Forty years of Quicksort and Quickselect: a personal view

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

Introduction

 Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

Introduction

- Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)
- They are simple, elegant, beatiful and practical solutions to two basic problems of Computer Science: sorting and selection

Introduction

- Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)
- They are simple, elegant, beatiful and practical solutions to two basic problems of Computer Science: sorting and selection
- They are primary examples of the divide-and-conquer principle

Quicksort

```
void quicksort(vector<Elem>& A, int i, int j) {
    if (i < j) {
       int p = get_pivot(A, i, j);
       swap(A[p], A[1]);
       int k;
       partition(A, i, j, k);
       //A[i..k-1] \le A[k] \le A[k+1..j]
       quicksort(A, i, k - 1);
       quicksort(A, k + 1, j);
```

Quickselect

```
Elem quickselect(vector<Elem>& A,
                 int i, int j, int m) {
   if (i >= j) return A[i];
   int p = get_pivot(A, i, j, m);
   swap(A[p], A[1]);
   int k;
  partition(A, i, j, k);
   if (m < k) quickselect(A, i, k - 1, m);
   else if (m > k) quickselect(A, k + 1, j, m);
   else
                  return A[k];
```

Partition

```
void partition(vector<Elem>& A,
               int i, int j, int& k) {
       int l = i; int u = j + 1; Elem pv = A[i];
       for (;;) {
          do ++1; while(A[1] < pv);
          do --u; while(A[u] > pv);
          if (1 >= u) break;
          swap(A[1], A[u]);
       };
       swap(A[i], A[u]); k = u;
```

Partition

The Recurrences for Average Costs

• Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$

(/51

The Recurrences for Average Costs

- Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$
- Average number of comparisons Q_n to sort n elements:

$$Q_n = n - 1 + \sum_{k=1}^{m} \pi_{n,k} \cdot (Q_{k-1} + Q_{n-k})$$

The Recurrences for Average Costs

- Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$
- Average number of comparisons $C_{n,m}$ to select the m-th out of n:

$$C_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot C_{k-1,m} + \sum_{k=1}^{m-1} \pi_{n,k} \cdot C_{n-k,m-k}$$

Quicksort: The Average Cost

Quicksort: The Average Cost

- For the standard variant, $\pi_{n,k} = 1/n$
- Average number of comparisons Q_n to sort n elements (Hoare, 1962):

$$Q_n = 2(n+1)H_n - 4n$$

= $2n \ln n + (2\gamma - 4)n + 2 \ln n + \mathcal{O}(1)$

where $H_n = \sum_{1 \le k \le n} 1/k = \ln n + \gamma + \mathcal{O}(1/n)$ is the n-th harmonic number and $\gamma = 0.577...$ is Euler's gamma constant.

Quickselect: The Average Cost

• Average number of comparisons $C_{n,m}$ to select the m-th out of n elements (Knuth, 1971):

$$C_{n,m} = 2(n+3+(n+1)H_n)$$

- $(n+3-m)H_{n+1-m} - (m+2)H_m$

Quickselect: The Average Cost

• This is $\Theta(n)$ for any m, $1 \le m \le n$. In particular,

$$m_0(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n} = 2 + 2 \cdot \mathcal{H}(\alpha),$$

$$\mathcal{H}(x) = -(x \ln x + (1 - x) \ln(1 - x)).$$

with $0 \le \alpha \le 1$. The maximum is at $\alpha = 1/2$, where $m_0(1/2) = 2 + 2 \ln 2 = 3.386 \dots$; the mean value is $\overline{m}_0 = 3$.

Apply general techniques: recursion removal, loop unwrapping, ...

