D ... D N, = {0}

where the Dkf(C), 1 < k < p are view has linear operators. Thus, the kernel of D? f(() is the vector space
{X e C% DDS)(O)(X,.) =0}
He got a unique decomposition of the source space :
C" = N1L D N1
= Ni" @ (N3 ® N)
=N @...0ON,_1® N,y

If we denote by pi. and pkL the orthogonal projections onto /N and NkL respectively, then Rall's conjecture can
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be expressed has follow :

k—1
ok (e1 = . eo)ll = O(lleoll*), 1

/N

k< p

where eg = 20 — Cande1 = N¢(20) — (.
Thus, if Rall's conjecture was correct, we could define the sequence (Y )r>1 :

yk? — (p%(zk)7p§_(2zk — Zk—l), o . 7p,u—1(,LLZk — (,LL i 1)Zk_1))

and state [lyx — ¢|| = O([|zk—1 — ¢[%).

Unfortunately, this construction works only for the case simple-double zeroes and the proof he gave is wrong in
general.

References :

E. Schréder, Uber unendlich viele algorithmen zur auflésung der gleichungen, Math. Annalen 2, 317 — 365 (1870)

L. B. Rall, Convergence of the Newton process to multiple solutions, Numerische Mathematik 9, 23 — 27 (1966)
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all’s example:

2 2
fi=x] —x122 + 25 + 281 — 2

fo= 323 + 2x1290 + 220 — 7

= (1, 1) is a root of multiplicity 2

Df(1,1) =

D?f(1,1) =
f(1,1) 6 2 2 0

ker Df(1,1) = {2x1 + z2 = 0}
Rad = {(0,0)}

e ||p1(2e1 — €0)|| = O(]|eo]|?). the Newton ite-
; converge quadratically to the tangent line (1,1) +

Df(1,1) and the rate of convergence over this line is
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ounter-example to Rall’s conjecture : Whitney'’s pleat

fi1= 33? + x122, f2 = X9 "

B(f) =2'(f) = {327 + 22 = 0}
T(o,o)zl(f) = {z2 =0} = ker D f(0,0)

0.2+

07 97000 02 20 o0 90 B0 960D W 0018 CH BB B A AR A A A A SRR A A R R A AR R R R A SRR SO0 O3 30 500 G070 90 €06 3 0 €0 09 0 ¢

» singular locus of f is the set of points of corank 1.
- can show that the rate of convergence given by
s result is not the right one : the points in blue cor-
ond to the rate 1/2 while the red ones correspond

/3. my 2 0 02 04
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‘ 3 — Corank 1 zeroes I

families of singularities can be distinguished :
Simple-double points
Whitney’s gather and generalized Whitney’s singularities (also called Morin’s singularities)

‘ 3.1 — The simple-double zeros case I

inition 1 ( is called a simple-double zero of f iff

ker Df(C) is 1-dimensional over the ground field, spanned by a unitary vector v ;
D?f({)(v,v) ¢ imDf(¢)

mple 1 "™ Rall's example belongs to this class :

D f(1,1).[(u, —2u), (u, —2u)] = —2(5u*,u*) ¢ imDf(1,1) = {z1 — 4x2 = 0}

The Whitney’s fold (1, £2) — (27, x2) : the projection of the R*'s sphere onto the real plane.
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The only quantitative result for this type of zeroes is due to Dedieu and Shub (1998), it generalize Smale’s
~y-theory which applies uniquely to regular zeros.

J. P. Dedieu, M. Shub, On simple double zeros and badly conditioned zeros of analytic functions of n variables, Math. Comp., pages 319-327,

‘ 3.2 — The (generalized) Whitney’s singularities case I

The Whitney’s gather has already been treated ;
Morin’s singularities : defined by the generalized Whitney’s map

2001.

(z1,...,%n) = (T1, ... T, T1Tn + Toy + ...+ Tprxr "2l ™h
I.,-1 O

DF(0,....0) =

0, o=

SUE) = {z1 4+ 2z0xn + ...+ (n— Dap_12h >+ (n+ Dz =0}
To,..02 (f) = {#1 = 0} D ker Df(0,...,0)

In such a situation, G. Lecerf’s deflation algorithm is powerful.
G. Lecerf, Quadratic Newton iteration for systems with multiplicity, Found. Comput. Math., 2(3) : 247 — 293, 2002
M. Giusti, G. Lecerf, B. Salvy, and J. C. Yakoubsohn, On location and approximation of clusters of zeroes : case of embedding dimension one,

(2004)
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‘ 3.3 — Principal results I

theory Dedieu and Shub (1998) quantitative results in the vein of Sma-
le’s «e-theory, for simple-double zeros
flation Ojika, Watanabe, Mitsui (1983); | deflation consist in differentiating well

