Algorithmes polynomiaux pour le calcul numérique prouvé de constantes

Loïck LHOTE et Brigitte VALLÉE

GREYC, université de Caen

analyse classique

analyse Dynamique

analyse Dynamique+constantes

• un intervalle *I*

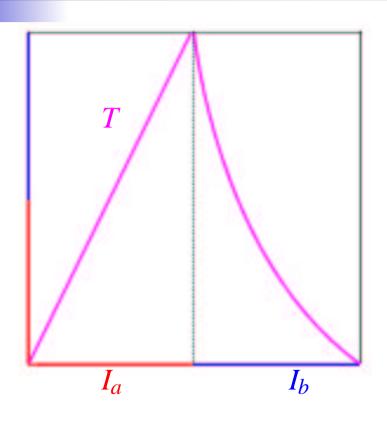
1

 I_{c}

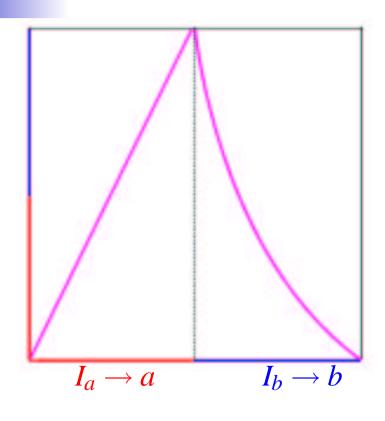
 I_b

- un intervalle *I*
- ullet une partition $\mathcal{P}=(I_a)_{a\in\mathcal{A}}$ de I

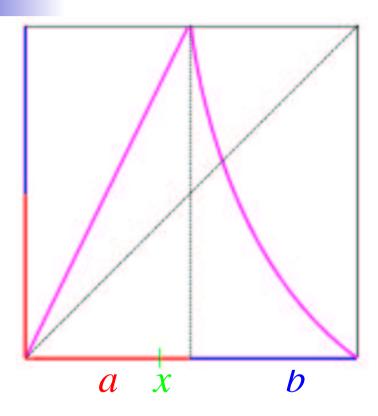
ex:
$$\mathcal{P} = (I_a, I_b)$$



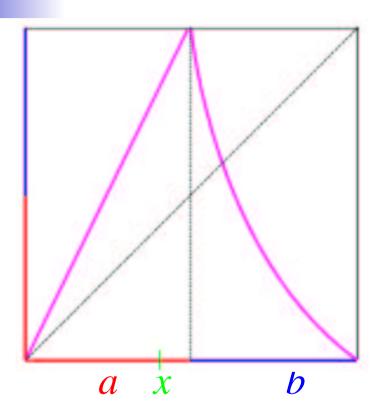
- un intervalle I
- ullet une partition $\mathcal{P}=(I_a)_{a\in\mathcal{A}}$ de I ex: $\mathcal{P}=(I_a,I_b)$
- une fonction T (ou shift)
 surjective par morceaux
 st. monotone par morceaux



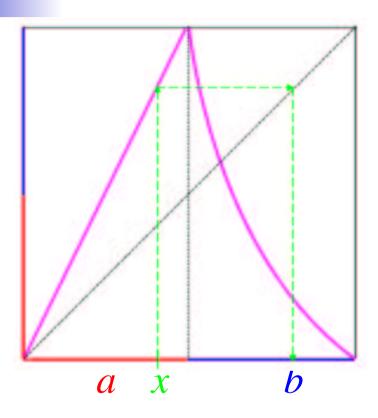
- un intervalle *I*
- ullet une partition $\mathcal{P}=(I_a)_{a\in\mathcal{A}}$ de I ex: $\mathcal{P}=(I_a,I_b)$
- une fonction T (ou shift)
 surjective par morceaux
 st. monotone par morceaux
- un codage de la partition ex: $I_a \rightarrow a$, $I_b \rightarrow b$



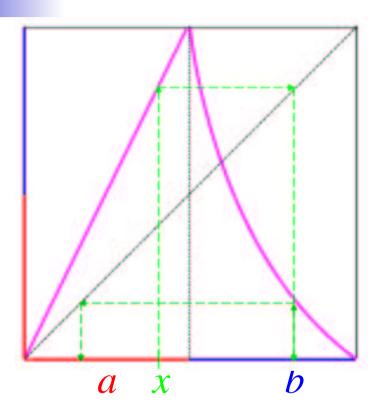
$$M(x) =$$



$$M(x) = a$$



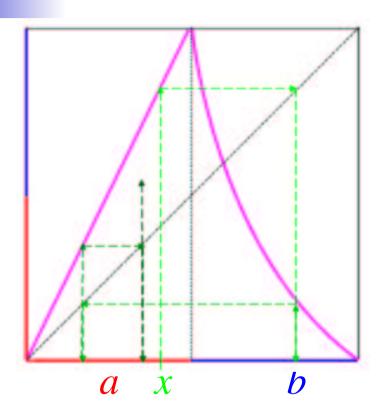
$$M(x) = a b$$



$$M(x) = a b a$$

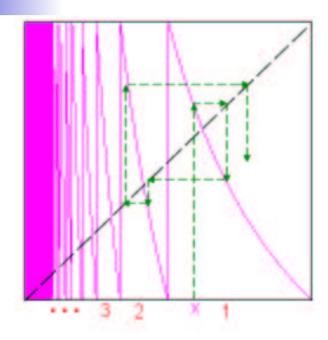


$$M(x) = a b a a$$



$$M(x) = a b a a \dots$$

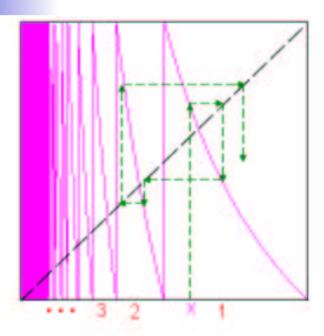
Ex: SD des Fractions Continues



$$M(x) = 1 \ 1 \ 2 \ 2 \ 1 \dots$$

- intervalle: I = [0, 1]
- partition: $I_j = \left[\frac{1}{j+1}, \frac{1}{j}\right]$
- shift: $T_{FC}(x) = \left\{\frac{1}{x}\right\}$
- codage: $I_j \rightarrow j$

Ex: SD des Fractions Continues



$$M(x) = 1 \ 1 \ 2 \ 2 \ 1 \dots$$

- intervalle: I = [0, 1]
- partition: $I_j = \left[\frac{1}{j+1}, \frac{1}{j}\right]$
- shift: $T_{FC}(x) = \left\{\frac{1}{x}\right\}$
- codage: $I_j \rightarrow j$

$$\mathbf{X} = \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \dots}}}}$$

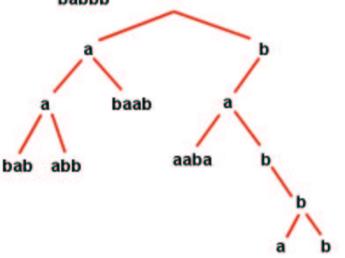
Exemple 1 d'utilisation

Système Dynamique= source

Exemple 1 d'utilisation

Système Dynamique= source

mots: aabab, abaab, aaabb, baaba, babba, babbb



- paramètres de la source?
 entropie, proba. de 2-coïncidence,...
- action sur les structures?
 hauteur moyenne des tries,
 longueur moyenne de cheminement,.

