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Introduction

» Quicksort and quickselect were invented In
the early sixties by C.A.R. Hoare (Hoare,
1961, Hoare, 1962)

» They are simple, elegant, beatiful and
practical solutions to two basic problems of
Computer Science: sorting and selection

» They are primary examples of the
divide-and-conguer principle




Quicksort

voi d qui cksort(vector<Elenr& A, int i, int j) {
(<) A
int p = get _pivot(A i, j);
swap(A[p], All]);
| nt k;
partition(A i, j, k);
[l Ali.k—1]< Akl < Alk+1.7]
qui cksort (A, i, k - 1);

qui cksort (A, k + 1, j);




Quickselect

El em qui cksel ect (vect or <El enr& A,
Int 1, Iint j, int m {
1 f (i >=j) return Ali];
int p = get pivot(A i, j, m;
swap(A[p], All]);

| nt K;

partition(A 1, |, Kk);

I1f (m< k) qui cksel ect (A, 1, k -
else if (m> k) quickselect(A k + 1,
el se return AlK];




Partition \

void partition(vector<El enr& A,
Iint 1, Iint j, int& k) {

int | =1; int u=j) +1;, Elempv = AllI];
for (5 5 ) {

do ++l; while(All] < pv);

do --u; while(Alu] > pv),;

1 f (I >= u) break;

swap(A[l], Alu]);
I
swap(A[1], Alul); K

u,




Partition

pv < pv alars > pv
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The Recurrences for Average Costs

» Probability that the selected pivot is the k-th
of n elements: m,

» Average number of comparisons C), ,, to
select the m-th out of n:

n
Cn,m =n—1+ E Tnk Ck—l,m
k=m+1

m—1

NE E Tnk Cn—k,m—k

k=1
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» For the standard variant, 7, . = 1/n




Quicksort: The Average Cost

» For the standard variant, 7, . = 1/n
» Average number of comparisons (),, to sort n
elements (Hoare, 1962):
Qr.=2(n+1)H, — 4n
=2nlnn+ 2y —4)n+2Inn+ O(1)
where H, = » ., 1/k =Inn+~v+ O(1/n)

IS the n-th harmonic number and v = 0.577 . ..
IS Euler’'s gamma constant.




Quickselect: The Average Cost

» Average number of comparisons C), ,,, to

select the m-th out of n elements (Knuth,
1971):

Crimrs Q(n +3+(n+1)H,
— (n+3—m)Hpi1-m — (m + 2)Hy,)




Quickselect: The Average Cost

® Thisis©O(n) forany m, 1 < m < n. In
particular,

mo(a) = lim Crm _ 24+ 2 -H(a),

n—oo,m/n—a 1

H(z) =—(zIlnz + (1 — z)In(1 — z)).

with 0 < o < 1. The maximum is at a = 1/2,
where my(1/2) =2+ 2In2 = 3.386...; the
mean value Is my = 3.
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Improving Quicksort and Quickselect

e

o Apply general techniques: recursion removal,
loop unwrapping, ...

o Reorder recursive calls to quicksort

» Switch to a simpler algorithm for small
subfiles

» Use samples to select better pivots
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Small Subfiles \

o Itis well known (Sedgewick, 1975) that, for
guicksort, it iIs convenient to stop recursion for
subarrays of size < ny and use insertion sort

Instead

» The optimal choice for n, Is around 20 to 25
elements

» Alternatively, one might do nothing with small
subfiles and perform a single pass of
Insertion sort over the whole file




Small Subfiles

» Cutting off recursion also yields benefits for
guickselect




Small Subfiles

» Cutting off recursion also yields benefits for
guickselect

» In (Martinez, Panario, Viola, 2002) we
Investigate different choices to select small
subfiles and how they affect the average total
cost: selection, insertion sort, optimized
selection




Small Subfiles

o We have now

n
tn,m S\ § Tnk Ok—l,m

k=m-+1

N If n > ng
S\ E Tk On—k,m—ka
k=1

S
3
||

bn,m If n < (N
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Small Subfiles \

e LetC(z,u) = ano Z1§m§n Crim2Suk
o It can be shown that

JE1 = (1 — )

(1 — z)(l — uz)

C(z,u) = Cp(2,u)

where T'(z,u) = > <02 i<m<n tn,mz"u™ and
Ch, (2, u) is the only part depending on the
bn.m'S @nd ny.
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Small Subfiles

» In order to determine the optimal choice for ng
we need only to compute |z"u"|C,, (2, u)