Ojika (1997); Lecerf (2002); Ver-
schelde (2004)

chosen equations, both numeric and
symbolic

rrected Newton methods Reddien (1978,1979); Decker | rate 1/2 for simple-double zeroes;
and Kelley (1980); Griewank | extension to Banach spaces; precise
(1980, 1983, 1985) the convergence domain

rdering techniques Griewank (1985); Kunkel | a system with a double zero is trans-

(1988, 1989) ; Govaerts (1997)

formed into one woth a simple solu-
tion, it deals with high multiplicities

gularization techniques

Allgower, Bomer, Hoy, Janovsky
(1999)

regularization of the Newton’s correc-
tion, for corank m but first order sin-
gularities

yebraic topology

Kravanja, Van Barel (2000) + Saku-
rai (2003); Stenger (1975)

numerical integration and residue for-
mula; root counting based on topolo-
gical degree theory

obal techniques

Faugere (1999); Lecerf
(2002); Sommese, Verschelde
(1996, 2000, 2002)

commutative algebra, Grébner basis
computation ; geometric solving; ho-
motopy continuation
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‘4 — Corank at least 1 singularities of generic maps I
‘ 4.1 — First order singularities I

The singular locus X(f) := {z € C"|det(D f(z)) = 0} has a natural subsets partition

Y'(f) :={z € C"|dimcker Df(z) =i}

In the case of Whitney’s pleat, the stratum of corank 1 points is a parabola, thus a smooth subvariety ; in general,

it won't be the case.
| 4.2 — Thom-Boardman’s varieties I

For the Whitney’s gather : since T(O,O)Zl (f) = ker D f(0,0), the origin is an over-exceptional critical point
(in the sense of Thom) ; it will be denote by : 0 € El(f|21(f)) =: 20N,

In Thom-Boardman stratification, at each level, the stratum containing the singular point is locally a subvariety.
This introduce the notion of generic or transversal map.

References

R. Thom, Les singularités des applications différentiables, Annales de linstitut Fourier 6, 43 — 87, 1956
J. M. Boardman, Singularities of differentiable maps, Publications mathématiques de I'l.H.E.S., 33, 21 — 57, 1967
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For a "good” map f, and a given non-increasing sequence I = (nl, - ,nk) (called the Boardman’s symbol),
if =7 (f) is a subvariety, then
B (f) 1= S (fl )

‘ 4.3 — Thom-Boardman'’s flags I

In our case, one obtains the chain of inclusions :

C*2E™M(f) 28" (f) 2. 2B (f)

is well-defined.

and thus :
Tg@n 2 TCE’”l (f) 2 ngnl’n2 (f) 2 - 2 ngnl’”"nk (f)

This suggests the following definitions

Ki1(¢) = ker Df(Q)
K2 (Q) = K1i(Q) NTe X" (f)

Ky11(C) = K1 (Q) N T X"  (f)

which are a particular case of our main construction.
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| 5 —-The main construction I
| 5.1 — Intrinsic derivatives I

Construction initiated by Porteous (1971), reconcile Rall's pioneer ideas and Thom-Boardman'’s stratification.
Yongjian Xiang (1998) gives regular defining equations for Thom-Boardman strata and define augmented
systems.

Main idea : Construct equivariant differential operators at each order.

inition 2 A reparametrization of f is the result of a changing of some coordinates (by analytic diffeomorphisms)
1 in the source and in the target space.

Dif f(C",¢) x Dif f(C",0) x C{z1.n} — C{z1:n}
(¢, 0), f) — (¢, 0).f :=%pofod "

Let us fix (¢, 1) and denote by fi= (¢, 0).f.

If C is a zero of f, then comes immediately

D(f)(¢) = D(¥)(0)Df(¢)D(¢~")(C)

Let 41 (resp. 1) be the canonical inclusion of K1 (¢) = ker D f(¢) (resp. K1(¢) := ker Df(¢)) and
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resp. p1) be the orthogonal projection onto the cokernel L1 (() = cokerD f({) := ToC™imD f(() (resp.