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_0 = a_1 q_1 + a_2$$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_0 = a_1 \ q_1 + a_2$$

$$a_1 = a_2 q_2 + a_3$$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_0 = a_1 \ q_1 + a_2$$
$$a_1 = a_2 \ q_2 + a_3$$

•

$$a_{p-1} = a_p \ q_p + 0$$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_0 = a_1 \ q_1 + a_2$$

$$a_1 = a_2 q_2 + a_3$$

•

$$a_{p-1} = a_p \ q_p + 0$$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_0 = a_1 \ q_1 + a_2$$
 \rightarrow $T_{FC}(\frac{a_1}{a_0}) = \frac{a_2}{a_1}$ $a_1 = a_2 \ q_2 + a_3$ \vdots $a_{p-1} = a_p \ q_p + 0$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_0 = a_1 \ q_1 + a_2 \qquad \rightarrow \qquad T_{FC}(\frac{a_1}{a_0}) = \frac{a_2}{a_1}$$

$$a_1 = a_2 \ q_2 + a_3 \qquad \rightarrow \qquad T_{FC}(\frac{a_2}{a_1}) = \frac{a_3}{a_2}$$

$$\vdots$$

$$a_{p-1} = a_p \ q_p + 0$$

Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

$$a_{0} = a_{1} \ q_{1} + a_{2}$$
 \rightarrow $T_{FC}(\frac{a_{1}}{a_{0}}) = \frac{a_{2}}{a_{1}}$
 $a_{1} = a_{2} \ q_{2} + a_{3}$ \rightarrow $T_{FC}(\frac{a_{2}}{a_{1}}) = \frac{a_{3}}{a_{2}}$
 \vdots \vdots $T_{FC}(\frac{a_{p}}{a_{p-1}}) = 0$

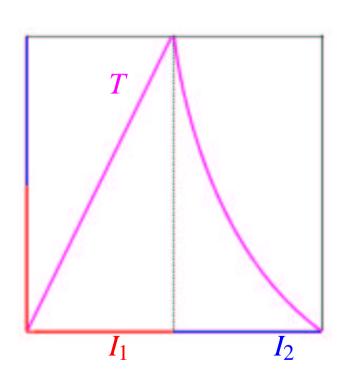
Algorithme d'Euclide classique

Départ: (a_0, a_1) avec $a_0 \ge a_1 > 0$

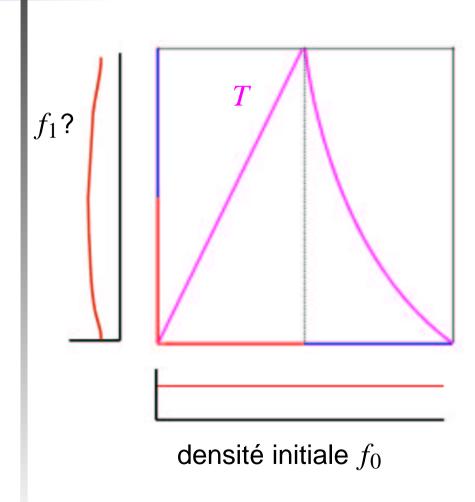
$$a_{0} = a_{1} \ q_{1} + a_{2}$$
 \rightarrow $T_{FC}(\frac{a_{1}}{a_{0}}) = \frac{a_{2}}{a_{1}}$
 $a_{1} = a_{2} \ q_{2} + a_{3}$ \rightarrow $T_{FC}(\frac{a_{2}}{a_{1}}) = \frac{a_{3}}{a_{2}}$
 \vdots \vdots $T_{FC}(\frac{a_{p}}{a_{p-1}}) = 0$

Retourner a_p

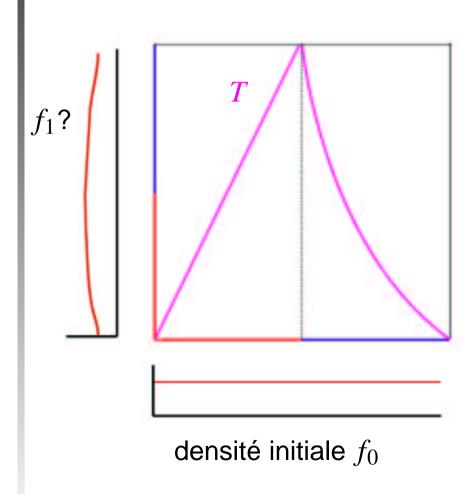
→ se généralise à tous les algorithmes euclidiens



• notation: $h_m = T_{|I_m|}^{-1}$



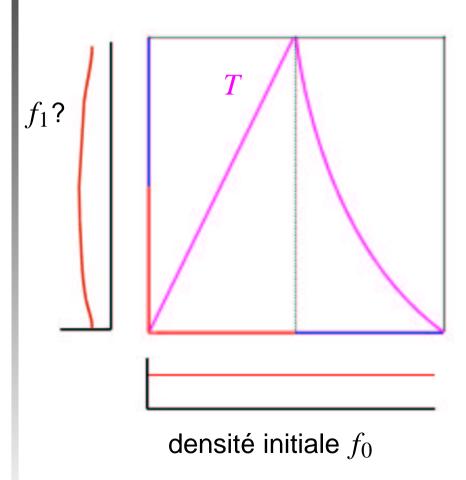
• notation: $h_m = T_{|I_m|}^{-1}$



• notation: $h_m = T_{|I_m|}^{-1}$

transformateur de densité

$$f_1 = \mathbf{G}[f_0] = \sum_{m \in \mathcal{A}} |h'_m| f_0 \circ h_m$$



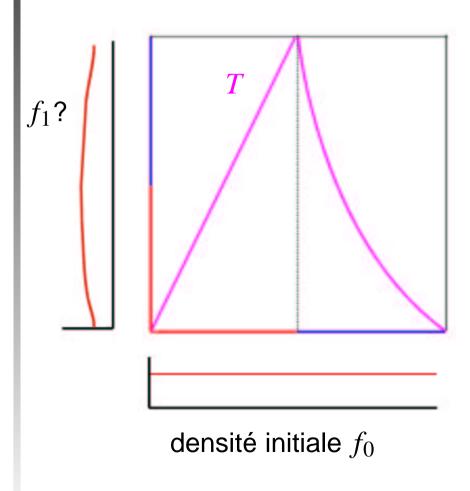
• notation: $h_m = T_{|I_m|}^{-1}$

transformateur de densité

$$f_1 = \mathbf{G}[f_0] = \sum_{m \in \mathcal{A}} |h_m'| \ f_0 \circ h_m$$
 perturbation