» We assume t,,, = an+ [+ v/(n—1) and

bp.m = Kin*+ Kon+ Ksm?*+ Kym+ Ksmn -+ Kg
+ K7g° + Ksg + Kogn,
where ¢ = min{m,n — m + 1}, to study the

best choice for ny, as a function of «, &, v and
the K;'s.
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Small Subfiles

» Using insertion sort with ny < 10 reduces the
average cost; the optimal choice for ng Is 5

o Selection (we locate the minimum, then the
second minimum, etc.) reduces the average
cost if ng < 11; the optimum ng IS 6

o Optimized selection (looks for the m-th from
the minimum or the maximum, whatever Is
closer) yields improved average performance
If ng < 22; the optimum ny Is 11
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» In quicksort with median-of-three, the pivot of
each recursive stage Is selected as the
median of a sample of three elements
(Singleton, 1969)




Median-of-three \

» In quicksort with median-of-three, the pivot of
each recursive stage Is selected as the
median of a sample of three elements
(Singleton, 1969)

# This reduces the probability of uneven
partitions which lead to quadratic worst-case




Median-of-three

o We have In this case

(k—1)(n — k)

Tnk —

(

3)




Median-of-three \

o We have In this case

(k=D
| (5)

# The average number of comparisons @), IS
(Sedgewick, 1975)

12

roughly a 14.3% less than standard quicksort
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Median-of-three

» To study quickselect with median-of-three, In
(Kirschenhofer, Martinez, Prodinger, 1997),
we use bivariate generating functions

Cz,u) = Z Z Crim2 U

n>0 1<m<n

o The recurrences translate into second-order
differential equations of hypergeometric type

r(1—2)y" + (c—(1+a+b)x)y —aby =0
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has to extract (painfully ;-)) the coefficients




Median-of-three

o We compute explicit solutions for
comparisons and for passes; from there, one
nas to extract (painfully ;-)) the coefficients

# For instance, for the average number of
passes we get

24 18 18
an Hn _Hm _Hn —m 1
m = gedin T 3gdim + gplinti-m * o)




Median-of-three

o We compute explicit solutions for
comparisons and for passes; from there, one
has to extract (painfully ;-)) the coefficients

» And for the average number of comparisons

72 156 156
Cnm — % _Hn Hm Hn —m
m = 40T gp 35 SEN A
m—1)(m — 2
+ 3m ( )( ) - O(1)




Median-of-three

» An important particular case is m = [n/2]
(the median) were the average number of
comparisons is

Compare to (2 + 21n2)n + o(n) for standar
guickselect.




Median-of-three

» In general,

C’nm
mi(a) = lim — =243-a-(1—a)

n—oo,m/n—a N

with 0 < a < 1. The mean value is m; = 5/2;
compare to 3n + o(n) comparisons for
standard quickselect on random ranks.
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happens if we use samples of size s = 2t + 1
to pick the pivots, but t = t(n)




Optimal Sampling

» In (Martinez, Roura, 2001) we study what
happens if we use samples of size s = 2t + 1
to pick the pivots, but t = t(n)

» The comparisons needed to pick the pivots
have to be taken into account:

Qn=n—1+06(s +Z7Tnk (Qr—1 + Qn—r)
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Optimal Sampling

» Traditional techniques to solve recurrences
cannot be used here

o We make extensive use of the continuous
master theorem (Roura, 1997)

o We also study the cost of quickselect when
the rank of the sought element is random

» Total cost:
# of comparisons + £ - # of exchanges




Optimal Sampling

Theorem 1. If we use samples of size s, with s = o(n) and
s = w(1) then the average total cost (), of quicksort is

Qn = (1+&/4)nlogy n + o(nlogn)

and the average total cost C,, of quickselect to find an
element of given random rank is

Cp =2(1+&/4)n + o(n)




Optimal Sampling

Theorem 2. Let s* = 2t™ + 1 denote the optimal sample
size that minimizes the average total cost of quickselect;
assume the average total cost of the algorithm to pick the
medians from the samples is 3s + o(s). Then

f -v/n+o(v/n)




Optimal Sampling

Theorem 3. Let s* = 2t™ + 1 denote the optimal sample

size that minimizes the average number of comparisons
made by quicksort. Then

L1 /4= o m2 Nl
co 5 () i o

ifé <7=4/(2In2 — 1) =~ 10.3548




Optimal Sampling

Optimal sample size (Theorem 3) vs. exact
values




Optimal Sampling

» If exchanges are expensive (¢ > 7) we have
to use fixed-size samples and pick the
median (not optimal) or pick the (v - s)-th
element of a sample of size ©(y/n)