I

~

() := cokerD f(()), the following equality holds :

D*f(¢)(z—¢) =D(Dy Df Do~ ")(¢)(2 — C)
= D*(¢)(z = ¢) Df(C) De(¢) ™
+ Dy(¢) D*f(¢)(z = ¢) Dp(¢) ™
+ Dyp(¢) Df(¢) D(De™ ") (¢)(2 = ¢)

Now observe that, when restricting to the kernel K, (¢) and projecting onto the cokernel ZI(C) the following
equality holds

p1 o D?f(C)(z —¢) 041 = p1 o D(¢) D f(¢)(x — ) Dep(¢) ™" o
= D(¢) (p1 o D f({)(w — ¢) 0 i1) Dep(¢) ™"

The first intrinsic derivative, briefly defined by
01(Df)(C) := D(proDfoir)(C): TcC" — ToHom(K1(), L1(¢))
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IS equivariant with respect to the previous group action. It induces a symetric bilinear operator

51 £(¢) : K1(¢) ® K1(¢) — L1(Q)

The restriction and projection step is defined in local coordinates by taking the Shur’s complement of the regular
partof D f(z).

For the definition of the second intrinsic derivative, we need K2 (¢) := K1(¢) Nker 61 (D f)(¢) = ker 67 f
and also L2 (¢) := coker (87 £(C)), with 32 and p2 the corresponding inclusion and projection, then

52(61 £)(C) := 61(p2 0 81 f 0 i) (C)

The construction extends inductively.
References

I. R. Porteous, The Normal Singularities of a Submanifold, Journal of Differential Geometry 5, 543 — 564, 1971
Yongjian Xiang, Computing Thom-Boardman singularities, Cornell University, Dr. Philosophy Thesis, 1998
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‘ 5.2 — Intrinsic flags I

Ki(¢) = ker D f(¢)

K>(¢) = Ki({)nkerai(Df)(C) = kerdif(()
K3(¢) = K2(¢)Nkerd2(d7f)(¢) = kerdzf(¢)
Kit1(() = Ki(Q)Nkerdi(d; 1f)(¢) = kerd; ™ f(¢)
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ecerf’'s example :

fi=x1 + 27 + 22+ 25+ 1/225 — 1/2
f2=(5131-|—$2—$3—1)3—33?

f3 = (1/5z] +1/2x5 + x3 + 1/225 +1/2)° — a3

= (0,0, —1) isolated root of multiplicity 18.

Ki({) ={x1 +x2 —x3 =0} ny = 2
K (¢) = Ki(C) ng =2
K3(¢) = K2(¢) N{z2 — 23 = 0} nz =1
Ka(¢) = K3(¢) ng =1
K5(C) = Ka(Q) ns =1
Ke(¢) = K5(¢) N{xs =0} = {0} ne =0

denote it by ( € 22’2’1’1’1’0(f)
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‘ 5.3 — Genericity conditions simplified I

An other advantage : the genericy conditions given by Boardman with the sophistication of infinitesimal
structures can be expressed in terms of intrinsic derivatives :

Proposition 1 Suppose ¢ € X"V "k (f), then fis (n1,. .., nk)-generic iff all its intrinsic derivatives up to
order k

61(Df)(C) 5.y k(... (01(Df)) .. )(C)
are surjective.
One recovers Morin’s result which states that the generalized Whitney’s maps are generic.

| 6 — Main result I
nition 3 Let us define

k 1/(k—1)
%ﬁ:%ﬁpﬂo£%:mw<pr(zvxﬁDf@>) )

k>2 k!

| the following intrinsic point estimates

: max, || (6712 i T(Sf 1/(k—i—1)
Yi i= 4" (f,¢) = max pr<aJszKw) ﬂO)

k>it2 k!
n v runs over the unit sphere of K;(().
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ime 1
leo —e1ll = O(lleol])

orem 2 (intrinsic ~y-theorem) Let zo be a random point in the open polydisk Ao = {||z — (|| < 1/70},
yose moreover that, for every 2 such that n; > 0, the projection m(zo) belongs to

= {||pti(z) — m:({)|| < 1/v:i}, then

(e (21, (i +1) (yi-1llmi-1(e0) ) — i (vimallmi-1(c0))”
i (e () )i < (1= (it llmi s (eo)])°

(vi—1]lmi—1(g0)l])
L — (vi—1l|mi—1(e0)|l)

I (2= (554 20 I = OCleol®)

demonstration is based on the Majorant series technique.

|mi—1(e1 — €0)|

_I_

|7mi—1(g0) ]

ollary 1 If zg is as above, then the corrected sequence (yk)k>1 defined by
1 1
ye = (71 (26), ™2 (226 — 2K-1)5 -+, Tu—1(p2k — (0 — 1)2K-1))
verge quadratically to (.
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non generic X%

fi=x1 4+ 22 — 23
2 3 3
fo =21 + x5 + 23

f3 = X1X2X3

0, 0) is a singular zero of multiplicity 7 (SI NGULAR)