opérateurs de transfert

$$\mathbf{G}_{\mathbf{s}}[f] = \sum_{m \in \mathcal{A}} |h'_m|^{\mathbf{s}} f \circ h_m$$



• notation: $h_m = T_{|I_m|}^{-1}$

transformateur de densité

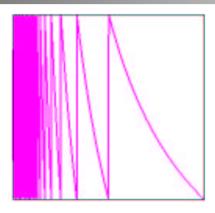
$$f_1 = \mathbf{G}[f_0] = \sum_{m \in \mathcal{A}} |h_m'| \ f_0 \circ h_m$$
 perturbation

opérateurs de transfert

$$\mathbf{G}_{\mathbf{S}}[f] = \sum_{m \in \mathcal{A}} |h_m'|^{\mathbf{S}} \ f \circ h_m$$
 généralisation

opérateurs contraints

exemples operateurs de transfert



Branches inverses:

$$h_m(x) = \frac{1}{m+x}, \qquad m > 0, \ x \in [0,1].$$

Opérateur de transfert

$$\mathbf{G}_{s}[f](x) = \sum_{m>0} \frac{1}{(m+x)^{2s}} f(\frac{1}{m+x})$$

Opérateur de transfert contraint
$$\mathbf{G}_s[f](x) = \sum_{m \text{ pair}} \frac{1}{(m+x)^{2s}} f(\frac{1}{m+x})$$

Utilisation des opérateurs de transfert

Exemple pour les algorithmes euclidiens:

Série de Dirichlet de coût:

$$F_C(s) = \sum_{(u,v)\in\Omega} \frac{C(u,v)}{v^s} = \sum_{n\geq 1} \frac{x_n}{n^s}$$

Pour C(u, v) = 1

$$F_C(s) = \sum_{(u,v)\in\Omega} \frac{1}{v^s} = (\mathbf{I} - \mathbf{G}_{s/2})^{-1}[1](0)$$

singularité simple en $s=2 \Rightarrow x_n = O(n(\log n)^0)$ (en fait = n-1)

Pour C(u,v) = coût en bits sur l'entrée (u,v)

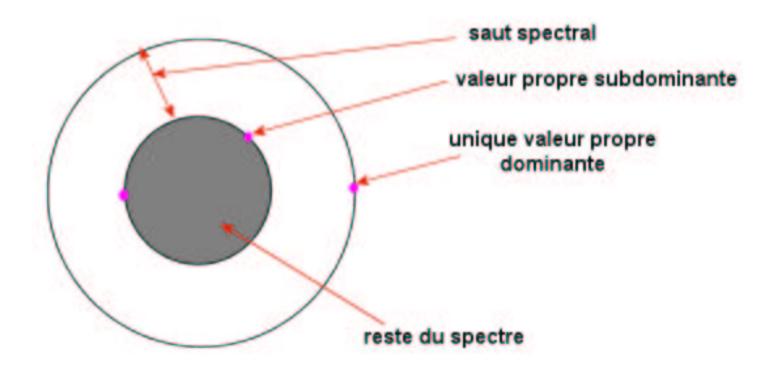
$$F_C(s) = (\mathbf{I} - \mathbf{G}_{s/2})^{-1} \circ \dots \circ (\mathbf{I} - \mathbf{G}_{s/2})^{-1} \circ \dots \circ (\mathbf{I} - \mathbf{G}_{s/2})^{-1} [1](0)$$

singularité triple en $s=2\Rightarrow x_{\text{Alg}n_{\text{ithmes}}} O(n(\log n)^2)$ alcul numérique prouvé de constantes – p.10/20

analyse Dynamique+constantes

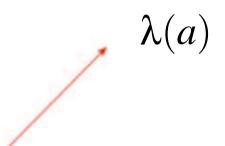
Spectre des opérateurs de transfert

• spectre des opérateurs de transfert (sur un espace fonctionnel convenable):



Proposer une méthode générale pour calculer $\lambda(s)$.

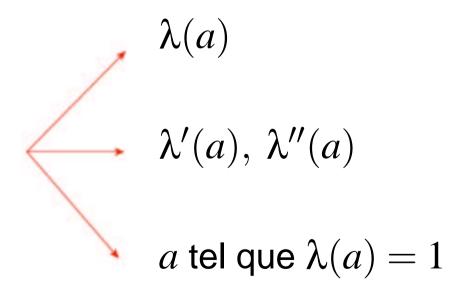
Proposer une méthode générale pour calculer $\lambda(s)$.



Proposer une méthode générale pour calculer $\lambda(s)$.

$$\lambda(a)$$
 $\lambda'(a), \lambda''(a)$

Proposer une méthode générale pour calculer $\lambda(s)$.