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
- Use samples to select better pivots

<u>10/51</u>

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
- Use samples to select better pivots

<u>11/51</u>

It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size $\leq n_0$ and use insertion sort instead

- It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size $\leq n_0$ and use insertion sort instead
- The optimal choice for n_0 is around 20 to 25 elements

- It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size $\leq n_0$ and use insertion sort instead
- The optimal choice for n_0 is around 20 to 25 elements
- Alternatively, one might do nothing with small subfiles and perform a single pass of insertion sort over the whole file

Cutting off recursion also yields benefits for quickselect

<u>13/51</u>

- Cutting off recursion also yields benefits for quickselect
- In (Martínez, Panario, Viola, 2002) we investigate different choices to select small subfiles and how they affect the average total cost: selection, insertion sort, optimized selection

We have now

$$C_{n,m} = \begin{cases} t_{n,m} + \sum_{k=m+1}^{n} \pi_{n,k} \cdot C_{k-1,m} \\ \sum_{k=m+1}^{m-1} \pi_{n,k} \cdot C_{n-k,m-k}, \\ t_{k=1} \\ t_{n,m} \end{cases} \text{ if } n > n_0$$

It can be shown that

$$C(z,u) = C_{n_0}(z,u) + \frac{\int_0^z (1-t)(1-ut)\frac{\partial T(t,u)}{\partial t} dt}{(1-z)(1-uz)}$$

where $T(z,u)=\sum_{n\geq 0}\sum_{1\leq m\leq n}t_{n,m}z^nu^m$ and $C_{n_0}(z,u)$ is the only part depending on the $b_{n,m}$'s and n_0 .

- In order to determine the optimal choice for n_0 we need only to compute $[z^n u^m]C_{n_0}(z,u)$
- We assume $t_{n,m} = \alpha n + \beta + \gamma/(n-1)$ and

$$b_{n,m} = K_1 n^2 + K_2 n + K_3 m^2 + K_4 m + K_5 m n + K_6$$
$$+ K_7 g^2 + K_8 g + K_9 g n,$$

where $g \equiv \min\{m, n-m+1\}$, to study the best choice for n_0 , as a function of α , β , γ and the K_i 's.

• Using insertion sort with $n_0 \le 10$ reduces the average cost; the optimal choice for n_0 is 5

<u>17/51</u>

- Using insertion sort with $n_0 \le 10$ reduces the average cost; the optimal choice for n_0 is 5
- Selection (we locate the minimum, then the second minimum, etc.) reduces the average cost if $n_0 \le 11$; the optimum n_0 is 6

- Using insertion sort with $n_0 \le 10$ reduces the average cost; the optimal choice for n_0 is 5
- Selection (we locate the minimum, then the second minimum, etc.) reduces the average cost if $n_0 \le 11$; the optimum n_0 is 6
- Optimized selection (looks for the m-th from the minimum or the maximum, whatever is closer) yields improved average performance if $n_0 \le 22$; the optimum n_0 is 11

Median-of-three

 In quicksort with median-of-three, the pivot of each recursive stage is selected as the median of a sample of three elements (Singleton, 1969)

<u>18/51</u>

Median-of-three

- In quicksort with median-of-three, the pivot of each recursive stage is selected as the median of a sample of three elements (Singleton, 1969)
- This reduces the probability of uneven partitions which lead to quadratic worst-case

Median-of-three

$$\pi_{n,k} = \frac{(k-1)(n-k)}{\binom{n}{3}}$$

We have in this case

$$\pi_{n,k} = \frac{(k-1)(n-k)}{\binom{n}{3}}$$

• The average number of comparisons Q_n is (Sedgewick, 1975)

$$Q_n = \frac{12}{7}n\log n + \mathcal{O}(n),$$

roughly a 14.3% less than standard quicksort

 To study quickselect with median-of-three, in (Kirschenhofer, Martínez, Prodinger, 1997), we use bivariate generating functions

$$C(z, u) = \sum_{n>0} \sum_{1 \le m \le n} C_{n,m} z^n u^m$$

 To study quickselect with median-of-three, in (Kirschenhofer, Martínez, Prodinger, 1997), we use bivariate generating functions

$$C(z,u) = \sum_{n\geq 0} \sum_{1\leq m\leq n} C_{n,m} z^n u^m$$

 The recurrences translate into second-order differential equations of hypergeometric type

$$x(1-x)y'' + (c - (1+a+b)x)y' - aby = 0$$

20/51

 We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully;-)) the coefficients

21/51

- We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully;-)) the coefficients
- For instance, for the average number of passes we get

$$P_{n,m} = \frac{24}{35}H_n + \frac{18}{35}H_m + \frac{18}{35}H_{n+1-m} + \mathcal{O}(1)$$