Optimal Sampling

» If exchanges are expensive (¢ > 7) we have
to use fixed-size samples and pick the
median (not optimal) or pick the (v - s)-th

element of a sam

» If the position of t
end of the array, t

nle of size O(y/n)
ne pivot Is close to either

nen few exchanges are

necessary on that stage, but a poor partition

leads to more rec

ursive steps. This trade-off

IS relevant If exchanges are very expensive




Optimal Sampling

# The variance of quickselect when
s=s(n) — c0lIS

2
V=& (max{n—,n : 5})
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# The variance of quickselect when
s=s(n) — c0lIS

2
V=& <max{n—,n : 3})
S

» The best choice is s = ©(4/n); then

V, = ©(n3/?) and there is concentration in
probability




Optimal Sampling \

# The variance of quickselect when
s=s(n) — c0lIS

2
V=& (max{n—,n : 5})
S

» The best choice is s = ©(4/n); then

V, = ©(n¥?) and there is concentration in
probability

o We conjecture this type of result holds for
quicksort too
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Adaptive Sampling

» In (Martinez, Panario, Viola, 2004) we study
choosing pivots with relative rank in the
sample close to a = m/n

» In general: r(«) = rank of the pivot within the
sample, when selecting the m-th out of n
elements and a = m/n

» Divide [0, 1] into ¢ intervals with endpoints
D=ay< a1 <as <---<ay=1andlet r
denote the value of r(«a) for « in the k-th
interval
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Adaptive Sampling

o For median-of-(2t +1): /=1andr; =t + 1
» For proportion-from-s: ¢ = s, ar = k/s and
e — k

» “Proportion-from”-like strategies: ¢ = s and
r. = k, but the endpoints of the intervals

ar # k/s

» A sampling strategy Is symmetric If

rla)=s+1—r(1—a)




Adaptive Sampling

Theorem 4. Let f(a) = limy, 0 1m/n—a Cz’m. Then

s!
N =1+ = DG =r@r

Oé) er(&)(l N Qj)s—r(a) dr
X

4 /&f (a N .CU) x’r(oz)—l(l N x)s—kl—r(a) A
0

| |
h
—_
|

1l —=x




Adaptive Sampling: Proportion-from-2 .

:

» Here f(«) is composed of two “pieces” f; and
fo for the intervals [0,1/2| and (1/2, 1]




Adaptive Sampling: Proportion-from-2 .

:

» Here f(«) is composed of two “pieces” f; and
fo for the intervals [0,1/2| and (1/2, 1]

o Because of symmetry we need only to solve
for f;

L X

fl(x):CL((ZU—l)lﬂ(l—CL’)} ; | ; gj)
— b(1 + H(z)) + cz + d-
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# The maximum is at « = 1/2. There
F(1/2) =3 1128

» Proportion-from-2 beats standard quickselect:
fla) < mo(a)
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Adaptive Sampling: Proportion-from-2 .

3

# The maximum is at « = 1/2. There
F(1/2) =3 1128

» Proportion-from-2 beats standard quickselect:
fla) < mo(a)

» Proportion-from-2 beats median-of-three In
some regions: f(a) < mi(a) ifa <0.140... or
a > 0.860. ..

o The grand-average: C,, = 2.598 - n + o(n)




Adaptive Sampling: Proportion-from-2 .

3.336
3.113

2.75

1.5

A

0.0

mo ()
s
mq (o)
0,140 ;
0.5 1.0

3




Adaptive Sampling: Proportion-from-3 _,

3

For proportion-from-3,

fl(.CC) o —C()(l + H(ZE)) e Cl + CQ$
-+ CgKl(iC) —+ C4K2($),
fg(x) — —05(1 NN H(ZE)) S 06517(1 o .CE) NN 07,

with
K1 (z) = cos(v2Inz) - Z Apz™ T 4 sin(v21n z) - Z Bz 4,

n>0 n>0

Ks(z) =sin(v2Inz) - Z Apz™t — cos(v2Inzx) - Z Bpz™ T4,

n>0 n>0
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Adaptive Sampling: Proportion-from-3 _,

3

» Two maxima ata=1/3 and a = 2/3. There
f(1/3) = f(2/3) = 2.883...

o The median is not the most difficult rank:
F(1/2) = 2572350

» Proportion-from-3 beats median-of-three In
some regions: f(a) < my(a) if a < 0.201.. .,
a>0798...0r1/3<a<2/3