- $\lambda(2)$ = probabilité de 2-coïncidence
 - → liée à la probabilité que deux mots commencent par le même préfixe

 λ(2)= probabilité de 2-coïncidence
 → liée à la probabilité que deux mots commencent par le même préfixe

exemple: structure de trie → code les dictionnaires

mots: aabab, abaab, aaabb, baaba, babba, babbb

a baab aaba b b
a b

 λ(2)= probabilité de 2-coïncidence
 → liée à la probabilité que deux mots commencent par le même préfixe

structure de trie: code les dictionnaires

mots: aabab, abaab, aaabb, baaba, babba, babbb

a baab aaba b

- hauteur moyenne≈
 - $2\log n/|\log \lambda(2)|$

- • λ(2)= probabilité de 2-coïncidence
 → liée à la probabilité que deux mots commencent par le même préfixe
- structure de trie: code les dictionnaires

mots: aabab, abaab, aaabb, baaba, babba, babbb

a baab aaba b b
a b

ullet hauteur moyennepprox

$$2\log n/|\log \lambda(2)|$$

- Algorithme de Gauss (LLL)
- $\lambda(r)$ \rightarrow comparaison de deux nombres

constantes de type $\lambda'(a), \lambda''(a)$

- $-\lambda'(1)$ = entropie de la source (du SD)
 - → mesure l'incertitude de la source

"la source qui produit a ou b uniformement est plus incertaine que la source qui produit a avec proba 1/4 et b avec proba 3/4"

constantes de type $\lambda'(a)$, $\lambda''(a)$

- $-\lambda'(1)$ = entropie de la source (du SD)
 - → mesure l'incertitude de la source

"la source qui produit a ou b uniformement est plus incertaine que la source qui produit a avec proba 1/4 et b avec proba 3/4"

mots: aabab, abaab, aaabb, baaba, babba, babbb

a baab aaba b b
a b

influence sur les tries:

 Iongueur moyenne de cheminement≈

$$-(n\log n)/\lambda'(1)$$

constantes de type $\lambda'(a)$, $\lambda''(a)$

Algorithme d'Euclide classique:

- Le nombre d'étapes est asymptotiquement gaussien
- Sur des entrées (u, v) telles que $0 < u < v \le N$, on a
 - Espérance:

$$\mathrm{E}[X_N] \approx -\frac{1}{\lambda'(1)}log(N)$$

Variance:

$$Var[X_N] \approx c_H log(N) = -2 \frac{\lambda''(1) - \lambda'(1)^2}{\lambda'(1)^3}$$

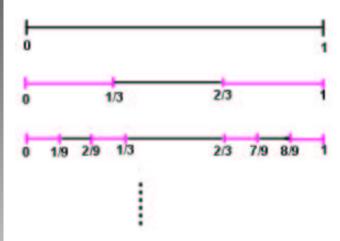
avec c_H la constante de Hensley.

$$\lambda(a) = 1$$

• dimension de Hausdorff d'ensemble de Cantor

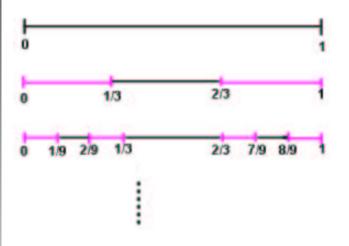
$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor
 ex: ensemble triadique de Cantor



$$\lambda(a) = 1$$

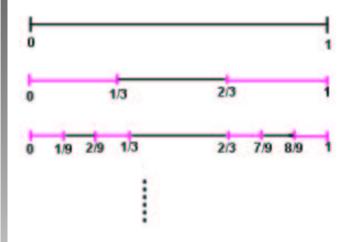
dimension de Hausdorff d'ensemble de Cantor
 ex: ensemble triadique de Cantor



- 1 intervalle de longueur 1
- 2 intervalles de longueur 1/3
- 4 intervalles de longueur 1/9
- 2^n intervalles de longueur $(1/3)^n$

$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor
 ex: ensemble triadique de Cantor



- 1 intervalle de longueur 1
- 2 intervalles de longueur 1/3
- 4 intervalles de longueur 1/9

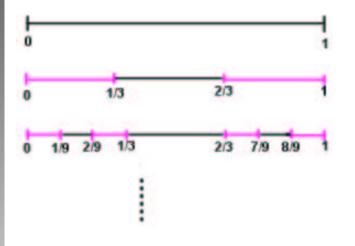
 2^n intervalles de longueur $(1/3)^n$

• compact, non dénombrable mais

$$mesure = \lim_{n \to \infty} 2^n \times (\frac{1}{3})^n = 0$$

$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor
 ex: ensemble triadique de Cantor



- 1 intervalle de longueur 1
- 2 intervalles de longueur 1/3
- 4 intervalles de longueur 1/9

 2^n intervalles de longueur $(1/3)^n$

• compact, non dénombrable mais

$$mesure = \lim_{n \to \infty} 2^n \times (\frac{1}{3})^n = 0$$

$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor

$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor

$$mesure = \lim_{n \to \infty} 2^n \times (\frac{1}{3})^n$$

$$\lambda(a) = 1$$

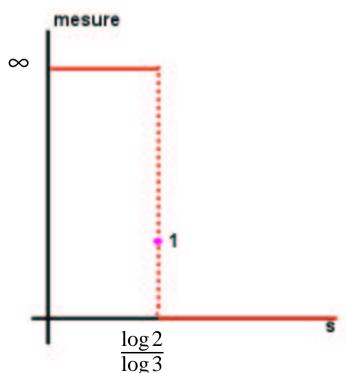
dimension de Hausdorff d'ensemble de Cantor

mesure=
$$\lim 2^n \times (\frac{1}{3})^{ns}$$

$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor

$$mesure = \lim_{n \to \infty} 2^n \times (\frac{1}{3})^{ns}$$

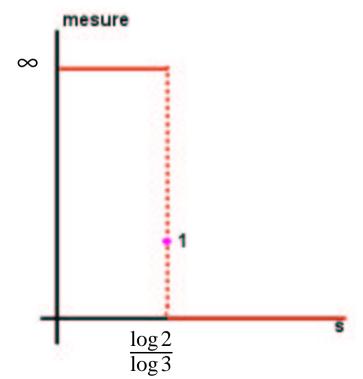


$$\lambda(a) = 1$$

dimension de Hausdorff d'ensemble de Cantor

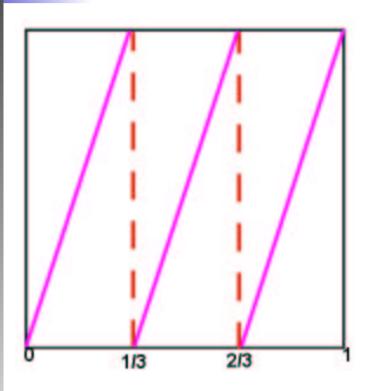
Comment mesurer cet ensemble?