- We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully;-)) the coefficients
- And for the average number of comparisons

$$C_{n,m} = 2n + \frac{72}{35}H_n - \frac{156}{35}H_m - \frac{156}{35}H_{n+1-m} + 3m - \frac{(m-1)(m-2)}{n} + \mathcal{O}(1)$$

• An important particular case is $m = \lceil n/2 \rceil$ (the median) were the average number of comparisons is

$$\frac{11}{4}n + o(n)$$

Compare to $(2 + 2 \ln 2)n + o(n)$ for standar quickselect.

In general,

$$m_1(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n} = 2 + 3 \cdot \alpha \cdot (1 - \alpha)$$

with $0 \le \alpha \le 1$. The mean value is $\overline{m}_1 = 5/2$; compare to 3n + o(n) comparisons for standard quickselect on random ranks.

23/51

• In (Martínez, Roura, 2001) we study what happens if we use samples of size s = 2t + 1 to pick the pivots, but t = t(n)

- In (Martínez, Roura, 2001) we study what happens if we use samples of size s = 2t + 1 to pick the pivots, but t = t(n)
- The comparisons needed to pick the pivots have to be taken into account:

$$Q_n = n - 1 + \Theta(s) + \sum_{k=1}^n \pi_{n,k} \cdot (Q_{k-1} + Q_{n-k})$$

 Traditional techniques to solve recurrences cannot be used here

<u>25/51</u>

- Traditional techniques to solve recurrences cannot be used here
- We make extensive use of the continuous master theorem (Roura, 1997)

- Traditional techniques to solve recurrences cannot be used here
- We make extensive use of the continuous master theorem (Roura, 1997)
- We also study the cost of quickselect when the rank of the sought element is random

<u>25/51</u>

- Traditional techniques to solve recurrences cannot be used here
- We make extensive use of the continuous master theorem (Roura, 1997)
- We also study the cost of quickselect when the rank of the sought element is random
- Total cost:
 # of comparisons + ξ · # of exchanges

Theorem 1. If we use samples of size s, with s=o(n) and $s=\omega(1)$ then the average total cost Q_n of quicksort is

$$Q_n = (1 + \xi/4)n \log_2 n + o(n \log n)$$

and the average total $\cos t \, C_n$ of quickselect to find an element of given random rank is

$$C_n = 2(1 + \xi/4)n + o(n)$$

Theorem 2. Let $s^* = 2t^* + 1$ denote the optimal sample size that minimizes the average total cost of quickselect; assume the average total cost of the algorithm to pick the medians from the samples is $\beta s + o(s)$. Then

$$t^* = \frac{1}{2\sqrt{\beta}} \cdot \sqrt{n} + o\left(\sqrt{n}\right)$$

Theorem 3. Let $s^* = 2t^* + 1$ denote the optimal sample size that minimizes the average number of comparisons made by quicksort. Then

$$t^* = \sqrt{\frac{1}{\beta} \left(\frac{4 - \xi(2\ln 2 - 1)}{8\ln 2} \right) \cdot \sqrt{n} + o\left(\sqrt{n}\right)}$$

if
$$\xi < \tau = 4/(2 \ln 2 - 1) \approx 10.3548$$

Optimal sample size (Theorem 3) vs. exact values

• If exchanges are expensive $(\xi \ge \tau)$ we have to use fixed-size samples and pick the median (not optimal) or pick the $(\psi \cdot s)$ -th element of a sample of size $\Theta(\sqrt{n})$