1 1 —1
Df(x) = 2¢1  3x3 33

o3 IX1TX3 XT1T2

9 O0xo + 2 —2 —2 6x3 + 2
01 f(x) =
—2:133 2%3 — 2%2 2%3 — 2%2 25132
3 _ —2 6x —2 6x 6x3+2 3x3(6x3+42) 6x
%2 f(x) = ( Seatl (39734?1)2 Soa i (391334?1)2 2+ 3:1324—1 N (§$3+31)2 T 3:133:7—1 )

Kl(O) p— {5131 = I3 — 5132} 2 KQ(O) p— {5131 p— 0,5132 p— 5133} 2 Kg(()) p— {O}
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‘7 — Geometric-Numeric computation of the Boardman symbol I

> f is supposed analytic over a connected open I/ C C™ with only one isolated root.

| 7.1 — One variable case I

multiplicity of f at ¢ can be obtain by means of the Newton'’s iterates {2 } >0 with the ratio

2et1 — 26| p—1

2e41 — 261w

| 7.2 — n-variables case I

s the knowledge of the first n Newton iterates provide the sequenceni > ... > n; > 07

N ingredients

When are the two vectors z; — zo and zx — 2o nearly colinear ?

|(z; —z0)A (2K —20)||
When J
|z —20]||| 2 — 20|

< p2 where p denotes the radius of the current open ball.

Determination of the Least Square Affine Subspace

min Diie1Zy — An—12p—1 — +.. — Q121 — G0
(ag,a1,--san—1)

involves Gauss Pivot method.
Orthogonal projections

24
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20 be a random point in the open polydisk Ag = {||z — (|| < 1/70} and set

rithm

input : 2o, ..., 2n
begini := 1; d := n s := EMPTY STRING
while d > 1 do
1 — 1

7

e make the correction 2x4+1 1= 2g4+1 — ( ) 2k, 0<k<n—-1

e determine the dimension of the Least Square Affine Subspace (LSAS)

and refresh d with the current dimension
e determine the equation of the LSAS by resolving the minimizatoin problem
e replace z1, ..., zn by their projections onto the LSAS

|21 —2zof| _i—1

e compute the next ¢ for which = —
|21 — zol| J

and complete the sequence with the right occurence of d
end
output: s =nq1,...,Nny
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‘8 — Application to bifurcation problems I

1sider the non linear differential system
0, X (1) = f(X(1),N)

re
f: X x KP — ) between two Banach spaces,

X is the state variable, lying in a Banach space (X = C°(R,R") or C{z}™),

A (in KP = R? or CP) is the bifurcation parameter

Motivation : Study of the possible bifurcations (topological changes in the phase portrait) of equilibrium solution
f(Xo, Ao) = 0, especially if it is a singular point of f.

8.1 — Reduction step I

aim to obtain a finite dimensional problem qualitatively similar (type and unfolding of the singular point).
Lyapunov-Schmidt reduction (drawback : it requires the knowledge of K1 = Ker(Dx f(Xo, Ao)) and
Ry = Im(Dx f(Xo, Xo))),
Generalized Lyapunov-Schmidt method provides numerical approximations of K1 and R;.

A. D. Jepson, A. Spence On a reduction process for nonlinear equations, SIAM J. Math. Anal., Vol. 20, No. 1, January 1989
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punov-Schmidt reduction
f(X,A) =0, Dx f(Xo, Ao) is Fredholm of index O (dim (K1) = codim(R1))
X =K &M
Y=R1®N
IFT = 7R, o f(7k, (X) 4+ 0(mx, (X),A),\) =0
For X1 € K1, define o(X1, ) := (id — 7, ) fR(X1 + 0(X1,A), A\)
Fix K1 = Span{vi,...,vn, } and Ri” = Span{vi,...,v; }
and define g = (g1, ..., gn, ) by setting
gi(z,\) =< v, p(x1v1 + ... + Ty Ung, A) >

Lyapunov-Schmidt theorem relates the initial problem to the determination of the type of singular point of the
Iced system we are dealing with.
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8.2 — Geometrical aspect I

Two dynamical systems have the same qualitative behavior iff their reduced systems are contact equivalent (in
the sense of Golubitsky and Schaeffer), therefore, iff they have the same geometry at the singular point.
Golubitsky and Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. |, Springer-Verlag, 1985

In the case of a finite dimensional local algebra, we have seen that the behaviour of the Newton process is very

informative!
‘ 8.3 — Numerical experiment I

The reaction-diffusion model called the Brusselator presents Hopf and Pitchfork bifurcations.
(joint work with Ali Faraj, INSA TOULOUSE)

W. Govaerts Computation of singularities in large nonlinear systems, SIAM J. Numer. Anal., Vol. 34, No. 3, June 1997

Thanks for your invitation.
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