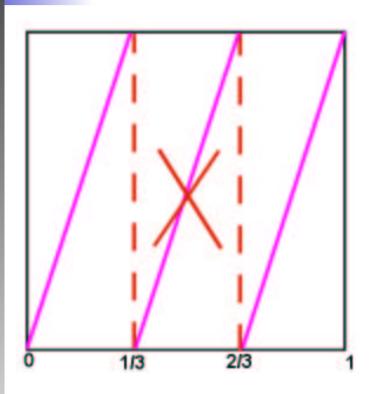
$$mesure = \lim_{n \to \infty} 2^n \times (\frac{1}{3})^{ns}$$

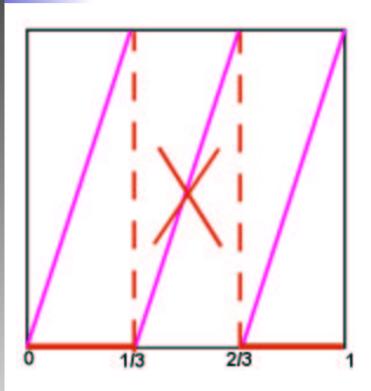


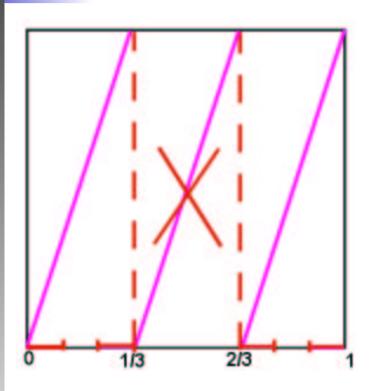
mesure=1

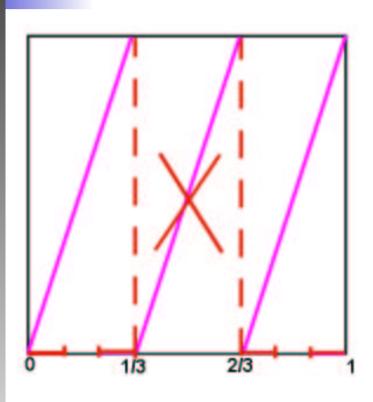
dimension de Hausdorff= $\frac{\log 2}{\log 3}$





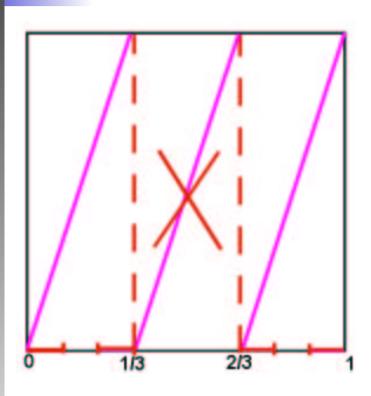






• opérateur de transfert

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + \frac{1}{3^{s}} f(\frac{x-1}{3}) + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

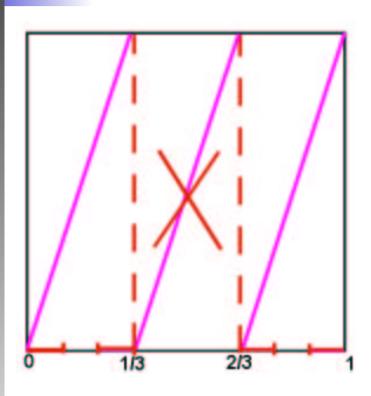


opérateur de transfert

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + \frac{1}{3^{s}} f(\frac{x-1}{3}) + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

• opérateur de transfert contraint

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + + \frac{1}{3^{s}} f(\frac{x-2}{3})$$



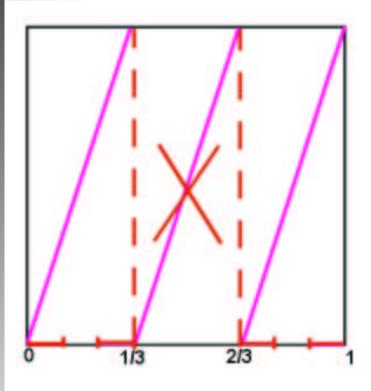
opérateur de transfert

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + \frac{1}{3^{s}} f(\frac{x-1}{3}) + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

• opérateur de transfert contraint

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

unique valeur propre dominante $\lambda(s)$



opérateur de transfert

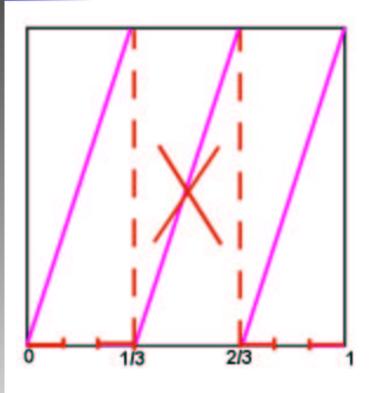
$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + \frac{1}{3^{s}} f(\frac{x-1}{3}) + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

opérateur de transfert contraint

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

unique valeur propre dominante $\lambda(s)$

dim. de Hausdorff= s tel que $\lambda(s) = 1$



opérateur de transfert

$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + \frac{1}{3^{s}} f(\frac{x-1}{3}) + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

opérateur de transfert contraint

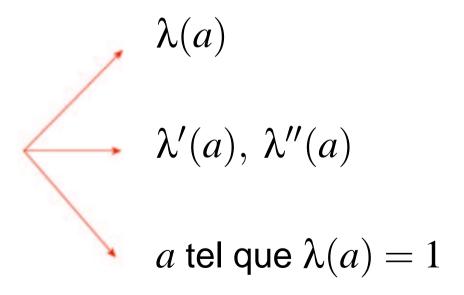
$$\mathbf{G}_{s}[f] = \frac{1}{3^{s}} f(\frac{x}{3}) + + \frac{1}{3^{s}} f(\frac{x-2}{3})$$

unique valeur propre dominante $\lambda(s)$

dim. de Hausdorff= s tel que $\lambda(s) = 1$

Généralisable à tout SD ayant au moins 3 branches

Proposer une méthode générale pour calculer $\lambda(s)$.



Objectif: proposer une methode pour le calcul (numérique) prouvé des trois types de constantes.

Objectif: proposer une methode pour le calcul (numérique) prouvé des trois types de constantes.

Pour tous les SD?

Objectif: proposer une methode pour le calcul (numérique) prouvé des trois types de constantes.

Pour tous les SD? NON

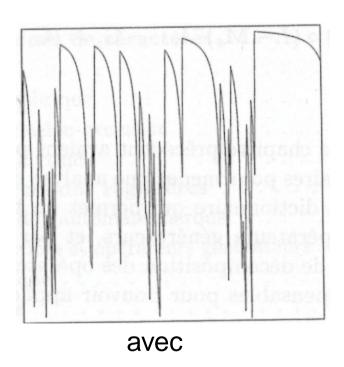
Objectif: proposer une methode pour le calcul (numérique) prouvé des trois types de constantes.