- If exchanges are expensive $(\xi \ge \tau)$ we have to use fixed-size samples and pick the median (not optimal) or pick the $(\psi \cdot s)$ -th element of a sample of size $\Theta(\sqrt{n})$
- If the position of the pivot is close to either end of the array, then few exchanges are necessary on that stage, but a poor partition leads to more recursive steps. This trade-off is relevant if exchanges are very expensive

The variance of quickselect when

$$s = s(n) \to \infty$$
 is

$$V_n = \Theta\left(\max\left\{\frac{n^2}{s}, n \cdot s\right\}\right)$$

• The variance of quickselect when $s = s(n) \rightarrow \infty$ is

$$V_n = \Theta\left(\max\left\{\frac{n^2}{s}, n \cdot s\right\}\right)$$

• The best choice is $s=\Theta(\sqrt{n})$; then $V_n=\Theta(n^{3/2})$ and there is concentration in probability

• The variance of quickselect when $s = s(n) \rightarrow \infty$ is

$$V_n = \Theta\left(\max\left\{\frac{n^2}{s}, n \cdot s\right\}\right)$$

- The best choice is $s=\Theta(\sqrt{n})$; then $V_n=\Theta(n^{3/2})$ and there is concentration in probability
- We conjecture this type of result holds for quicksort too

31/51

• In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to $\alpha=m/n$

- In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to $\alpha=m/n$
- In general: $r(\alpha)$ = rank of the pivot within the sample, when selecting the m-th out of n elements and $\alpha=m/n$

- In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to $\alpha=m/n$
- In general: $r(\alpha)$ = rank of the pivot within the sample, when selecting the m-th out of n elements and $\alpha=m/n$
- Divide [0,1] into ℓ intervals with endpoints $0=a_0< a_1< a_2< \cdots < a_\ell=1$ and let r_k denote the value of $r(\alpha)$ for α in the k-th interval

• For median-of-(2t+1): $\ell=1$ and $r_1=t+1$

- For median-of-(2t+1): $\ell=1$ and $r_1=t+1$
- For proportion-from-s: $\ell=s$, $a_k=k/s$ and $r_k=k$

- For median-of-(2t+1): $\ell=1$ and $r_1=t+1$
- For proportion-from-s: $\ell=s$, $a_k=k/s$ and $r_k=k$
- "Proportion-from"-like strategies: $\ell = s$ and $r_k = k$, but the endpoints of the intervals $a_k \neq k/s$

- For proportion-from-s: $\ell=s$, $a_k=k/s$ and $r_k=k$
- "Proportion-from"-like strategies: $\ell = s$ and $r_k = k$, but the endpoints of the intervals $a_k \neq k/s$
- A sampling strategy is symmetric if

$$r(\alpha) = s + 1 - r(1 - \alpha)$$

Theorem 4. Let $f(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n}$. Then

$$f(\alpha) = 1 + \frac{s!}{(r(\alpha) - 1)!(s - r(\alpha))!} \times$$

$$\int_{\alpha}^{1} f\left(\frac{\alpha}{x}\right) x^{r(\alpha)} (1-x)^{s-r(\alpha)} dx$$

$$+ \int_0^\alpha f\left(\frac{\alpha - x}{1 - x}\right) x^{r(\alpha) - 1} (1 - x)^{s + 1 - r(\alpha)} dx$$

34/51

• Here $f(\alpha)$ is composed of two "pieces" f_1 and f_2 for the intervals [0,1/2] and (1/2,1]

- Here $f(\alpha)$ is composed of two "pieces" f_1 and f_2 for the intervals [0,1/2] and (1/2,1]
- Because of symmetry we need only to solve for f_1

$$f_1(x) = \frac{a}{6} \left((x-1)\ln(1-x) + \frac{x^3}{6} + \frac{x^2}{2} - x \right) - b(1 + \mathcal{H}(x)) + cx + d.$$

• The maximum is at $\alpha = 1/2$. There f(1/2) = 3.112...