» The grand-average: C,, = 2.421 - n + o(n)




Adaptive Sampling: Batfind
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Adaptive Sampling: Batfind

2.7
2.723

4/3

0.0 0.201 05 1.0
0.276
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Adaptive Sampling: v-find

» Like proportion-from-3, but ¢; = » and

a9 — 1 —v
o Same differential equation, same f;’s, with

o If v — 0then f, — m; (median-of-three)

s If v — 1/2then f, is similar to
oroportion-from-2, but it is not the same




Adaptive Sampling: v-find

Theorem 5. There exists a value ™, namely,
v* =0.182...,suchthatforany ,0 < v < 1/2, and
any q,

fV*(&) S fu(cv)°

Furthermore, v* is the unique value of v such that f, is
continuous,li.e.,

fV*,l(V*) ™~ fV*,Q(V*)-




Adaptive Sampling: v-find

o Obviously, the value v* minimizes the
maximum

£,-(1/2) = 2.659. ..

and the mean

F.=2342. ..




Adaptive Sampling: v-find

o Obviously, the value v* minimizes the
maximum

£,-(1/2) = 2.659. ..

and the mean

F.=2342. ..

e Ifvr >0 =0.268...then f, has two absolute
maxima at « = v and a = 1 — v; otherwise
there is one absolute maximum at o = 1/2
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Adaptive Sampling: v-find \

o Ifvr <7/ =0.404...then v-find beats
median-of-3 on average ranks: f, < 5/2

o Ifv <v =0.364...then v-find beats
median-of-3 to find the median:

f,(1/2) < 11/4
o Ifv <1/ =0.219...then v-find beats
median-of-3 for all ranks: f,(a) < m(«)




Adaptive Sampling: v-find

3.0 T
2.8 T
2.7
2.6 T

2.4+

ViU D Vn

2.2 RN
0.15 0.25 0.35




Adaptive Sampling: proportion-from-s _,

:

n,m

Theorem 6. Let f(¥)(a) = limy, 0 m /n—sa —=" When
using samples of size s. Then for any adaptive sampling
strategy such that lim, ., 7(a)/s = «

S— OO
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return the m smallest elements in A In
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Partial Sort

o Partial sort: Given an array A of n elements,
return the m smallest elements in A In
ascending order

o Heapsort-based partial sort: Build a heap,
extract m times the minimum: the cost Is

©(n + mlogn)

o “Quickselsort™. find the m-th with quickselect,
then quicksort m — 1 elements to its left; the
costis ©(n + mlogm)




Partial Quicksort

void partial _quicksort(vector<El enp& A

int i, int j, int m {

if (i <) {

int p = get _pivot(A i, j);

swap(A[p], All]);

| nt k;

partition(A i, j, k);

partial quicksort(A i, k- 1, m;

if (k < m1)

partial quicksort(A k + 1, j,

n ;




Partial Quicksort

» Average number of comparisons P, ,, to sort
m smallest elements:

n
Pn,m:n_1+ E 7Tn,k’Pk—l,m
k=m+1

+ Z ok * (Prol el e,
]




Partial Quicksort

» Average number of comparisons P, ,, to sort
m smallest elements:

n
Pn,m:n_1+ E 7Tn,k'Pk—l,m
k=m+1

+ > ok (Peot1 + Popam—t)
k=1

s Butpf,,=0,=2n+1)H, — 4n!




Partial Quicksort

» The recurrence for P, ,, Is the same as for
guickselect but the toll function is

TL—-].+- EE::’NnﬁCQk

0<k<m




Partial Quicksort \

» The recurrence for P, ,, Is the same as for
guickselect but the toll function is

n — 1—|- Z 7Tn7ka

0<k<m

» For m,; = 1/n, the solution is

P = 20 2(@ SIS
S 2(n + 3 — m)Hn+1_m —6om+ 06




Partial Quicksort

o Partial quicksort makes
2m —4H,, + 2

comparisons less than “quickselsort”
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o Partial quicksort makes
2m —4H,, + 2

comparisons less than “quickselsort”

» It makes m/3 — 5H,,/6 + 1/2 exchanges less
than “quickselsort”




Partial Quicksort \

o Partial quicksort makes
2m —4H,, + 2

comparisons less than “quickselsort”

» It makes m/3 — 5H,,/6 + 1/2 exchanges less
than “quickselsort”

o Why? Short, intuitive explanation?
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