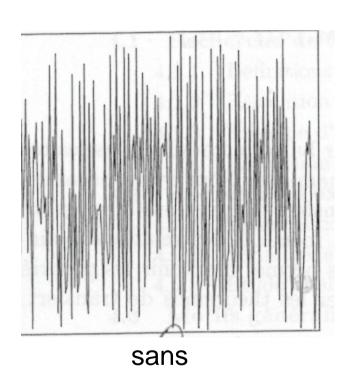
Pour tous les SD? NON

Propriété de contraction

Propriétés de contraction

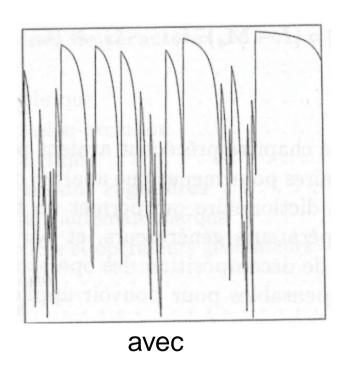
pas de point fixe indifférent

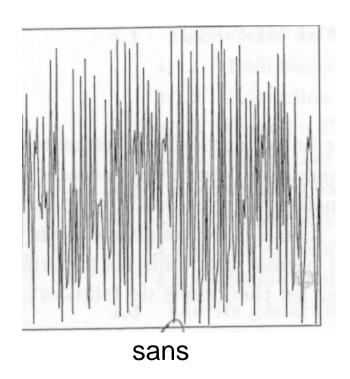




Propriétés de contraction

pas de point fixe indifférent

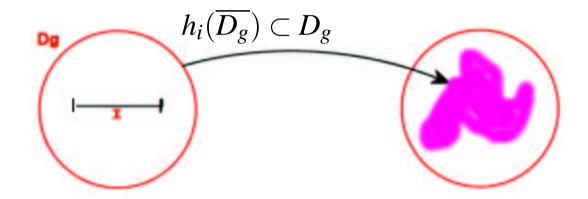




conséquence: ralentissement des algorithmes

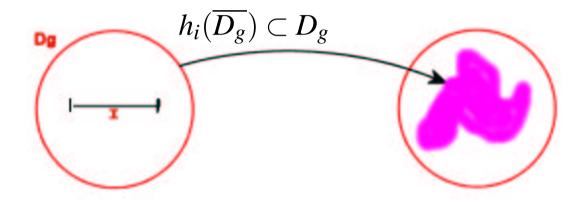
Propriétés de contraction

Condition suffisante: contraction

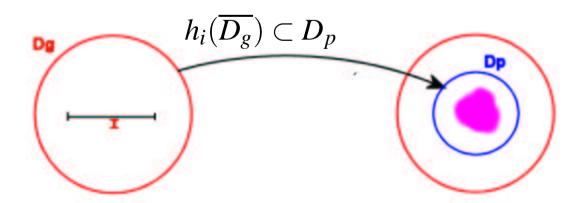


Propriétés de contraction

Condition suffisante: contraction



• condition de contraction forte



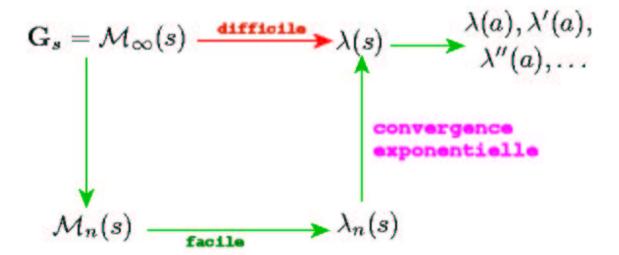
DFV= Daudet, Flajolet et Vallée

- DFV= Daudet, Flajolet et Vallée
- méthode utilisée mais non prouvée

- DFV= Daudet, Flajolet et Vallée
- méthode utilisée mais non prouvée
- Sur un espace convenable, **G**_s est une matrice infinie

- DFV= Daudet, Flajolet et Vallée
- méthode utilisée mais non prouvée
- Sur un espace convenable, **G**_s est une matrice infinie
- calcul de valeurs propres facile ssi on a des matrices finies

- DFV= Daudet, Flajolet et Vallée
- méthode utilisée mais non prouvée
- Sur un espace convenable, **G**_s est une matrice infinie
- calcul de valeurs propres facile ssi on a des matrices finies



- $G_s: \mathcal{A}_{\infty}(D_p) \to \mathcal{A}_{\infty}(D_g) \subset \mathcal{A}_{\infty}(D_g)$ avec $\mathcal{A}_{\infty}(D) = \{\text{fonctions holomorphes sur } D \text{ et continues sur le bord}\}$
- lacksquare toute fonction de $\mathcal{A}_{\infty}(D)$ s'écrit

$$f(z) = \sum_{k \ge 0} a_k (z - x_0)^k$$

- $\mathbf{G}_s: \mathcal{A}_{\infty}(D_p) \to \mathcal{A}_{\infty}(D_g) \subset \mathcal{A}_{\infty}(D_g)$ avec $\mathcal{A}_{\infty}(D) = \{\text{fonctions holomorphes sur } D \text{ et continues sur le bord}\}$
- lacksquare toute fonction de $\mathcal{A}_{\infty}(D)$ s'écrit

$$f(z) = \sum_{k \ge 0} a_k (z - x_0)^k$$

opérateur de troncature:

$$\pi_n[f](s) = \sum_{k=0}^n a_k (z - x_0)^k$$

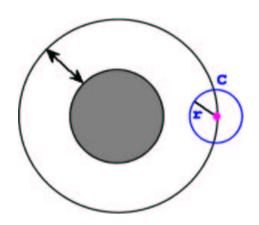
- $\mathbf{G}_s: \mathcal{A}_{\infty}(D_p) \to \mathcal{A}_{\infty}(D_g) \subset \mathcal{A}_{\infty}(D_g)$ avec $\mathcal{A}_{\infty}(D) = \{\text{fonctions holomorphes sur } D \text{ et continues sur le bord}\}$
- lacksquare toute fonction de $\mathcal{A}_{\infty}(D)$ s'écrit

$$f(z) = \sum_{k \ge 0} a_k (z - x_0)^k$$

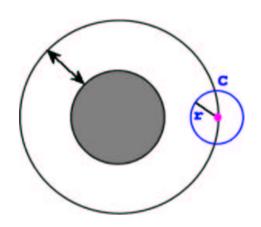
opérateur de troncature:

$$\pi_n[f](s) = \sum_{k=0}^n a_k (z - x_0)^k$$

$$lacksquare$$
 $\mathcal{M}_n = \pi_n \circ \mathbf{G}_s \circ \pi_n$

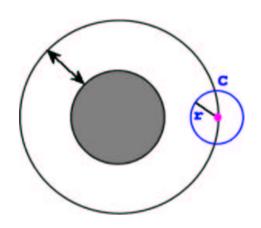


cercle C comme dans le dessin



- cercle C comme dans le dessin
- on pose

$$\alpha_C = \sup_{z \in C} \| (\mathcal{M}_{\infty} - z \, Id)^{-1} \|$$

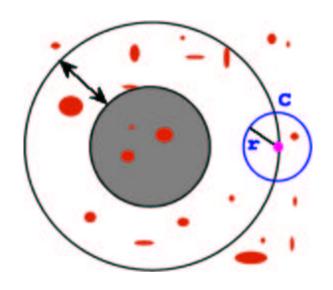


- cercle C comme dans le dessin
- on pose

$$\alpha_C = \sup_{z \in C} \| (\mathcal{M}_{\infty} - z \, Id)^{-1} \|$$

Si

$$\|\mathcal{M}_{\infty} - \mathcal{M}_n\| \leq \min\left\{\frac{1}{2\alpha_C}, \frac{1}{2r_C\alpha_C^2}, \frac{1}{8r^2\alpha_C^3}\right\}$$



Alors \mathcal{M}_n admet une unique valeur propre $\lambda_n(s)$ dans C et

$$|\lambda_n(s) - \lambda(s)| \leq 2r\alpha_C ||\mathcal{M}_n - \mathcal{M}_{\infty}||$$

Premier résultat

Premier résultat:

$$\|\mathcal{M}_n - \mathcal{M}_{\infty}\| \leq K \left(\frac{R_p}{R_g}\right)^n$$

Premier résultat

Premier résultat:

$$\|\mathcal{M}_n - \mathcal{M}_{\infty}\| \le K \left(\frac{R_p}{R_g}\right)^n$$

conséquence: la précision obtenue sur $\lambda(s)$ est linéaire en la taille de la matrice

Premier résultat

Premier résultat:

$$\|\mathcal{M}_n - \mathcal{M}_{\infty}\| \leq K \left(\frac{R_p}{R_g}\right)^n$$

- conséquence: la précision obtenue sur $\lambda(s)$ est linéaire en la taille de la matrice
- corollaire: Si les \mathcal{M}_n sont calculables en temps polynomial, $\lambda(s)$ est calculable en temps polynomial.

Problèmes:

déterminer un cercle C

Problèmes:

- déterminer un cercle C
- lacksquare calculer $lpha_C$

Problèmes:

- déterminer un cercle C
- \blacksquare calculer α_C

Le problème reste ouvert dans le cadre général des systèmes dynamiques à forte contraction

Problèmes:

- déterminer un cercle C
- \blacksquare calculer α_C

Le problème reste ouvert dans le cadre général des systèmes dynamiques à forte contraction \rightarrow cas de la source des fractions continues

Cercle *C*:

- \blacksquare estimation simple de $\lambda(s)$
- minoration du saut spectral

Cercle *C*:

estimation simple de $\lambda(s)$:

Si
$$\mu \leq \frac{\mathbf{G}_s[f]}{f} \leq \mathbf{v}$$
, alors $\mu \leq \lambda(s) \leq \mathbf{v}$

minoration du saut spectral

Cercle C:

- estimation simple de $\lambda(s)$ Si $\mu \leq \frac{\mathbf{G}_s[f]}{f} \leq \mathbf{v}$, alors $\mu \leq \lambda(s) \leq \mathbf{v}$
- minoration du saut spectral

$$\blacksquare \operatorname{Tr} \mathbf{G}_s^2 = \sum_{\lambda \ vp \ de \ \mathbf{G}_s} \lambda^2$$

Cercle C:

- estimation simple de $\lambda(s)$ Si $\mu \leq \frac{\mathbf{G}_s[f]}{f} \leq \mathbf{v}$, alors $\mu \leq \lambda(s) \leq \mathbf{v}$
- minoration du saut spectral

$$\blacksquare \operatorname{Tr} \mathbf{G}_s^2 = \sum_{\lambda \ vp \ de \ \mathbf{G}_s} \lambda^2$$

$$riangle \gamma^2 \leq \operatorname{Tr} \mathbf{G}_s^2 - \lambda(s)^2$$

Cercle C:

- estimation simple de $\lambda(s)$ Si $\mu \leq \frac{\mathbf{G}_s[f]}{f} \leq \mathbf{v}$, alors $\mu \leq \lambda(s) \leq \mathbf{v}$
- minoration du saut spectral

$$Tr \mathbf{G}_s^2 = \sum_{\lambda \ vp \ de \ \mathbf{G}_s} \lambda^2$$

 \blacksquare Tr**G**_s² est calculable en temps polynomial

$$\alpha_C = \sup_{z \in C} \|(\mathbf{G}_s - z\mathbf{I})^{-1}\|$$

$$\alpha_C = \sup_{z \in C} \|(\mathbf{G}_s - z\mathbf{I})^{-1}\|$$

Pb: en général difficile à calculer sauf si l'opérateur satisfait une propriété de normalité.

$$\|(\mathbf{G}_s - z\mathbf{I})^{-1}\| = \frac{1}{dist(C, spectre)} = \frac{1}{r_C}$$

$$\alpha_C = \sup_{z \in C} \|(\mathbf{G}_s - z\mathbf{I})^{-1}\|$$

Pb: en général difficile à calculer sauf si l'opérateur satisfait une propriété de normalité.

$$\|(\mathbf{G}_s - z\mathbf{I})^{-1}\| = \frac{1}{dist(C, spectre)} = \frac{1}{r_C}$$

Pb: **G** n'est pas normal sur $\mathcal{A}_{\infty}(D_p)$

$$\alpha_C = \sup_{z \in C} \|(\mathbf{G}_s - z\mathbf{I})^{-1}\|$$

Pb: en général difficile à calculer sauf si l'opérateur satisfait une propriété de normalité.

$$\|(\mathbf{G}_s - z\mathbf{I})^{-1}\| = \frac{1}{dist(C, spectre)} = \frac{1}{r_C}$$

Pb: **G** n'est pas normal sur $\mathcal{A}_{\infty}(D_p)$

 \mathbf{G}_s est normal sur un autre espace \mathcal{H}

$$\alpha_C = \sup_{z \in C} \|(\mathbf{G}_s - z\mathbf{I})^{-1}\|$$

Pb: en général difficile à calculer sauf si l'opérateur satisfait une propriété de normalité.