- The maximum is at $\alpha = 1/2$. There f(1/2) = 3.112...
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_0(\alpha)$

- The maximum is at $\alpha = 1/2$. There f(1/2) = 3.112...
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_0(\alpha)$
- Proportion-from-2 beats median-of-three in some regions: $f(\alpha) \leq m_1(\alpha)$ if $\alpha \leq 0.140...$ or $\alpha \geq 0.860...$

36/51

- The maximum is at $\alpha = 1/2$. There f(1/2) = 3.112...
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_0(\alpha)$
- Proportion-from-2 beats median-of-three in some regions: $f(\alpha) \le m_1(\alpha)$ if $\alpha \le 0.140...$ or $\alpha \ge 0.860...$
- The grand-average: $C_n = 2.598 \cdot n + o(n)$

36/51

For proportion-from-3,

$$f_1(x) = -C_0(1 + \mathcal{H}(x)) + C_1 + C_2x$$
$$+ C_3K_1(x) + C_4K_2(x),$$
$$f_2(x) = -C_5(1 + \mathcal{H}(x)) + C_6x(1 - x) + C_7,$$

with

$$K_1(x) = \cos(\sqrt{2}\ln x) \cdot \sum_{n\geq 0} A_n x^{n+4} + \sin(\sqrt{2}\ln x) \cdot \sum_{n\geq 0} B_n x^{n+4},$$

$$K_2(x) = \sin(\sqrt{2}\ln x) \cdot \sum_{n\geq 0} A_n x^{n+4} - \cos(\sqrt{2}\ln x) \cdot \sum_{n\geq 0} B_n x^{n+4}.$$

• Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There f(1/3) = f(2/3) = 2.883...

- Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There f(1/3) = f(2/3) = 2.883...
- The median is not the most difficult rank: f(1/2) = 2.723...

- Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There f(1/3) = f(2/3) = 2.883...
- The median is not the most difficult rank: f(1/2) = 2.723...
- Proportion-from-3 beats median-of-three in some regions: $f(\alpha) \le m_1(\alpha)$ if $\alpha \le 0.201...$, $\alpha \ge 0.798...$ or $1/3 < \alpha < 2/3$

39/51

- Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There f(1/3) = f(2/3) = 2.883...
- The median is not the most difficult rank: f(1/2) = 2.723...
- Proportion-from-3 beats median-of-three in some regions: $f(\alpha) \le m_1(\alpha)$ if $\alpha \le 0.201...$, $\alpha \ge 0.798...$ or $1/3 < \alpha < 2/3$
- The grand-average: $C_n = 2.421 \cdot n + o(n)$

Adaptive Sampling: Batfind

Adaptive Sampling: Batfind

• Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 - \nu$

- Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 \nu$
- Same differential equation, same f_i 's, with $C_i = C_i(\nu)$

- Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 \nu$
- Same differential equation, same f_i 's, with $C_i = C_i(\nu)$
- If $\nu \to 0$ then $f_{\nu} \to m_1$ (median-of-three)

<u>41/51</u>

- Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 \nu$
- Same differential equation, same f_i 's, with $C_i = C_i(\nu)$
- If $\nu \to 0$ then $f_{\nu} \to m_1$ (median-of-three)
- If $\nu \to 1/2$ then f_{ν} is similar to proportion-from-2, but it is not the same

Theorem 5. There exists a value ν^* , namely, $\nu^* = 0.182\ldots$, such that for any ν , $0 < \nu < 1/2$, and any α ,

$$f_{\nu^*}(\alpha) \leq f_{\nu}(\alpha).$$

Furthermore, ν^* is the unique value of ν such that f_{ν} is continuous,i.e.,

$$f_{\nu^*,1}(\nu^*) = f_{\nu^*,2}(\nu^*).$$

• Obviously, the value ν^* minimizes the maximum

$$f_{\nu^*}(1/2) = 2.659\dots$$

and the mean

$$\overline{f}_{\nu^*} = 2.342...$$

43/51

• Obviously, the value ν^* minimizes the maximum

$$f_{\nu^*}(1/2) = 2.659\dots$$

and the mean

$$\overline{f}_{\nu^*} = 2.342\dots$$

• If $\nu > \tilde{\nu} = 0.268\ldots$ then f_{ν} has two absolute maxima at $\alpha = \nu$ and $\alpha = 1 - \nu$; otherwise there is one absolute maximum at $\alpha = 1/2$