$$\|(\mathbf{G}_s - z\mathbf{I})^{-1}\| = \frac{1}{dist(C, spectre)} = \frac{1}{r_C}$$

Pb: **G** n'est pas normal sur $\mathcal{A}_{\infty}(D_p)$

 \mathbf{G}_{s} est normal sur un autre espace \mathcal{H}

relations:
$$\mathcal{H}\subset\mathcal{A}_\infty(D_g)$$
 et $\mathbf{G}_s[\mathcal{A}_\infty(D_g)]\subset\mathcal{H}$

$$\alpha_C = \sup_{z \in C} \|(\mathbf{G}_s - z\mathbf{I})^{-1}\|$$

Pb: en général difficile à calculer sauf si l'opérateur satisfait une propriété de normalité.

$$\|(\mathbf{G}_s - z\mathbf{I})^{-1}\| = \frac{1}{dist(C, spectre)} = \frac{1}{r_C}$$

Pb: **G** n'est pas normal sur $\mathcal{A}_{\infty}(D_p)$

 \mathbf{G}_s est normal sur un autre espace \mathcal{H}

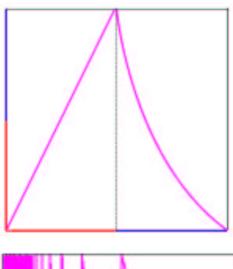
relations:
$$\mathcal{H}\subset\mathcal{A}_\infty(D_g)$$
 et $\mathbf{G}_s[\mathcal{A}_\infty(D_g)]\subset\mathcal{H}$ \to borne sur $\|(\mathbf{G}_s-z\mathbf{I})^{-1}\|$

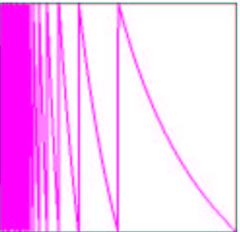
Résultat 2

Dans le cadre des Fractions Continues, $\lambda(s)$ est calculable numériquement en temps polynomial

Constantes de type

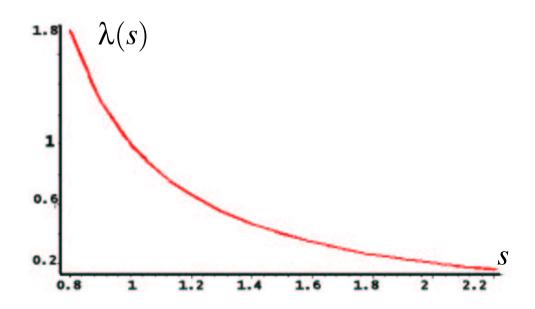
$$\lambda(a)$$





• probabilité de 2-coïncidence

$$\lambda(2) = 0.51$$



Constantes de type $a t q \lambda(a) = 1$

Constantes de type $a t q \lambda(a) = 1$

- $\blacksquare A \subset N^*$
- $E_A = \{x \in [0,1] \mid \text{développement en fraction continue contraint à A} \}$

Constantes de type $a t q \lambda(a) = 1$

- $\blacksquare A \subset N^*$
- $E_A = \{x \in [0,1] \mid \text{développement en fraction continue contraint à A} \}$
- Opérateurs de transfert concernés:

$$\mathbf{G}_{s}[f](x) = \sum_{i \in A} \frac{1}{(i+x)^{2s}} f(\frac{1}{i+x})$$

calcul numérique prouvé

■ Valeurs pour $A = \{1, 2\}$

digits	temps	dimension de Hausdorff
5	2mn	0.53128
10	8mn	0.5312805062
15	25mn	0.531280506277205
20	1h	0.53128050627720514162
40	14h11	0.53128050627720514162
45	23h10	0.53128050627720514162

Calcul de $\lambda'(a)$, $\lambda''(a)$

■ Formule de Taylor+inégalité triangulaire

$$\left|\lambda''(1) - \frac{\lambda_n(1+h) + \lambda_n(1-h) - 2\lambda_n(1)}{h^2}\right| \leq \frac{h^2}{12} \sup_{]1-h,1+h[} |\lambda^{(4)}|$$

$$+\frac{1}{h^2} \left[|\lambda_n(1+h) - \lambda(1+h)| + |\lambda_n(1-h) - \lambda(1-h)| + |\lambda_n(1) - \lambda(1)| \right]$$

Calcul de $\lambda'(a)$, $\lambda''(a)$

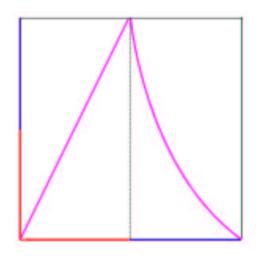
■ Formule de Taylor+inégalité triangulaire

$$\left|\lambda''(1) - \frac{\lambda_n(1+h) + \lambda_n(1-h) - 2\lambda_n(1)}{h^2}\right| \leq \frac{h^2}{12} \sup_{]1-h,1+h[} |\lambda^{(4)}|$$

$$+\frac{1}{h^2} \left[|\lambda_n(1+h) - \lambda(1+h)| + |\lambda_n(1-h) - \lambda(1-h)| + |\lambda_n(1) - \lambda(1)| \right]$$

- Etape 1: majorer sup (possible dès que α_C est connu)
- Etape 2: determiner h tel que $\frac{bleu}{2}$ soit $<\frac{précision}{2}$
- Etape 3: déterminer n tel que rouge soit $< \frac{précision}{2}$

applications numériques



entropie

$$-\lambda'(1) = 0.6766$$

• entropie=
$$-\frac{\pi^2}{6\log 2}$$

• constante de Hensley =
$$-2\frac{\lambda''(1)-\lambda'(1)^2}{\lambda'(1)^3}$$

$$c_H = 0.516062408899991...$$

Première valeur numérique PROUVÉE

Conclusion

- 2 types d'algorithmes basés sur la même méthode:
 - lacksquare des algorithmes *théorique*: on ne connait pas $lpha_C$
 - des algorithmes numérique: tout est connu (cas des Fractions Continues)
- première valeur numérique prouvée pour la constante de Hensley
- un nouvel algorithme polynomial pour les dimensions de Hausdorff
- généralisable à d'autres problèmes (FC à contraintes périodiques, analyse en distribution d'algorithmes Euclidiens, ...)

A faire

- Traitement des erreurs de calcul
 - pour le calcul de la matrice
 - pour le calcul de la valeur propre
- généraliser à d'autres SD
- Résoudre le problème des constantes α_C (difficile)