• If $\nu \leq \overline{\nu}' = 0.404\ldots$ then ν -find beats median-of-3 on average ranks: $\overline{f}_{\nu} \leq 5/2$

- If $\nu \leq \overline{\nu}' = 0.404\ldots$ then ν -find beats median-of-3 on average ranks: $\overline{f}_{\nu} \leq 5/2$
- If $\nu \le \nu_m' = 0.364\ldots$ then ν -find beats median-of-3 to find the median:

$$f_{\nu}(1/2) \le 11/4$$

- If $\nu \leq \overline{\nu}' = 0.404\ldots$ then ν -find beats median-of-3 on average ranks: $\overline{f}_{\nu} \leq 5/2$
- If $\nu \le \nu_m' = 0.364\ldots$ then ν -find beats median-of-3 to find the median: $f_{\nu}(1/2) \le 11/4$
- If $\nu \le \nu' = 0.219...$ then ν -find beats median-of-3 for all ranks: $f_{\nu}(\alpha) \le m_1(\alpha)$

Theorem 6. Let $f^{(s)}(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n}$ when using samples of size s. Then for any adaptive sampling strategy such that $\lim_{s \to \infty} r(\alpha)/s = \alpha$

$$f^{(\infty)}(\alpha) = \lim_{s \to \infty} f^{(s)}(\alpha) = 1 + \min(\alpha, 1 - \alpha).$$

Partial Sort

Partial sort: Given an array A of n elements, return the m smallest elements in A in ascending order

<u>47/51</u>

Partial Sort

- Partial sort: Given an array A of n elements, return the m smallest elements in A in ascending order
- Heapsort-based partial sort: Build a heap, extract m times the minimum; the cost is $\Theta(n + m \log n)$

47/51

Partial Sort

- Partial sort: Given an array A of n elements, return the m smallest elements in A in ascending order
- Heapsort-based partial sort: Build a heap, extract m times the minimum; the cost is $\Theta(n + m \log n)$
- "Quickselsort": find the m-th with quickselect, then quicksort m-1 elements to its left; the cost is $\Theta(n+m\log m)$

```
void partial_quicksort(vector<Elem>& A,
                      int i, int j, int m) {
    if (i < j) {
       int p = get_pivot(A, i, j);
       swap(A[p], A[1]);
       int k;
       partition(A, i, j, k);
       partial_quicksort(A, i, k - 1, m);
       if (k < m-1)
          partial_quicksort(A, k + 1, j, m);
```

• Average number of comparisons $P_{n,m}$ to sort m smallest elements:

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$

• But
$$P_{n,n} = Q_n = 2(n+1)H_n - 4n!$$

$$n - 1 + \sum_{0 \le k < m} \pi_{n,k} Q_k$$

$$n - 1 + \sum_{0 \le k \le m} \pi_{n,k} Q_k$$

• For $\pi_{n,k} = 1/n$, the solution is

$$P_{n,m} = 2n + 2(n+1)H_n$$
$$-2(n+3-m)H_{n+1-m} - 6m + 6$$

$$2m - 4H_m + 2$$

comparisons less than "quickselsort"

<u>51/51</u>

Partial quicksort makes

$$2m - 4H_m + 2$$

comparisons less than "quickselsort"

• It makes $m/3 - 5H_m/6 + 1/2$ exchanges less than "quickselsort"

Partial quicksort makes

$$2m - 4H_m + 2$$

comparisons less than "quickselsort"

- It makes $m/3 5H_m/6 + 1/2$ exchanges less than "quickselsort"
- Why? Short, intuitive explanation?